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Under general multivariate regular variation conditions, the extreme Value-at-Risk of a portfolio can
be expressed as an integral of a known kernel with respect to a generally unknown spectral measure
supported on the unit simplex. The estimation of the spectral measure is challenging in practice and
virtually impossible in high dimensions. This motivates the problem studied in this work, which is
to find universal lower and upper bounds of the extreme Value-at-Risk under practically estimable
constraints. That is, we study the infimum and supremum of the extreme Value-at-Risk functional, over
the infinite dimensional space of all possible spectral measures that meet a finite set of constraints.
We focus on extremal coefficient constraints, which are popular and easy to interpret in practice.
Our contributions are twofold. First, we show that optimization problems over an infinite dimensional
space of spectral measures are in fact dual problems to linear semi-infinite programs (LSIPs) - linear
optimization problems in Euclidean space with an uncountable set of linear constraints. This allows
us to prove that the optimal solutions are in fact attained by discrete spectral measures supported on
finitely many atoms. Second, in the case of balanced portfolia, we establish further structural results
for the lower bounds as well as closed form solutions for both the lower- and upper-bounds of extreme
Value-at-Risk in the special case of a single extremal coefficient constraint. The solutions unveil
important connections to the Tawn-Molchanov max-stable models. The results are illustrated with
two applications: a real data example and closed-form formulae in a market plus sectors framework.
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1. Introduction That is, VaRy(X) is the (generalized) 100 x gth percentile of the

loss distribution.

Value-at-Risk (VaR) is one of the predominant risk measures
used in determining minimum capital requirements placed upon
financial institutions in order to cover potential losses in the mar-
ket. In essence, VaR is the largest loss having a ‘reasonable chance’

In practice, financial institutions deal with a multi-
dimensional portfolio of statistically dependent losses X =
(X1, X2, ..., X4)" € R% In this case capital requirements should
be determined by the value-at-risk for the sum of losses VaR(S),

of occurring through the placement of a risky bet. Formally, if
a random variable X represents a loss (negative return) on an
asset after a fixed holding period, and q € (0, 1) is a prob-
ability representing ‘reasonable chance’, we have the following
definition

Definition 1.1. The Value-at-Risk of a random variable X at the
level q € (0, 1), denoted VaRy(X) is defined as

VaR,(X) == inf{x e R : P(X <X) > q}.
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where S := X; + X5 + - - - + X;. In these scenarios it is essential to
account for tail dependence in the components of X, see e.g., Em-
brechts et al. (2009). Furthermore, regulatory guidelines such
as Basel III (Bank for International Settlements, 2011) typically
prescribe ¢ > .99. Hence, the scenario of extreme losses where
q is close to the value 1 is of great interest. Specifically, one is
interested in extreme VaR. Namely, fix a reference asset X;. Mild
multivariate regular variation conditions on the distribution of X,
imply the existence of the limit:

X = Xsx) = lim w (1.1)

a1 VaRy(X1)

Following the seminal works of Barbe et al. (2006) and Em-
brechts et al. (2009), we shall refer to the limit ratio X(s x,) as to
extreme VaR. It is desirable to be able to bound the extreme VaR
coefficient X since it provides the first order approximation of
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value-at-risk:

VaRy(S) ~ Xs x,) X VaRy(X;), forg~1.

The general goal of this paper is to determine lower- and
upper-bounds for extreme VaR under natural constraints on the
portfolio. This should be contrasted with the statistical problems
of estimation of VaR or extreme VaR. Here, we would like to
understand and characterize the best- and worst-case scenario for
extreme VaR among all possible models for the joint (asymptotic)
dependence of the losses subject to certain classes of constraints.
In this sense, the type of problem we study is a constrained and
extremal version of the so-called Fréchet optimization problems
investigated in Riischendorf (1996) and recently in Puccetti et al.
(2016) and Riischendorf (2017).

Our motivation stems from potential insolvency in insurance
and financial sectors due to catastrophic loss. In this setting,
data on extreme portfolia losses are scarce or non-existent. Thus,
conventional statistical estimation methods are either difficult
to justify or in fact inappropriate for the estimation of extreme
VaR. At the same time, adopting a specific parsimonious model
amounts to imposing (explicitly or implicitly) constraints on the
asymptotic dependence of the assets. This can lead to signifi-
cantly under- or over-estimating the portfolio risk. Such types
of challenges motivate us to adopt an alternative perspective
of distributionally robust inference. That is, we provide upper-
and lower-bounds valid under all possible extremal dependence
scenarios. Our framework allows the practitioners to incorporate
either quantitative constraints on easy-to-estimate extremal de-
pendence coefficients or qualitative/structural information such
as (partial) extremal independence of the portfolio.

Value-at-Risk has been studied extensively in the literature.
Important theoretical aspects such as the in-coherence of VaR
(Artzner et al.,, 1999) and its elicitability (Ziegel, 2016), for ex-
ample, are well-understood. At the same time, advanced statis-
tical methodology for the estimation of VaR has been developed
accounting for both complex temporal dependence and heavy-
tailed marginal distribution of the losses (see e.g., the mono-
graph McNeil et al., 2005). Advanced methods for the statistically
robust estimation of VaR (Dupuis et al., 2014) exist. The notion
of robust statistical inference should be distinguished from our
use of the term distributionally robust inference. In the former,
robustness refers to resilience to outliers in the data within a
specified model, in the latter, distributionally robust context,
the goal is to guard against mis-specifications of the model.
While this perspective has been very popular and actively studied
in the optimization community (see e.g., Bertsimas et al., 2011
and the references therein), only a handful of studies adopt this
philosophy in the context of risk measures (see e.g. Lam and
Mottet, 2017; Engelke and Ivanovs, 2017; Blanchet et al., 2018;
Das et al.,, 2018). To the best of our knowledge, our work is the
first to address the general context of extreme VaR for a multi-
dimensional portfolio under extremal coefficient constraints. To
be able to describe our contribution, in the following Section 1.1,
we review some important concepts and notation. A summary of
our results is given in Section 1.2.

1.1. Notation and preliminaries

e Regular variation. Recall that a random vector X = (X;)_,
is said to be multivariate regularly varying (RV), if there exists a
non-zero Borel measure p on R? \ {0} and a sequence a, ' oo,
such that

nP(a,'X € A)—>u(A), asn— oo, (1.2)

for all w-continuity sets A bounded away from the origin.

The measure p in (1.2) necessarily satisfies the scaling prop-
erty:

w(cA) = c Vi u(A), Ve >0, (1.3)

for some fixed positive constant &. We shall write X €
RVy/:({ay}, 1) and refer to & as the index of regular variation of
the portfolio X. It also follows that the normalization sequence
{a,} is regularly varying with index &, i.e., for all t > 0, we have
Agm)/an — tf, n — oo. The index £ does not depend on the
choice of the normalization sequence {a,}, and the measure yu is
also essentially unique up to a positive multiplicative constant.
For more details, see Appendix A and the monograph (Resnick,
2007).

The scaling relation (1.3) entails that u can be conveniently
factorized in polar coordinates:

w(dx) = r~*V8dro(du),

where r := ||x|| and u := x/|x| are the radial and angular
components of x € R\ {0}, relative to any (fixed) norm || - ||
in RY. Here, o is a finite positive measure on the unit sphere
S := {x : ||x|| = 1}, referred to as a spectral measure of the
vector X. It is unique up to rescaling by a positive multiplicative
factor.

For simplicity, we shall focus here on the case of non-negative
losses, i.e., when X takes values in the orthant [0, oo)d, use the
£1-norm

d
Xl = " lxil,
i=1

and adopt the following.

Assumption 1.2. Suppose that X € RVy/({a,}, u), where the
measure p is not entirely supported on the hyper-planes {x =
(), :x=0}j=1,....d

This assumption implies that each of the components X;, i =
1,...,d is heavy-tailed with the same tail index & > 0. Indeed,
by choosing A .= sA; = {x € Ri : X > S}, s> 0,in (1.2), and
using the scaling property (1.3), we obtain that for all s > 0,

nPX; > aps) — Ox(i)s~ V%, (1.4)

where 9x(i) := w(A;) > 0 is the asymptotic scale coefficient of
X;. Relation (1.4) implies in particular that the moment E|X;|” is
infinite if p > 1/& and finite if 0 < p < 1/&. The finite-mean case
where 0 < & < 1is of primary interest in practice. Therefore, we
shall assume throughout that

0<&<1.

In the infinite-mean case & > 1 an intriguing anti-diversification
phenomenon arises (cf Appendix A.4).

as n — oo,

Remark 1.3. Assumption 1.2 is not very restrictive. Indeed, it
implies that all assets have asymptotically equivalent tails. Had
this not been the case, only the assets with the heaviest tails
would dominate and determine the asymptotic tail behavior of
the cumulative loss S = X; + --- + Xy. Thus, when studying
extreme VaR, without loss of generality one can focus on the
sub-set of losses with heaviest tails.

We also standardize the assets to have equal, unit scales such
that (1.4) holds with

(i) =1,i=1,...,d. (1.5)

This standardization does not restrict generality since one can
consider the weighted portfolio

S(wW) = wi Xy + - - + weXq,

with suitable positive weight vector w = (w,»)?:1.
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Finally, to separate the roles of the tail behavior and asymp-
totic dependence, it is convenient to consider the vector

1 1 1
z:=x5 X" x5 (1.6)

It can be readily shown that Z € RV,({b,}, v), where b, := a,ll/‘E

and v(A) := p(A%).

e Extreme VaR formula. Now, under the established notation
and conditions, Relation (A.10) and Proposition A.6 imply that
(1.1) holds. That is, extreme VaR is well-defined, and it has,
moreover, the following closed-form expression:

Xisw.x,) = Py With

1/¢
P = pulH, £) = / (w44 waa)) H@w, (7)
S+
where S; = {x > 0 : ||x|| = 1} is the unit simplex in R¢.
Here H is the (unique) spectral measure of the vector Z satis-
fying the marginal moment constraints

1:/ wH(du), j=1,...,d. (1.8)
S+

Note that since Zf;l uj = |lull =1, ueS; we have H(S;) =d.
Well-known Hoeffding-Fréchet type universal bounds on the
value of py = pw(H, &) are given by
d 1/¢

dew:/S < pulH. 6) = (D)
i=1

i=1

(0<é&=1) (1.9)

(see e.g. Corollary 4.2 in Embrechts et al., 2009). These inequali-
ties follow readily from (1.7).

The lower bound py, = ZL wl.l/E in (1.9) corresponds to
(asymptoticl)‘é independence and the upper bound p, =

(ZL w,-) to complete tail dependence, where all compo-

nents of the vector X are asymptotically identical. This agrees
with our intuition about diversification, where holding indepen-
dent assets leads to the lowest value of extreme VaR, while
complete dependence corresponds to the worst case of risk.
Surprisingly, this intuition is reversed in the infinite-mean regime
& > 1 (see Appendix A.4.)

e Extremal coefficients. The Hoeffding-Fréchet type bounds in
(1.9) are rather wide. In practice, however, the range of possible
values py can be significantly reduced under suitable constraints
on the extremal dependence of the portfolio. In this work, we
focus on so-called extremal coefficient constraints, which capture
(in a rough sense) the strength of tail dependence amongst a
given subset of assets in the portfolio X.

Specifically, for any non-empty set of assets ] C {1,...,d} by
taking A := sA) = {x € R : x; > s, forsomej €]}, s > 0, in
Relation (1.2), we obtain

nP(maxX; > a,s) — 9x()s~ /%, asn — oo,
Jjel

where 9x(J) := u(A;) > 0 is now the asymptotic scale coefficient
of the maximum loss maxjg X; over J. The coefficients 9x(J)
will be referred to as extremal coefficients of the portfolio X. By
Lemma A.7
Ux(J) =

max u;H(du), (1.10)

s. Je
where H is the same spectral measure appearing in (1.7). This, in

view of (1.8), readily implies

max [ Hdw =12 ox0) <01 =Y [ wtdw)

. (1.11)
19 Jsy ja vt

where |J| is the size of the set J. The upper bound is attained
when the Xj's are asymptotically independent, while the lower

bound corresponds to the case of perfect asymptotic dependence,
eg, Xy, ==X, for] ={ji,....j}

The extremal coefficients naturally encode a great variety
(although not all) extremal dependence relationships among the
assets. For example, the classic upper tail dependence coefficient
is expressed as follows

Ax({i, j}) = lql?]l P(Fx;(Xi) > qlFx(X)) > q) = 2 — 9x({i, j}),

forall 1 < i # j < d, where Fx(x) = P(X < x) denotes
the cumulative distribution function of a random variable X. In
this case, the bounds (1.11) amount to 0 < Ax({i,j}) < 1,
where Ax({i, j}) = 0 corresponds to asymptotic independence and
Ax({i,j}) = 1 to perfect asymptotic dependence.

As another example, the d-variate extremal coefficient

(1.12)

takes values in the range [1, d]. It quantifies the degree to which
all assets in the portfolio experience an extreme loss simultane-
ously. For example, ©%; equals 1 under perfect asymptotic depen-
dence (e.g., X; = --- = Xy) and it equals d if the assets are
asymptotically independent with equal scales.

1.2. Summary of our contributions

In view of (1.7) determining the best- and worst-case extreme
VaR scenario amounts to solving a pair of infinite-dimensional
optimization problems over a space of admissible spectral mea-
sures H. Namely, we consider a large family # of spectral mea-
sures and posit the optimization problems

Ly(#) = inf pw(H,§) and U,(H):= sup pw(H,§),
Hen HeH

(1.13)

where pw(H, £) = [, (w1t} + -+ + watig) /*H(du).
Then, in view of (1.7), we obtain the following universal lower
and upper bounds for extreme VaR:

L5(H) < Xsxy) < US(H). (1.14)

If the class # includes all admissible (normalized) spectral mea-
sures, these bounds can be rather wide (see Relation (1.9)), which
may limit their practical value in establishing capital require-
ments. As indicated, we consider classes of all possible spectral
measures  that satisfy extremal coefficient constraints such that

x(J) = maxyH(du)=¢, J e J,

sy J€

for a given family of non-empty subset of assets ;7  2{1-4\ @,
The standardization (1.5) corresponds to the singleton sets | = {i}
and c = 1, which for our applications, will be always included
as constraints.

The constants ¢; can be either estimated or assigned by a
domain expert. They can be used to encode structural informa-
tion such as asymptotic independence (cf Section 4.2). Fig. 1
illustrates that the knowledge of the single d-variate extremal
coefficient constraint in (1.12) can dramatically reduce the range
of all possible extreme VaR X, even in dimensions as high as
d = 100.

Contributions. Observe that both the objective function in
(1.7) and the constraints in (1.10) are linear in the parameter
H. The challenge is, however, that H takes values in an infinite-
dimensional space of measures. Our findings can be summarized
by three main themes:

e Optimal measures have finite support. We establish structural
results showing that the infimum and supremum of p, are at-
tained by discrete measures that are supported on a finite set
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Fig. 1. Upper and lower bounds on extreme VaR pf when given a single fixed d-variate extremal coefficient ¥4 constraint.

of atoms. In each case, the number of atoms is not more than
the number of constraints (Theorem 3.2). Thus, in principle, the
linear infinite-dimensional problems reduce to non-linear finite-
dimensional optimization problems. These results stem from a
fundamental connection with the theory of linear semi-infinite
optimization outlined in Section 2.2.

e A Tawn-Molchanov minimizer and a convex maximizer. Sur-
prisingly, the infimum of py and in turn the lower bound on X
is attained by measures with the same support as the celebrated
Tawn-Molchanov models in Strokorb and Schlather (2015). This
allows us to further reduce the optimization to a linear program,
which can be solved exactly using conventional linear solvers in
moderate dimension. We also establish that the maximization
problem reduces to an ordinary convex optimization problem

which can be solved in polynomial time within arbitrary preci-
sion. Efficient solvers for these optimization problems have yet
to be implemented, nevertheless our theoretical results suggest
that they can be efficiently solved.

e C(Closed form solutions. Finally, in the case of a single
d-variate constraint, we establish closed form expressions for both
the lower- and upper-bounds, which are valid in arbitrary dimen-
sions. These formulae were used in Fig. 1 and further leveraged in
Section 4.2 to illustrate how conditional independence can lead
to very substantial reduction of the range of extreme VaR.

The rest of the paper is structured as follows. Section 2 reviews
key results from the theory of linear semi-infinite programming
(LSIP) and demonstrates that our optimization problem can be
viewed as a dual of a LSIP. This connection is further explored
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in Section 3, where the main results on the general charac-
terization of the spectral measures attaining the minimum and
maximum extreme VaR are presented. Section 3.2 proceeds with
more detailed results on in the cases of the Tawn-Molchanov
minimizer and our closed form solutions. Section 4 briefly illus-
trates the established theory. In Section 4.1, using a data set of
industry portfolia, we show how utilizing all bi-variate extremal
coefficient constraints can lead to tight bounds on extreme VaR,
which are in close agreement with semi-parametric estimates
obtained using Extreme Value Theory. In Section 4.2, we provide
a practical application of the closed-form formulae for the bounds
on extreme VaR in a context of a market and sectors model.
This demonstrates, how expert knowledge on the structure of
the market can be encoded via extremal coefficient constraints
in cases where data may be scarce. The proofs and auxiliary facts
from optimization are collected in Appendix.

2. A connection to linear semi-infinite programming

In this section, we will show that our optimization problems
are in fact duals to linear semi-infinite programming (LSIP) prob-
lems. This will lead to profound structural results and certain
closed-form solutions for upper and lower bounds on extreme
VaR.

2.1. Problem formulation

Recall that we want to solve the pair of optimization prob-
lems:

(L)) inf pw(H, §) (2.1)
(Up) sup pw(H, §) (2.2)
subject to: max({u;}H(du) = ¢, forallJ € 7, (2.3)

s, J¢

where 7 c 2{1~4 is a collection of non-empty subsets of indices
{1,...,d}; the functional py is in (1.7); and the supremum and
infimum are taken over all finite measures H on S, that satisfy
the extremal coefficient constraints in (2.3).

Remark 2.1. A set of non-negative constants ¢ = (¢;)jcq1,...a} €

d . .
R% "' can be the extremal coefficients of a random vector X, if
and only if they satisfy the consistency relationships

ce®@={ve Rf’l : Z(fl)‘L\”“z?(L) >0, forall J C {1,...,d}] .
L:JCL

See Corollary 5 in Schlather and Tawn (2002) and Strokorb and
Schlather (2015) for more details.

Extremal coefficients are only summary, moment-type func-
tionals, and they alone do not fully characterize the spectral
measure H, except in special cases (Strokorb and Schlather, 2015).
In general, however, it is not known to what extent the full or
partial knowledge of the extremal coefficients confine the set of
possible values of py and hence extreme VaR. This is one of the
motivations for our work.

Assumption 2.2. We assume that the marginal constraints (1.8)
are always included in (2.3) by requiring that the singletons
{1},...,{d} belong to 7 and ¢ = 1forj = 1,...,d. To avoid
further situations that result in trivial optimization problems, we
also assume 7 is sufficiently rich such that

d
1= Zuj < Zn}gx{uj}, forallues,.
Jj=1 Jeg

In particular, this holds if 7 includes all pairs or the set {1, ..., d}
€J.

2.2. Linear semi-infinite programming

The purpose of this section is to review definitions and no-
tations from the field of linear semi-infinite programming (LSIP)
that we will use throughout this paper (see also Appendix B.1).
Our main contributions in the following Section 3 such as the
existence of solutions to (£,) and (,) with finite support (re-
ducibility) and exact formulae for the optimum will leverage
powerful results from this established theory. Those interested in
a more comprehensive treatment is referred to the monograph
of Goberna and Lopez (1998) as well as the review by Shapiro
(2009). See also Goberna and Lopez (2018) for a survey of recent
advancements in LSIP.

Formulation. Linear semi-infinite programs are formulated as
follows:

(P) inf ¢'x
XeRP
subject to: b(t) —a(t)'x <0, t €T,

where T is a (possibly infinite) index set. For a given mathemat-
ical program, say (P), we use the notation val(P), to denote its
optimal value while sol(P) denotes the solution set, i.e. the set of
feasible points that yield optimal values. Generally, val(P) may be
infinite and sol(P) my be empty. If sol(P) = @, then by convention
val(P) = oo and we say (P) is unsolvable.

The following assumption establishing the continuity of (P) (in
the language of LSIPs) has far reaching consequences in terms of
the structure of solutions to (P).

Assumption 2.3. In (P), we suppose T is a compact subset of RY
anda: T+ RP,b: T R are continuous and hence bounded
onT.

Thus, we define the Lagrangian of problem (P) as the function
L:RP x 2R
Lx,w)=c"x+ / (b(t) - a(t)Tx) w(dt), (2.4)
T

where §2 is the space of finite (non-negative) Borel measures on
T.

Remark 2.4. Assumption 2.3 allows us to express the Lagrangian
function as (2.4). This follows from the fact that the topological
dual space of continuous functions on the compact set T C R” is
indeed the space of Borel measures on T. For more details see e.g.
Ch. 2 of Goberna and Lopez (1998).

Remark 2.5. While Assumption 2.3 appears as a rather strong
condition in the literature of LSIP, we will show in Section 3
that Assumption 2.3 is naturally satisfied for our main motivating
problems (¢,) and (Z,).

Duality. We define the dual function g : 2 — R as

g(w) = inf L(x, ®).
XeRP

The dual function yields a lower bound on the optimal value of
(P). Indeed, by (P), for any feasible ¥ € RP?, it follows that

f (b(t) — a(t)ch) w(dt) <0,
T
which implies

g(w) = inf L(x, w) < cT;i'—i-/ (b(t) — a(t) &) w(dt) < "X (2.5)

XeRP T
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The fact that the feasible ¥ was arbitrary implies g(w) < val(P).
This inequality is trivial unless fT a(t)w(dt) = c. lndeed, oth-
erwise if f Jo(dt) # ¢, then for some xo, we have c¢'xy —
fT Y xow dt) < 0, and hence by Assumption 2.3, it follows that
g(w) = infyeprr L(X, @) = —00.

Therefore, only measures w € §2 for which f a(t)w(dt) = ¢
holds are of interest and they are referred to as dual feasible. Thus
we arrive at the following dual problem:

(D) sup / b(t)w(dt)
T

weR
subject to: [a(t)a)(dt) =
T
In view of (2.5), we have that

sup mf L(x, w) = val(D) < val(P). (2.6)
wes2 xeRd

A common task with many optimization problems is to determine
the existence (or non-existence) of a duality gap, |val(P) — val(D)|.
If val(P) = val(D), then it suffices to solve either (P) or (D) to
obtain the optimal value, so long as both problems are solvable.
The condition val(P) = val(D) with sol(D) # @ is known as
strong duality. If (P) is solvable, i.e. val([P) < oo, then under
Assumption 2.3, a sufficient condition for strong duality of (P, D)
is Slater’s Condition, i.e. there exists X € RP such that

b(t)—a(t)"® <0, forallt €T. 2.7)

See Theorem 2.3 in Shapiro (2009) for further details on Slater’s
condition and strong duality for LSIPs.

The above discussion reveals a fundamental connection be-
tween the two optimization problems in (2.1) and (2.2) and the
theory of LSIP.

Corollary 2.6. The problem of finding the upper bound (,) in (2.2)
under extremal coefficient constraints (2.3) is the dual to an LSIP
problem (P), where

T=S,, a(t)=maxt;, JeJ,
Jjel

d 1/¢
= (Z w,-tf) and ¢ =(q)eys.
i=1

Similarly, the problem of finding the lower bound (L,) in (2.1) is
the dual of an LSIP involving maximization, where formally ‘sup’ is
reduced to ‘inf’ by changing the sign of the objective function.

This connection allows us to employ powerful results from the
LSIP theory discussed next.

Reducibility. The following discussion lays the groundwork for
establishing the finite support of optimal solutions to (£,) and
(U,). Consider a finite index set T,, C T with |T;;| < m. Solving
problem (P) when the constraints are restricted to the finite set
T, reduces to a standard linear program

(Pm) inf ¢'x
XcRP
subject to: b(t;)) —a(t;)'x <0, t;i =Ty, i=1,...,m,

which yields the corresponding dual
m
(Dm) sup Y b(ti)oy
weRY g
m
subject to: Za(t,-)w,— =c, ti=Ty, i=1,...,m
i=1
Problem (P,
(P) is contained in the feasible set for (P,

m) is called a discretization of (P). The feasible set for
). Hence, val(P,) <

val(P). If for every & > 0, there exists (Pm() such that val(P) —
val(Pp)) < ¢ then we say (P) is discretizable. Whereas, if there
exists (Py) such that val(P,,) = val(P) then (P) is said to be
reducible. In this case, on the language of measures, the optimum
is attained by a discrete measure w(dt) = Z}“:l Vidyy(dt) with a
finite support {t{, ..., ty} C T.

Remark 2.7. Even if an LSIP is theoretically reducible, it may be
challenging to find the actual support set of an w € sol(D). This
is because finding the support amounts to solving a non-linear
optimization problem.

The following proposition establishes conditions for the re-
ducibility of the LSIP (P).

Proposition 2.8 (Theorem 3.2 in Shapiro, 2009). Suppose that for
problem (P), Assumption 2.3 holds and val(P) < oo. If for any
{t1, &, ..., tpr1} C T, there exists x € RP such that

alt) x> b(ty), k=1,....,p+1. (2.8)

Then there exists {ty, ..., tn} = Ty C T with m < p such that for
corresponding discretizations (Py,) and (Dy,)

val(P) = val(P,;) = val(D,,) = val(D).

Note that if Slater’s condition holds for (P), then (2.8) is satis-
fied, which yields the following corollary

Corollary 2.9. If Assumption 2.3 holds for (P), val(P) < oo and
Slater’s condition holds, then there exists a (strong) dual pair (P, D)
and w € sol(D) C £2 such that w is finitely supported on at most p
atoms {t1, tp, ..., tp} CT.

3. Main results
3.1. Optimal measures with finite support

In this section, we establish general structural results for prob-
lems (£,) and (U,) by exploiting their duality to linear semi-
infinite programs (LSIPs) discussed above. We show that the
optimum are attained by measures with finite support and we
prove that (4,) is equivalent to a finite dimensional convex opti-
mization problem, which can be solved in polynomial time.

Theorem 3.1. If Assumption 2.2 holds, then there exist (primal)
linear semi-infinite programs ([1;)) and (u; ), whose dual problems
are (L,) and (U,), respectively. Furthermore, for (/;;) and (Z/{//) ), we
have:

(i) Assumption 2.3 is satisfied.

(ii) The Slater condition holds.

(iii) The optimal values are finite.

(iv) Strong duality holds for the pairs (L,, £’ ) and (U,, Z/I//) )

(v) The problems are reducible.

(vi) There exists solutions to (£,) and (U, ) that are supported on
at most |J| atoms.

Proof. We consider only problems (i4,) and (¢
for (£,) and (ﬁ/ ) are similar.

Lletp = |J| and ¢ = (¢)es € Rp Define the continuous
functions b : Sy > Ry, @: Sy > R

) The arguments

£ £ 1/¢
b(u) = (w1u1 4+t wdud> and a(u) = njlgx{uj} .
JeTg
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Consider the linear semi-infinite program

u inf ¢"x
( p) XeRP

subject to: b(u) —

(3.1)

a(u)'x <0, ues,.

Letting H denote the space of finite Borel measures on S, by
the Lagrangian duality theory discussed in Section 2.2, it follows
that the dual of (1)) is

£ £ 1/¢
sup (w1u] 44 wdud) H(du)

HeH Jsi

subject to: { me}x{uj}H(du) = cj} ,

s+ IS Jeg
which is in fact problem (24,) in (2.2). This establishes the desired
duality of (¢,) to the above LSIP (Z/{/ ).

Now, observe that (u;,) satisfies Assumptlon 2.3,since S, C R¢
is compact and the functions b and a are continuous on S;. This
proves (i).

We next show (ii). Observe that for all u € S, we have

1/§
+wdu§) S( max wl/E>ZuJ

,,,,,

b(u) = (wluﬁ T

d
= Cw )1 < Cua(u)'1,

j=1

(3.2)

where inequality in (3.2) follows from Assumption 2.2. Hence
X = Gy1 € R? is primal feasible for the LSIP program (i) and
the Slater condition (2.7) holds.

In view of (1.9), (2.6), and (3.2), we obtain

d 1/¢
—00 < <Zw,~) <val(u,) < vallu, <Cw2cj<oo

i=1 Jeg
which proves (iii).
Finally, by Proposition 2.8 (c.f. Corollary 2.9), (i), (i), and
(iii) are sufficient for (iv), (v), and (vi). O

The fact that Theorem 3.1(vi) implies that the optimal values
of (£,) and (i4,,) can be achieved by measures concentrated on at
most | 7| atoms leads to the following characterization of val(Z,)
and val(u, ).

Theorem 3.2.

J
(¢ )es € RY
of non-negative d x | 7| matrices

Recall the extremal coefficient constraints ¢ =

in (2.3) for problems (L,) and (U,). Define the set

Ac = 1A e RV Z max{aﬂ(} =q,J € J} (3.3)

KeJg

1/&
Then, by letting f(A) := ) ., (wlaix N wda§K> . we have

val(£,) = Ail}{ f(A) and val(i,) = sup f(A).

AecAc

Proof. Theorem 3.1(vi) implies that there exists a discretization
(£5) with m < | 7] such that val(£]}) = val(£,) < oc. The last

statement means that there existu, € S, hy, k=1, ..., msuch
that
1/¢
_ ) £
val(z,) = u’g& Z (wlu]k + wdudk) hy
he=0 k=1
m
subject to : {Z max{upthy = c]} (3.4)
Jjel
k=1 Jeg

making the change of variables aj, = ujchy gives

- 1/¢
val(z,) = inf ) (i - wac)
=" k=1

m
subject to : {Z F?é;x{ajk} = CJ}
k=1 Jeg

Thus we have proved the result for (£,). The proof for (4, ) follows
by replacing supyc 4, f(A) with infae 4, —f(A). O

The consequence of Theorem 3.2 is that the linear semi-
infinite optimization problems (£,) and (i,) may be reduced to
finite yet non-linear optimization problems. Fundamentally, there
is tradeoff between linearity in the semi-infinite case, versus non-
linearity in the finite case, amounting to having to search for the
finite support of the optimal measures in sol(£,) and sol(t{,). This
is because both the objective function and the constraints now
depend on the unknown set of support points Ty, := {uy, ..., Uy},
in Relation (3.4) in a non-linear fashion. Note however that the
size of the unknown support T, is no greater than the number
of constraints, which is one of the appealing consequences of
Theorem 3.1(vi).

In the case of (¢4,), & < 1 implies that —f(A) is a con-
vex function. This, together with the fact that A is a convex
set means that infyc 4, —f(A) is a convex optimization problem.
Hence infgec 4, —f(A) can be solved to within arbitrary precision
in polynomial time (Boyd and Vandenberghe, 2004). In-practice,
an exact and efficient solver for infyc 4, —f(A) still needs to be
developed and is outside the scope of this work.

In the case of (£,), & < 1 implies infac 4. f(A) is non-convex
and generally more challenging. However, if one makes a further
assumption of balanced portfolio, i.e. the weights in f are equal
w; = wy = --- = wg = 1, then further solutions are readily
available as discussed in the following section.

3.2. Solutions for balanced portfolia

In this section, we provide further structural results and closed
form solutions in the important special case of balanced portfolia,
where w = 1:

wy=wy =---=wy=1. (3.5)
Remark 3.3. Under assumption (3. 5) the universal dependence

bounds for extreme VaR X(s x,) = p1 given by (1.9) simplify to
dt < As.xp) = d.

We show first that the minimization problem (£,) reduces
to a standard linear program. Interestingly, val(£,) is attained
by spectral measures corresponding to the celebrated Tawn-
Molchanov max-stable models (Strokorb and Schlather, 2015).
This leads to efficient and exact solutions in practice for moderate
number of constraints and dimensions.

The second contribution are exact formulae for both the lower
and upper bounds on p := p; in the case when we impose only
one constraint on the d-variate extremal coefficient

U =9x({1,....d}),

in addition to the standard marginal extremal coefficient con-
straints. These results are possible thanks to the symmetry in
the objective function when all portfolio weights are equal. Their
proofs are given in Appendix B.

Theorem 3.4 (Tawn-Molchanov Minimizer).
(3.5), we have

Under assumption
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val(¢,) = inf >l (3.6)

d_
ﬁeﬂﬁ 1]C{1,...,d}. J#2

subject to : Z

Kc{1,....d}, K#o

I{(KNJ) # 2} Bk = ¢
Jeg
This result shows that obtaining the lower bound for extreme

VaR in the case of a balanced portfolio amounts to solving a
high-dimensional but standard linear program.

Remark 3.5. From the proof of Theorem 3.4, it follows that the
lower bounds for extreme VaR in balanced portfolia are attained
by spectral measures supported on the set of vectors

(U oML, :J c{1,....d}} C Sy

Such types of spectral measures correspond to the Tawn-
Molchanov max-stable model (Strokorb and Schlather, 2015). This
is an interesting finding since, as shown in the last reference, the
Tawn-Molchanov max-stable models are maximal elements with
respect to the lower orthant stochastic order, for the set of all
max-stable distributions sharing a fixed set of extremal coeffi-
cients. Theorem 3.4, however, is not a consequence of the lower
orthant order dominance and its proof is based on optimization
results.

Remark 3.6 (Terminology). According to a personal communi-
cation with Dr. Kirstin Strokorb, the Tawn-Molchanov or more
completely Schlather-Tawn-Molchanov max-stable model origi-
nates in the works of Schlather and Tawn (2002) and Molchanov
(2008). In the work (Molchanov and Strokorb, 2016) it is shown to
arise from a Choquet integral and is therefore more descriptively
referred to as a Choquet max-stable model.

Closed form solutions. Next, we focus on the case of a sin-
gle constraint, involving the extremal coefficient associated with
the entire set D = {1, ..., d}. That is, the extremal coefficient
constraints (2.3) in (£,) and (U,) are given by

J=Jqg = {{1}7 {2}7 cee {d}sD} and
c=cy:=(1,1,...,1,9) e RI, (3.7)

where ¢ = 9x(D) € [1, d]. The following results show that in this
special case, exploiting the symmetry in the constraints yields
closed form solutions for both val(£,) and val(i, ).

Theorem 3.7 (Lower Bounds). Let By = [d(k + 1)~',dk™'), k =
1,...,d — 1. Under assumption (3.7), for all ¥ € [1, d], we have
that val(£,) is given by the piecewise linear function:

KYVETT — (k+ 1)1/E1
KT —(k+1) "

d—1
val(£,) = L(9) = ) 15,(9) {
k=1

_ d 1/6—-1
x(z? k+1>+d(k+l) } (3.8)

Theorem 3.8 (Upper Bounds). Under assumption (3.7), for all 9 €
[1, d], we have

val(t,) = U(9) = {9¢ +(d — 1)"5(d — v} *
d 1/& s
= su d u :max{u;} = — 39
ueSIi J_Z] ] jeb { j} d (3.9)

The bounds in (3.8) and (3.9) can be computed for arbitrary di-
mension and all tail index values & € (0, 1]. The results shown in
Fig. 1 show that the information about extreme VaR provided by a
single d-variate extremal coefficient increases with the tail index

& and decreases with dimension d. More concretely, computing
the maximum width of the bounds supyc(; ¢ [val(U, ) — val(£, )|
using the closed form solutions and comparing to the width of
the universal dependence bounds |d — d?| allow us to show that
even in the high-dimensional setting of d = 100, with realistic tail
exponent £ = 0.7, the knowledge of a single d-variate extremal
coefficient always reduces the range of uncertainty of extreme
VaR by at least 29%. This is a remarkable fact given that no other
assumptions on the asymptotic dependence are imposed.

4. Applications

The goal of this section is to briefly illustrate the theoretical
structural results as well as closed-form formulae established
above. We start with a quantitative example of a 10-dimensional
industry portfolio, where the bi-variate constraints are estimated
from data. Then, in Section 4.2, we demonstrate how extremal co-
efficient constraints can be used to encode qualitative structural
information and arrive at practical closed-form formulae.

4.1. An illustration: Scale-balanced industry portfolia

In this section, we briefly sketch an application of the above
general results using a d = 10-dimensional portfolio of daily
returns for 10 industries available in French (2018). The portfo-
lio is obtained by assigning each of the stocks in NYSE, AMEX,
and NASDAQ to one of the ten industries and then their av-
erage is computed. Then, a vector time-series of daily returns
in percent are computed. We shall focus on the vector time-
series X; = (Xt(j));.i:1 of losses (negative returns) and study
their extreme value-at-risk. We first argue that it is reasonable
to model the (multivariate) marginal distribution as regularly
varying. To this end, we briefly recall the standard peaks-over-
threshold methodology used to estimate the tail index and scale
of the losses.

Let the random variable X represent the loss of an asset. The
Pickands-Balkema-de Haan Theorem (see e.g. Theorem 3.4.13
and page 166 in Embrechts et al, 1997) implies that under
general conditions, there exist normalizing constants o(u) > 0,
such that

p<u >x|X > u) — (1+$x)11/§,
o(u)

as u — x*, where x* := sup{x : P(X > x) > 0} € (—o0, +00] is
the upper end-point of the distribution of X. Here & € R is a shape
parameter referred to as the tail index and (x), := max(0, x). This
result suggests that the conditional distribution of the excess X —u
over a large threshold u can be approximated with the so-called
Generalized Pareto (GP) distribution, i.e.,

X -1/
PX—-—u>xX>u)~|1+&— .
(1+55t).

The case & > 0 corresponds to heavy, power-law tails; & = 0
(interpreted by continuity) is the Exponential distribution and
& < 0 is a distribution with bounded right tail. In practice,
one picks a large threshold u, focuses on the part of the sample
exceeding u, and estimates the tail index £ and scale parameter
o = o(u) via maximum likelihood applied to the excesses. (In
the presence of significant temporal dependence, extremes tend
to cluster, i.e., losses occur in batches. In this case, an important
methodological step is to de-cluster the exceedances, i.e., to pick
one observation from each cluster or otherwise reduce the de-
pendence (see, e.g., Chavez-Demoulin and Davison, 2012). In our
case, declustering had virtually no effect on the estimates.

Table 1 shows the tail index and scale estimates along with
their standard errors for each of the 10 industries. They were
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Table 1
Tail index and scale estimates based on a MLE of a GPD model to peaks over
the 0.98th marginal quantiles of industry losses.

Table 2
Bounds on the extreme VaR coefficient y = pf, & := 0.1981 for the
scale-balanced portfolio with d = 10.

& s.e.(g) o s.e.(0) Constraints Lower bound Upper bound

NoDur 0.21 0.06 0.77 0.05 Single d-variate 41219 9.7818

Durbl 0.18 0.06 1.32 0.10 All bi-variate 6.6852 -

Manuf 0.22 0.06 1.06 0.08 Fréchet bounds (no constraints) 15782 10

Enrgy 0.19 0.05 1.05 0.07

HiTec 0.13 0.05 1.29 0.09

Telcm 0.22 0.05 0.84 0.06 Table 3

Shops 0.20 0.06 0.92 0.07 Bounds on the return levels for the scale-balanced portfolio. VaR; with 1—q =

Hith 0.25 0.06 0.92 0.07 1/(252 x m) is exceeded on the average once in every m years.

utils 0.14 0.05 121 0.08 Return levels (years) 10 100 1000

Other 0.14 0.06 1.25 0.09 y
d-variate upper 10.90 17.20 27.14
d-variate lower 4.59 7.25 11.44
bi-variate lower 7.45 11.75 18.55

obtained by fitting a GP model via the method of maximum likeli-
hood to the excesses over the 0.98th empirical quantile, for each
of the 10 daily loss time series. The first important observation
is that all losses are heavy tailed, where the tail index estimates
are not significantly different. Indeed, the p-value of a chi-square
test for equality of means applied to the 10 tail index estimates
(assuming normal approximation) is 0.81. On the other hand, the
scales are significantly different with p-value 1.7 x 10~'2, While
these marginal estimators are dependent and the chi-square test
is likely to be conservative. Therefore, with some confidence we
can assume that the daily losses have a common tail index &
and are multivariate regularly varying. Furthermore, the GP tail
asymptotics entail

o\ V¢
P(X:(j) > x) ~ Po (é) x V8 asx— oo, (4.1)

where pg :=1—0.98 = 0.02.
In order to apply our closed-form solutions from Section 3.2,
we consider the balanced portfolio
l 1
S; = wiX;(j), with w; x —,
: ; Xe(i) o =

where Zle w;j = 1. Thus, the scales of all assets are balanced
so that P(w;X;(j) > x) ~ P(wiX:(1) > x) as x — oo. Fig. 2
(left) shows the time series of daily losses for the scale-balanced
portfolio. The right panel therein shows the empirical value-at-
risk as a function of o := 1 — q for the balanced as well as for the
equally weighted portfolio S; = d~! Zfi:l X:(j).

Observe that the VaR of the balanced portfolio is always lower
(by about 1% to 4.5%) for a wide range of risk levels g. This
difference is significant and indicates that the balanced portfolio
is preferable in practice. The reduction of risk may be explained
by the fact that the extremal dependence in the assets is relatively
balanced. Had there been a group of industries which were signif-
icantly more dependent than the rest, the scale-balanced portfolio
might not have outperformed the equally weighted one. In such
a case, one should balance the marginal risk (through the scales)
as well as consider diversification due to extremal dependence.
Such portfolio optimization problems can be considered with the
same tools that we employed here but they go beyond the scope
of the present study.

Now, for the scale-balanced portfolio, the marginal constraints
are met and one has

VaRy(S¢) ~ x x VaRg(wiX((1)), asq— 1, (4.2)

where x = p® with p = p; as in (1.7). Theorems 3.7 and 3.8
yield closed-form expressions for the upper and lower bounds
on p as a function of the single d-variate extremal index . On
the other hand, Theorem 3.4 shows that the lower bound on p
can be obtained by solving a linear program. We used empirical

estimates of the d-variate and all bi-variate extremal coefficients
of the scale-balanced portfolio based on the 0.98th empirical
quantiles (see Table 4 and Appendix A.2 for more details). These
estimates are in fact valid extremal coefficients in the sense of
Remark 2.1 (see Remark A.3). The resulting bounds are given in
Table 2. Observe that the additional information in the bi-variate
extremal coefficients substantially narrows the gap between the
bounds based on a single constraint. At the same time, relative to
the wide Fréchet bounds, the improvement in the bounds due to
single d-variate extremal coefficient is remarkable.

Finally, to obtain the estimate of VaR,(S;) in (4.2), one needs
to calculate the baseline VaRy(w1X;(1)). We did so using empirical
quantiles and also from the Generalized Pareto tail approximation
in (4.1), which entails

L
VaRq(wlx[u))ww%E( ") ,
o1 Po

where 57 = 0.77 and E = 0.198 is obtained through ML by
assuming that the excess losses of all 10 time series have a
common tail index but different scales.

Fig. 3 shows the upper and two types of lower bounds on
VaRy(S;) as a function of @ = 1—q. The empirical portfolio VaR is
also given (solid line). The bounds in the left panel are relative to
the baseline value-at-risk computed from the Generalized Pareto
model approximation, while in the right panel VaRy(w1X;(1)) is
replaced by the corresponding empirical quantile. Relative to the
GP-fit baseline, the empirical portfolio VaR is within the upper
and the larger lower bound (green dashed line) for extreme loss
levels @ < 0.001. It falls slightly below the lower bound based on
bi-variate extremal coefficient constraints for less-extreme loss
levels, which can be attributed to both variability in the con-
straints estimates and uncertainty in the GP model. Nevertheless,
the agreement is remarkable, especially for extreme loss levels
where the asymptotic approximation kicks-in. In the right panel
the bounds are relative to the empirical value-at-risk baseline. In
this case, the portfolio VaR is always enclosed between the bi-
variate lower bound and the d-variate upper bound and in fact
the gap between them is more narrow relative to that in the
left panel. This illustrates that the asymptotic approximation is
quite accurate for a wide range of extreme quantiles and that
the extremal coefficient constraints capture well the extremal
dependence between the assets in the portfolio. One advantage
of the GP-fit baseline however is that one can extrapolate the
bounds on the portfolio VaR beyond the historically available
quantile levels. Indeed, Table 3 provides bounds on the 10, 100
and 1000-year return levels, where a year is assumed to have 252
trading days. These results indicate for example that one should
expect to encounter daily losses exceeding 4.59% once in 10 years
on the average, even for the relatively diversified scale-balanced
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Fig. 2. Left panel: Time series of daily losses for the scale-balanced portfolio. Right panel: empirical value-at-risk as a function of « = 1 — q for the scale-balanced

and equally weighted portfolia.

Portfolio vs GP-fit baseline

Protfolio vs X(1)

20 20
15 _ 15
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«+++ d-variate upper
= = d-variate lower
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§10* — Max past loss g']()—
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Fig. 3. Upper and lower bounds on VaR as a function of « = 1 — q based on single d-variate and all bi-variate extremal coefficient constraints. The solid line
indicates the empirical VaR. Left panel: bounds are relative to the Generalized Pareto model-fit baseline. Right panel: bounds are relative to the empirical VaR of
the non-durable goods industry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4

Empirical estimates for the bivariate extremal coefficients 5({i,j}) for the scale-
balanced 10-industry portfolio based on exceedances over the 0.98th quantiles.
See (A.8). The single d-variate extremal coefficient estimate based on the same
quantile is 9({1,...,d}) = 3.15.

NoDur Durbl Manuf Enrgy HiTec Telcm Shops HIlth Utils Other
NoDur 1.00 146 1.37 150 148 154 138 144 148 140
Durbl 146 100 130 150 146 158 144 157 146 1.35
Manuf 136 129 1.00 143 140 153 136 149 140 1.26
Enrgy 1.49 1.50 143 1.00 160 161 152 160 154 147
HiTec 1.48 145 140 1.60 1.00 155 143 155 147 145
Telem 153 158 154 161 155 100 155 1.60 161 152
Shops 137 144 136 152 143 155 100 148 147 1.38
Hith 143 156 149 160 155 160 148 100 1.60 1.54
Utils 147 146 140 155 147 161 147 160 1.00 1.44
Other 139 135 126 147 145 152 138 154 144 1.00

portfolio, but daily losses of 17.2% or more are unusual 1-in-a-
100 year type events. Even though these results hinge on the
assumption of stationarity in the extremal dependence structure,
they provide novel distributionally robust bounds of extreme
portfolio or insurance risk and can be used to validate most if
not all other model-based estimators of extreme value-at-risk.

4.2. Market and sectors framework

While the quantitative methods in previous section based on
the knowledge of all bi-variate constraints yield tight bounds,
their use in practice is limited to small and moderate dimensions
due to practical challenges in solving the optimization problems.

In this section, our goal is two-fold. First, we illustrate how one
may encode structural/expert knowledge through extremal coef-
ficient constraints. Secondly, we show that the closed-form ex-
pressions in Theorems 3.7 and 3.8 can lead to practical and tight
bounds on extreme VaR in high-dimensions, where numerical
optimization is either challenging or impossible.

We do so over a simple but instructive ‘market plus sectors’
framework. Namely, suppose that the vector of portfolio losses
X = (Xj, ..., Xy) is regularly varying with index £ € (0, 1) and
standardized marginal scales in the sense of (1.5).

Let B € (0, 1), and suppose that

X = B Xmke + (1 — B) Xsecs (4.3)

where X and Xge. are independent and also regularly varying
with index & and asymptotically standardized margins (as in
(1.5)). The components Xy and Xse. represent the overall market
and individual sector-specific risks, respectively.

We shall assume that the market risk affects all stocks and
therefore model it as asymptotically completely dependent, i.e.,

Ox ({1, ..., d}) = 1.

We shall also assume that X;ec = (X(1), ..., X(k)) is partitioned
into independent sub-vectors X(i) = (Xj(i))j‘il, each correspond-
ing to a sector. Thatis,d =d; + --- + di and

{1,....,d} =1 U---UJq,

where J;, i =1, ..., k are pairwise disjoint sets of indices.
Relation (4.3) leads to a simple but natural 2-tier asymptotic
dependence structure. The parameter 8 controls the proportion
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£ =0. 25, (dy,do)= (10, 10), (91,02) =(8, 5)

Extreme VaR
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I

0.4 B 0.6 0.8 1.0
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Fig. 4. Upper and lower bounds on extreme VaR for a composite market plus sectors portfolio. The dashed lines indicate the closed-form expressions based on (4.7).
The solid lines indicate the conservative bounds based on a single d-variate extremal coefficient constraint without any structural assumptions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

of risk due to overall market-wide events, while the individ-
ual sectors may experience independent, and largely arbitrary
internal risk exposures accounted for by the sector-specific com-
ponent. We demonstrate next how the closed form formulae in
Theorems 3.7 and 3.8 lead to tight lower- and upper-bounds on
extreme VaR for the portfolio X.

Using the independence of the market and the sectors, it can
be shown that:

k
Hx = B x Hxpy + (1= B) x Y _ Hxq), (4.4)
i=1

where H with the corresponding sub-script is the properly nor-
malized spectral measure of the corresponding vector Z := X'/%,
where we naturally embed Hy;) into the higher-dimensional
space S, C R%

In view of (1.7), Relation (4.4) entails

k
ox =B X pmke + (1 — B) X Zpsec,i,
i=1

where ox = p1(Hx, &), Pme = P1(Hxp- &), and pseci =
p1(Hxg), &) are the corresponding p-functionals of the overall
portfolio, its market, and sector components, respectively.

Similarly, in view of (1.10), Relation (4.4) implies that for every
Jc{1,...,d}, we have

k
9x() = B X D)+ (1= B) x Y Ox(U). (45)
i=1

Notice that 9¥x_,(J) = 1, for all non-empty sets J, since the
market factor is completely dependent.

These decomposition results allow us to obtain closed-form
lower- and upper-bounds on px in terms of 8 and 9x(J;), i =
1,...,d. Indeed, we have:

UxpyUi) = WxUi) — B)/(1—=8), i=1,...,k (4.6)

Now, using the closed-form expressions for px for each of the
sectors i = 1,...,k based on the single d;-variate constraint
Uxii), fori=1, ..., k, we obtain

k
BOX) = Bxd +(1-4)x Y B(di &, (9xU)—BY/(1-B)), (47)
i=1

where B € {£,U} and B(d, &, ¥) denotes either the lower- or
upper-bound formulae from (3.8) or (3.9).

Fig. 4 illustrates the significant reduction in the range of
possible extreme VaR values based on the above setup for a

range of B-values. We have the simple partition into k = 2
sectors and (dq, dy) = (10, 10). Considered are two cases where
the within-sector d;-variate extremal coefficients in (4.6) are
(Ox1yJ1), Px2)U2)) = (8, 5) (left panel) and (¥x(1)J1), Dx)(2)) =
(8, 1.1) (right panel). In both cases &€ = 0.25. The dotted horizon-
tal lines indicate the Hoeffding-Fréchet bounds on extreme VaR.
The solid green and red lines correspond to the exact lower/upper
bounds obtained by imposing a single d-variate constraint with

k
Ox({1,....d}) =B+ (1= B)x Y Oxpl)-
i=1

Finally, the dashed blue/black lines correspond to the lower/upper
bounds for p obtained by using the decomposition into a single
market factor effect plus independent sector-specific risks. Ob-
serve the significant reduction in the range of possible values
for extreme VaR. This is naturally attributed to the assumption
of independence among the sectors. The presence of a single
asymptotically completely dependent market factor, however,
can make this range approach the ultimate upper bound for
B — 1. Alternatively, if the proportion of the market risk is
low (8 — 0), the lower bound approaches the ultimate single
d-variate constraint lower bound (solid green curve) in the left
panel. In the right panel, however, one observes a non-trivial gap
between the two lower bounds at 8 = 0. This can be attributed
to the fact that the constraint vx)(J) = 1.1 is rather close to
complete dependence for the second sector, while the overall
portfolio constraint on vx({1,...,d}) is far from complete de-
pendence. Thus, the additional sector-specific information leads
to far less optimistic lower bound on extreme VaR than in the
market-structure-agnostic case.

The proportion of market-wide risk 8 here was assumed to be
known, for illustration purposes. Using (4.5), however, 8 can be
readily estimated in practice from an extremal coefficient ¥x(J)
involving a set J of two or more sectors. For example, given
Ox({1,...,d}) = co(X) and 9x(J;) = ci(X), i=1, ..., k, we obtain

k
o(X)=B+(1-B)x Y vxgUi) and
i=1

aX)=B+(1-B)xxupUi), i=1,....k
By elimination, these linear equations yield

(Zh1600) - co(x)

k—1

c(X)— B
1-8

, as well as

B = UxiyUi) =
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5. Summary and discussion

Under the general assumption of multivariate regular varia-
tion, the extreme Value-at-Risk of a d-dimensional portfolio, rela-
tive to a baseline asset, can be expressed as an integral functional
with respect to a finite measure on the unit simplex. This, un-
known (spectral) measure, is an infinite-dimensional parameter
that encodes the complete extremal (joint) dependence struc-
ture of the assets in the portfolio. In practice, the conventional
estimation of the spectral measure is challenging or impossible.
This motivated us to adopt distributionally robust perspective.
Namely, study the optimization problems of finding the infimum
and supremum of the extreme VaR functional over large classes
of possible spectral measures. Using popular and interpretable
extremal coefficient constraints, we expressed the above op-
timization problems as duals to linear semi-infinite programs,
which in turn were shown to have no duality gap. Thus, a number
of results on the structure of spectral measures corresponding
to the best- and worst-case extreme VaR were obtained. In the
special case of scale balanced portfolia, we have also shown that
the lower bound on extreme VaR corresponds to a spectral mea-
sure of the so-called Tawn-Molchanov multivariate max-stable
model, which can be solved with conventional linear programs.
We have also established surprising closed-form expressions
for the lower- and upper-bound on extreme VaR under single
d-variate extremal coefficient constraints, valid in all dimensions
d. These results were further illustrated and extended in the
case of the market-and-sectors framework. The theoretical results
were shown to provide practical bounds in a limited real data
example, and compared with conventional extreme value theory
method.

Our contributions are mostly theoretical. However, the estab-
lished results, formulae and methods are motivated by important
challenges in quantifying model uncertainty when studying the
risk of extremes in high-dimensional portfolia. To provide a com-
plete practical methodology for risk assessment a number of
important problems remain to be addressed. Namely,

e Develop practical or approximate solvers for the optimiza-
tion problems in dimensions d > 10.

e Study the optimal set of constraints 7 in terms of greatest
reduction of the range of possible extreme VaR.

e Quantify the uncertainty in the resulting lower- and upper-
bounds on extreme VaR stemming from the statistical error
in the estimation of the tail index & and extremal coefficient
constraints.

Finally, one very important open problem that stands out in
our opinion is to establish closed form formulae in the case of
single d-variate constraints (as in Theorems 3.7 and 3.8) for a
general un-balanced portfolio. Such formulae, by the method of
partitioning, can lead to significant improvements on the range
of extreme VaR similar to the ones obtained in Section 4.2.
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Appendix A. Multivariate regular variation and extremes

For convenience of the reader, here we review some facts and
technical results on multivariate regular variation and extremes.
For more details, see the comprehensive monographs (Resnick,
1987; de Haan and Ferreira, 2006; Resnick, 2007) and the recent
general approach to regular variation in metric spaces (Hult and
Lindskog, 2006). Some applications and extensions can be found
in Lindskog et al. (2014) and Scheffler and Stoev (2014).

Definition A.1. A random vector X = (X,-)?=1 in R? is said to
be multivariate regularly varying (MRV), if there exist a sequence
a, > 0, a, 1 co and a Borel measure p on R?\ {0}, such that:

(i) u(A) < oo, for all Borel sets A, bounded away from the
origin, i.e., such that A ¢ R? \ B(0, ¢), for some ¢ > 0, where
B(0, €) denotes a ball centered at 0 with radius e.

(ii) For all Borel sets A, bounded away from 0 and such that
(0A) = 0, we have

nP(a, 'X € A) — u(A),

In this case, we write X € RV({a,}, n).

asn — oo. (A1)

It can be shown that if X € RV({a,}, 1), the sequence a, is
necessarily regularly varying, i.e. there exist a positive constant
g€ > 0, such that aygny/a, — 5, asn — oo, for all t >
0. Furthermore, the limit measure p has the scaling property
w(cA) = ¢ VEu(A), for all ¢ > 0. Different choices for the
normalization sequence {a,} are possible, however, the exponent
& is uniquely defined, given a random vector X. To indicate that,
we sometimes write X € RV z({an}, ).

An alternative, equivalent approach to multivariate regular
variation is through polar coordinates. Namely, let || - | be an
arbitrary norm in R¢ (In fact, one can consider any positive and
1-homogeneous continuous function on R\ {0} as the radial com-
ponent see, e.g., Scheffler and Stoev, 2014.) Then, X € RV({a,}, u),
if and only if, for any (all) s > 0,

nP(a; '|X] > s, X/|X]| € ) == s ¥a(-), asn— oo, (A2)

for some probability measure o defined on the unit sphere Sy, :=
{x : |x|]| = 1}. It can be easily seen from (A.1) and (A.2), by
setting s = 1, that

w({lIx|l > 1. x/|Ix|| € B})
p({lIx| > 1}) '

for a Borel set B C Sy.. Relation (A.2) can be interpreted in terms
of polar coordinates as follows. Letting X ~ (R, U) with R := ||X]|
and U := X/||X||, we have that

¢ = u({|Ix|| > 1}) and, in fact, o(B) =

nP(a;'R>s)— cs™¢ and PU € -R > a,) — o(-),

as n — oo. This means, that the vector X ~ (R, U) is MRV
if and only if its radial component is regularly varying and the
conditional distribution of its angular component, given that the
radius is extreme, converges weakly to the probability measure
o (see, e.g., Hult and Lindskog, 2006 and Prop 3.9 in Scheffler
and Stoev, 2014). The probability measure o is referred to as
the spectral measure of X. Observe that, depending on the choice
of the normalizing sequence {a,}, the measure u in (A.1) and
correspondingly, the constant ¢ in (A.2), may change. The spectral
measure o and the exponent 1/&, however, are uniquely defined,
given a RV vector X.

The measure p has the polar coordinate representation wu(dx)
= cvye(dr)o(du), where is vy is a measure on (0, oo), such
that vy/s(c,00) = ¢~5, ¢ > 0. More precisely, we have the
disintegration formula:

;/,(A):cf foo 1a(ru)(1/&)r "1~V dro (du). (A3)
Sy /0
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A.1. Multivariate extremes

In the context of extreme value theory, the spectral measure
o can be used to express the cumulative distribution function
of the asymptotic distribution of independent component-wise
maxima. Specifically, let X = (Xi)?:]» X(k), k = 1,...,n be iid
RV({a,}, n). For simplicity, assume that the X;’s are non-negative.
Then, the measure p concentrates on [0, oo)? \ {0}. Consider the
component-wise maxima M;(n) ;== maxg=1__n Xi(k), i=1,...,d.
Then, it can be shown that for all x = (xi)?:] € [0, co)? \ {0},

IP’(a,fMi(n) <x, i=1,..., d> — Gu(X) = exp{ — u([o, x]‘)},
asn — oo. (A.4)
That is, a;'M, = a;'(Mi(n))_, converges in distribution to

a vector Y with the cumulative distribution function G, given
above. Indeed, by the independence of the X(k)'s, we have

n

P<a;]M(”) = x) = IP’(G,TX < x)n = (1 _ w> ,

(A5)

where A = [0, X]°, M(n) = (M,-(n))?:1 and the above inequalities
are considered component-wise. By using the scaling property of
W, it can be shown that A is a continuity set, and hence (A.1)
implies that nP(a; 'X € A) — u(A), as n — oo. Hence, the right-
hand side of (A.5) converges to exp{—u(A)}, which is in fact the
right-hand side of (A.4).

Consider now the disintegration formula (A.3) with A =
[0, x]°. Notice that ru € A if ru; > x;, for somei = 1,...,d,
or equivalently r > min;—;__q4x;/u;. Therefore, by (A.3), we have

That is, we obtain the following well-known expression of the
distribution function G,,:

P(Y < X) = G,(x) = exp { — c/ (lmax Ef)]/éa(du)}, (A.6)

S

Xe Ri \ {0} (see, e.g., Ch. 5 in Resnick, 1987).
A.2. Extremal coefficients

Let] C {1, ..., d} be a non-empty subset of coordinates of the
random vector Y in (A.6). Recall that the extremal coefficient J(J)
is defined as follows

]P’(r?ee}ij < 1) =: exp{—v(J)}.

In view of (A.6), we have

?(J) = c/ maxu,.l/s o(du).
S ( )

Jjel
Moreover, by (A.4) one can show that

nIP’(ma}ij > anx) — ¥(J), asn — oo.

je

Therefore, modulo a common scaling factor, all these extremal
coefficients can be readily estimated via the asymptotic scale co-
efficients of the heavy-tailed distributions max;; X;. Specifically,
we have

lim P(manEJXj > X) _ '19(])
x>0 B >x) 9({1))

Jc{l,....d.

By suitable rescaling of the reference asset X; (or equivalently,
the normalization sequence {a,}), without loss of generality, we
may assume that ¢#({1}) = 1. Given independent copies X;, i =
1, ..., n of X, define the self-normalized estimators

Y, I(maxje X;(i) > x)

5){ = n .
v 2ing 10X (i) > x)

(A8)

Remark A.2. It can be shown that the estimators in (A.8) are
weakly consistent for any choice of a regularly varying sequence
X = x, — oo such that nP(X;(i) > x,) — 00, as n — oo, i.e,, we
have ¥,(J) — ©(J) in probability. This is true for example for the
sequence x, := n"/(Vé+9) for any § > 0. The consistency of 9, (J)
follows by applying Theorem 5.3.(ii) in Resnick (2007) to both
the numerator and denominator in (A.8), viewed as empirical
measures of the type b, ' Y"1 Liy(iyx,(-), where Y(i) stands for
either X; (i) or maxj¢; X;(i). The sequence b, ' oo herein is chosen
such that (n/b,)P(X1(i) > x,5) — s~%, asn — oo, for all s > 0.
The fact that such a sequence b, can be found follows from the
regular variation property of x, and the distribution of X;(i).

Remark A.3. Recall Remark 2.1. The empirically estimated
extremal coefficients in (A.8) do satisfy the consistency relation-
ships of a set of valid extremal coefficients. Indeed, it follows from
Lemma A.5, with x; := I(X;(i) > x) that

Yoo (e max]I(Xj(i) > x)

L:JCLCA],....d} =
_ Z (—])‘LVHw(maXXf(i) > X) >0,
L:JCLCA, ..., d} <

for all i. Thus, the desired consistency relationships in Remark 2.1,
follow by summing over i since the denominator in (A.8) is
common and positive.

Remark A.4. In practice, however, when the extremal coefficients
are either imposed or estimated in some other way, different
from (A.8), one needs to ensure they provide consistent con-
straints. This can be done by “projecting” them onto the convex
set of valid vectors of extremal coefficients ¢; = (¢;)jes. Specif-
ically, by Mobius inversion, we know that ¢; = Af, where 8 €
Rf‘l and a certain design matrix A of dimension |.7] x (2¢ — 1).
In practice, if the vector of estimated coefficients is €7, we solve
the quadratic optimization program

minimize { € - ABI + 21811},

subject to f > 0, for some small regularization parameter A >
0. We take the solution AB as the constraints in our extreme
VaR optimization algorithms. In our experience, the so-calibrated
extremal coefficient constraints are quite close to the ones esti-
mated in practice. This calibration and other important statistical
issues merit further independent investigation.

The following elementary lemma follows by induction, al-
though it may be possible to obtain with general Mdébius inver-
sion techniques. This result is used to show that the empirical
extremal coefficients in (A.8) satisfy the consistency relationships
of a valid set of extremal coefficients (cf Remark 2.1).

Lemma A.5. Letd > 2 be an integer. Forallx; >0, i=1,...,d,
and ] c {1,...,d}, ] #{1,...,d}, we have

sU)y= Y.

L:jcLcql,....d)

(1) > o,

where by convention maxjey X; := 0.
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Proof. We establish the claim by induction. If ] = {1, ..., d}\ {jo},
then trivially S(J) = 0, if max; % > xj, and S(J) = xj, —
max;e Xj > 0, otherwise. This proves that S(J) > 0, for all J such
that |J| =d — 1. - -

Suppose, now that |J| <d—2and S(J) > 0, for all |J| > |J| + 1.
Let {j1,...,jm} :={1,...,d} \J and observe that

m m
S(J) = —maxx; + max X; + SJ U ih.
v i ;jefuml ! ; Uu )

The latter however is non-negative. Indeed, by the induction
assumption, we have S(J U {j;}) > 0, while maxj¢uy;; > maxje X;,
for each i = 1,...,m, which since the x;'s are non-negative
implies that S(J) > 0. Appealing to the induction principle, we
conclude the proof. O

A.3. On extreme VaR for homogeneous risk functionals

Let X € RVy/:({a,}, n) be a vector of losses. It is convenient
to write X = (Z°)L,, where Z = (Z)__, € RVi({by}, v), with
by = a* and v(A) = u(A).

Consider a set of positive portfolio weights w; > 0, i =
1, ...,d for the d assets. Then, the cumulative portfolio loss S =

d
> i_; wiX; can be expressed as

d d
S =hw(Z), where h(z) =) wiz; =Y wi;,
i=1 i=1

is a positive, £-homogeneous function of Z.

The asymptotic scale of the loss S relative to a reference asset
is the key ingredient in computing extreme Value-at-Risk. Indeed,
if

(A.9)

then by Lemma 2.3 in Embrechts et al. (2009), we have that
Var,(S
VaRy(S) _ e (A.10)
a1 VaRy(X1)

The following result is extends the formulae in Barbe et al. (2006)
(see also Theorem 4.1 of Embrechts et al., 2009), which address
only the case of equal portfolio weights and tail-equivalent losses.

Proposition A.6. Let Z = (Z)L, := (X/*)L, € RVy({b,}, v) be a
non-negative regularly varying random vector with exponent equal
to 1. Fix a norm || - || in R? and let oz be the spectral measure of Z
induced on the positive unit sphere Sﬁf” ={x>0: ||x|| = 1}. That
is,

v(dx) = cr~2drog(du), (A11)

where ¢ = v{||x|| > 1} and (r,u) := (||x||, X/||X||) are the polar
coordinates in [0, 00)? \ {0}.
For pw = p(S, Xy) in (A.9), we have

(A12)

where o1 == [+ u;07(du).
I

The proof is a direct consequence of the next lemma, which es-
tablishes the asymptotic scale of h(Z) for a general &-
homogeneous risk functional h.

Lemma A.7. Let Z be as in Proposition A.6 and h : [0, co)! —
[0, o0) be an arbitrary non-negative &£ —homogeneous function, i.e.
h(cx) = cfh(x), Yc > 0. Then, for all s > 0, we have

nP(b, ¥ h(Z) > s) —> ¢ x p(h)s™"%, asn — oo,

where

o(h) = / h(u)"¢ o7(du). (A.13)
S

This result shows that h(Z) is regularly varying (provided
p(h) > 0) and in fact it identifies its asymptotic scale coefficient
in terms of the spectral measure H.

Proof of Lemma A.7. By Theorem 6 and Remark 7 of Hult and
Lindskog (2005), we have that

nP(h(b,'Z) > s) —> voh (s, 00), asn — oo. (A.14)

Note that the above convergence is valid for all s > 0 since
by the scaling property of v and the homogeneity of h, all sets
h=1(s,00) = sY¢h~1(1, c0) are in fact continuity sets of v. It
remains to express the right-hand side of (A.14) in terms of
the spectral measure oz. In view of (A.11) and by using the
&-homogeneity of h, we obtain

o0
voh (s, 00) = c/+ / Th—1(s.00)(TW)r 2drog(du)
Sy VO

= C/ /oo 1(3,00)(#?h(u))r’zdraz(du)
sf, Jo

oo
c f+ / T(s/huy /¢ oo)(T)F 2 droz(du)
S 0

=c / (s/h(1))" V¢ oy(du).
S

The last expression equals cp(h)s™"/%, where p(h) is given in
(A13). O

Remark A.8. By using Lemma 2.3 of Embrechts et al. (2009)
and our Lemma A.7, one can establish the asymptotic value-
at-risk for more complicated instruments, which are non-linear
homogeneous functions of the underlying assets. For example,
one can consider h(u) := minj—1,__ 4 uf. Thus, h(Z) = minj—;, ¢ X;
represents the minimum loss of a portfolio and bounds on its
extreme VaR may be of interest. Note that in this case

. IP’(min,»:1 dX,' > X) 1 .
lim o = — ( min u,-)az(du)
X—>00 P(X; > x) o1 Jsf, i=1,...,d

does not depend on &.

A.4. On the role of the tail index in risk diversification

Here, we briefly comment on an intriguing phase transition in
the Fréchet-type bounds for the coefficient py in (1.9) occurring
in the case when & > 1. Recall that extreme VaR equals pf.,, where
1/ is the tail exponent of the portfolio X.

The case 0 < & < 1 corresponds to a finite-mean model for the
losses. In the case &€ > 1, we have an infinite mean model, which
may be viewed as ‘catastrophic’ since one has to have infinite
capital in order to guard against such losses in the long-run. The
bounds on py can be interpreted as follows:

e In the light-tailed case 0 < & < 1 the means of the
losses are finite and then the lower bound pw = Zle w;
is achieved by the asymptotically independent portfolio. This
agrees with the general intuition that accumulating inde-
pendent assets leads to diversification and lower risk. On the
other hand, the worst case scenario, naturally, corresponds
to perfect (asymptotic) dependence where all assets are
asymptotically identical or no diversification at all.
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e In the boundary case & = 1, the two bounds coincide,
regardless of the asymptotic portfolio dependence.

e In the extreme heavy-tailed setting & > 1 the means of
the losses are infinite and it turns out that the bounds in
(1.9) are reversed. Indeed, by the triangle inequality, for the
Lf —norm, we obtain:

£ £\ /8
pw= [ (wif + -+ wa)  Hew)
S+
d
< Zwi%/ u;H(du)
i=1 S+
d
=Yl
i=1

where in the last relation we used the moment constraints
in (1.8). Thus, the expression for the lower bound in the case
0 < & < 1in (1.9) now, in the case & > 1, becomes the
upper bound.

On the other hand, by the Jensen’s inequality, for the con-
cave function x — x'/¢, we have

: TG NS VL
(w1u1 +---+ wdud) > (Z U)i) Z wili,
i=1

i=1

where w; = w,-/(Zf=1 wj), so that Z;L] w; = 1. By
integrating the last bound with respect to H(du), and using
the moment constraints (1.8), we obtain

d
1/& 1/¢
,OWE/ (w]u§+...+wdu§> H(du) > (Zwi) .

S+ i=1

This shows that the expression for the upper bound in (1.9)
(for the case 0 < & < 1) now (in the case & > 1) yields the
lower bound.

In summary, for the case & > 1, we obtain the following
universal bounds on py (see also (1.9))

SN e
(Z wi) = pw = Z w; .
i=1

i=1

The bounds are sharp. The upper bound corresponds to
asymptotic independence, and the lower to complete
(asymptotic) dependence. This contradicts with our intu-
ition about diversification. It shows that in the infinite-mean
scenario, of potentially catastrophic losses, it is best to
just hold a single asset rather than to ‘diversify’ among
independent ones. The following argument provides some
explanation of this counter-intuitive phenomenon.

Let X;, 1,2, ..., be non-negative independent and
identically distributed random variables modeling losses.
Suppose that P(X; > x) ~ cx" ¢, x — oo, ¢ > 0, with
& > 1 so that we are in the extreme heavy tailed regime
of infinite expected loss E(X;) = oo. Suppose that unit
investment is distributed evenly among n such potentially
catastrophic assets resulting in a portfolio loss

_l n
Sni= zxi.
i=

Then, by the heavy-tailed version of the central limit theo-
rem, we have

1 =

1 — Sn d
EZX;:F—)Z, asn — oo,
i=1

where Z is a non-trivial totally skewed, (1/&)-stable random
variable (Samorodnitsky and Taqqu, 1994). In this case, since

(8 —1) > 0, the total loss S, L ps-1z stochastically grows to
infinity as the number of independent assets in the portfolio
increases. This counter-intuitive phenomenon where dis-
tributing an investment among multiple independent assets
is in fact detrimental is due the extreme heavy-tailed na-
ture of the model. Although such catastrophic models may
not be practically relevant, the above argument shows that
during regimes of very extreme losses our intuition about
diversification may fail.

Appendix B. Proofs

B.1. Karush-Kuhn-Tucker conditions

The following proposition establishes sufficient conditions for
optimal solutions to an LSIP (P). This version of the classic
Karush-Kuhn-Tucker (KKT) optimality conditions for the case of
LSIPs will be used in the proofs for Theorems 3.4, 3.7 and 3.8.

Proposition B.1 (KKT Conditions). Suppose Assumption 2.3 is sat-
isfied and val(P) < oo. Fix X € RP. If there exists dual variables
W1, Y2, -5 Yp)" €RE and {ty, ..., t,} C T such that

p
> yalt) =c, (B.1)
k=1
alt)'x=bty), k=1,...,p, (B.2)
and
a(t)"x > b(t), forallt €T. (B.3)

Then x € sol(P).

Proof. For every x € RP, define the set of active indices T(x) :=
{t € T :a(t)"x = b(t)}. By Theorem 7.1.(ii) of Goberna and Lopez
(1998) (see also Section 11.2 therein), a primal feasible vector
X € R? is optimal for (P) whenever

c € cone {a(t) : t € T(X)}, (B.4)

where cone{C} denotes the smallest convex cone containing C C
RP. This is true in our setting. Indeed, Relation (B.2) implies that
{ti,....tp} C T(x), which in view of (B.1) entails (B.4). O

B.2. Proof for the Tawn-Molchanov minimizer

In this section, let D = {1, ..., d}. Denote 2° as the power set
of D and K¢ = D\K. We shall need two auxiliary lemmas.

Lemma B.2. Let 0 < ugy) < up) < --- < U < 1 be the order
statistics for arbitrary u € ST 'Fix &€ > 0 and define gy = 0. The
following equality holds

d
> max{u;} D EOHE UL = 1) (ug) — ugon) -

Je2P\z LdJ j=1

(B.5)

Proof. We will prove (B.5) under the assumption that there are
no ties, i.e., U1y < U)--- < Ug). Since both the left- and right-
hand sides of (B.5) are continuous functions of the u;’s, the general
result will follow by continuity for all u € Sff[].
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We have
> max{u) 3 (~DHy UL
Je2D\g LdJ
d
= Zu(,) Z H( élx{uj} = Ll(,'))
i=1 Je2D\g g
Ul Ul
x Y k)(—l)"“(d — Ul + k)
k=0
d i
= Z () Z I (msax{uj} = u(,)>
i=1 =1 je2D\» o
Ul=¢

(B.6)

The second relation above follows from the fact that due to lack of
ties, only sets J containing at most i indices will contribute to the
inner sum therein. The last relation follows by a simple counting
argument since (;_!) is the number of sets | with |J| = ¢ < i,
for which maxj¢; u; = u(;). Indeed, due to lack of ties, the latter
equality holds only if the set J contains the (unique!) index of u;
and (¢ — 1) other indices among those of u(yy, ..., Uj_1).
Now fix i € D and consider

i . 4
S (DB (e cm

=1 k=0

k=1

q=1

i— .
y < i—1 )(‘I‘i‘k)(_])kﬂ'
— qg+k—1 k

By using the fact that (“t*) = (“"¥") + (“I*]"), where by

k k—1
convention (“1*;") = 0 if k = 0, we obtain

(et )(E) =G (0

Now, by using the Newton’s binomial expansion of (1 + (—1))—9
and (1 + (—1))~971, for the inner sum in the right-hand side of
(B.7), we obtain that

- i—1 q+k _1)k+1

> (o) (e

_ (i1 SYE 1 (11 o (i-a 1
“(C)Z e ()R )

=(-1(i—q=0)+1i—q=1)=(-1)"""(0<i—q<1).

(B.7)

By substituting in (B.7), we finally obtain
i

. 4
S (DB (e m

=1 k=0

=d"Ii=D+) (d-q" (-1)""i-q<1)
q=1

=d+1—-)Y —(d—i)s. (B.3)

Substituting (B.8) into (B.6) gives (B.5), which completes the
proof. O

The next lemma establishes analytical solutions to the dual
of problem (£,) in (3.6) in the case where the set of constraints
includes the entire set of extremal coefficients # = (9)),c0\ €

d
29-1.
RZ 1

(£,(9)) inf —#'x

XERP

1/¢

subject to: — (uf +o 4+ ui) - Z max{u;}x;
jel
Je2D\az
<0, uesi.

Observe that the dual to the minimization problem (£, ) is a max-
imization problem. For convenience, we encode it equivalently as
a minimization of the negative objective.

Lemma B.3. The vector X = (X;),c,0\, With elements

X = Z(—l)‘”“uc urL's (B.9)
Lcj
is optimal for Problem (L£/,(#)) with
val(c, () = ) | IKI" g
Ke2D\z
where (B )xear\o € R’ is the unique solution to
Z 1{(J NK) # &} fc =0, ] € 2°\@. (B.10)

Ke2P\o

Proof. Fix p = 2¢ — 1. We prove X ¢ sol(ﬁ;(ﬂ)) by verifying
the KKT optimality conditions of Proposition B.1. That is, we need
to show there exists (yx)xcon\, € RY and {ux = (qu)J‘Ll, K e
20\@} ¢ Si‘l such that the following conditions hold:

Dual feasibility:

Z max{ujlyx = ¥, J € 2°\2,
Ke2D g

(B.11)

Complementary slackness:

. £k ¢ \"* D
Z mee}x{ujk}x] = (”m iy A+t udl() ., K e2”\a,
Je2D\z !
(B.12)

Primal feasibility:

1/&
(uf +uy 4+ ui) > Z max({u;}x, forallu e '
Jjel
Je2P\o
(B.13)

Theorem 4 of Schlather and Tawn (2002) asserts that for a con-
sistent set of extremal coefficients Relation (B.10) holds for some
non-negative By, @ # K C D. Define yx := |K|Bx and ux =
K|~ '(1k ()L, € ST'. We will show that the KKT conditions

(B.11)-(B.13) hold. This will complete the proof.
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Dual feasibility (B.11): We have

j = K714} K
> max{uly > max(|K|~ 1 G)HK B

Ke2P\o Ke2D\o

= Y HUNK) #2}px =1,

Ke2P\o

where the last equality follows from (B.10).
Complementary slackness (B.12): With X; as in (B.9), we have

Z max{u]K

Je2P\oz
= Y HUNK) #2}KIT Y (=)o
Je2P\z L
=[K|7" Y HUNK) # 2}y (~)HHycun”

Je2P\oz Lcj

= |K|7' K|V = (ufK Fus e+ ufi,()l/g, K € 2"\@.
The third equality above follows from the Mobius inversion
formula (see Theorem 4 of Schlather and Tawn, 2002) and
the last one from the definition of the uj’s.
Primal feasibility (B.13): For (uq, ..., uq)"
fuG) = I{k < j} (k) — Ugk—1)) where

0=1up <up <---

e s, define

=< U(a),

are the order statistics of (0, uq, ...,

¢ fi(j). Hence,

1/
(u§+-~-+uf,>

ug). Observe that ug;) =

1/¢

i)

d
2+
1/& 1/&

Zfa

%

d
> OFG)
j=1

d
:Zd+1—] 1/5 UU)—UU 1))
j=1

(B.14)

where the last relation follows from the definition of the
fk(j)’s and the bound follows from the reverse Minkowski
inequality valid in the case 0 < & < 1 (see, e.g., inequality
No. 198 of Hardy et al., 1934).

Now, Lemma B.2 implies that the right-hand side of (B.14)

equals
Z max{uj}z N+ ey Vs = Z max{uj}x]
Je2D\z LcJ Je2P\o

which in view of (B.14), implies (B.13).
Hence, X € sol(£/,(#)) and

k=) & ) HUNK) # o) fi

Jje2P\o  Ke2P\z

> H{(lmoyé@}ﬁKZ( DU

Je2P\z Ke2P\o

> KM B

Ke2P\@

val(c),(#))

This completes the proof of Lemma B.3. O

Proof of Theorem 3.4. Let #, denote the space of finite Borel
measures on S‘f:] satisfying

[ max{u;}H(du) = c,}
sd-1 jeJ
+ Jeg

Likewise, denote #; as the space of finite Borel measures on 4!

satisfying
}jezn\z

Hence, we may write Problem (£,) as

{ max{u;}H(du) = 9

gd 1 jel

1/&
val(z,) = inf /dl(u§+---+u§) H(du)
v

HeHe

= inf | inf / (uf—i—-u
#cOc | HeHy Siq

where O = {# € ©® : ¥ = ¢, forall] € J}. (Recall ® is
the space of consistent extremal coefficients). Now Lemma B.3
together with strong duality for (5;(19)) imply

+ uf,)l/g H(du)] . (B.15)

1/¢
+ ui) H(du)

HeHy

= D KV,

Ke2P\o

4 — i 3 e
val(£,(#)) = inf /Sil (u1 +

(B.16)

where (B )xean\ s € Ri, with p := 2¢ — 1, is the unique solution
to

> HUNK) # ) pe =, ] €2°\2.
Ke2P\z

(Uniqueness follows by Mobius inversion, see e.g. Theorem 4
of Schlather and Tawn, 2002.) Substituting (B.16) into (B.15) gives

val(z,) = inf Z UIs B,
BeR

+JezD\rz:

subject to :

Y. HEKND#S =g
Ke2P\o Jeg

which completes the proof of Theorem 3.4. O
B.3. Proofs for the closed form solutions in Section 3.2

Proof of Theorem 3.7. Let k € {1,...,d — 1} be such that

d _,_4 (B.17)
—_— < —. .
k+1~ k
That is, By = [d(k + 1)1, dk~1) is the (unique) set in (3.8), such
that ¢+ € By. One can then write

d d pd= — (k+ 1)1
v =A- 1—A)——rr, h A —m———————— 0,1).
p PA=2p g, whered == 5 5y €01

(B.18)

In view of Theorem 3.4, the lower bound val(£,) is the value
of a standard linear program (3.6). This linear program is the dual
to the following primal linear program:

Supx:(x], ]ej)e]RPch

subject to: [K|"$ > > "I{ NK # @)y, forall K € 2°\ @,
Jeg



R. Yuen, S. Stoev and D. Cooley / Insurance: Mathematics and Economics 92 (2020) 70-89 87

where D := {1, ...,d},
c=(1,....,1, 0" eR™! and 7 ={{1},...,{d),{1,...,d}}.

We will exhibit a primal feasible vector x = (x;, /] € J) and a
dual feasible vector B = (Bx, K € 2P\ @}, for which

x= ¥

P£KC(1,....d}

K| B = L(9)

with L(#) as in (3.8). This, will complete the proof by the strong
duality between the standard linear programs.
Primal vector. For each ] € 7, let

k4 DYE —kE , =1
P77 k4 DRYVE —k(k+1)VE | ] =d,

where k is as in (B.17).
Dual vector. Now, define the components of the dual vector as:

(B.19)

ad (dy 1
T(k) |K| =k
_Ja-ndy d ! _
P = k+1) (k+1) K| =k+1
0 K| & {k, k+ 1},

where X is defined in (B.18).
Dual feasibility. We will first verify that 8 is dual feasible. We
need to verify, that for all ] € 7,

1 =1
> KN # ol =q= Ul (B.20)
9 |J| =d.
KD, Ko
Indeed, when |J| =d (ie., ] = {1, ..., d}) we have
Y. HKNJ#2)pk
KD, K#o
Ad d\7' (1—xr)d d \'
220 w2 ()
KcD ¢ (k + 1) KcD k + l
IK|=k |K|=k+1
d
=A-4+(1—2 =
k + )k+1 ’
in view of (B.18). Let now |J| = 1, that is, ] = {j}, for some
arbitrary fixed j € D. Then,
Y HKN (i} # 2}
KCD,K#2
Ad (d)‘l (1—2)d ( d )‘1
== +—
k KcDZ:jeK k k+1 K;:JEK k+1
|K|=k |K|=k+1
d(d\ ™" (d—1 d d \“'fd—1
=A- +(1=2)—
k\k k—1 k+1\k+1 k
=A+(1-1) =1

This completes the proof of (B.20), i.e., the dual feasibility of .
Primal feasibility. For all @ # K C {1, ..., d}, we need to show

KIYE = ) K N # 2)x
Jeg

Since £ € (0, 1), the function t — t/¢ is convex on t € (0, c0)
and hence for any s and t; < t; € Ry such thats & (tq, tp) it
follows that

(VE _ 18
sVE> 2 1 (s—t) 415
h—t

We shall apply this inequality with t; = k, t; := k+ 1 and
s:= |K| & (k, k + 1). (Note that |K]| is an integer, and hence we

always have |K| & (k, k + 1).) We have:

(k+1)V& — k¢
k+1—k
= K| [(k+ D)VE = kVE] + K& — Kk [(k+ 1)'/5 — k5]
KVET — (k4 1)1/E1
k=1 —(k+ 1)1

K% > (K| — k) + k¢

= K| [(k+ 1)V& — k5] +

=Y K NJ # 2,
JeTg

where the last equality follows from (B.19), since there are pre-
cisely |K| singleton sets ] € 7 with K N ] # (. This establishes
the primal feasibility of X = (x;,] € 7).

Optimality. Finally, we will verify that the objective functions
of the primal and dual linear programs coincide. In view of (B.18),
with straightforward manipulations, we obtain

c'x =Y [(k+ )" — k¥ + 0 [(k+ DK — k(k + 1)"¢]

Jeg
V=1

=d(k+ 1)"/F —dk'% +ad[(k+ DKV — (k+ 1)1%]
+ (1= A)d [k"5 — dk(k + 1)/57]
= d(k+ )5 4 ad [K571 — (k4 1)V51]

=d{AkET (1= )k + DT = L), (B.21)

Next, we consider the value of the dual objective. We have,

> 1K1V By

KcD
=) IKIVEB
KcD
d\ ! d \!
=dx ) k& d(1—2 k4 1)/E1
2K ) =m0
K=k Ul=k+1

=d {4+ (1= W)k + 1)V = 1w). (B.22)

Relations (B.21) and (B.22) show that the values of the primal and
dual objectives are both equal to L(#%) in (3.8). This completes the
proof of Theorem 3.7. O

Proof of Theorem 3.8. We need the following elementary result.

LemmaB4. Let0 <& < 1,¢> 0and u(d) == (8 +c-(d—
9)5)VE. Then, for all 9 € [0, d], we have:

(i) uc(v) = vu(9) = 0

(ii) u/(9) <0

(iii) For all z, ' € [0, d], we have uc(z') < ul(z)(z' — z) + uc(z).

Proof. Parts (i) and (ii) can be verified with straightforward
differentiation. Part (ii) implies that the function u. is concave,
which entails part (iii). O

Recall the primal-dual correspondence established in
Theorem 3.1 between the problems (u4,) and (u;,). That is, prob-
lem (44,) is the dual of the LSIP problem (u//)) in (3.1).

We call problem (u;,) ‘primal’ and (u,) ‘dual’. We will con-
struct a primal feasible vector x € RP and a dual feasible measure
H, such that

vi=c'x= / (W + -+ u5) 5 H(du), (B.23)
S+

then v = val(u;) = val(u,) will be the (common) optimal value
of the two problems.
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letp =d+ 1and D = {1,...,d} and define the measure
H(du) = Z;f:] 8y, (du), where u, = (ujk)f=1 are such that

and Ujx = d(d——1)7 je D\ {k}.

Notice that uy € S, and also the measure H is dual feasible.
Indeed,

d
/ wH(du) =Y wp =1,
S+ k=1

which shows that the marginal extremal index constraints are

met. On the other hand, since
0 d—v

- > ,
d =~ dd—1)

for each k, we have max;ep ujx = ¥ /d. This implies that

Uk = —~

forall 1 < ¢ <d,

d
D

max u;H(du) = E — =1,
£+jED]( ) i

and hence the d-variate extremal index constraint is satisfied. We
have thus shown that the measure H is dual feasible, i.e., meets
the constraints of (¢4,).

Let now z € [1, d] and consider the function

U(z) = max W 4 - +uf)'s.

ueSy, dmaxjep Uj=z
A straightforward calculation using Lagrange multipliers yields
that
T e 1-¢ £\1/6
U@ =+ (ZF+d-1)'"5d—-2))", ze[1,d].
Observe that for all uy in the support of H, we have
W + -+ U5 = UW).

Therefore, the value of the dual problem at H is:

d
/ (W + -+ u§) S H(du) = 3 U() = dU(9)
S+ k=1

= (1;5 +(d—1)175(d — v )F)5.
(B.24)

Let us now deal with the primal problem. Consider the vector
X = (x)_,, where

Xp=---=x=U)—0U'(®), and x4.1 =dU' (D).

We will show that x is primal feasible. That is, with a(u) =
(1, ..., tg, MaXjep ;)T and b(u) = (4 + - - - + u)'/%, we have

b(u) < a(u)'x, forallues,.

Observe that by the definition of the function U, we have

b(u) < U(d m%x u;), forallu= (uj)fi:l €S,.
je

} (B.25)

Now, by applying Lemma B.4.(iii), to u.(z) = U(z) with ¢ =
(d—1)""%z:=9and 7 = d max;=1,.q uj, we obtain that

d
= y(U)—2U'@)+ max udU'()
je
Jj=1

d

— X ; = T

= E u]x]+r}1e%xu]xd+1 =a(u) x.
j=1

(B.26)

Since the last inequality is true for all u € S, Relations (B.25)
and (B.26), imply the primal feasibility of the point x.
Finally, we compute the value of the primal objective at x:

d

ch:Zl X X+ X X1
=1
= d x (U(®) — dU'(9)) + 9 x dU'(9) = dU(®),

which in view of (B.24) coincides with the evaluation of the dual
problem objective at the measure H. This completes the proof of
Theorem 3.8. O
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