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Ecological research increasingly considers integrative relationships among phenomena at broad spatial and temporal domains.
However, such large-scale inferences are commonly confounded by changing properties in the processes that govern phenomena
(termed nonstationarity), which can violate assumptions underlying standard analytical methods. Changing conditions are funda-
mental and pervasive features in ecology, but their influence on ecological inference and prediction increases with larger spatial
and temporal domains for a host of factors. Fortunately, tools for identifying and accommodating potentially confounding spatial
or temporal trends are available, and new methods are being rapidly developed. Here, we provide guidance for gaining a better
understanding of nonstationarity, its causes, and how it can be addressed. Acknowledging and addressing non-constant trends in
ecological patterns and processes is key to conducting large-scale research and effectively translating findings to local policies and
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he science of ecology has evolved from observing and
describing localized phenomena into a discipline that
seeks to disentangle the myriad of interconnected mechanisms
that are consistent across ecosystems (Heffernan et al. 2014;
McCallen et al. 2019). Experiments and studies are often care-

In a nutshell:

o Ecological systems are under constant change and fre-
quently exhibit spatially and temporally varying trends,
which can cause substantial challenges for analysis and
application of ecological data

o Most biological systems display potentially confounding
spatial or temporal trends (nonstationarity) at some scale,
presenting a key challenge for macrosystems research

o Accounting for nonstationarity in ecological processes can
improve both inference and prediction

o Ecological research needs to accommodate spatial and
temporal variability in ecological patterns and processes
to be better translated into actionable information for
stakeholders
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fully constructed to minimize confounding factors and
describe constant — also termed stationary — ecological pro-
cesses and phenomena over localized study domains, which
are often purposefully limited in both time and space (Symstad
et al. 2003). As ecology increasingly operates at broad spatio-
temporal scales in macrosystems biology, it has become appar-
ent that simply scaling-up processes observed at localized sites
is insufficient for describing a new wave of fundamental and
emergent processes (Heffernan et al. 2014; Soranno et al.
2014). Describing ecological phenomena, patterns, and causal
processes relies on diverse arrays of models (eg conceptual,
statistical, process-based) that simplify the complex realities of
ecological systems and scale processes across space and time.
Although it is understood that use of these models will always
involve some level of undescribed variability or model uncer-
tainty, they provide opportunities for researchers to isolate
individual ecosystem components to test hypotheses at large
spatiotemporal scales (Cressie et al. 2009).

As ecological research increasingly focuses on describing
relationships or making predictions at large scales, across
scales, or under novel conditions, the challenges of accom-
modating environmental and ecological heterogeneity often
become more difficult (Collins et al. 2018; Dietze et al. 2018;
Saunders et al. 2019). When the effects of factors on an
ecological process differ across space and/or time, the prop-
erties of the variable of interest can also change - a phe-
nomenon called nonstationarity (Figure 1; Schabenberger and
Gotway 2005; Banerjee et al. 2014). Nonstationarity in this
context is a case where conclusions drawn from a single
location or point in time are typically insufficient for explain-
ing large-scale patterns because they only provide glimpses
into broad ecological processes that occur over a wider range
of conditions (Soranno et al. 2014). Nonstationarity, both
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in terms of properties of ecological processes and how those
processes are represented in statistical models or analyses,
has implications not only for how ecological systems are
studied, but also for subsequent inferences and predictions
(Miller and Hanham 2011).

Acknowledging nonstationarity in ecological processes is
key to bridging large-scale research to local policies and prac-
tices. Accommodating spatial and temporal variability in the
factors and ecological processes that determine habitat suitabil-
ity in species distribution modeling has been a long-standing
challenge for both the research and conservation communities
(eg Osborne et al. 2007; Thuiller et al. 2008). In restoration, the
use of historical reference states as targets is complex due to
temporal changes in conditions, such as climate and land-cover
patterns (Swetnam et al. 1999; Higgs et al. 2014). The use of
specific management practices (eg fire) is known to have mixed
results among locations due to spatial variability in site and
environmental conditions (McEwan et al. 2011). The rise of
macrosystems biology via “big data’, new technologies in fields
like remote sensing, and advances in data integration have led
to novel discoveries in global-scale and emergent phenomena
that are not possible from smaller scale studies based on a few
sites or short temporal extent alone (Zipkin et al. 2021).
Translating such advances into reliable and actionable informa-
tion for practitioners and policy makers requires that spatial
and temporal variability in ecological patterns and processes be
accounted for in both inference and prediction (Rodo et al.
2002; Gouveia et al. 2013).

@ Nonstationarity as a property of ecological systems

Assuming that an ecological system is stationary is akin to
viewing a system as being in equilibrium, in that both states
are often highly dependent on the scale and/or the question
being posed. For example, the landscape mosaic concept
from geography postulates that a landscape may have con-
sistent properties such as median age or composition through
time when viewed at a coarse scale, but this pattern is main-
tained by periodic disturbances with localized sites undergoing
constant change (Turner 2005). Conversely, genetic change
leading to adaptation or speciation is widely observed, but
only over multiple generations, and therefore stationary pop-
ulation genetics may be a valid assumption for research on
finer scales (Jost et al. 2018). Arguments have been made
that all systems are nonstationary at some scale, and that
scale often corresponds with macrosystems research that
spans broad spatial and temporal scales (Heffernan et al.
2014; Wolkovich et al. 2014; Collins et al. 2018).

Change in the properties of ecological systems (ie non-
stationarity) can arise from multiple sources, including var-
iation in underlying environmental conditions (eg soils,
topography, climate) or as a result of abrupt events (eg
disturbance) (Figure 2). These and other causes of nonsta-
tionarity can result in spatial or temporal differences in
properties like the mean or variance of ecosystem states or
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Figure 1. (a) A stationary variable shows similar trends over the entire
spatial (left column) or temporal (right column) domain. (b) Departures
from stationarity can be due to a changing mean, resulting in first-order
nonstationarity, or where the covariance between any two points is not a
function of distance but rather an observed or unobserved variable. (c) The
dashed vertical lines partition the domains such that the variance is differ-
ent on either side, exhibiting second-order nonstationarity. Color corre-
sponds to spatial surface and time-series (hypothetical) values from a
synthetic dataset. Dashed vertical lines in (b) and (c) delineate a boundary
where the data-generating process changes characteristics.

traits (Figure 1). Nonstationary properties of ecological pro-
cesses frequently result from multiple, interacting factors
that vary across space or time (Schmidt et al. 2014). The
relationships among these factors are complex and often
unknown. Nonstationarity is not unique to macrosystems
research, but working at large scales increases the likelihood
that the ecological processes of interest may vary within
the spatial or temporal study domain, potentially leading
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Figure 2. Transitions in space and time can lead to nonstationarity in ecological data. (a) Sharp transitions in topography, such as those in mountainous

areas, or (b) disturbance events, such as hurricanes, can induce abrupt shifts in means and variances like those depicted here. However, most nonstation-
ary processes in ecology are less obvious and are the product of environmental gradients or multiple interacting factors, and therefore require more

sophisticated modeling approaches.

to complications for cross-scale inference and prediction
(Cornulier and Bretagnolle 2006; Finley 2011; Miller and
Hanham 2011).

Spatial or temporal variability of ecological factors in a data-
set does not necessarily qualify as nonstationarity and is often
a strength rather than an intrinsic obstacle for describing eco-
logical relationships that underlie an observed phenomenon.
For example, prediction of species distributions typically relies
on observations of species occurrence or abundance over a
wide range of climatic conditions to describe potential suitable
habitat (WebPanel 1). In this instance, spatial gradients in a
factor like mean annual temperature are not inherently prob-
lematic if they have a consistent relationship with the observed
response of abundance. Predictions and inference become
more complicated if the spatial or temporal relationships
between the predictor variables and the observed response are
not constant. For example, if habitat characteristics or local
adaptations lead a population to have unique relationships
with a key environmental factor, local abundance estimates
may be inaccurate unless spatial nonstationarity is taken into
account (WebPanel 1). In turn, accurate distribution and abun-
dance estimates are important for identifying conservation
priorities and allocation of financial and human resources (Jetz
et al. 2008; Johnston et al. 2015).

@ When is nonstationarity important for research and
application?

As with other scientific disciplines, ecological research is
tasked with making new discoveries. Doing so often requires
reliance on carefully constructed statistical models, which
are simplifications of reality, to test hypotheses that explain
observed phenomena across space and time. Because it is
not possible to measure or fully quantify all of the causal
processes that generate an observed phenomenon, there will

always be some level of undescribed variability or model
uncertainty. In cases where nonstationarity — and not just
general uncertainty - is a consideration, conclusions drawn
from a single location or point in time are insufficient for
explaining large-scale patterns because they are based on
only a subset of the conditions over which broad ecological
processes occur (Symstad et al. 2003; Soranno et al. 2014).
Most relationships in ecological research are not fully
understood, and therefore determining whether consideration
of nonstationarity in study design and analysis has improved
causal inference is difficult, particularly when results contra-
dict those of past studies. However, studies using simulated
data, where the true data-generating process is known, have
demonstrated that failure to take into account spatial heteroge-
neity through additional processes or random effects can lead
to results that contradict reality (Dixon Hamil et al. 2016).
Analyses using methods that account for spatial nonstationar-
ity have been used to challenge past research that has
wide-ranging policy implications. For example, accounting for
spatial nonstationarity in analyses of tree cover in Philadelphia,
Pennsylvania, indicated that relationships between tree cover
and demography are more complex than previously portrayed
(Locke et al. 2016). Accounting for the complex and spatially
nonstationary relationships between demography and tree
cover can lead to more effective urban planning policies.
Failure to account for nonstationarity in models of ecologi-
cal processes can cause agents of change to be misattributed to
other, unrelated factors, resulting in flawed inference or predic-
tion. The challenge of accommodating nonstationarity for
ecological inference is common in many ecological fields, and
particularly those focused on identifying drivers of change in
systems undergoing multiple alterations (Wolkovich et al.
2014). For example, tree-ring-based studies that investigate the
effects of 20th-century climate change on tree growth must
often contend not only with a nonstationary climate, but also

Front Ecol Environ doi:10.1002/fee.2298

JD Crespo



Nonstationarity in ecology

changes in precipitation, nitrogen deposition, and disturbance
dynamics (Figure 3; McEwan et al. 2011; Wolkovich et al.
2014). These additional effects do not necessarily need to be
explicitly included in a model focused on the effects of temper-
ature, but accounting for temporal trends in individual growth
rates through a priori detrending or a single additional covari-
ate improves stationarity of estimated effects and reduces the
inferred effect of temperature on tree growth (Figure 4;
WebPanel 2). Consequently, detrending or otherwise accom-
modating age- or size-related growth trends in tree-ring width
is a fundamental aspect of dendrochronological research for
both inference and prediction (Peters et al. 2015). However,
partitioning the partial effects and attributing change to a sin-
gle factor or variable is challenging when nonstationarity is
present, especially in multiple, collinear predictors. These
covarying trends and complex interactions in both ecological
processes and statistical models complicate identifying the
“true” effects of predictors on a response (WebPanel 2).

@ Addressing nonstationarity in models and analyses

Nonstationarity is a pervasive and persistent challenge for
ecological research and its application to solving real-world
problems. Although there is no simple, universal approach for
identifying and addressing spatial or temporal nonstationarity
in ecology, approaches to identifying and addressing nonsta-
tionarity do exist. Carefully considering the objective or hypoth-
esis connecting measured factors and observed phenomena is
the first and most important step in any analytical work. In
addition to determining what the key predictors and response
variables are, the research or application objective determines
what steps are most appropriate for addressing any evidence
of nonstationarity that arise (Figure 5).

From a technical perspective, nonstationarity is defined as
differences in the statistical characteristics (eg mean, variance,
covariance) of a variable, or in statistical relationships across
space or time (Figure 1; Schabenberger and Gotway 2005;
Banerjee et al. 2014). Changes in a variable’s mean are referred
to as first-order and are often relatively easy to detect and
address through methods described below (Figure 1b).
Changes in variance and covariance are second-order and may
be more challenging to diagnose, requiring collaboration with
statistical experts (Figure 1c). When discussing nonstationar-
ity statistically, we often start with the assumption that ecolog-
ical variables are regulated by highly complex and largely
unobservable mechanisms (“data-generating processes”) that
will never be fully represented in analytical models. Various
approaches for addressing nonstationarity in statistical analy-
sis exist, but many approaches are beyond what most ecologists
are traditionally exposed to during their academic training.

Diagnosing nonstationarity

The first step in designing a model that can accommodate
nonstationarity is to identify the spatial and temporal scales
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Figure 3. Changes in the mean and variability in the width of annual tree
rings, such as those that can arise abruptly from disturbances, are easily
observable examples of temporal nonstationarity. Accounting for these pat-
terns in analyses is essential for accurate inference of other ecological pro-
cesses (eg temperature or precipitation effects on growth; WebPanel 2).

of the data and desired inference, as well as the factors or
processes that are likely to be of greatest importance.
Following that, exploratory data analysis can help determine
if modeling efforts that explicitly accommodate nonstation-
arity are warranted (Figure 5). Visual inspection of raw
data and model residuals is often the best starting point
for identifying nonstationarity in initial statistical model
development (eg Figure 1; Figure 4a). If predictor variables,
observed responses, and the distribution of residuals from
a model are evenly distributed across the study’s spatial
and/or temporal domain, then stationarity can be assumed
and many common analytical approaches, such as simple
linear regression, are appropriate. However, if the statistical
properties (eg mean and variance) among model residuals
change across the domain, then the initial model may fail
to adequately capture the ecological processes generating
the response variable. Once nonstationarity is detected, sev-
eral methods are available and widely used in ecology for
addressing spatial or temporal trends affecting ecological
data. In general, approaches can be sorted into two cate-
gories (Figure 5): (1) those that describe the source of non-
stationarity by modifying the inferential scope of the model
so that ecological relationships can vary across a study
domain, or (2) those that accommodate nonstationarity
through latent or “hidden” processes that retain the initial
inferential model structure (eg fixed effects) but add addi-
tional complexity that accounts for previously undescribed
spatial or temporal trends.

Describing nonstationarity

The appearance of nonstationarity in ecological models or
analyses indicates additional factors or ecological processes
that strongly influence the observed phenomenon of interest.
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accommodating spatial or temporal variability that
is becoming increasingly standard in ecological
analyses, particularly in first-order nonstationarity
with differences in mean effects among observa-
tional units, is the use of hierarchical random
effects (Cressie et al. 2009). Other methods, such
as data assimilation techniques, where local states
or parameters are used to probabilistically update
model predictions or parameters at specified spa-
tiotemporal intervals, can improve predictions in
nonstationary environments (Luo et al. 2011; Niu
et al. 2014). For example, the complex relation-
ships among population dynamics, climate, and
oceanic circulation make jellyfish outbreaks dif-
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Figure 4. Models of temperature effects on tree growth that do not account for temporal
nonstationarity in mean ring width at an individual level (“Temp Only”) show (a) clear tem-
poral trend in model residuals and (b) strong influence of the model-estimated partial effects
of temperature on relativized growth. Addition of a smoothed year effect (“Temp + Time”)
not only improves model residuals, as can be seen in (a), but also reduces the estimated

sensitivity of relativized tree growth to temperature, as can be seen in (b).

imagery, social media reports) to update predic-
tions and produce more accurate forecasts in (for
this example) the Gulf of Maine when the drivers
of spatiotemporal dynamics of outbreaks and
subsequent public health risks are poorly con-
strained (Record et al. 2018). Formal forecasting
techniques that assimilate site-specific parameters

In many cases, particularly in theoretical or research ecology,
this may be the main objective of the study; in such instances,
the hypothesis and model structure may need to be revisited
and additional covariates included to better represent the
phenomenon-generating ecological processes (Figure 5; eg
Schmidt et al. 2014; Abbott et al. 2017). In other cases,
there may not be enough information or data available to
add additional factors to a model to explain the spatial or
temporal variability in ecological processes, and therefore
the model structure may need to be altered so that processes
vary spatially, which may prompt new hypotheses and future
research into the sources of nonstationarity. One common
approach to this is to first divide the analytical domain
into overlapping subregions where stationarity can be
assumed, and then the multiple model parameters and pro-
cesses can be interpolated among those subregions (eg geo-
graphically weighted regression; WebPanel 1; Brunsdon et
al. 1996; Mellin et al. 2014). However, more robust methods
exist that allow estimation of the changing relationships
between response and predictor variables across spatiotem-
poral domains using a single modeling approach (eg spatially
varying coefficient models; Finley 2011; Jarzyna et al. 2014;
Risser and Turek 2019).

Accommodating nonstationarity

Although ecologists often seek to explicitly describe the reasons
ecological processes vary over space and time, occasionally the
objective of a study needs to merely accommodate nonsta-
tionarity to permit valid predictions and inferences about specific
processes or ecological behaviors (Figure 5). One method for

and observations have also been proposed as a
useful approach for improving restoration decisions in the face
of a changing (nonstationary) climate (Hardegree et al. 2018).
Critical evaluation of the spatiotemporal trends in estimated
parameters or assimilation weights can provide critical insights
into the key ecological processes generating statistical nonsta-
tionarity to be the focus of future inference-focused efforts
(WebPanel 1).

@ Conclusions

Explaining patterns and processes across space and time is
a fundamental aspect of ecological research and is essential
for providing information to guide natural resource and
policy decision making. The development of new technologies
and data streams that facilitate large- and cross-scale research
on ecological phenomena has increased our ability to detect,
study, and account for how relationships among factors and
processes vary across spatiotemporal domains (Heffernan et
al. 2014; Soranno et al. 2014). The role of nonstationarity
and its impacts on ecological inference and prediction is
often dependent on the scale and scope of research hypoth-
eses or project objectives (Figure 5). Consequently, many
methods exist and have been applied to ecology to account
for nonstationarity in the statistical models we use to for-
mally test research hypotheses and make predictions about
ecological phenomena. These models will never fully represent
the complexity of ecological systems, but careful consider-
ation of how and why processes vary across space or time
is an important step toward improving ecological research
and its application to solving real-world challenges.
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Figure 5. Conceptual workflow for detecting and addressing nonstation-
arity when building ecological models. First, a formal model describing the
relationships between measured predictors and observed responses is
developed; second, diagnosing spatial and/or temporal trends in model
residuals can help determine whether nonstationarity needs to be formally
addressed in the model. Approaches for addressing nonstationarity
depend on the ecological hypothesis or objective and may require modify-
ing model structure to include additional covariates or latent processes
that implicitly account for non-focal spatiotemporal trends. Once statistical
assumptions of stationarity have been met, robust inference and predic-
tions can be made using the developed model.
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