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Abstract

The current crisis in global natural resource management
makes it imperative that we better leverage the vast data
sources associated with taxonomic entities (such as recog-
nized species of plants and animals), which are known col-
lectively as biodiversity data. However, these data pose con-
siderable challenges for artificial intelligence: while growing
rapidly in volume, they remain highly incomplete for many
taxonomic groups, often show conflicting signals from dif-
ferent sources, and are multi-modal and therefore constantly
changing in structure. In this paper, we motivate, describe,
and present a novel workflow combining machine learning
and automated reasoning, to discover patterns of taxonomic
identity and change – i.e. “taxonomic intelligence” – leading
to scalable and broadly impactful AI solutions within the bio-
data realm.

Introduction
Many of the challenges society faces are being addressed
through interdisciplinary collaboration supported by inter-
operable information resources. A common expectation is
that scientists will be able to agree on a shared, stable vo-
cabulary, but consensus classifications are frequently absent
in the biodiversity domain and in fact may not be neces-
sary (Sterner, Witteveen, and Franz 2020). Geographic dis-
tribution, genetic, and phenotypic traits, as well as ecologi-
cal interactions of biological entities are collectively known
as biodiversity data. The recognized species names (i.e., tax-
onomic names) as well as the associated criteria that circum-
scribe them (i.e., taxonomic concepts) are the standard meth-
ods of classifying these data (Franz and Peet 2009). Biodi-
versity data are integral components for addressing many
contemporary challenges society faces, including: natural
resource management, climate change modeling, biodiver-
sity conservation, food security measures, and international
treaty enforcement. Unfortunately, there is widespread and
persistent variation in the ways that scientists represent bio-
diversity data, e.g. using hierarchical taxonomies, phyloge-
nies reconstructing evolutionary history, and computer on-
tologies of terms and their relationships (Franz and Sterner
2018; Vaidya, LePage, and Guralnick 2018; Franz, Musher
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Figure 1: Biodiversity AI “Landscape”

et al. 2019; Hardisty, Michener et al. 2019; Jeliazkov, Mi-
jatovic et al. 2020). This variation poses major obstacles to
robust inter-operability across an increasingly decentralized
(Blagoderov et al. 2012) ecosystem of primary biodiversity
data sources.

Realizing the societal value of biodiversity data science
will require data integration techniques that are aware of the
context sensitive variations associated with conflicting tax-
onomic concepts. Accurate and scalable data intelligence –
logically relating data classification terms to their intended
yet often implicit meanings – is essential to overcoming
these data integration challenges. Artificial intelligence (AI)
has an essential role to play in generating the knowledge
needed for generating and translating information across
conflicting biodiversity data classifications.

Figure 1 illustrates the many roles that AI must play in
this domain.

With biodiversity data rapidly expanding in volume, so
too is the scope and frequency of its use in research (Nelson
and Ellis 2019) causing increasing demand for aggregated,
well integrated, inter-operable biodiversity data. In meeting
this demand, biodiversity science is ripe for an AI-fueled
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transformation.
We address the role of AI methods in leveraging the vast

bodies of data that describe historically or currently recog-
nized species (i.e., taxonomic concepts of those species).
These include data from “citizen science repositories” such
as iNaturalist 1, where enthusiast communities upload im-
ages and notes of observations “in the field”. Contem-
porary advances in machine learning, particularly in the
field of deep neural networks, have recently demonstrated
great promise in an important single aspect of the general
problem of leveraging these data, i.e., the identification of
already-recognized species as a supervised learning prob-
lem, from image data or sound recordings (Wäldchen and
Mäder 2018a).

These advancements have not been leveraged to bear upon
the broader and impactful problems of biodiversity data ag-
gregation: the assimilation of taxonomic change, monitor-
ing of habitat change, and extinction risk determination –
to name just a few – despite the immense and urgent need
to do so. Identifying only species concepts presently recog-
nized by a static authority is simply not enough, and falls
short of addressing the broader data aggregation challenge
for biodiversity data science; indeed, it does not even address
the problem of taxonomic translation across evolving per-
spectives. The pressing problem is how recent AI advances
may be harnessed for the good of the planet and the (esti-
mated) 3–10 million species that inhabit it, the vast majority
of which are yet unidentified and hence not formally named
and described.

Novel Contributions & Outline
In this paper, we introduce and analyze an inversion of
the well-studied species identification problem. The status
quo use of AI in biodiversity research presupposes a well-
specified, static taxonomy to which certain members are as-
signed (Wäldchen and Mäder 2018b). However, advance-
ments in taxonomy and systematics continuously redefine
the criteria by which organisms are classified, with the de-
gree to which those criteria are adopted often varying over
geography. Therefore, the classes used in this domain are
neither stable over time nor universally applied across ge-
ographic regions (Franz, Pier et al. 2016; Remsen 2016;
Vaidya, LePage, and Guralnick 2018). The novel, inverse
problem we introduce is thus to leverage data classified ac-
cording to a particular taxonomic theory to learn its char-
acteristics and its often tacit alignments to other taxonomic
theories of the same set of species. Hence, instead of falsely
taking classification as static background, we develop an AI
algorithm to infer and integrate evolving and often conflict-
ing taxonomic perspectives.

The novel contributions of this paper are: (1) the iden-
tification of a challenge, i.e. learning from biodiversity data
and reasoning over existing biodiversity knowledge, to align
biological taxonomies: this problem has not at all been con-
sidered previously in the AI literature, and, as we describe in
Section , has immense potential for social impact; (2) the de-
velopment of a novel algorithm for this challenge, which ex-

1Available at https://www.inaturalist.org. Accessed Sep 1 2020.

hibits desirable performance on a representative dataset; and
(3) the development of publicly available and open-sourced
software to address the challenge.

Considered together, these contributions constitute an im-
portant advance, addressing multiple calls for an integra-
tive technological approach that amplifies our best biodiver-
sity knowledge to inform policy actions on global societal
problems, such as tropical deforestation (Draper et al. 2020)
and illegal international wildlife trade (Minin et al. 2019).
Our approach is also novel from the perspective of ontology
alignment, by combining a deep learning method for clas-
sifying individual data records, with automated reasoning,
in a closed, iterative inference procedure (Angermann and
Ramzan 2017).

We introduce publicly available herbarium plant images
as a case-study, in Section . In Section , we describe a novel
algorithm to discover articulations between two or more tax-
onomies. A (novel) architecture is proposed; it is summa-
rized in Figure 3. In Section , we add a further layer of gener-
alization, showing how these learnt insights, now leveraging
existing expert knowledge about the relationships between
different taxonomical theories, may be used to study, assim-
ilate, and aggregate these different theories, using automated
reasoning. In Section , we describe the broad potential social
impact of this work. Section concludes with a discussion of
limitations, and outlook. A brief ethics statement follows the
references, in Section .

We focus in particular on taxonomic names and their
meanings – or, simply – taxonomic intelligence (Franz and
Peet 2009; Peterson, Soberón, and Krishtalka 2015; Franz,
Pier et al. 2016), for the following reasons: taxonomic
names provide a universal currency for exchanging informa-
tion about empirically inferred, natural biological entities,
such as species or larger phylogenetic groupings (Müller-
Wille and Charmantier 2012). Our focus is therefore on
the foundational step of moving from primary biodiver-
sity data sources that are typically generated under multi-
ple systematic classification schemes, to biodiversity knowl-
edge ready for modeling applications (see bottom left of Fig-
ure 1). Taxonomic names are invariably reused across mul-
tiple revisions of biological classifications, where stability
and change in name application (nomenclature) and mean-
ing (taxonomy) follow semi-independent rules and domains
of practice, leading to an increasingly complex network of
many-to-many relationships between name usages and in-
tended meanings. Although informative to some degree, the
names of taxonomic groups alone are an insufficient ba-
sis for fit-for-purpose data aggregation to standards needed
(e.g.) for conservation biology and precision risk manage-
ment (Mesibov 2013; Guala 2016; Franz and Sterner 2018;
Mesibov 2018). In traditional, smaller-scale biology, reli-
able resolution of this built-in uncertainty of name usages
has been the burden of individual human agents (Sterner and
Franz 2017).

A Note on the Supplementary Material: Code,
Software, Experiments
We have made extensive resources available to supplement
this paper. The web application described in Section is

14912



provided, with complete instructions for use, and complete
open-sourced code, which may be considered a snapshot of
the state of the application at the time of submission. All
data is publicly available. We note that the web application
is immediately available for use. The Supplementary Mate-
rial also includes some additional experiments described at
the end of the next section, which were omitted here for lack
of space.

Using Herbarium Image Data

In the particular domain of plant diversity, it has been esti-
mated that more than 50% of unknown species are already
represented in herbarium collections (Tan et al. 2019). In
this context, we consider the Herbarium Challenge Dataset
(Tan et al. 2019), which consists of “46, 469 digitally imaged
herbarium sheets representing 683 species from the flower-
ing plant family Melastomataceae (commonly called melas-
tomes)”, from the New York Botanical Garden Herbarium
Collections. In this dataset, some 63 genera and 683 species
are represented, constituting a subset of the entire family’s
diversity, according to MELnames2. The dataset presents
particular challenges for computer vision, including large
intra-class variation relative to the small inter-class varia-
tion, and the necessity for fine-grained visual recognition.
The locally variable process of generating herbarium sheets
in collections also strongly alters the physical-visual prop-
erties of the imaged specimen, making it difficult to extract
taxonomic signals of the same species from those caused by
specific curatorial preparation practices.

The aforementioned difficulties originate precisely from
the nature of taxonomic theorizing; biologists will often sin-
gle out fine-grained and subtle visual characteristics, and
propose major taxonomic variations on that basis, despite
the thus-identified taxonomic concept referring to superfi-
cially disparate looking organisms, and despite the presence
of superficially highly similar organisms that nevertheless
pertain to distinct, non-overlapping taxonomic concepts.

Further, the Herbarium Challenge Dataset was intended
for known-species identification – with the winning submis-
sion in the associated Kaggle competition achieving 89.8%
classification accuracy, employing an ensemble of 5 neu-
ral network models, and state-of-the-art optimization tech-
niques. However, the particular taxonomic theory to which
the provided classification labels conform, is not evident
from the data, or even mentioned in the paper. We were in-
formed, through personal communications with the authors,
that the taxonomy in fact corresponds roughly to that found
in MELnames.

Some explorations of the feasibility of deep representa-
tion learning and feature clustering on herbarium data were
performed using the Herbarium Challenge Dataset. For rea-
sons of space, we exclude these experiments here, but de-
scribe them in the Supplementary Material.

2Available from http://www.melastomataceae.net/MELnames/.
Accessed Sep 1 2020.

Figure 2: The Iris taxonomies Tax1 and Tax2.G refers to a
higher level taxonomic concept that encompasses Tax1.V C
and Tax1.V G. In this case, it is the Iris series Laevigatae, a
subgroup comprising several species.

Taxonomic Articulation Discovery
Please note that further technical details on the content of
this section may be found in the Technical Appendix.

We consider three recognized species in the plant genus
Iris Linnaeus; viz. Iris setosa (henceforth: S), Iris versicolor
(henceforth: VC), and Iris virginica (henceforth: VG). These
species are well-known in the AI community, as the con-
stituents of Ronald Fisher’s Iris dataset. Herbarium speci-
men images were obtained by querying the API of iDig-
Bio3. Pre-processing consisted of converting the images to
greyscale, and padding with black pixels on the right and
bottom to obtain a square image of dimensions 768 by 768
in pixels. Before training, they were shuffled with a random
seed. Standard data augmentation – horizontal and vertical
flipping, rotation, and inward zooming – was performed dur-
ing training.

We considered two illustrative taxonomies Tax1 and
Tax2, with the structures shown in Figure 2. This is de-
signed to simulate the important notion of taxonomic split-
ting and merging, known to be of critical importance in con-
servation science and policy (Jacobs and Baker 2018; God-
fray, Knapp, and Mace 2004). Here, the species concepts
V C and V G in Tax1 are being merged into a single species
concept M in Tax2. Vice versa, this may be considered a
taxonomic split, going from Tax2 to Tax1.

We deployed a deep convolutional auto-encoder (CNN-
AE), consisting of 8 strided convolutional layers each for
encoding and decoding the embedded representation, and a

3Available from https://www.idigbio.org. Accessed Sep 1 2020.
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dense feature embedding layer consisting of only 10 fea-
tures [a, .., j]. This was done in order to “force” the net-
work to learn a low-dimensional encoding that was hypoth-
esized to be a better representation of taxonomically rele-
vant features, following the intuition of (Guo et al. 2017).
The model consisted of approximately 2million parameters,
and was trained end-to-end on the training images for the
five species concepts, i.e. Tax1.S, Tax1.V C, Tax1.V G,
Tax2.S, and Tax2.M . Training was done with the adam
optimizer (Kingma and Ba 2014) and standard mean square
error loss, for 10 epochs on an NVIDIA K80 GPU. Hyper-
parameters, including strides, size of convolutions, number
of layers, number of convolution filters, were tuned using
standard iterative methods, all using a 70 − 15 − 15 train-
validation-test splitting.

In the absence of any provided, underlying taxonomic the-
ory that would serve to annotate, interpret, and weigh the
learnt features, our ability to derive a plausible taxonomic in-
terpretation by inducing any hierarchical representation akin
to a taxonomy is commensurably limited. This general prob-
lem has been studied as conceptual clustering, and repre-
sents a known, highly challenging problem. Instead, while
we choose not to “optimize” the learnt features based on ei-
ther given taxonomic theory, we may attempt to leverage this
theory to learn about differential taxonomic observations or
the weighing practices of the respective authors. This con-
stitutes supervised learning, here not intended to identify
known species within a given taxonomic context, but instead
aimed at shedding light upon the nature of the taxonomic
perspective itself.

An authored practice constitutes a method for selecting
and weighing criteria on distinct interpreted features such as
life-form, leaf shape, floral and fruit morphology, etc. This is
reflected in the formation of a decision tree over the selected
morphological features. Every known morphological feature
may be defined over a set of learnt features; e.g. for a learnt
feature vector X and known taxonomic feature f , there is
some unknown function σ such that:

f = σ(X[i], ..., X [j]) (1)
We used skope-rules4 to obtain decision rules for each

species class, over the learnt features. This uses a bagging
estimator of decision trees along with semantic rule dedu-
plication, and is a trade-off between the interpretability of
a decision tree and the predictive power of a random forest.
We then used skope-rules to induce decision rules describing
the same classes over the morphological features of Fisher’s
Iris dataset. Since for each taxonomic concept, the decision
rule over morphological features uniquely identifies the con-
cept, we have f(A,B,C, ...) ↔ T.X , where T is a taxon-
omy andX is a species concept. Making the assumption that
the species concept is uniquely identified by its biodiversity
data signal, we have T.X ↔ g([a, .., j]), where x, y, ... are
the learnt features. Thus, we have a bi-implication between
the rules over learnt features, and the rules over morpholog-
ical features. We induced such decision rules to classify the

4Available from https://github.com/scikit-learn-contrib/skope-
rules. Accessed Sep 1 2020.

Figure 3: Architecture

images, as opposed to deploying an output layer of the neu-
ral network, in order that the resulting rules may be logically
relatable in this way to the human-understandable morpho-
logical features. This constitutes a “grey box” model which
may be solved for the values of morphological features, re-
sulting in an entirely explainable/interpretable conclusion in
terms of logical relationships, as described below.

We thus obtained a system of 5 bi-implications of linear
real arithmetic (LRA) formulae: one for each of Tax1.S,
Tax1.V C, Tax1.V G, Tax2.S, and Tax2.M . These were
solved using the Microsoft Z3 SMT solver5, which uses a
dual-simplex solver for this category of problems. For each
image in the dataset, the values of the morphological fea-
tures were obtained.

The RCC-5 (Cohn and Renz 2008) qualitative spatial rea-
soning (QSR) calculus consists of 5 relationships: equal-
ity (=), proper inclusion (<), inverse proper inclusion (>),
overlap (><), and disjointness (!). Interpreting these rela-
tionships over sets (of images, here) instead of over space,
we assign the relationship between any two species concepts
from different taxonomies to one of these 5, depending on
how the specimen images are assigned to each concept. Each
such relationship is called a taxonomic articulation.

The entire process is summarized in Algorithm 1. Adjust-
ing values of the thresholds T1 and T2, we obtained the
RCC-5 articulations Tax1.V C < Tax2.M , Tax1.V G <
Tax2.M , and Tax1.S = Tax2.S, as expected, for our two
taxonomies Tax1 and Tax2 i.e. we have learnt that Tax2
is characterized by the “merging” of the taxonomic concepts
V C and V G into the concept M . We cannot compare this
result with other AI approaches to aligning taxonomies us-
ing learning from biodiversity data, since none exist in the
literature, to the best of our knowledge.

5Available from https://github.com/Z3Prover/z3/wiki. Ac-
cessed Sep 1 2020.

14914



Algorithm 1: Articulation Discovery
Result: RCC − 5(Tax1.X , Tax2.Y )
Given: Taxonomies Tax1, Tax2, species concepts
Tax1.X , Tax2.Y , images, annotations [A,B, ..];
foreach taxonomy T do

train CNN-AE for each species concept of T ,
obtaining set of features FS ;
foreach species concept X in T do

induce R1: decision rule for X over F ;
compute R2: decision rule for X over
[A,B, ..];
assign SX : R1 ↔ R2

foreach image with learnt feature set F do
Solve system of LRA equivalences S with F ,
obtaining values of [A,B, ..];
Using R1, classify image in each taxonomy.

switch# of images co-classified in Tax1.X and
Tax2.Y ; thresholds T1%, T2%, T3% do

case ≥ T1% do
return =

case ≥ T2% in Tax1.X also in Tax2.Y or ≥
T2% in Tax2.Y also in Tax1.X do

return < or > resp.
case ≥ T3% ≤ T1% do

return ><
case ≤ T3% do

return !

Reasoning with Taxonomic Articulations
In addition to discovering taxonomic articulations, it is de-
sirable to leverage the considerable multi-taxonomy integra-
tion knowledge explicit or implied in primary biodiversity
data sources. This takes the form of a human–machine col-
laboration, with deductive inference from a conjunction of
human and machine-learnt knowledge, that informs both fu-
ture machine learning, and human insight. This is depicted
in the “feedback” arrow in Figure 3.

The key technical distinction is that reasoning over a finite
number of species concept instances – i.e., those for which
data is available – is propositional, whereas reasoning about
general articulations between species concepts necessitates
quantification over all possible instances of that concept.

The challenge of aligningmultiple taxonomic theories us-
ing automated reasoning was formally described by Thau
(Thau and Ludäscher 2007). This conception included prov-
ing that the alignments are logically consistent, or, if incon-
sistent, explaining the (joint) causes for inconsistency, and
inferring implicit relationships – i.e., the set of Maximally
Informative Relations – among all entailed concepts, based
on limited yet explicit prior expert or source input. Thau
(Thau and Ludäscher 2007) deployed the First-Order reso-
lution theorem prover Prover9 and the accompanying model
finder Mace4 (McCune 2005–2010). Related work – e.g.,
the development of theEuler/X system (Chen et al. 2014))
– has both extended the scope of functionality referred to as
taxonomy alignment and significantly increased the scala-

bility of the reasoning process, by using a variety of tech-
niques such as Answer Set Programming (ASP) and Quali-
tative Spatial Reasoning (QSR) The problem may be equiv-
alently formulated as a QSR problem, definable – with the
sole exception of the global constraint of coverage (see later
in this section) – in the RCC-5 calculus.

However, this approach relies fundamentally on taxo-
nomic insights (referred to as articulations) provided by hu-
man experts, which must often be meticulously extracted
from the literature (Franz and Peet 2009; Franz, Pier et al.
2016; Franz, Musher et al. 2019). As we have shown in this
paper, primary biodiversity data sources may be leveraged
to inform and explain such taxonomic decisions, illuminat-
ing the relationship between two (or more) given taxonomic
theories.

It was shown by Thau (Thau and Ludäscher 2007) that
this problem of reasoning over taxonomies can be captured
inMonadic First-Order Logic (MFOL). This logic is able to
represent not only the taxonomies and RCC-5 articulations,
but several taxonomically plausible or necessary global con-
straints: the non-emptiness of taxonomic concepts, sibling-
disjointedness (i.e., the disjointedness of child concepts of
the same taxonomic parent concept), and, coverage, which
denotes the notion that the children denoted by a taxonomic
parent concept are completely covered, or included in, that
parent (which therefore has no further ”extension”). Local,
selective relaxation of each constraint allows modeling of a
wide variety of systematic use cases (e.g., (Franz, Musher
et al. 2019)).

The decidability of MFOL was proven long ago by
Löwenheim (Löwenheim 1915), and implemented in mod-
ern Satisfiability Modulo Theory (SMT) solvers such as Mi-
crosoft Z3, which incorporate a decision procedure, called
Model Based Quantifier Instantiation (MBQI) (Reynolds
et al. 2013), for the effectively propositional class of formu-
lae (i.e., the Bernays–Schönfinkel–Ramsey class) that makes
it possible to encode problems involving constraints over
sets by treating the sets as unary predicates and lifting equal-
ities between sets as formula equivalences. Set constraints
are, in turn, equivalent to MFOL in expressivity (Bachmair,
Ganzinger, and Waldmann 1993). Thus, reasoning over tax-
onomies, as defined by Thau, admits a propositional encod-
ing (Ramachandran and Amir 2005) and may be decided by
an SMT solver.

We have developed a publicly available, open-sourced
web application for aligning taxonomies using Z3, which
follows the algorithm by Thau (Thau and Ludäscher 2007),
but is decidable as described above, as opposed to the semi-
decidability of the original first-order encoding. It also en-
ables an interactive workflow as a form of the human–
machine collaboration noted earlier: the user’s choice of pro-
vided articulations is informed by the deductive reasoning.
Please see the note on Supplementary Materials at the end
of Section .

We employed our software to perform an alignment of
the two Iris taxonomies Tax1 and Tax2 described in Sec-
tion . The resulting visual alignment is shown in Figure 4.
The grey arrows represent the taxonomical hierarchy. The
green lines represent the provided articulations, which were
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Figure 4: Screenshot from our web-based, interactive,
and publicly available tool ATCRL (Automated Taxo-
nomic Concept Reasoner & Learner), aligning the two
Iris taxonomies using the discovered RCC-5 articulations
Tax1.V C < Tax2.M , Tax1.V G< Tax2.M , and Tax1.S
= Tax2.S.

learnt by Algorithm 1. The yellow lines represent the deduc-
tively inferred RCC-5 articulations, which appear in curly
braces. The alignment represents one possible world that
satisfies the set constraints presented to the reasoner; hence,
there is uncertainty in the RCC-5 articulation between sev-
eral concepts, represented by the | symbol. The resultant in-
ferred articulations are exactly as expected, with Tax1.G =
Tax2.M and Tax1.Iris = Tax2.Iris as a model.

The complete process described in this section and the
previous section, is depicted in Figure 3.

Social Impact
Large aggregated biodiversity datasets are becoming im-
portant tools for addressing contemporary social challenges
such as modeling the impacts of climate change (Calinger,
Queenborough, and Curtis 2013; Willis et al. 2017), iden-
tifying medicinal resources from understudied locations
(Souza and Hawkins 2017), documenting invasion trends of
agricultural weeds (Crawford and Hoagland 2009), and food
security initiatives (Ng’uni et al. 2019). Major international
agreements, such as the Convention on Biological Diver-
sity (CBD) and Convention on International Trade in Endan-
gered Species of Wild Fauna and Flora (CITES), also regu-
late the international scientific and commercial exchange of
living and preserved organisms (‘t Sas-Rolfes et al. 2019;
Le Prestre 2017). Wildlife markets in particular have re-
cently been implicated as part of the causal chain linking ex-
isting animal reservoirs for the SARS-CoV-2 virus with its
spillover into humans, leading to the global pandemic out-
break in early 2020 (Huang et al. 2020).

All of these applications to ecosystem services or threats,

law, and policy rely on an integrative approach to informa-
tion about recognized species (boundaries) and their evolu-
tionary relationships. However, it is widely acknowledged
and lamented that human taxonomic expertise is lacking on
the massive scale required to simultaneously address these
demands for robust evidence (Hoagland 1996; Dar et al.
2012; Draper et al. 2020). The proposed architecture in
Figure 2 augments the information and impact provided in
expert-curated datasets to bridge gaps of semantic interop-
erability between alternative classificatory theories and their
efficient application to multi-modal and novel data sources.

In this section, we use the problem of monitoring on-
line illegal trade in wildlife to highlight the future value of
the AI tools for biodiversity data intelligence we have pre-
sented here. Online websites, especially social media plat-
forms such as Facebook, Twitter, and Instagram, have be-
come an increasingly popular place to buy and sell animals
and plants across the planet, and researchers are increasingly
devoting attention to documenting the intensity of illegal
trade in different countries (Siriwat and Nijman 2018; Minin
et al. 2019). Approximately 66-84 million caged birds are
kept annually by 36 million households in Indonesia (Mar-
shall et al. 2020), for example, and illegal exploitation con-
stitutes a major risk for many endangered species (Schef-
fers et al. 2019), including Iris species such as Iris boissieri
(Lı́rio de serra) (Sapir 2016).

Species names provide essential information for buyers
and sellers as well as legal regulations and practices since
prices are known to vary by species based on their prop-
erties, including perceived medicinal properties or cultural
uses (Siriwat and Nijman 2020). However, online posts reg-
ularly use vernacular names to advertise species for sale,
often with an attached image, while legal protections are
typically assigned to published taxonomic names – most
typically at the species rank and in relation to a particu-
lar taxonomic authority. Yet at the global scale, applied na-
tional and international laws represent an obscure, under-
contextualized patchwork of incongruent taxonomic classi-
fications, e.g. for Primates (Svensson et al. 2016). This is
partly a result of how irregularly lists of protected species
are updated to reflect taxonomic revisions and the adoption
of alternative taxonomic authorities for particular groups
(Svensson et al. 2016; Panter andWhite 2020). Across mam-
mals, which include over half of the CITES Appendix I list
of trafficked species, the species-level taxonomy was only
updated once in the past 15 years (Burgin et al. 2018). Mul-
tiple classifications are often in play simultaneously for la-
beling the same organisms and must be related to automate
accurate and salient identification of illegal commercial ac-
tivity for the different legal regimes pertinent to protecting
each species.

Cutting-edge approaches to monitoring online wildlife
trade include: (1) descriptive studies that produce expert-
curated data records annotated to particular taxonomic clas-
sifications; and (2) machine learning methods for reliable
species identification using photographs taken at monitor-
ing locations, e.g. (Minin et al. 2019; Olschofsky and Köhl
2020). By leveraging such monitoring-focused datasets and
publicly available museum or citizen science data, our ap-
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proach has the potential to add the further step of learn-
ing relationships between names and concepts across tax-
onomies, filling an important gap for the detection of ille-
gal trade under a dynamic patchwork of inter-/national legal
regimes (Jacobs and Baker 2018). One benefit of learning
taxonomic alignments is that we gain the ability to reason
about whether an organism is protected under different legal
frameworks in scenarios where it has been identified manu-
ally, with or without image data, and where manual iden-
tification is missing but image (or potentially other) data
sources are available.

The present use case is emblematic of the broader value of
learning and reasoning with taxonomic intelligence to model
the impacts of biodiversity scenarios – as reflected in decen-
tralized data sources – on human lives and well-being. Scal-
able taxonomic intelligence is critical, for example, to en-
abling trustworthy and fit-for-use biodiversity data aggrega-
tion (Sterner, Gilbert, and Franz ”In press”) for applications
such as testing whether certain animal groups pose higher
risks of producing novel zoonotic diseases than expected by
chance (Guy et al. 2019), and for establishing temporal base-
lines for species extinction risks as part of the Red List of
Threatened Species produced by the International Union for
Conservation of Nature (Pacifici et al. 2019).

Conclusions, Limitations, & Outlook
The variety, volume, and velocity of biodiversity data are
rapidly growing, with little chance of stable, global con-
sensus on essential metadata categories. While we have re-
stricted our attention to image data associated with species
observations – in part because of the great interest in ex-
ploiting this data for species identification – we envision
a plethora of data sources, including text, DNA sequences,
and geo-spatial information, being immediately relevant. As
more nations and organizations launch biodiversity moni-
toring projects, coordinating these decentralized efforts will
pose a major challenge that exceeds any foreseeable capac-
ity of humans to address, without assistance from AI.

For example, citizen science platforms such as iNatu-
ralist must regularly update their image-based taxonomic
identification algorithms to reflect changes to adopted stan-
dards for taxonomic classification. Providers of these stan-
dard taxonomies (also known as “taxonomic authorities”),
however, are rarely staffed or funded to provide semanti-
cally annotated versioning information. As a result, biodi-
versity data users must manually articulate relations in or-
der to determine how to update their datasets for retrain-
ing machine learning models for automated image classi-
fication. This manual articulation of logical relations be-
tween alternative classificatory systems represents an impor-
tant but often overlooked dimension of biodiversity knowl-
edge (Sterner and Franz 2017), with significant costs in hu-
man labor, lost opportunities, and downstream performance.

Developing an accurate and scalable AI for taxonomic
intelligence will also be crucial to downstream computa-
tional reasoning for testing the robustness of conservation
decision-making in light of conflicting or uncertain tax-
onomies, which can be in itself sufficient to move a group
of organisms in or out of consideration for legal protection

as an endangered group. Similarly, accurate data aggregation
and the facilitation of alternative classificatory viewpoints is
crucial to closing the feedback loop between primary data
sources and curation work by data users in siloed computing
systems (Franz and Sterner 2018).

Our architecture in Figure 3 is not constrained by one par-
ticular taxonomic theory, and is instead explicitly designed
to inspire a taxonomic intelligence that agglomerates and
aligns different taxonomic theories. It does so by drawing
from both articulations in the literature and vast primary bio-
diversity data sources, constituting what we consider to be
the most promising road-map for a scalable and accurate tax-
onomic intelligence. Inferences drawn from reasoning pro-
cesses may be used to annotate the primary data, forming a
reinforcement loop leveraging both inductive and deductive
reasoning. In this sense reasoning can simplify the learning
task with both deductively-obtainable conclusions and as-
sertions from the literature.

Effective integration of the architectural components will
rely centrally on effective reasoning with uncertainty about
logical articulations within and across taxonomic hierar-
chies, which remains outside the scope of this paper. For
example, in order to update primary biodiversity databases
with new and better aggregated data, it will be important
to employ inferred logical articulations with high certainty.
Aligning taxonomies regularly uncovers new sub-partitions
of the observed dataset that are not recognized in any indi-
vidual taxonomy, but are logically implied when one con-
cept sub-divides or overlaps with another (Vaidya, LePage,
and Guralnick 2018). Automated discovery and characteri-
zation of these novel concepts can serve to add finer-grained
labels to the initial data sources and drive further successes
in taxonomic identification.

Our approach to taxonomic intelligence has the potential
to generalize to other types of data with similar, implicit
but rich, feature sets, such as species occurrence observa-
tions. While a few well-known computer ontologies, e.g. the
Gene Ontology (Consortium 2017), have achieved substan-
tial coverage for explicit and combinatorial concept defini-
tions, many important scientific datasets cannot be straight-
forwardly annotated by a rule-based approach (Bertone et al.
2013). In even fewer cases is it possible to align ontologies
by directly identifying logically equivalent terms based on
their concept definitions. Interesting other domains in a bio-
diversity context include taxonomies for ecological biomes
and modes of land use, such as urban versus rural or wild
habitats.
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and Barrett, C. 2013. Quantifier instantiation techniques for
finite model finding in SMT. In International Conference on
Automated Deduction, 377–391. Springer.
Sapir, Y. 2016. IUCN Red List of Threatened Species: Iris
boissieri.
Scheffers, B. R.; Oliveira, B. F.; Lamb, I.; and Edwards, D. P.
2019. Global wildlife trade across the tree of life. Science
366(6461): 71–76. Publisher: American Association for the
Advancement of Science Section: Research Article.
Siriwat, P.; and Nijman, V. 2018. Illegal pet trade on so-
cial media as an emerging impediment to the conservation
of Asian otters species. Journal of Asia-Pacific Biodiversity
11(4): 469–475.

Siriwat, P.; and Nijman, V. 2020. Wildlife trade shifts from
brick-and-mortar markets to virtual marketplaces: A case
study of birds of prey trade in Thailand. Journal of Asia-
Pacific Biodiversity 13(3): 454–461.
Souza, E. N. F.; and Hawkins, J. A. 2017. Comparison
of Herbarium Label Data and Published Medicinal Use:
Herbaria as an Underutilized Source of Ethnobotanical In-
formation. Economic Botany 71(1): 1–12.
Sterner, B.; Gilbert, E.; and Franz, N. M. ”In press”. Decen-
tralized but globally coordinated biodiversity data. Frontiers
in Big Data .
Sterner, B.; Witteveen, J.; and Franz, N. M. 2020. Coordi-
nating dissent as an alternative to consensus classification.
History and Philosophy of the Life Sciences 42.
Sterner, B. W.; and Franz, N. M. 2017. Taxonomy for Hu-
mans or Computers? Cognitive Pragmatics for Big Data. Bi-
ological Theory 12: 99–111.
Svensson, M. S.; Shanee, S.; Shanee, N.; Bannister, F. B.;
Cervera, L.; Donati, G.; and Huck, M. e. a. 2016. Disap-
pearing in the Night: An Overview on Trade and Legislation
of Night Monkeys in South and Central America. Folia Pri-
matologica 87(5): 332–348. Publisher: Karger Publishers.
‘t Sas-Rolfes, M.; Challender, D.W.; Hinsley, A.; Verı́ssimo,
D.; and Milner-Gulland, E. 2019. Illegal Wildlife Trade:
Scale, Processes, and Governance. Annual Review of Envi-
ronment and Resources 44(1): 201–228.
Tan, K. C.; Liu, Y.; Ambrose, B.; Tulig, M.; and Belongie,
S. 2019. The Herbarium Challenge 2019 Dataset.
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