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1. Introduction

Recently there has been a renewed interest in the study of multivariate records in extreme value theory (e.g. Goldie and
Resnick, 1989, Gnedin, 2007, Hashorva and Hiisler, 2005 and references therein), motivated especially by the latest advances
on the so-called hitting scenarios for extremal events. The notion of a hitting scenario originated from the investigation
of the conditional laws of max-stable processes (Wang and Stoev, 2011; Dombry and Eyi-Minko, 2013). In words, a max-
stable process can be represented as the pointwise maximum of a family of infinite conditionally independent stochastic
processes, and hitting scenarios are introduced to describe whether pointwise maxima at various locations are contributed
by a single underlying stochastic process. This notion plays a crucial role in simulation methods for max-stable processes.
Hitting scenarios also arise naturally in the expression of the likelihood for max-stable models (Stephenson and Tawn, 2005;
Wadsworth and Tawn, 2013), and in random tessellations determined by max-stable processes (Dombry and Kabluchko,
2018). The latest advances on hitting scenarios are motivated by their connections to concurrence probabilities, and the
framework can be naturally stated in the language of random partitions (Dombry and Zott, 2018; Dombry et al., 2017).

Our focus here is on the probabilistic aspects of the hitting partitions of multivariate max-stable distributions, recently
introduced in Dombry et al. (2017). A hitting partition can be viewed, more generally, as a random partition derived from the
hitting scenario of a max-stable process (de Haan, 1984; Wang and Stoev, 2010). We focus however on finite-dimensional
distributions most of the time for the sake of simplicity. We begin with recalling the definition. First, let {£;},cy be a
measurable enumeration of points of a Poisson point process on R, with intensity v, (dx) := ax % 'dx for some o > 0,
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and let {Y,},cy be i.i.d. copies of certain non-negative random vector Y = (Y1, ..., Y;) with finite «-moments. Throughout,
N =1{1,2,...}and Ny = N U {0}. Then, it is well known that the vector

ZE(Z],...,ZH)E (\/S{Yl,l’---7\/$eyl,n> (11)
(=1 (=1

has a multivariate max-stable a-Fréchet distribution (de Haan, 1984). Throughout, we write vV = max. Recall that a random
variable Z is said to be «-Fréchet if

P(Z < x)=exp(—o®/x¥), forx e (0, c0),

with scale parameter ¢ > 0. The vector Z is max-stable with «-Fréchet marginals if all its non-negative max-linear
combinations \/Z:1 axZy are a-Fréchet distributed, for all @, > 0, k = 1, ..., n. The representation (1.1) is an instance
of the so-called Le Page-type series representations in the special case of the semi-group (R¢, V) (Davydov et al., 2008).

Given a max-stable Fréchet random vector with the representation (1.1), the induced hitting partition is determined as
follows. Set

€*(k) == argmax {& Yo}  k=1,....n.
LeN

Note that {£,Y, , £ € N}is a simple Poisson process on (0, oo) and hence with probability one, £*(k) is uniquely determined
for every k; we restrict ourselves to this event from now on.

The hitting partition of [n] = {1, ..., n}, for n € N, denoted by IT,, is the random partition of equivalence classes induced
by the relation
i~j ifandonlyif £*(i)= £€*(j), foralli,j € [n]. (1.2)

Here, i ~ j reads as i and j are in the same block of the partition. Recall that a partition of [n] is a collection of disjoint sets,
the union of which is [n].

Thus far, most of the research on the hitting partitions has focused on the so-called concurrence probability, that is, the
probability of the event that the hitting partition IT,, consists of a single block (Dombry et al., 2017; Dombry and Zott, 2018).
The concurrence probability has the following expression

1
=PUIl, = =E
p(n) = P (1T, = {[n]}) (E(\/L] A Y)) :

where Y* is an independent copy of Y. This result was established in Dombry et al. (2017, Theorem 2) by using the Slyvniak-
Mecke formula, and the same method in principle could yield formulae for the entire probability distribution of the hitting
partition (see, e.g. Dombry and Eyi-Minko, 2013). The general expressions are however neither explicit nor intuitive.

The motivation of this paper is to study specific choices of Y, where the induced hitting partition has an explicit probability
mass function. Our starting point is an example from a very recent paper (Dombry et al., 2017, Example 3), where « € (0, 1)

andY = (Yq, ..., Yy)hasi.i.d. 1-Fréchet components. Then, the distribution of Z = (Zy, ..., Z,) in(1.1) becomes multivariate
a-logistic (see Example 3.4). In this case, the concurrence probability has a simple-looking formula
n—1 n—1
o [Tk —a)
n)= 1——)5‘7,neN. 13
p(m) E( k (n—1) (13)

In this paper, first we explain this formula by showing that the hitting partition in this case is the exchangeable
random partition induced by the Poisson-Dirichlet distribution with parameters («, 0). Poisson-Dirichlet distributions and
exchangeable random partitions are fundamental objects in combinatorial stochastic processes, with numerous applications,
notably in nonparametric inference and population genetics (Pitman, 2006; Berestycki, 2009). An outstanding family of
exchangeable random partitions are the ones induced by the Poisson-Dirichlet distribution with parameters «, 0, referred
to as the PD(«, 0) partitions for short. The legitimate values of the parameters are « < 0,0 = —mu for some m € N or
« € [0, 1], & > —a. For any selected partition of [n] with block sizes ny, ..., ng (suchthatny+---+n, =n,nq, ..., ng > 1),
the probability of a PD(«, ) taking the value of this partition equals

(0 + o141 Hf—;(l — o)ni—141
(0 + 1)n71Toz

Doy, ..., M) = , (1.4)

where (X)nta = f;ol(x + ka). (See Pitman, 2006, Theorem 3.2, Definition 3.3.) The Poisson-Dirichlet random partitions
are actually exchangeable random partitions of N, although we focus on their restriction to [n] (1.4) most of the time.

Proposition 1.1. The hitting partition IT, of the «-logistic max-stable model, « € (0, 1), is a PD(«, 0) partition.

The result follows essentially from the paintbox representation of exchangeable random partitions, to be reviewed in
Section 2, and the max-stability property of Fréchet distributions. By recognizing the random weights in the paintbox
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representation as the (normalized) jumps of an «-stable subordinator, we obtain that the hitting partition is in fact the
PD(«, 0) partition. Thus, our method is completely different from the one applied in Dombry et al. (2017).

Moreover, it turns out that the same idea of the proof can be applied to a larger family of hitting partitions, associated
with a class of max-infinitely-divisible (max-i.d.) distributions (Resnick, 1987). The latter are obtained as in (1.1), but by
considering a general intensity measure v for the Poisson process {&,, ¢ € N} while keeping the independent a-Fréchet
marks Yy i’s. The resulting max-i.d. distributions will be referred to as sub-Fréchet max-i.d. distributions.

Our main result is Theorem 2.3, which establishes a paintbox representation of the hitting partitions for all sub-Fréchet
max-i.d. distributions: these hitting partitions are precisely the exchangeable random partitions obtained via size-biased
sampling of jumps from a subordinator with Lévy measure v (Pitman, 2006, Chapter 4.1). This representation allows us to
identify another class of non-max-stable sub-Fréchet max-i.d. distributions, whose hitting partitions have the PD(0, 0) laws,
for6 > 0.

The paper is organized as follows. In Section 2 we review the background on exchangeable random partitions and prove
the main result Theorem 2.3. In Section 3 we provide related results on the sub-Fréchet max-i.d. distributions.

2. Hitting partitions of sub-Fréchet max-i.d. distributions

We shall consider a multivariate max-i.d. distribution with the following representation

(C1een ) = (\/]zyz,h-u,\/]ﬂz,n) ) (2.1)
=1 =1

where J = {Ji}sen is a Poisson point process on R, with intensity measure v, and {Y,},cy are i.i.d. random vectors

independent from J, each Y, = (Y1,..., Yen) is a collection of independent 1-Fréchet random variables, with scale

parameters o = (oy, ..., 0n) € (0, 00)". The values of o shall not have any impact in most of the discussions until Section 3.
We assume throughout that

V(Ry) =00 and /00(1 A x)v(dx) < oo.
0

This ensures that the Poisson process J has infinitely many points, and

I = i]@ < oo a.s.

=1

In particular, the random variables the ¢;’s in (2.1) are finite, almost surely. This readily follows from the max-stability
property of the Yy 's. Namely, by the fact that, foralla, > 0, £ € N with Z?; a, < o0, we have

\/a[Yg i (Z a[> Y, (22)
=1 =1

for i.i.d. 1-Fréchet random variables {Y,},cn.
We name the max-i.d. random vector ¢ = (¢1, ..., {;)in(2.1), as a sub-Fréchet max-i.d. random vector with Lévy measure
v. The terminology is inspired by the corresponding sub-stable distributions (Samorodnitsky and Taqqu, 1994) (see (3.3)).
Definition 2.1. For alln € N, set
€*(k) == argmax {J;Ye ), k=1,....n, (2.3)
teN
and define now the random partition I7, of [n] for n € N by (1.2) as before. We refer to the so-defined random partition as

the hitting partition of the max-i.d. distribution in (2.1).

As before, £*(k) in (2.3) is uniquely defined with probability one. Indeed, for every pair ¢, £’ € N, £ # £/, it is easy to see
that with probability one J, Y, x # Jo Yo by conditioning on the values of J, Ji/, as the law of Y; ; has no atom.

Remark 2.2. Following (Resnick, 1987, Chapter 5), given a non-negative max-i.d. vector, say ¢ = ({y, . . ., {n), there exists a
unique measure p on (R, B(R" )), known as the Lévy (or exponent) measure of ¢, such that for all x = (x1, ..., x,) € RY,
P(ge <X, k=1,...,n) = exp (—u([0, x])) . (24)

Thus, taking a Poisson point process ¥ = {®¥;},cy on R’} with mean measure p, we obtain the stochastic representation

d
(C1,..., L) = (sup Y1, ...,SUp lI/g,n> .

£eN £eN
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The law of the hitting partition depends only on the law of ¥, which in turn is uniquely determined by the law of ¢ as
argued in Dombry et al. (2017). However, our starting point (2.1) is the assumption that the Poisson point process ¥ has the
following specific representation

d
{Peleen = JeYeleen.

Many different spectral representations of this form are possible. Here, we assume that one exists where the random vector Y
has independent 1-Fréchet components, which plays a crucial role in deriving formulae of random partitions. See Remark 3.2
for an alternative characterization of the exponent measure y in this case.

Our main result is to show that in this framework, the random partition T, is exchangeable, and it has the same law as
a paintbox partition (a.k.a. partition generated by random sampling) with random weights

Je
Pp=—=%——.,£€eN and Py:=0. (2.5)
27:113’
We first review the background of the paintbox construction (Berestycki, 2009; Pitman, 2006). Recall that a paintbox
partition with respect to weight s = (so, S1,...) such thatsy > 0,51 > 53 > --» > s, > -+ > 0and > o s = 1,

is a canonical way to obtain exchangeable random partitions of N as follows. Let {X;},cn be i.i.d. sampling from Ny with
distribution P(X; = £) = sy, £ € Ny. Color the set of natural numbers N = {1, 2, ...} as follows. If X; > 0, we paintiin
color X;, otherwise, all i’'s with X; = 0 are colored in different colors that are also different from all other colors used in the
paintbox. Thus N is partitioned into disjoint blocks by different colors. Formally, this partition is induced by the equivalence
relation i ~ jif X; = X; > O for all i, j € N. Notice that every i € N such that X; = 0 forms a singleton block by itself.

It is well known and easy to see that the so-obtained partition of N is exchangeable. Moreover, Kingman’s representation
theorem (Pitman, 2006, Theorem 2.2) says that every exchangeable random partition of N can be obtained by a paintbox
partition with possibly random weights s. In this case, conditionally on s, {X;,},cn are i.i.d. with distribution P(X; = £ | §) =
Se, le No.

Therefore, a convenient way to characterize the law of an infinite exchangeable partition is to identify the random weights
of the corresponding paintbox partition. Our discussions focus on finite partitions: if a finite partition can be obtained by a
paintbox partition with a finite number of i.i.d. samplings, it is clearly exchangeable, with the law determined by the weights,
and we still refer to it as a paintbox partition.

Theorem 2.3. For all n € N, the hitting partition IT, associated to (2.1) is an exchangeable random partition of [n], which has
the same law as a paintbox partition with random weights {P;}sen, given by (2.5).

Proof. To see this, we first observe that conditioning on J, for each k = 1, ..., n, the distribution of £*(k) is determined
by P(¢*(k) = £ | J), £ € N, and conditionally on J, we have that {£*(k)};=1,.» are independent, since so are the Y ;’s. The
probability of interest turns out to be independent from k. Indeed, we have

P (k) =£€1])=P (]ﬂz,k > max Jp Y i |])
040

=P|JeYik > Z]z’ You |J (2.6)
i,
Je
=2 _p.teN. 2.7
Zl??:l-,[’ ohs @7)

Relation (2.6) follows from the max-stability property (2.2) of the Fréchet distribution, while Relation (2.7) follows from the
property
a
a+b’
valid for all a, b > 0 where Y7 and Y> are i.i.d. 1-Fréchet random variables. This completes the proof. O

IP(CIY1 > sz) =

The aforementioned framework of exchangeable random partitions based on jump sizes of subordinators, via (2.5), is well
known. In fact, if the Lévy measure v has a density p, then under mild conditions explicit formula for the random partition
generalizing (1.4) is available in terms of p. See Pitman (2003) and Pitman (2006, Exercise 4.1.2). To keep the presentation
short, we shall instead explain only two special examples in full detail here.

Recall that the Poisson-Dirichlet distribution refers to a two-parameter family of ranked frequencies of {P;},cn, indexed
by («, 8) with either « < 0,0 = —ma for somem € N,ora € [0, 1],0 > —a. When the frequencies are ordered in size-
biased order, the corresponding law of the same two-parameter family is known as the Griffiths-Engen-McCloskey (GEM)
distribution. The size-biased frequencies, denoted by {P,}¢cn, have the representation

~ o~ o~ d
(Py, Py, Py, ...) = (Wq, (1 = W)W, (1T — Wq)(1 — W)W, ...),
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where {W;},cy are independent beta random variables, each with parameters (1 — «, 6 4+ £« ). Here, formally the size-biased
frequencies are defined iteratively as follows: given the probability on N determined by {P,}.y, consider a sequence of
i.i.d. sampling from this probability, and let P; denote the probability of the first label sampled, P, denote the second new
label sampled, and so on.

In particular, explicit examples relating random weights from subordinators via (2.5) to Poisson-Dirichlet distributions
have been well known, and we shall make use of the following two from them (see Pitman, 2006, Chapter 4.2):

(i) If v(dx) = ax " 'dx, a € (0, 1), then the subordinator is an «-stable subordinator. The ranked frequencies have the
law of PD(«, 0).

(i) If v(dx) = Ox~'e~*dx, 0 > 0, then the subordinator is a Gamma process. The ranked frequencies have the law of
PD(0, ).

The next corollary follows immediately, including Proposition 1.1 as the first case.

Corollary 2.4. For the sub-Fréchet max-i.d. distribution (2.1) with Lévy measure v, the induced hitting partition IT,, is:

(i) PD(a, 0), & € (0, 1) if v(dw) = cw™* dw.
(ll) PD(O, 6’), 0>0 lfV(dw) = Qw e vdw.

Remark 2.5. The paintbox argument in the proof of Theorem 2.3 applies without change to the case where (2.1) is an
infinite max-i.d. sequence indexed by N. In this case, one obtains exchangeable partitions of N. We stated Theorem 2.3 in
the finite-dimensional setting of partitions on [n] for simplicity and in order to draw connections to the existing results on
the concurrence probability (e.g. formula (1.3)).

Remark 2.6. The class of hitting partitions arising from (2.1) does not contain all exchangeable random partitions. By
allowing dependence among, and/or other types of distributions of, Y, 1, ..., Yy n, one could obtain other exchangeable
random partitions by the same mechanism. In particular, it seems that PD(«, 8) partitions for other choices of the parameters
do not appear as the hitting partitions of sub-Fréchet max-i.d. laws.

3. Distributions of sub-Fréchet max-i.d. distributions
So far, we have introduced a specific family of max-i.d. distributions and shown that the induced hitting partitions have
more explicit structure. In this section, we collect some facts on this family of max-i.d. distributions. All the computations

are straightforward and standard, and are hence omitted.

Proposition 3.1. For(¢q,...,¢y)asin (2.1),

n
P(ox <x¢, k=1,...,n)=1, Zﬂ JXe>0,k=1,...,n, (3.1)
k=1 Xk
where
o0
L, (t) := Eexp (—t].) = exp (—/ (1— e‘”‘)v(dx)) ,t>0 (3.2)
0

is the Laplace transform of J... In particular,
d
Gty v Cn) =J(Y11, - oo, Yin) (3.3)

Remark 3.2. Relations (3.1) and (2.4) imply that a positive max-i.d. random vector ¢ is sub-Fréchet with exponent measure
v asin(2.1),if and only if
n

m([0, x]°) = g, (Z Z) .x € (0, 00)",

k=1

where g,(t) = —log Lj«(t) = fooo(l — e ™)p(dx), t > 0is the Laplace exponent of J* as in (3.2) and ¢ € (0, co)". Note that
gy is a Bernstein function in general.

Remark 3.3. A priori, it is not obvious that for what functions L;, the right-hand side of (3.1) defines a valid multivariate
distribution function. An alternative proof of this fact can be obtained from the perspective of Archimedean copula (McNeil
and NeSlehova, 2009; Genest et al., 2018). The recent work of Mai (2018) uses related ideas on the elegant properties of
strongly sum infinitely divisible laws to study a class of multivariate max-stable laws (formulated as extreme-value copula).

Example 3.4. For the two cases of Corollary 2.4, we have accordingly the following explicit formulae.
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(i) L, (t) = e, and (3.1) reads as

n o

P(sk <X, k=1,...,n)=exp| — Z—
k=1

This is essentially the o-logistic max-stable distribution in the literature, which is conventionally standardized to have
1-Fréchet marginals with scale parameter 1 (corresponding to (¢, . .., £5) here). This is the only sub-Fréchet max-i.d.
model which is also max-stable.

(ii) L, (t) = 1/(1+ ¢t), and (3.1) reads as

-0
n
Ptk <xx, k=1,...,n)= l—|—X:;ﬁ , X >0,k=1,...,n.
k
k=1

Remark 3.5. The sub-Fréchet max-i.d. distributions can be extended immediately to max-i.d. random sup-measures, a topic
which has raised some recent interest in the literature (O'Brien et al., 1990; Molchanov and Strokorb, 2016). Indeed, the
law of the corresponding random sup-measures M is uniquely determined by its finite-dimensional distributions (Vervaat,
1997, Theorem 11.5), which essentially we have already computed in Proposition 3.1.

Namely, we can define a family of max-i.d. random sup-measures on a generic measurable space (E, £) equipped with a
o-finite measure p, in the form of

M) = My () = \/JeNa),
=1

where J] = {J¢}¢en a Poisson point process with mean measure v as before and N, are i.i.d. independently scattered
1-Fréchet random sup-measures on (E, £) with control measure p (Stoev and Taqqu, 2005), independent from J. One can
show that

Mi]*Nl,

where J* is as before. Both cases in the previous example can be extended to the corresponding max-i.d. random sup-
measures. Details are omitted.
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