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Populations, communities, and ecosystem functions all rise 
and fall through time in accordance with seasonal patterns, 

year‐to‐year changes in weather, and regulation through inter-
nal processes like predator–prey cycles (Levin 1992). These 
patterns, which we refer to as temporal variability, may also be 
influenced by human activities. Temporal variability that 
becomes exaggerated (ie higher peaks and lower lows) increases 
the risk for local extinction of animal and plant populations 

(Heino et al. 1997; Schindler et al. 2010), as well as outbreaks of 
pests and disease vectors (Bolker and Grenfell 1996; Sabo 
2005). Similarly, socioeconomic systems can be impacted by 
unexpected temporal variability, particularly when these fluc-
tuations occur at large spatial scales. For example, a particularly 
bad year for fisheries production can reduce food security and 
result in unsustainable harvests (Badjeck et al. 2010; Moore and 
Schindler 2010). Likewise, greater unreliability of pollinator 
services can heighten the risk of crop failure in bad years 
(Slingo et al. 2005; Ray et al. 2015). Understanding the drivers 
of temporal variability in spatially structured ecosystems is 
therefore critically important for both conservation planning 
and sustaining human livelihoods and economies.

Improving knowledge about temporal variability requires 
consideration of how drivers interact directly and indirectly 
with one another across spatial scales. The emerging subdisci-
pline of macrosystems ecology explicitly focuses on the study of 
ecological dynamics at large scales, with patterns being driven 
by multiple factors that interact across scales (Heffernan et al. 
2014). Empirical evidence suggests that temporal variability 
can be influenced by local and regional factors (Tilman and 
Downing 1994; Schindler et al. 2010), and there is growing 
consensus that cross‐scale interactions are also important for 
understanding variability (Wang and Loreau 2014; Wilcox et 
al. 2017). For example, the Moran theorem suggests that large‐
scale synchronous environmental fluctuations lead to large‐
scale synchronous fluctuations in population abundance 
(Moran 1953). Synchronized subpopulations in a connected 
system may be more vulnerable to punctuated natural or 
anthropogenic disturbances (Wang and Loreau 2014). Here, 
we review the literature on drivers of temporal variability at 
multiple scales, identify testable hypotheses (Table 1), and pro-
vide new evidence from our own analyses. Our purpose is to 
illustrate how progress can be made to understand the drivers 
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In a nutshell:
•	 Maintaining the stability of harvests, species populations, 

and ecological communities are common management 
objectives, but the processes thought to control temporal 
fluctuations in ecosystems have been poorly studied at 
regional to continental scales

•	 Local and regional biodiversity along with spatial variation 
in the environment were found to reduce fluctuations in 
ecosystem stocks (biomass, abundance) at the landscape 
scale

•	 Analysis and synthesis of long‐term, spatially replicated 
datasets will enhance our understanding of the drivers 
of stability at different scales, and improve stewardship 
of species, communities, and ecosystem services
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of macrosystem variability, so that we may anticipate the 
effects of human activities on the temporal variability in eco-
systems and the services they provide.

We begin by defining key terms for understanding temporal 
variability (Table 2). Ecological temporal variability can be 
defined as the frequency and magnitude of fluctuations in eco-
system structure (eg standing stocks of resources, species 
abundance) or ecosystem function (eg production, decompo-
sition rate). Wang and Loreau (2014) demonstrated that tem-
poral variability can be partitioned into local (α), landscape 
(β), and regional (γ) components, echoing concepts for biolog-
ical diversity (Whittaker 1972). Following the definitions pro-
vided by Wilcox (2017), we define α‐variability as the standard 
deviation of a time series from a local habitat divided by the 

mean of the time series (Table 2); regional γ‐variability as the 
standard deviation of the summation of time series from all 
locations in the region divided by the mean of the summed 
time series (Table 2); and the β portion of variability as spatial 
synchrony, or the degree of covariation in fluctuations through 
time among all locations in the region (Table 2).

A core set of hypotheses in the literature is that γ‐variability 
is driven by spatial synchrony (Table 1, row 1) and α‐variability 
(Table 1, row 2). Increases in α‐variability directly enhance γ‐
variability by increasing the magnitude of fluctuations (Figure 
1), while reductions in spatial synchrony allow differences in 
patterns of fluctuations among locations to cancel each other 
out, thereby reducing γ‐variability (Figure 1). If these core 
hypotheses are correct, then understanding the drivers of 

Table 1. Hypothesized direct and indirect drivers of γ-variability*

Hypothesis Rationale
Implications for managers seeking to reduce 
regional temporal variability

(1) γ-variability is positively related to α-variability Fluctuations in the local environment will scale to large-scale 
fluctuations

See recommendations for hypotheses (3) and (4)

(2) γ-variability is positively related to spatial synchrony Reductions in spatial synchrony reduce the degree to which 
local fluctuations translate into large-scale fluctuations

See recommendations for hypotheses (5), (6), and (7)

(3) γ-variability is negatively related to α-richness Local diversity acts on γ-variability by reducing α-variability via 
response diversity

Increase local biodiversity through restoration and conservation

(4) γ-variability is negatively related to γ-richness Regional diversity acts on γ-variability by increasing local 
diversity, acting on γ-variability through α-variability

Conserve local biodiversity, diversity of habitats in the region, 
and connectivity between habitats

(5) γ-variability is negatively related to spatial scale Scale increases γ-richness and environmental heterogeneity 
(a) while reducing population connectivity (b), ultimately acting 
on γ-variability through both spatial synchrony and 
α-variability

Increase the size of managed and protected areas through 
land acquisition and preservation of corridors between habitats

(6) γ-variability is negatively related to environmental 
heterogeneity

Environmental heterogeneity increases γ-richness (a) and 
β-diversity (b) while reducing spatial synchrony via the Moran 
effect (c), ultimately acting on γ-variability through both spatial 
synchrony and α-variability

Preserve or restore landscape environmental heterogeneity

(7) γ-variability is negatively related to β-diversity β-diversity reduces spatial synchrony, which decreases 
γ-variability

Prevent or reduce environmental homogenization and the 
spread of invasive species

Notes: *Numbers and letters correspond to the main text and Figure 2.

Table 2. Definitions for variability and biological diversity across scales

Name Definition Example

α-variability The temporal standard deviation (SD) divided by the temporal mean of a time 
series measured in a single habitat

For an annual record of fish abundance in a single pond, this is the SD of fish 
abundance in that pond among years divided by the average number of fish in a 
pond

Spatial synchrony Degree to which temporal fluctuations of ecosystem components among multiple 
locations are similar to one another, measured as covariance among time series

The degree of similarity in year-to-year changes between two annual time series 
of fish present in two separate ponds

γ-variability The temporal SD divided by the temporal mean of a time series composed of 
summed measurements among sites in the defined region

For a dataset of fish abundance in ten ponds sampled annually through time; total 
fish among ponds are summed each year to create an aggregate time series, 
then the SD of that series is divided by the mean of that series

α-richness The number of different species found within a single location The number of fish species observed within a single pond

β-diversity The dissimilarity in species composition among multiple locations; may be 
calculated using a variety of metrics; here calculated as mean pair-wise 
Bray-Curtis dissimilarity among sites

The difference in the types of fish found within two or more ponds

γ-richness The number of different species found across all locations in a region The total number of fish species found among all ponds on a landscape
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α‐variability and spatial synchrony will enhance our under-
standing of controls on γ‐variability (Wilcox et al. 2017).

For decades, ecologists have focused on the drivers of local 
α‐variability, which include fluctuations in precipitation and 
temperature (Andrewartha and Birch 1954), species or trait 
diversity (Tilman and Downing 1994; Tilman et al. 2006), and 
species interactions (McCann 2000). Greater species diversity 
allows for a greater diversity of responses to environmental 
change, allowing for compensatory dynamics that reduce vari-
ability in ecosystem functions like total plant production in 
grassland plots (Tilman et al. 2006). Reductions in species 
diversity can therefore increase species synchrony and subse-
quently α‐variability in aggregated biomass (Tilman et al. 
2006), the aggregate of which may in turn induce greater γ‐
variability (Table 1, row 3).

A number of other pathways may then act on γ‐variability 
through their effect on α‐richness. For example, α‐richness is 
constrained by the number of species in the regional species 
pool (γ‐richness; Crist and Veech 2006; Ulrich et al. 2016), and 
therefore we predict that γ‐richness should be negatively 
related to both α‐variability and γ‐variability (Table 1, row 4). 
This implies that declines in regional biological diversity will 
increase temporal variability across spatial scales (Hooper et 
al. 2012). Spatial scale and environmental heterogeneity can 
also act on these mechanisms. Theories concerning species–
area relationships predict that species pools should increase 
with spatial scale and that the relationship should strengthen 
with environmental heterogeneity (Palmer and White 1994). 

Consequently, larger spatial scales and greater environmental 
heterogeneity reduce γ‐variability via effects cascading through 
γ‐richness and α‐richness (Table 1, row 5a and row 6a).

Spatial synchrony, the other hypothesized driver of γ‐varia-
bility, is in turn also regulated by several direct and indirect 
factors. For example, it is expected that β‐diversity (ie differ-
ences in community composition among local habitats) will 
reduce spatial synchrony (Wang et al. 2019) and subsequently 
diminish regional γ‐variability (Wang and Loreau 2016) as a 
result of a decrease in organismal response diversity (Elmqvist 
et al. 2003) (Table 1, row 7). Environmental heterogeneity acts 
indirectly on spatial synchrony via this pathway by providing 
opportunities to increase the β‐diversity of species, traits, and 
life stages (Hilborn et al. 2003), and should therefore act to 
lower γ‐variability by reducing spatial synchrony (Table 1, row 
6b). However, environmental heterogeneity may also act 
directly on spatial synchrony. In homogenous landscapes, 
large‐scale events (eg drought) should alter local environmen-
tal conditions in similar ways, leading to greater spatial syn-
chrony among responses and enhancing the Moran effect 
(McCluney et al. 2014). As a result, landscape homogenization 
(eg agricultural fields in the midwestern US, dammed rivers in 
the Colorado River basin) should lead to increased macrosys-
tem γ‐variability (Table 1, row 6c).

Spatial synchrony also depends on dispersal of organisms 
between local ecosystems – a combination of geographic dis-
tance, dispersal ability, and barriers to movement. Therefore, 
even when the environment does not vary, changes in 

Figure 1. Conceptual diagram illustrating how variability propagates across spatial scales. Labels include trend lines for each of several hypothetical spe-
cies (sp1, sp2, and sp3) and for the multispecies total abundance at each of several different locations (loc1, loc2, and loc3) in the landscape. The diagram 
shows (1) how higher local diversity is predicted to reduce α-variability, (2) different scenarios for combinations of α-variability and spatial synchrony in 
multisite landscapes, and (3) the predicted effect of these combinations on γ-variability.
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organismal fluxes across habitats may alter local and regional 
dynamics (Gouhier et al. 2010). Generally, reduced dispersal, 
driven by the presence of physical barriers or greater geo-
graphic distance, should lower spatial synchrony by promoting 
dissimilar community dynamics (Table 1, row 5b). However, 
we note that dispersal barriers can also lead to extinctions of 
migratory species and reduce dispersal‐driven rescue effects, 
lowering diversity. Consequently, the effects of dispersal on γ‐
variability are likely complex and nonlinear.

We identified seven distinct hypotheses about drivers of γ‐
variability (Table 1). Many of these hypotheses include cascad-
ing or indirect paths of causality (eg α‐richness) or multiple 
mechanisms (eg environmental heterogeneity). Although 
these hypotheses have been evaluated individually, and in 
some cases comparatively (Wilcox et al. 2017), additional 
assessments of their relative importance may improve under-
standing of how they interact across scales in a diversity of 
systems and landscapes, and how these concepts could be 
operationalized for management purposes. In Figure 2, we 

connect the hypotheses presented in Table 1 in a conceptual 
framework to illustrate the relative importance of the factors 
driving macrosystems variability, and their potential interac-
tions. Using this graphical model as a guide, we used spatially 
explicit decadal data from four macrosystems to test the con-
ceptual model and individual hypotheses.

Methods

The methodological procedures and datasets used in our 
analysis are described in greater detail in WebPanel 1.

Datasets

Terrestrial beetles were previously collected in Phoenix, 
Arizona, with nine yearly (2006–2014) estimates of abun-
dance of multiple taxa from 24 sites across 20,000 km2 
(Grimm et al. 2018). Data consisted of pit‐fall traps in 
groups, typically of four (mean ± standard deviation; 3.7 
± 0.7), trapped quarterly, with all individuals identified to 
family (50 families included in the dataset). Covariate data 
included percent land use in a 500‐m radius circle sur-
rounding the trapping locations, taken from the 2006 National 
Land Cover Database (Fry et al. 2011). We also included 
minimum–maximum temperature and precipitation data 
from downscaled PRISM data (PRISM Climate Group 2016).

Submerged vegetation was surveyed at 95 subestuaries 
(smaller estuaries within the larger Chesapeake Bay estuary) 
with 30 yearly (1984–2009, except 1988) estimates of density‐
weighted coverage distributed across Chesapeake Bay, in Mar-
yland and Virginia (Patrick and Weller 2015). Species 
composition (25 taxa across bays) within each embayment was 
derived from ground observations (Patrick et al. 2017). Covar-
iate data included estuary morphology, salinity, tidal range, 
benthic substrate, watershed land cover, and shoreline armor-
ing and structures (see Patrick et al. [2017] for further explana-
tion of all variables and sources). The subestuaries were 
divided into two distinct groups, upper bay and lower bay, in 
accordance with designations applied by the Chesapeake Bay 
Program, a partnership of states in the Chesapeake Bay water-
shed and federal agencies led by the US Environmental Protec-
tion Agency (Batiuk 2000).

Stream fish composition (56 species observed) and abun-
dance were identified from annual (2000–2012) electrofishing 
surveys conducted in 27 Maryland streams (Southerland et al. 
2005). Abundance was converted to biomass (grams, g) by 
multiplying the mean length of each taxa by species‐specific 
allometric scaling equations (www.fishb​ase.org). Covariate 
data included water chemistry and quality (pH, conductivity, 
temperature, dissolved organic carbon, total nitrogen, total 
phosphorus, orthophosphate, ammonium, and nitrate), habi-
tat quality metrics, canopy cover, stream morphology (width, 
depth, drainage area), velocity, and watershed land cover 
taken from the 2006 National Land Cover Database (Fry et al. 
2011).

Figure 2. Hypothesized network of drivers influencing system variability. 
Descriptions of the hypotheses and their rationales are presented in Table 
1. Black and red arrows indicate positive and negative effects, respec-
tively. Biological diversity measures are shown in medium gray and proxi-
mate drivers of γ-variability are shown in light gray. The model predicts 
that spatial synchrony and 

_

α-variability will increase γ-variability, and that 
these factors are negatively influenced by 

_

α-richness and β-diversity, spa-
tial scale, and environmental dissimilarity via a series of direct and indirect 
effects. Directional effects are numbered and color-coded to correspond to 
the hypothesis, rationale, and suggested management activities in Table 1.

http://www.fishbase.org
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Analyses

Structural equation models (SEMs) were used to test the 
conceptual model (Figure 2), which allows for statistical 
evaluation of direct and indirect effects cascading through 
multiple endogenous and exogenous variables (Grace et al. 
2012). SEMs are appropriate for testing our conceptual model 
because drivers of within‐site variability and spatial synchrony 
may co‐vary, and indirect effects are possible. Metrics cal-
culated for each factor in the conceptual model included 
environmental heterogeneity, spatial area, diversity at multiple 
scales (γ, α, and β), and variability at multiple scales (γ, α, 
and β). Metrics were calculated within multiple circular 
regions of varying spatial grain, allowing for a multi‐scale 
analysis within each system.

Metrics used in the analysis consisted of environmental 
heterogeneity, measured as mean dissimilarity in environ-
mental conditions among sites in a ring (multivariate Euclid-
ian distance in z‐score environmental data), and spatial area, 
which referred to the spatial grain. Diversity metrics for sites 
within the ring included 

_

α-richness (average number of spe-
cies within local habitats), β-diversity as mean Bray‐Curtis 
dissimilarity, and γ‐richness (total count of species within 
the ring). Temporal metrics included (1) 

_

α‐variability, calcu-
lated as the average temporal coefficient of variation (CV) 
within sites within the ring; (2) γ‐variability, calculated as 
the temporal CV of all locations in the ring summed 
together; and (3) spatial synchrony, calculated as the vari-
ance explained by the first temporal mode of variation 
extracted from empirical orthogonal function (EOF) analy-
sis of the time series within the ring (Patrick and Weller 
2015).

The complete aggregate dataset was analyzed as two sepa-
rate models consisting of a “general model”, where study sys-
tem was not considered a factor, and a “multigroup model”, 
where study system (n = 4) was included as a categorical pre-
dictor (Grace 2003). The purpose of the two models was to 
develop a common model shared by all systems and then 
evaluate the variation in model coefficients among individual 
systems and the goodness of fit for the general model within 
individual systems. We estimated and corrected for spatial 
autocorrelation within systems in accordance with the proce-
dures established by Harrison and Grace (2007) and Matte-
son et al. (2013) (see WebPanel 1 for more details). SEM 
goodness of fit was assessed using the global covariance 
method, where the covariance matrix of the data is compared 
to the covariance matrix implied by the model using a chi‐
square (χ2) test, with a significant result (P < 0.05) indicating 
that the data were not likely to have been produced by the 
model (ie a poor fit). Total effects of each predictor on γ‐var-
iability were calculated by summing all of the coefficients of 
each path from the predictor to the response variable. Coeffi-
cients for paths that cascade through mediating variables 
were calculated by multiplying the path coefficients together 
(Grace 2003). A summary of the results and total effects is 

presented below; full results and model outputs are presented 
in WebPanel 1.

Results

We found support for our general model across all systems 
(ie no difference between the covariance matrix of the gen-
eral model and the data; P = 0.956, χ2 = 0.003; Figure 3). 
However, the general model was not an equally good fit 
across all systems, suggesting variation in the relative impor-
tance of each pathway in different systems (ie significant 
differences between the multigroup model covariance matrix 
and the data; P < 0.001, χ2 = 142.404; WebFigure 3).

For the general model, both 
_

α‐variability and spatial syn-
chrony among locations increased γ‐variability, and together 
these factors explained 86% of the variation in γ‐variability 
(WebFigure 2). The effect of 

_

α‐variability on γ‐variability was 
six times larger than the effect of synchrony (Table 3). The total 
effects of γ‐richness, 

_

α‐richness, β‐diversity, environmental 
dissimilarity, and spatial scale on γ‐variability were all negative 
(Figure 3; Table 3).

In the multigroup model comparing differences among sys-
tems, 

_

α‐variability increased γ‐variability in all study systems, 
and spatial synchrony increased γ‐variability in all systems 
with the exception of the high salinity lower Chesapeake Bay 
(Table 3). The total effects of biodiversity metrics (α, β, γ) on 
γ‐variability were generally negative or nearly neutral across 
models, with several exceptions. For the ground beetle dataset, 
both local richness (α) and regional richness (γ) had negative 
total effects on γ‐variability (similar to most models), but β‐
diversity had a positive total effect on γ‐variability (different 
from most models; Table 3). For the high salinity lower Chesa-
peake Bay, all measures of biodiversity had positive total effects 
on γ‐variability, differing from most models (Table 3).

Figure 3. Total effect sizes of each driver on γ-variability in the general 
structural equation model. Red arrows indicate negative relationships; 
black arrows indicate positive relationships. Numbers are the total effect 
(sum of direct and indirect effects).
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Discussion

Here we synthesized putative drivers of temporal variability 
in entire macrosystems (γ‐variability; Figure 2) and tested 
their relative importance by analyzing empirical data on 
four distinct systems. Agreeing with predictions, we found 
that variability within locations (eg α‐variability) and spatial 
synchrony among locations increased temporal macrosystem 
γ variability, whereas biodiversity (

_

α-richness, β‐diversity, 
and γ‐richness), environmental dissimilarity, and spatial scale 
reduced γ‐variability. However, we did not expect 

_

α‐richness, 
γ‐richness, and environmental dissimilarity to be the most 
important determinants of γ‐variability. If this pattern is 
general, it bears important implications for conservation 
planning and ecosystem management. The result indicates 
that preservation of multiple components of biodiversity 
(local, regional, habitat) is needed to ensure macrosystem 
stability; regional management plans should therefore address 
all of these components. Our results also demonstrate that 
ongoing environmental homogenization represents an emerg-
ing threat because it can increase macrosystem variability 
by reducing habitat diversity, which enhances the Moran 
effect and reduces variation in sets of “filtered” communities 
(β‐diversity), both of which synchronize temporal dynamics 
among ecosystems.

The stabilizing effects of 
_

α‐richness and γ‐richness were 
important components of most models. Species‐rich commu-
nities (α‐richness), which are constrained by the diversity of 
the regional species pool (γ‐richness), have more ways to 
respond to disturbance (Elmqvist et al. 2003; Angeler and 
Allen 2016). At the scale of an individual habitat or patch, 
greater taxonomic or functional richness then leads to com-
pensatory dynamics, with multispecies (or multitrait) aggrega-
tions displaying reduced variability (Tilman and Downing 
1994; Tilman et al. 2006).

Strong support for the theoretically predicted importance of 
biodiversity is a key difference between our results and those of 
Wilcox et al. (2017), who found little evidence for relationships 
between α‐richness and either α‐variability or γ‐variability. The 
differences may result from choice of study units; whereas we 
focused on landscape‐ to regional‐scale datasets (>1 million ha 
each) that included >8 years of data collected from 18–65 

sampling locations, Wilcox et al. (2017) focused on much 
smaller areas (0.024–144 ha) and included data from fewer sam-
pling locations (3–18), with many of those datasets composed of 
data covering time frames less than 8 years. Thus, one reason we 
may have found a greater influence of diversity on temporal 
variability may have been having larger gradients of diversity, 
related to larger spatial areas with more replicates. In addition, 
although diversity typically increases ecosystem functioning at 
local scales (Hooper et al. 2005), there are many exceptions 
(Loreau and de Mazancourt 2013). Larger regional‐scale data-
sets would be less influenced by rarer local sites that may exhibit 
negative relationships between diversity and function; moreo-
ver, Wilcox et al. (2017) suggested in shorter time series that 
disturbance patterns among sites may overshadow diversity 
effects. These results may indicate that the importance of biodi-
versity for temporal variability may be more apparent over 
longer time periods and at greater spatial scales (Levin 1992).

Our data suggest that environmental heterogeneity acts on 
system fluctuations through multiple pathways, the strongest 
of which is the positive relationship with γ‐richness. However, 
there were also effects of heterogeneity on spatial synchrony. 
Local populations subject to the same environmental regime 
typically exhibit more similar fluctuations in abundance 
(Moran 1953). Environmental homogenization can therefore 
synchronize population dynamics among taxa in disparate 
locations (Wang and Loreau 2016), increasing γ‐variability. 
The importance of heterogeneity in reducing system fluctua-
tions is relevant given ongoing environmental homogenization 
caused by natural and anthropogenic stress. For example, 
widespread dam construction and operational practices like 
hydropeaking (releasing dammed water in short regular inter-
vals to meet electricity demands) are increasing flow similarity 
among rivers across regions (Poff et al. 2007). Hydropeaking 
can also synchronize population dynamics among riverine 
invertebrates across sites distributed downstream from hydro-
electric dams (Ruhi et al. 2018). Likewise, increasingly fre-
quent large‐scale extreme events linked to climate change, 
such as droughts or tropical cyclones (Diffenbaugh et al. 2015), 
can temporarily increase environmental similarity across dis-
tant habitats.

The weak relationship between spatial synchrony and γ‐
variability in the general model reflects system‐specific 

Table 3. Total effects of predictor variables on γ-variability across models

Predictor variable General model Upper Chesapeake Bay Lower Chesapeake Bay Stream fish Ground beetles Expected (+ or –)

Environmental dissimilarity –0.595 0.070 0.155 –0.721 –0.234 –

Area (distance) –0.165 –0.339 0.184 0.319 –0.383 –

γ-richness (global) –0.587 0.019 0.183 –0.591 –0.721 –
_
α-richness (local) –0.726 –0.026 0.235 –0.754 –0.276 –

β-diversity (spatial turnover) –0.094 –0.003 0.016 –0.002 0.123 –
_
α‐variability 1.124 0.240 0.704 1.263 0.372 +

Spatial synchrony 0.193 0.518 –0.406 0.017 0.599 +
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differences in the relationship between spatial synchrony and 
γ‐variability. Previous work has shown that species and spatial 
synchrony increases γ‐variability across spatial scales; for 
example, within a local habitat, grassland production is stable 
when production patterns are asynchronous among co‐occur-
ring species (Tilman and Downing 1994). At larger scales 
encompassing multiple habitats, a positive relationship was 
found between spatial synchrony among local communities 
and γ‐variability of plant (Wilcox et al. 2017) and salmon 
(Schindler et al. 2010) biomass production.

We expected spatial synchrony to be positively related 
to γ‐variability in our model, and although it was in most 
cases, the results for Chesapeake Bay macrophyte commu-
nities did not support our hypothesis. There are several 
potential reasons for the unexpected relationships in this 
system. Following the approach of the Chesapeake Bay 
Program monitoring and assessment strategy, we divided 
the system into upper bay and lower bay sections, because 
these regions contain very different macrophyte communities 
and are controlled by very different environmental drivers 
(Batiuk 2000). In total, 26 macrophyte species occur in 
Chesapeake Bay, ranging from freshwater taxa in the upper 
Potomac River and Susquehanna Flats, mesohaline taxa 
throughout the middle bay, and marine seagrasses in the 
lower bay. Species diversity declines along the salinity gra-
dient, from 13 freshwater species to only two marine species 
(Patrick et al. 2017). Although our general hypotheses were 
supported in the species‐rich upper bay (Figure 4a), spatial 
synchrony had a negative relationship with γ‐variability in 
the lower bay (Figure 4b).

Two marine species, eelgrass (Zostera marina) and widgeon 
grass (Ruppia maritima), are dominant in the lower bay sub-
estuaries (Figure 5), and their life histories provide an explana-
tion for the counterintuitive negative relationship between 
spatial synchrony and γ‐variability. Eelgrass forms expansive 
meadows and populations are stable under good growing con-
ditions. Interannual fluctuations in eelgrass, when they occur, 
are controlled by broad climate forcing and may lead to 

heat‐stress‐induced die‐offs (Moore and Jarvis 2008), events 
that are typically synchronized across the lower portion of the 
Chesapeake Bay (Patrick and Weller 2015). In contrast, widg-
eon grass may form large meadows in certain years but is pri-
marily characterized by asynchronous boom–bust population 
cycles (Patrick et al. 2017). We interpret this to mean that in 
this low diversity system, high spatial synchrony is indicative 
of eelgrass, the species less prone to fluctuations in density and 
cover. Overall, we infer that when spatial synchrony is mecha-
nistically linked with 

_

α‐variability through species‐specific life 
history characteristics, such as those of widgeon grass and eel-
grass, the relationship between spatial synchrony and γ‐varia-
bility may not be positive. Extrapolating the results across 
ecosystems, these types of effects are most likely when biodi-
versity is low and system stability can be determined by the 
inherent “life‐history” stability of single dominant species.

The weak effects of spatial synchrony on γ‐variability par-
tially explain the surprisingly weak effects of β‐diversity on γ‐
variability, but β‐diversity also had weaker‐than‐expected 
effects on spatial synchrony itself. Intuitively, variation in spe-
cies identity among communities should reduce synchronicity 
of dynamics among those communities. While the negative 
relationship between β‐diversity and spatial synchrony was 
first reported by Wang et al. (2019), Wilcox et al. (2017) also 
found poor support for a link between β‐diversity and spatial 
synchrony, and suggest that a measure of β‐diversity based to a 
greater degree in functional rather than taxonomic differences 
among communities may yield better support. Indeed, Wang 
et al. (2019) included species with very different functional 
traits (eg woody shrubs, grasses), which could maximize the 
possible stabilizing effects of increasing β‐diversity; moreover, 
their study was conducted across smaller spatial scales that 
may have conferred less environmental variability, increasing 
the detectability of β‐diversity effects. In addition, a metric of 
β‐diversity that is focused on the portion purely explained by 
turnover rather than differences in richness may have had a 
stronger relationship (Legendre 2014). It is possible, however, 
that at broad scales, environmental heterogeneity is simply a 

Figure 4. Relationship between spatial synchrony and γ-variability in (a) high-diversity upper Chesapeake Bay and (b) low-diversity lower Chesapeake 
Bay. Relationship is positive as expected in the upper bay (a) but negative in the lower bay (b).

(a) (b)
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much stronger driver of variation in temporal dynamics 
among localities (ie via variation in microclimates) than com-
munity composition.

Overall, understanding the interplay between the ultimate 
and proximate controls of macrosystem variability may aid in 
the design of more effective conservation actions, manage-
ment practices, and monitoring networks. The results of our 
analysis suggest that preservation of biodiversity – including 
landscape heterogeneity – is key to achieving these goals. Bio-
diversity conservation is already a major goal of ecosystem 
management (Sodhi and Ehrlich 2010), but our results bolster 
the argument for diversity conservation by indicating that 
multi‐scale diversity is critically important for temporal stabil-
ity in the delivery of ecosystem services at macrosystem scales. 
Notably, the framework suggests that regional γ‐richness plays 
an important role by providing a mechanistic link between 
biodiversity at conservation‐relevant spatial scales and ecosys-
tem functioning, a relationship that biodiversity–ecosystem 
functioning experiments have at times failed to detect (Hooper 
et al. 2005).

Future directions

As the use of big data in ecology continues to advance, 
there are a growing number of datasets that cover increas-
ingly larger spatial and temporal scales. These expansive 
datasets offer new opportunities. For example, the prolifer-
ation of affordable remote‐sensing data at increasingly high 
frequencies and broad scales offers a powerful resource for 
evaluating patterns of variability and spatial synchrony in 
vegetation dynamics across a wide range of spatial scales. 
Existing publicly funded programs focused on boots‐on‐
the‐ground research provide another source for valuable 
long‐term and large‐scale data. For instance, coastal mon-
itoring programs funded by state and federal agencies (eg 
the National Estuarine Research Reserve Network) provide 
access to decades of high‐frequency data on coastal processes 

from dozens of sites along the US coastline. 
Similarly, the US National Science Foundation 
(NSF)‐funded Long Term Ecological Research 
Network and Lotic Intersite Nitrogen 
Experiment programs have amassed numer-
ous macrosystem‐level datasets. Because of 
the size, distribution, and longevity of those 
projects, they offer an opportunity for exam-
ining macrosystem processes. More recently, 
in 2012, NSF developed the National 
Ecological Observatory Network (NEON) to 
characterize long‐term ecological changes at 
large scales, by integrating local‐ to conti-
nental‐scale measurements at 20 core terres-
trial and 20 core aquatic sites, supplemented 
by 41 relocatable sites. Data generated from 
these efforts would be especially useful for 

understanding how macrosystem processes like metacoupling 
and teleconnections influence temporal variability (see 
Tromboni et al. [2021]). For example, knowledge of migra-
tory patterns of waterfowl along the Atlantic, Mississippi, 
Central, and Pacific flyways could provide information on 
long distance telecommunications for both avian and inver-
tebrate taxa (eg fairy shrimp) that can travel on the feathers 
or in the guts of migratory birds, or by wind. Dispersal 
via these pathways may influence stability relationships within 
ephemeral wetlands (O’Neill and Thorp 2014). Combining 
multiple sources of data can improve knowledge about the 
relative importance of drivers of temporal variability, includ-
ing dispersal and climate, from local to continental scales. 
The approaches we describe here could be applied to data 
collected on plants, animals, soil, nutrients, biogeochemistry, 
and atmospheric characteristics across multiple sites, iden-
tifying important controls of variability at different spatio-
temporal scales for a wide range of ecosystems.

Conclusions

Our results demonstrate that organism and landscape diversity 
can influence variability across scales, including at the mac-
rosystem level. Research on biodiversity–ecosystem function-
ing relationships has historically formed one argument for 
conserving global biodiversity to maintain ecosystem functions 
and services (Hooper et al. 2005). However, much of the 
earlier work on such relationships suffered from disconnects 
between small‐scale experiments and the type of diversity 
loss that occurs at larger spatial scales. Our case study high-
lights the importance of large‐scale diversity (γ) to mac-
rosystem stability, and provides a clear link between local‐scale 
taxonomic diversity (α), local‐scale temporal variability, and 
macrosystem variability. We hope that this line of inquiry 
will further advance macrosystems theory, and guide the 
preservation of biodiversity – and the provision of ecosystem 
functions and services – across spatiotemporal scales.

Figure 5. Examples of the differing composition of submerged aquatic vegetation (SAV) found 
in Chesapeake Bay. (a) Mixed species composition SAV meadow in the tidal fresh 
Susquehanna Flats of upper Chesapeake Bay. (b) Eelgrass (Zostera marina) monoculture pro-
viding shelter to a summer flounder (Paralichthys dentatus) in the high salinity lower 
Chesapeake Bay.

(a) (b)
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Nocturnal crickets disperse seeds

Both ants and crickets are abundant in tropical and temperate eco- 
  systems. In general, ants are seed dispersers, whereas crickets 

are seed consumers. However, while conducting field research on 
Stemona tuberosa (a medicinal plant that relies on wasps and ants to 
disperse its seeds), we observed nocturnal foraging crickets  
(Teleogryllus mitratus) consuming the outer covering (aril) of S tuberosa  
seeds and then dispersing the seeds into suitable microhabitats.

Typically, ants forage collectively and discard plant seeds near their 
nests, which leads to small-scale spatial aggregations of seeds. In  
contrast, crickets often forage individually, which could result in multi- 
directional seed dispersal and effectively reduce seed aggregation. 
Consequently, the potential benefits of seed dispersal by crickets 
could promote “seed escape” from predators, pathogens, and com-
peting seedlings.

Given the abundance and diversity of crickets worldwide, and that  
there are more than 11,000 flowering plant taxa known to be ant- 
dispersed, seed dispersal by crickets may be more common than cur-
rently recognized. Yet, several questions remain: whether olfactory 
cues from seeds mediate cricket behavior, whether seed dispersal 
distance is related to cricket life stage or sex, and why crickets prefer 
to disperse seeds of primarily ant-dispersed plants.
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