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The science of ecology has evolved from observing and 
describing localized phenomena into a discipline that 

seeks to disentangle the myriad of interconnected mechanisms 
that are consistent across ecosystems (Heffernan et al. 2014; 
McCallen et al. 2019). Experiments and studies are often care-

fully constructed to minimize confounding factors and 
describe constant – also termed stationary – ecological pro-
cesses and phenomena over localized study domains, which 
are often purposefully limited in both time and space (Symstad 
et al. 2003). As ecology increasingly operates at broad spatio-
temporal scales in macrosystems biology, it has become appar-
ent that simply scaling-up processes observed at localized sites 
is insufficient for describing a new wave of fundamental and 
emergent processes (Heffernan et al. 2014; Soranno et al. 
2014). Describing ecological phenomena, patterns, and causal 
processes relies on diverse arrays of models (eg conceptual, 
statistical, process-based) that simplify the complex realities of 
ecological systems and scale processes across space and time. 
Although it is understood that use of these models will always 
involve some level of undescribed variability or model uncer-
tainty, they provide opportunities for researchers to isolate 
individual ecosystem components to test hypotheses at large 
spatiotemporal scales (Cressie et al. 2009).

As ecological research increasingly focuses on describing 
relationships or making predictions at large scales, across 
scales, or under novel conditions, the challenges of accom-
modating environmental and ecological heterogeneity often 
become more difficult (Collins et al. 2018; Dietze et al. 2018; 
Saunders et al. 2019). When the effects of factors on an 
ecological process differ across space and/or time, the prop-
erties of the variable of interest can also change – a phe-
nomenon called nonstationarity (Figure 1; Schabenberger and 
Gotway 2005; Banerjee et al. 2014). Nonstationarity in this 
context is a case where conclusions drawn from a single 
location or point in time are typically insufficient for explain-
ing large-scale patterns because they only provide glimpses 
into broad ecological processes that occur over a wider range 
of conditions (Soranno et al. 2014). Nonstationarity, both 
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In a nutshell:
•	 Ecological systems are under constant change and fre-

quently exhibit spatially and temporally varying trends, 
which can cause substantial challenges for analysis and 
application of ecological data

•	 Most biological systems display potentially confounding 
spatial or temporal trends (nonstationarity) at some scale, 
presenting a key challenge for macrosystems research

•	 Accounting for nonstationarity in ecological processes can 
improve both inference and prediction

•	 Ecological research needs to accommodate spatial and 
temporal variability in ecological patterns and processes 
to be better translated into actionable information for 
stakeholders

(continued on last page)
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in terms of properties of ecological processes and how those 
processes are represented in statistical models or analyses, 
has implications not only for how ecological systems are 
studied, but also for subsequent inferences and predictions 
(Miller and Hanham 2011).

Acknowledging nonstationarity in ecological processes is 
key to bridging large-scale research to local policies and prac-
tices. Accommodating spatial and temporal variability in the 
factors and ecological processes that determine habitat suitabil-
ity in species distribution modeling has been a long-standing 
challenge for both the research and conservation communities 
(eg Osborne et al. 2007; Thuiller et al. 2008). In restoration, the 
use of historical reference states as targets is complex due to 
temporal changes in conditions, such as climate and land-cover 
patterns (Swetnam et al. 1999; Higgs et al. 2014). The use of 
specific management practices (eg fire) is known to have mixed 
results among locations due to spatial variability in site and 
environmental conditions (McEwan et al. 2011). The rise of 
macrosystems biology via “big data”, new technologies in fields 
like remote sensing, and advances in data integration have led 
to novel discoveries in global-scale and emergent phenomena 
that are not possible from smaller scale studies based on a few 
sites or short temporal extent alone (Zipkin et al. 2021). 
Translating such advances into reliable and actionable informa-
tion for practitioners and policy makers requires that spatial 
and temporal variability in ecological patterns and processes be 
accounted for in both inference and prediction (Rodo et al. 
2002; Gouveia et al. 2013).

Nonstationarity as a property of ecological systems

Assuming that an ecological system is stationary is akin to 
viewing a system as being in equilibrium, in that both states 
are often highly dependent on the scale and/or the question 
being posed. For example, the landscape mosaic concept 
from geography postulates that a landscape may have con-
sistent properties such as median age or composition through 
time when viewed at a coarse scale, but this pattern is main-
tained by periodic disturbances with localized sites undergoing 
constant change (Turner 2005). Conversely, genetic change 
leading to adaptation or speciation is widely observed, but 
only over multiple generations, and therefore stationary pop-
ulation genetics may be a valid assumption for research on 
finer scales (Jost et al. 2018). Arguments have been made 
that all systems are nonstationary at some scale, and that 
scale often corresponds with macrosystems research that 
spans broad spatial and temporal scales (Heffernan et al. 
2014; Wolkovich et al. 2014; Collins et al. 2018).

Change in the properties of ecological systems (ie non-
stationarity) can arise from multiple sources, including var-
iation in underlying environmental conditions (eg soils, 
topography, climate) or as a result of abrupt events (eg 
disturbance) (Figure 2). These and other causes of nonsta-
tionarity can result in spatial or temporal differences in 
properties like the mean or variance of ecosystem states or 

traits (Figure 1). Nonstationary properties of ecological pro-
cesses frequently result from multiple, interacting factors 
that vary across space or time (Schmidt et al. 2014). The 
relationships among these factors are complex and often 
unknown. Nonstationarity is not unique to macrosystems 
research, but working at large scales increases the likelihood 
that the ecological processes of interest may vary within 
the spatial or temporal study domain, potentially leading 

Figure 1. (a) A stationary variable shows similar trends over the entire 
spatial (left column) or temporal (right column) domain. (b) Departures 
from stationarity can be due to a changing mean, resulting in first-order 
nonstationarity, or where the covariance between any two points is not a 
function of distance but rather an observed or unobserved variable. (c) The 
dashed vertical lines partition the domains such that the variance is differ-
ent on either side, exhibiting second-order nonstationarity. Color corre-
sponds to spatial surface and time-series (hypothetical) values from a 
synthetic dataset. Dashed vertical lines in (b) and (c) delineate a boundary 
where the data-generating process changes characteristics.

(a)
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to complications for cross-scale inference and prediction 
(Cornulier and Bretagnolle 2006; Finley 2011; Miller and 
Hanham 2011).

Spatial or temporal variability of ecological factors in a data-
set does not necessarily qualify as nonstationarity and is often 
a strength rather than an intrinsic obstacle for describing eco-
logical relationships that underlie an observed phenomenon. 
For example, prediction of species distributions typically relies 
on observations of species occurrence or abundance over a 
wide range of climatic conditions to describe potential suitable 
habitat (WebPanel 1). In this instance, spatial gradients in a 
factor like mean annual temperature are not inherently prob-
lematic if they have a consistent relationship with the observed 
response of abundance. Predictions and inference become 
more complicated if the spatial or temporal relationships 
between the predictor variables and the observed response are 
not constant. For example, if habitat characteristics or local 
adaptations lead a population to have unique relationships 
with a key environmental factor, local abundance estimates 
may be inaccurate unless spatial nonstationarity is taken into 
account (WebPanel 1). In turn, accurate distribution and abun-
dance estimates are important for identifying conservation 
priorities and allocation of financial and human resources (Jetz 
et al. 2008; Johnston et al. 2015).

When is nonstationarity important for research and 
application?

As with other scientific disciplines, ecological research is 
tasked with making new discoveries. Doing so often requires 
reliance on carefully constructed statistical models, which 
are simplifications of reality, to test hypotheses that explain 
observed phenomena across space and time. Because it is 
not possible to measure or fully quantify all of the causal 
processes that generate an observed phenomenon, there will 

always be some level of undescribed variability or model 
uncertainty. In cases where nonstationarity – and not just 
general uncertainty – is a consideration, conclusions drawn 
from a single location or point in time are insufficient for 
explaining large-scale patterns because they are based on 
only a subset of the conditions over which broad ecological 
processes occur (Symstad et al. 2003; Soranno et al. 2014).

Most relationships in ecological research are not fully 
understood, and therefore determining whether consideration 
of nonstationarity in study design and analysis has improved 
causal inference is difficult, particularly when results contra-
dict those of past studies. However, studies using simulated 
data, where the true data-generating process is known, have 
demonstrated that failure to take into account spatial heteroge-
neity through additional processes or random effects can lead 
to results that contradict reality (Dixon Hamil et al. 2016). 
Analyses using methods that account for spatial nonstationar-
ity have been used to challenge past research that has 
wide-ranging policy implications. For example, accounting for 
spatial nonstationarity in analyses of tree cover in Philadelphia, 
Pennsylvania, indicated that relationships between tree cover 
and demography are more complex than previously portrayed 
(Locke et al. 2016). Accounting for the complex and spatially 
nonstationary relationships between demography and tree 
cover can lead to more effective urban planning policies.

Failure to account for nonstationarity in models of ecologi-
cal processes can cause agents of change to be misattributed to 
other, unrelated factors, resulting in flawed inference or predic-
tion. The challenge of accommodating nonstationarity for 
ecological inference is common in many ecological fields, and 
particularly those focused on identifying drivers of change in 
systems undergoing multiple alterations (Wolkovich et al. 
2014). For example, tree-ring-based studies that investigate the 
effects of 20th-century climate change on tree growth must 
often contend not only with a nonstationary climate, but also 

Figure 2. Transitions in space and time can lead to nonstationarity in ecological data. (a) Sharp transitions in topography, such as those in mountainous 
areas, or (b) disturbance events, such as hurricanes, can induce abrupt shifts in means and variances like those depicted here. However, most nonstation-
ary processes in ecology are less obvious and are the product of environmental gradients or multiple interacting factors, and therefore require more 
sophisticated modeling approaches.

(a) (b)
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changes in precipitation, nitrogen deposition, and disturbance 
dynamics (Figure 3; McEwan et al. 2011; Wolkovich et al. 
2014). These additional effects do not necessarily need to be 
explicitly included in a model focused on the effects of temper-
ature, but accounting for temporal trends in individual growth 
rates through a priori detrending or a single additional covari-
ate improves stationarity of estimated effects and reduces the 
inferred effect of temperature on tree growth (Figure 4; 
WebPanel 2). Consequently, detrending or otherwise accom-
modating age- or size-related growth trends in tree-ring width 
is a fundamental aspect of dendrochronological research for 
both inference and prediction (Peters et al. 2015). However, 
partitioning the partial effects and attributing change to a sin-
gle factor or variable is challenging when nonstationarity is 
present, especially in multiple, collinear predictors. These 
covarying trends and complex interactions in both ecological 
processes and statistical models complicate identifying the 
“true” effects of predictors on a response (WebPanel 2).

Addressing nonstationarity in models and analyses

Nonstationarity is a pervasive and persistent challenge for 
ecological research and its application to solving real-world 
problems. Although there is no simple, universal approach for 
identifying and addressing spatial or temporal nonstationarity 
in ecology, approaches to identifying and addressing nonsta-
tionarity do exist. Carefully considering the objective or hypoth-
esis connecting measured factors and observed phenomena is 
the first and most important step in any analytical work. In 
addition to determining what the key predictors and response 
variables are, the research or application objective determines 
what steps are most appropriate for addressing any evidence 
of nonstationarity that arise (Figure 5).

From a technical perspective, nonstationarity is defined as 
differences in the statistical characteristics (eg mean, variance, 
covariance) of a variable, or in statistical relationships across 
space or time (Figure 1; Schabenberger and Gotway 2005; 
Banerjee et al. 2014). Changes in a variable’s mean are referred 
to as first-order and are often relatively easy to detect and 
address through methods described below (Figure 1b). 
Changes in variance and covariance are second-order and may 
be more challenging to diagnose, requiring collaboration with 
statistical experts (Figure 1c). When discussing nonstationar-
ity statistically, we often start with the assumption that ecolog-
ical variables are regulated by highly complex and largely 
unobservable mechanisms (“data-generating processes”) that 
will never be fully represented in analytical models. Various 
approaches for addressing nonstationarity in statistical analy-
sis exist, but many approaches are beyond what most ecologists 
are traditionally exposed to during their academic training.

Diagnosing nonstationarity

The first step in designing a model that can accommodate 
nonstationarity is to identify the spatial and temporal scales 

of the data and desired inference, as well as the factors or 
processes that are likely to be of greatest importance. 
Following that, exploratory data analysis can help determine 
if modeling efforts that explicitly accommodate nonstation-
arity are warranted (Figure 5). Visual inspection of raw 
data and model residuals is often the best starting point 
for identifying nonstationarity in initial statistical model 
development (eg Figure 1; Figure 4a). If predictor variables, 
observed responses, and the distribution of residuals from 
a model are evenly distributed across the study’s spatial 
and/or temporal domain, then stationarity can be assumed 
and many common analytical approaches, such as simple 
linear regression, are appropriate. However, if the statistical 
properties (eg mean and variance) among model residuals 
change across the domain, then the initial model may fail 
to adequately capture the ecological processes generating 
the response variable. Once nonstationarity is detected, sev-
eral methods are available and widely used in ecology for 
addressing spatial or temporal trends affecting ecological 
data. In general, approaches can be sorted into two cate-
gories (Figure 5): (1) those that describe the source of non-
stationarity by modifying the inferential scope of the model 
so that ecological relationships can vary across a study 
domain, or (2) those that accommodate nonstationarity 
through latent or “hidden” processes that retain the initial 
inferential model structure (eg fixed effects) but add addi-
tional complexity that accounts for previously undescribed 
spatial or temporal trends.

Describing nonstationarity

The appearance of nonstationarity in ecological models or 
analyses indicates additional factors or ecological processes 
that strongly influence the observed phenomenon of interest. 

Figure 3. Changes in the mean and variability in the width of annual tree 
rings, such as those that can arise abruptly from disturbances, are easily 
observable examples of temporal nonstationarity. Accounting for these pat-
terns in analyses is essential for accurate inference of other ecological pro-
cesses (eg temperature or precipitation effects on growth; WebPanel 2).
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In many cases, particularly in theoretical or research ecology, 
this may be the main objective of the study; in such instances, 
the hypothesis and model structure may need to be revisited 
and additional covariates included to better represent the 
phenomenon-generating ecological processes (Figure 5; eg 
Schmidt et al. 2014; Abbott et al. 2017). In other cases, 
there may not be enough information or data available to 
add additional factors to a model to explain the spatial or 
temporal variability in ecological processes, and therefore 
the model structure may need to be altered so that processes 
vary spatially, which may prompt new hypotheses and future 
research into the sources of nonstationarity. One common 
approach to this is to first divide the analytical domain 
into overlapping subregions where stationarity can be 
assumed, and then the multiple model parameters and pro-
cesses can be interpolated among those subregions (eg geo-
graphically weighted regression; WebPanel 1; Brunsdon et 
al. 1996; Mellin et al. 2014). However, more robust methods 
exist that allow estimation of the changing relationships 
between response and predictor variables across spatiotem-
poral domains using a single modeling approach (eg spatially 
varying coefficient models; Finley 2011; Jarzyna et al. 2014; 
Risser and Turek 2019).

Accommodating nonstationarity

Although ecologists often seek to explicitly describe the reasons 
ecological processes vary over space and time, occasionally the 
objective of a study needs to merely accommodate nonsta-
tionarity to permit valid predictions and inferences about specific 
processes or ecological behaviors (Figure 5). One method for 

accommodating spatial or temporal variability that 
is becoming increasingly standard in ecological 
analyses, particularly in first-order nonstationarity 
with differences in mean effects among observa-
tional units, is the use of hierarchical random 
effects (Cressie et al. 2009). Other methods, such 
as data assimilation techniques, where local states 
or parameters are used to probabilistically update 
model predictions or parameters at specified spa-
tiotemporal intervals, can improve predictions in 
nonstationary environments (Luo et al. 2011; Niu 
et al. 2014). For example, the complex relation-
ships among population dynamics, climate, and 
oceanic circulation make jellyfish outbreaks dif-
ficult to predict; data assimilation allows integra-
tion of multiple sources of observations (eg satellite 
imagery, social media reports) to update predic-
tions and produce more accurate forecasts in (for 
this example) the Gulf of Maine when the drivers 
of spatiotemporal dynamics of outbreaks and 
subsequent public health risks are poorly con-
strained (Record et al. 2018). Formal forecasting 
techniques that assimilate site-specific parameters 
and observations have also been proposed as a 

useful approach for improving restoration decisions in the face 
of a changing (nonstationary) climate (Hardegree et al. 2018). 
Critical evaluation of the spatiotemporal trends in estimated 
parameters or assimilation weights can provide critical insights 
into the key ecological processes generating statistical nonsta-
tionarity to be the focus of future inference-focused efforts 
(WebPanel 1).

Conclusions

Explaining patterns and processes across space and time is 
a fundamental aspect of ecological research and is essential 
for providing information to guide natural resource and 
policy decision making. The development of new technologies 
and data streams that facilitate large- and cross-scale research 
on ecological phenomena has increased our ability to detect, 
study, and account for how relationships among factors and 
processes vary across spatiotemporal domains (Heffernan et 
al. 2014; Soranno et al. 2014). The role of nonstationarity 
and its impacts on ecological inference and prediction is 
often dependent on the scale and scope of research hypoth-
eses or project objectives (Figure 5). Consequently, many 
methods exist and have been applied to ecology to account 
for nonstationarity in the statistical models we use to for-
mally test research hypotheses and make predictions about 
ecological phenomena. These models will never fully represent 
the complexity of ecological systems, but careful consider-
ation of how and why processes vary across space or time 
is an important step toward improving ecological research 
and its application to solving real-world challenges.

Figure 4. Models of temperature effects on tree growth that do not account for temporal 
nonstationarity in mean ring width at an individual level (“Temp Only”) show (a) clear tem-
poral trend in model residuals and (b) strong influence of the model-estimated partial effects 
of temperature on relativized growth. Addition of a smoothed year effect (“Temp + Time”) 
not only improves model residuals, as can be seen in (a), but also reduces the estimated 
sensitivity of relativized tree growth to temperature, as can be seen in (b).

(a) (b)
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