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Research Impact Statement: Remotely-sensed vegetation datasets are used in a high-resolution land surface
model evaluated with land surface temperature to assess the spatiotemporal variations of irrigation cooling
capacity.

ABSTRACT: Irrigation water use associated with agricultural activities and urban green spaces provides substan-
tial cooling effects and ameliorates heat in central Arizona. In this arid and semiarid area, evaluating the effect of
irrigation on land surface temperature (LST) for different types of land use can improve decision making related to
water resources management. In this work, we improved the simulation of urban and agricultural irrigation in the
Variable Infiltration Capacity model through remotely sensed vegetation and irrigation parameters applied at high
spatiotemporal resolution. We then conducted a multiyear (2004–2013) assessment of simulated LST with respect
to ground observations and remotely sensed products finding overall good agreement. Overall, results show that
irrigation of about 2 mm/day is required to reduce average daily LST by 1°C across the region. Numerical experi-
ments with the validated model also reveal that irrigation leads to LST reductions of higher magnitude and
greater spatial variability in croplands than in urban areas. Furthermore, we found that the role of interannual
variations in cropping practices is more critical than year-to-year differences in climatic conditions for the evalua-
tion of irrigation cooling capacity. Thus, remotely sensed vegetation products can serve a valuable purpose in
quantifying LST reductions and irrigation requirements to achieve a target of heat amelioration.
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INTRODUCTION

Water is a valuable and scarce resource in arid and
semiarid regions. The rise of Phoenix in central Ari-
zona, from a set of small agricultural towns into a
major metropolitan area, was possible due to complex
infrastructure systems that deliver water from
upstream watersheds and local aquifers (Sheridan and
Luckingham 1990; Gober 2006). With the supply of
imported and local water, irrigation in agricultural
fields and urban landscaping has proliferated in

Phoenix to support food and fiber production, economic
development, and municipal water use (Jenerette et al.
2011; Kerna and Frisvold 2014; Rushforth and Ruddell
2015). Aside from its principal use to support crop pro-
duction and maintain urban vegetation, irrigation has
a significant cooling effect through its impact on evapo-
ration, which can ameliorate the elevated tempera-
tures experienced in Phoenix (Georgescu et al. 2008;
Song and Wang 2016; Vivoni et al. 2020).

Irrigation water supply is typically limited under
the arid conditions of the region and is sensitive to
land cover change and climate variations (Gober and
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Kirkwood 2010; Simonit et al. 2015). In addition,
municipal water demand, which is correlated with
summer temperature (Balling et al. 2008; Opalinski
et al. 2020), may also increase in a warmer future. As
a result of increasing water stress, local land plan-
ners and water managers have a difficult choice with
respect to using urban irrigation as a heat mitigation
strategy (e.g., Chow et al. 2012; Gober et al. 2012). It
is thus important to understand the tradeoffs
between irrigation water use and heat amelioration,
referred to here as irrigation cooling efficiency. This
topic has received attention previously in Phoenix.
For example, Yang and Wang (2017) found that
adopting low water use landscaping in urban areas
can lead to a reduction of 20% of the annual water
demand projected in Phoenix by 2050 but at the
expense of increasing urban temperatures by ~1°C.

Irrigation cooling efficiency can be quantified
through high-resolution modeling systems that inte-
grate remote sensing products capturing the spa-
tiotemporal variations of irrigation features
(Thenkabail et al. 2012; Liu et al. 2021). In central
Arizona, there are many cloud-free days that foster
the use of remote sensing data. Furthermore, a high
contrast exists between irrigated areas and surround-
ing arid landscapes, facilitating their identification
(Ko et al. 2016). Remotely sensed vegetation indices
and crop-specific land use datasets have shown pro-
mise in arid and semiarid regions for detecting irriga-
tion extents, vegetation types, and crop phenology
(Ozdogan and Gutman 2008; Fan et al. 2014; Li,
Myint, et al. 2014; Xie et al. 2019). These products
have also been used to parameterize the spatiotempo-
ral variations of irrigation extent in land surface
models (LSMs) and simulate the effects of irrigation
on the water and energy balance. For example, Bohn
and Vivoni (2016) incorporated temporal variations in
vegetation parameters and planted and irrigated
areas in an LSM model. Previous coupled land-
atmosphere modeling studies have also shown
improvements in urban irrigation simulations when
parameterized with satellite observations of green
vegetation fraction and albedo (ALB) (Vahmani and
Ban-Weiss 2016).

Remote sensing products offer the opportunity to
evaluate the performance of high-resolution modeling
systems such as LSMs. Land surface temperature
(LST), for example, has received attention for its use
in the study of the impact of irrigation on surface
conditions (Navarro-Estupiñan et al. 2019; Shah
et al. 2019; Thiery et al. 2020; Yang et al. 2020). The
rich spatiotemporal patterns of LST have also been
used to rigorously test simulations in areas with com-
plex terrain and vegetation conditions (Xiang et al.
2014; Ko et al. 2019). Agricultural and urban areas
under irrigation exhibit large changes in LST relative

to their surrounding natural environments due to the
impact of increased soil moisture on the partitioning
of available energy. An increase in latent heat flux or
evapotranspiration (ET) typically leads to a reduction
in LST as energy is consumed for the vaporization of
liquid water instead of increasing surface tempera-
tures (Vahmani and Hogue 2014; Wang et al. 2019).
Unfortunately, previous studies using remote sensing
observations of LST to test high-resolution modeling
systems have been limited to short periods or low
numbers of scenes that are inadequate to capture the
spatiotemporal variations in irrigation and cropping
practices.

In this study, we quantify the irrigation cooling effi-
ciency of agricultural and urban areas in central Ari-
zona to support decision making on the tradeoffs
between irrigation water use and heat amelioration.
To do so, we use ground-based observations and
remote sensing products to test the performance of the
Variable Infiltration Capacity (VIC) model used to sim-
ulate the spatiotemporal patterns of LST. We first
improve the representation of irrigation in the model
(Bohn and Vivoni 2016) by implementing VIC at a high
spatiotemporal resolution (1 km, one hour) and by
incorporating time-varying vegetation parameters,
crop maps, and irrigation fractions from several
remote sensing products. We then conduct a multiyear
assessment (2004–2013) of the model capabilities to
simulate LST in agricultural, urban, and natural
ecosystems through comparisons to observations from
the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Geostationary Operational Environ-
mental Satellite (GOES) platforms. Lastly, we utilize
the high-resolution modeling system to evaluate the
cooling effect of irrigation and the influence of time-
varying vegetation and climatic conditions. The irriga-
tion cooling efficiency is evaluated via a new metric,
the irrigation cooling capacity (ICC) of Wang et al.
(2019, hereafter W19), which is defined as the amount
of irrigation water required to reduce LST by 1°C.

STUDY AREA AND DATASETS

Climate and Land Cover Properties

The study region is bounded by 32.50° and 34.00°N
latitude and 112.94° and 111.44°W longitude in cen-
tral Arizona (Figure 1), encompassing two Active
Management Areas (AMAs) designated for groundwa-
ter administration (Higdon and Thompson 1980). The
Phoenix AMA includes urban zones in the Phoenix
metropolitan area (PMA) surrounded by agricultural
fields and natural areas, while the Pinal AMA
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includes mostly agricultural fields and the natural
ecosystems of the region (e.g., shrublands, grass-
lands). Located in the Sonoran Desert, central Ari-
zona has a hot, arid climate (Köppen classification
BWh), with a mean annual temperature of 24°C and
a mean annual precipitation of 204 mm per year
according to the 1981–2010 climate normal at Phoe-
nix Sky Harbor International Airport. The precipita-
tion regime is bimodal with the winter
(December–February) and summer (July–September)
seasons having average amounts of 68.3 and
67.8 mm, respectively (Templeton et al. 2018). Due to
the aridity of the region, urban plants and crops
require irrigation water that is available from a num-
ber of sources including the Colorado, Salt, and Verde

Rivers as well as local groundwater wells (Hirt et al.
2008). Seasonality in precipitation and irrigation
input induces changes in vegetation that are expected
to vary between urban, cropland, and natural ecosys-
tems (Table 1).

Ground Observations and Meteorological Forcing
Products

We assembled multiple ground-based and remotely
sensed observations to characterize the study region,
provide model forcing, and evaluate the high-
resolution simulations. Direct estimates of daily ET
and longwave radiation were obtained from an eddy

FIGURE 1. (a) Location of the study area and Active Management Areas (AMAs) in central Arizona. (b) Digital elevation model at 30 m
resolution from National Elevation Dataset, with locations of meteorological stations from Arizona Meteorological Network (AZMET) (9 in
total). (c) Land cover classification at 30 m resolution merged from the National Land Cover Database (NLCD) of 2011 (Homer et al. 2015)
and the National Land Use Dataset (NLUD) of 2010 (Theobald 2014) for classes defined in Table 1. PMA, Phoenix metropolitan area; EC,

eddy covariance.
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covariance (EC) tower in the neighborhood of Mary-
vale, Phoenix (Chow et al. 2014), maintained by the
Central Arizona–Phoenix Long-Term Ecological
Research (CAP-LTER). The turbulent flux footprint of
the EC tower consists of impervious surface (48.4%),
bare soil (36.8%), and vegetation (14.6%). Additional
details of the footprint analysis and the energy bal-
ance closure are documented in Chow et al. (2014).
We used long-term observations from the Arizona
Meteorological Network (AZMET) for the purpose of
validating and bias-correcting meteorological forcing
products. Table 2 presents the characteristics of the
AZMET stations and EC tower, including the years
with available data from 2004 to 2013. While other
EC measurements are available in Phoenix (Temple-
ton et al. 2018; Perez-Ruiz et al. 2020; Vivoni et al.
2020), their time periods do not coincide with the
availability of the gridded meteorological forcing from
Livneh et al. (2015) ending in 2013. From the EC
measurements, we obtained an in situ LST estimate
using:

LST¼ L" � 1� ɛð Þ �L#
ɛ �σ

� �1
4

, (1)

where L" and L# are the upward and downward long-
wave radiations, ϵ is the surface emissivity retrieved
from MODIS, and σ is the Stefan–Boltzmann con-
stant (5.67 × 10−8W/m2/K4). For LST, the radiative
flux footprint is a circular source area of a radius of
250 m (Chow et al. 2014).

We used a set of gridded meteorological forcing
products from Livneh et al. (2015, hereafter L15),
providing daily precipitation (P), minimum and maxi-
mum air temperature (Tmin and Tmax), and wind
speed (Ws) at 1/16° (6 km) resolution from 1950 to
2013. L15 is based on the interpolation of weather
observations at a number of stations while adjusting
for elevation effects. The daily fields of L15 were dis-
aggregated to hourly intervals using the MetSim
model (Bohn et al. 2013; Bennett et al. 2020), which
was also used to estimate shortwave radiation (Rs),
longwave radiation (RL), and relative humidity. We
implemented the triangular method of Bohn et al.
(2019) to disaggregate daily precipitation into hourly
values using local information on the monthly aver-
age storm duration and peak timing. All the meteoro-
logical variables were resampled to the size of the
VIC grid cell (1 km) using bilinear interpolation.

Remote Sensing Products

To capture land surface conditions, we used a set
of time-varying vegetation parameters retrieved from
multiple MODIS products, including eight-day com-
posites of Leaf Area Index (LAI; MCD15A2H, 500 m
resolution, Myneni et al. 2002) and white-sky short-
wave ALB (MCD43A3, 500 m, Schaaf et al. 2002), as
well as 16-day composites of Normalized Difference

TABLE 1. Percentage (Af) of land cover and soil texture classes in
the study area.

Land cover class Af (%) Soil texture class Af (%)

Open water 0.30 Sandy loam 49.37
Urban park 2.32 Loam 44.84
Urban low 5.94 Sandy clay loam 5.30
Urban medium 6.98 Clay loam 0.26
Urban high 1.02
Barren 0.11
Forest 0.24
Shrubland 67.30
Grassland 1.95
Cropland 8.04
Wetlands 0.91
Other 2.51

TABLE 2. Location, elevation, land use-land cover (LULC), and available years for the study period for the AZMET stations and the EC site
maintained by Central Arizona–Phoenix Long-Term Ecological Research (CAP-LTER).

Station name Latitude (°N) Longitude (°W) Elevation (m) LULC Available years

AZMET
Buckeye 33.41 −112.68 301 Cropland 2004–2013
Coolidge 32.98 −111.61 423 Cropland 2004–2013
Maricopa 33.07 −111.97 362 Cropland 2004–2013
Paloma 32.93 −112.90 221 Cropland 2004–2013
Queen Creek 33.19 −111.53 462 Cropland 2004–2013
Phoenix Greenway 33.62 −112.11 403 Grass 2004–2013
Phoenix Encanto 33.48 −112.10 334 Grass 2004–2013
Desert Ridge 33.69 −111.96 511 Grass 2004–2013
Mesa 33.39 −111.87 368 Urban 2004–2013
CAP−LTER
Maryvale 33.48 −112.14 337 Urban 2011–2013
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Vegetation Index (NDVI; MOD13A1, 500 m, Huete
et al. 2002). We also derived the vegetation fraction
(fv) as fv = [(NDVI − NDVImin)/(NDVImax −
NDVImin)]

2, where NDVImin = 0.1 and NDVImax =
0.8. Quality control, gap-filling, and interpolation
procedures for obtaining fv are described in Bohn and
Vivoni (2019). For urban pixels where LAI estimates
are not available from MODIS, we used the LAI pro-
duct retrieved from the Satellite Pour l’Observation
de la Terre (SPOT) satellite system (10 days, 1 km)
provided by Copernicus Global Land Service (CGLS;
http://land.copernicus.eu/global/products). While these
products are fairly coarse for the characterization of
urban and agricultural areas, these are consistent
with the resolution adopted in VIC and the available
LST products used for model evaluation.

To illustrate the remote sensing products over the
study region, Figures 2 and 3 present the spatiotem-
poral variations in P and fv. Note that the spatial
variability of mean annual P is controlled by eleva-
tion, as shown by Mascaro (2017), while its interan-
nual variability is largely due to marked differences
in winter and summer seasons, consistent with Shep-
pard et al. (2002). In general, natural ecosystems
tend to have a lower fv than agricultural and urban
areas that receive irrigation. Nevertheless, natural
ecosystems, such as shrublands, exhibit a high

sensitivity to P such that vegetation adapts in green-
ness to intraannual and interannual variability in
precipitation (Forzieri et al. 2011; Vivoni 2012). Crop-
land and urban areas, in contrast, contain large val-
ues of fv and are generally less susceptible to
precipitation variations, but show the signature of
the irrigation practices and cropping patterns (Zheng
et al. 2015). Meanwhile, urban areas have a lower
interannual and intraannual variation in fv as com-
pared to croplands, which is expected as most of the
urban vegetation is kept the same across different
years and irrigated regularly. This finding is consis-
tent with the Jenerette et al. (2011) who also found a
decreasing variability of NDVI in central Arizona
from 1970 to 2000 as urban areas expanded. In addi-
tion, urban areas and cropland have different spatial
patterns that persist into the 1-km resolution of the
VIC model. For example, urban areas are generally
concentrated near the center of the region, whereas
crop areas are more scattered around the periphery.
This pattern corresponds to the historical expansion
of small towns in the region into the surrounding
agricultural landscape (Hirt et al. 2008). In addition,
urban areas tend to have a larger number of smaller
patches as a consequence of continuous urbanization.
In comparison, the cropland areas have a lower
degree of fragmentation (Luck and Wu 2002).

FIGURE 2. Spatial distribution of (a) mean annual precipitation (P), (b) standard deviation (std) of annual P, (c) mean annual vegetation
fraction (fv), and (d) std of fv (2004–2013).
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Two remotely sensed LST products with different
spatial and temporal resolutions were used for model
validation. First, daily LST products (MYD11A1 and
MOD11A1, 1 km, Version 6) from MODIS satellites
(Aqua and Terra) were obtained (Wan et al. 2004).
MODIS satellites overpass the equator twice per day,
with daytime overpass times around 1100 and 1300
and nighttime overpass times around 2200 and 0200
for Terra and Aqua (local time). MODIS LST prod-
ucts were obtained from the NASA Earthdata server
and processed with the “MODIStsp” R package
(Busetto and Ranghetti 2016). Imageries with >10%
of missing data (mostly due to cloud presence) were
discarded for quality control purposes (Hu et al.
2014). We also obtained the hourly LST product
(5 km) retrieved from GOES satellites (Yu et al.
2009) from CGLS (available since October 2010) over
the years 2011 to 2013. Table 3 provides a summary
of all datasets used in this study, including variable
names, data sources, resolutions, and usage.

METHODOLOGY

Model Overview and Setup

The VIC model version 5.1 (Hamman et al. 2018)
was used to simulate land surface water and energy
storages and fluxes. We ran VIC at 1 km resolution
and an hourly time step over the period 2004 to 2013,
with three years of model spin-up (2001–2003).
Within each grid cell, VIC represents the surface as a

mosaic of tiles each containing a homogeneous vege-
tation (or land use) class atop a three-layer soil col-
umn. We utilized the energy balance mode of the VIC
model to evaluate the influence of irrigation on LST.

FIGURE 3. Mean monthly P and fv over shrubland, cropland, and urban area during 2004–2013.

TABLE 3. Summary of the datasets used in the study including
ground observations, gridded meteorological datasets, and remotely
sensed products. The variables include precipitation (P), daily max-

imum air temperature (Tmax), daily minimum air temperature
(Tmin), wind speed (Ws), Leaf Area Index (LAI), Normalized Differ-
ence Vegetation Index (NDVI), albedo (ALB), canopy fraction (fv),

irrigation fraction (firr), and land surface temperature (LST).

Variables
Source and
resolutions Usage

Ground observations
P, Tmax, Tmin, Ws AZMET, one hour,

point
Bias correction

ET, RL CAP-LTER, 30 min,
point

Model evaluation

Gridded meteorological datasets
P, Tmax, Tmin, Ws L15, 6 km, daily Meteorological

forcings
Remote sensing products
LAI, ALB, NDVI,
fv

MODIS, 500 m, 16 day Vegetation
parameters

Land cover
classes

NLCD, three year,
30 m

Vegetation
parameters

Land cover
classes

NLUD, 10 year, 90 m Vegetation
parameters

Crop firr CDL, one year, 30 m Irrigation fraction
Urban firr NAIP, one year, 1 m Irrigation fraction
LST MODIS, 12 h, 1 km Model evaluation
LST GOES, one hour, 5 km Model evaluation

Notes: MODIS, Moderate Resolution Imaging Spectroradiometer;
CDL, Cropland Data Layer; NAIP, National Agricultural Imagery
Program; GOES, Geostationary Operational Environmental Satel-
lite.
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This mode iteratively solves for LST to minimize the
error obtained in the surface energy balance closure
at each timestep. It requires more computational
effort as the surface energy fluxes depending on sur-
face temperature (sensible heat, latent heat, and
ground heat) are calculated simultaneously in each
iteration to compensate for the net radiation (more
details in Liang et al. 1994). For this study, we used
a version of VIC that has been improved in its repre-
sentation of ET in arid and semiarid regions (Bohn
and Vivoni 2016; Bohn et al. 2018). The model
improvements include: (1) a new clumped vegetation
scheme that divides each vegetation tile into vege-
tated and nonvegetated areas (i.e., bare soil), which
is more appropriate for the sparse vegetation in the
study region; (2) parameterizing the vegetation frac-
tion (fv) as well as other parameters (LAI, ALB) with
remotely sensed observations; and (3) a sprinkler-
type irrigation scheme with a monthly variation of
irrigation fractions (firr), which is important to repre-
sent cropping practices and changes in cropland
areas (Fan et al. 2014; Shi et al. 2018). In each time-
step, water is applied to the irrigated portion of each
grid cell as a supplement to P in order to avoid water
stress in crops or urban plants. Similar irrigation
schemes have been widely used in LSMs (Ozdogan
et al. 2010; Leng et al. 2013) and energy balance

models (Dhungel et al. 2019). Soil moisture deficit
irrigation starts when the top layer soil moisture (θ)
drops below the critical point and continues until θ
reaches saturation. Using this approach, VIC has
been previously used to evaluate the influence of irri-
gation (e.g., Bohn et al. 2018; Chen et al. 2018; Shah
et al. 2019).

Irrigation Fraction and Soil Map

To determine urban and agricultural irrigation
fractions (Figure 4a), we merged two high-resolution
land cover maps. For urban irrigation, we used a
high-resolution land cover map (1 m) from the
National Agricultural Imagery Program in the year
2010. As described in Li, Myint, et al. (2014), this
map classifies the PMA into roads, buildings, soil or
rock, vegetation, cultivated land, and open water bod-
ies. Given the need for urban irrigation to support
vegetation in Phoenix, we assumed that pixels classi-
fied as tree and grass were irrigated. We then derived
the irrigation fraction for all urban land use types
using spatial aggregation by grouping the 1 m vege-
tation into the 30 m NLCD classes occurring with
each 1 km grid cell. For crop irrigation, we used the
Cropland Data Layer product, which provides crop

FIGURE 4. (a) Planted area fraction, (b) total area of irrigation by plant type, and (c) monthly irrigation fraction for urban and
agricultural areas.
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type information at 30 m resolution (Wickham et al.
2014). Resulting from this analysis, we found that
the total irrigated area is 570.02 km2 (43.67% tree,
45.84% grass, and 10.49% shrub) in urban regions
and 1,723.34 km2 in croplands, among which alfalfa
(47.55%) and cotton (30.15%) are dominant classes
(Figure 4b). To determine the irrigation duration, we
used NDVI as a phenological indicator given its prior
use in central Arizona (Zheng et al. 2015). We used a
threshold detection method to determine the irriga-
tion period, resulting in an irrigation scheme that is
turned on when NDVI is higher than the selected
threshold (0.23 and 0.25 for urban and cropland
areas). Monthly irrigation fractions for urban and
agricultural lands over the study period are shown in
Figure 4c.

Recent VIC modeling studies typically use soil
properties from L15 obtained from the FAO-
UNESCO Digital Soil Map of the World and
calibrated in previous studies (Maurer et al. 2002;
Livneh et al. 2013). However, the spatial resolution
(12 km) is too coarse to be compatible with the high-
resolution vegetation datasets used in this study. To
address this, we conducted a high-resolution mapping
of soil type from the clay, silt, and sand fractions
obtained from the SoilGrids250m product (Hengl
et al. 2017) based on the United States (U.S.) Depart-
ment of Agriculture soil classification scheme. Once
the soil type was determined, the soil properties were
obtained from the library of VIC soil parameters
(available at http://vic.readthedocs.io/en/master/Doc
umentation/soiltext) for the three soil layers specified
in the model. For the irrigation simulation, the key
soil parameters include the thickness of the top soil
layer, bulk density, soil density, fractional soil mois-
ture content at the critical point, and saturated
hydraulic conductivity.

Numerical Experiments and Model Evaluation

We first conducted two sets of VIC experiments
with the irrigation scheme turned off (VIC-NOIRR)
and on (VIC-IRR) as shown in Table 4. Model com-
parisons of ET were carried out with the EC datasets
in year 2012. We then compared simulated LST with
GOES from 2011 to 2013 and MODIS from 2004 to
2013, based on forcing data availability. After the
model evaluation, we explored the spatiotemporal
variation of ICC by conducting a set of experiments
using dynamic (DYN) and climatological (CLM) vege-
tation parameters with irrigation turned on or off.
Vegetation parameters and irrigation fractions used
in CLM were calculated as average monthly values
from 2004 to 2013. In contrast, the DYN experiment
allows for interannual variations responding to

climate variations and differences in agricultural
management. The ICC metric, which is similar to the
urban water capacity proposed by W19, is defined as
the amount of irrigation water needed to reduce the
LST by 1°C, as:

ICC¼ Irr

ΔLST
¼ Irr

LSTNOIRR�LSTIRR
, (2)

where Irr is the daily average irrigation depth
(mm/day), calculated as the volumetric water use
over the entire grid cell (including both irrigated and
nonirrigated tiles), at 1 km resolution, and ΔLST is
the difference in LST between the VIC-NOIRR and
VIC-IRR cases.

RESULTS

Model Evaluations at EC Tower

We first evaluate the model performance at the EC
tower by comparisons of observations to the simula-
tions with the irrigation scheme turned on (VIC-IRR)
and off (VIC-NOIRR). Figure 5 compares daily ET
over the year 2012 from observations and the VIC
simulations at the co-located grid cell (1 km). When
the irrigation scheme is turned off, VIC only captures
the response of ET to rainfall pulses and significantly
underestimated ET during most of the year (correla-
tion coefficient, CC, of 0.25 and root mean square
error, RMSE, of 1.60 mm/day). These errors are
expected due to outdoor water use in small grass and
tree areas around the EC tower (Chow et al. 2014).
In contrast, the VIC-IRR simulation captures the sea-
sonal evolution of ET and shows improved perfor-
mance (CC = 0.73, RMSE = 0.59 mm/day) through
the addition of irrigation water (Irr = 2.6 mm/day),
consistent with previous efforts of Bohn and Vivoni
(2016). For VIC-IRR, there is a very low sensitivity to
rainfall forcing errors from the gridded product of

TABLE 4. Numerical experiments. DYN refers to dynamic irriga-
tion fractions and vegetation, whereas CLM refers to static irriga-

tion fractions and climatological vegetation. In both cases,
irrigation can be turned on (IRR) and off (NOIRR, 0 irrigation frac-

tion).

Experiment Irrigation fraction Vegetation parameters

CLM-NOIRR 0 Climatological
CLM-IRR Static Climatological
DYN-NOIRR 0 Dynamic
DYN-IRR Dynamic Dynamic
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L15 due to the dominant role of irrigation water
input. We note that VIC-IRR and VIC-NOIRR have
similar daily ET in August (4.9 and 5.2 mm, respec-
tively) when storm events increase θ, leading to a
more limited role of urban irrigation (Templeton
et al. 2018).

In Figure 6, we compare LST derived from long-
wave radiation observations with estimates from
MODIS, GOES, and the VIC-IRR simulation. Com-
parisons are presented as monthly LST differences
(MODIS, GOES, or VIC-IRR minus observations) and
shown as averages (symbols) and �1 standard devia-
tion (std) within each month (error bars). Average dif-
ferences are within �2.0°C for GOES during both
daytime and nighttime, whereas MODIS has higher
discrepancies (up to �5.0°C). A strong seasonal cycle
can be noted in MODIS during the daytime, with the
largest positive differences in summer, consistent
with prior efforts (Li, Yu, et al. 2014; Beale et al.
2019; Martin et al. 2019). Overall, GOES shows bet-
ter agreement with LST at the EC tower as compared
to MODIS especially during the summer, which may
seem counterintuitive considering the higher spatial
resolution of MODIS. We attribute this to the consis-
tency in diurnal temporal sampling between GOES
and the local observations. Beale et al. (2019) found a
similar pattern, finding that the seasonal variance
between LST products was due to solar radiation and
the time-varying viewing angle. Other sources of

satellite LST uncertainty include the retrieval algo-
rithm, atmospheric correction, and surface emissivity
(Li et al. 2013). Importantly, the VIC-IRR simulation
reproduces daytime and nighttime LST well as com-
pared to observations (+2.75°C and −4.00°C), typi-
cally better than MODIS and on occasions
comparable to GOES. This suggests VIC-IRR cap-
tures LST with an accuracy similar to remote sensing
products by resolving the diurnal cycle, with differ-
ences due to the spatial variations between the
radiometer footprint (~250 m in radius), the size of
the VIC grid cell (1 km), and the resolution of the
remote sensing products (1 km for MODIS and 5 km
for GOES).

Model Evaluations at Regional Scale

We next compared the diurnal cycle of simulated
LST with those obtained from GOES averaged over
natural shrublands, croplands, and urban areas in
the region (Figure 7). As expected from the analysis
at the EC tower, VIC has differences with GOES over
all the land cover types, but in general, captures the
diurnal evolution of LST well. Comparisons over
shrub areas with VIC-NOIRR are consistent with
previous studies using VIC (Mitchell et al. 2004; Koch
et al. 2016). Interestingly, differences between VIC-
IRR and GOES are lower in irrigated areas,

FIGURE 5. Comparison of daily ET from EC observations with the simulations for VIC-NOIRR and VIC-IRR simulations in the year 2012.
Inset is a scatter plot of ET (mm/day, n = 222). VIC-IRR, Variable Infiltration Capacity experiments with the irrigation scheme turned on;

VIC-NOIRR, Variable Infiltration Capacity experiments with the irrigation scheme turned off.
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indicating an improvement in the simulations due to
the irrigation scheme. Average daily LST differences
were reduced for the daytime (0800 to 1700 local
time) from 3.2°C to 0.3°C over croplands and from
4.2°C to 1.4°C over urban areas. Furthermore, this
shows that VIC-IRR can capture the evaporative cool-
ing effect of irrigation in a means consistent with
prior observations (Templeton et al. 2018) and model-
ing work (Yang et al. 2019). The evaporative cooling
effect is also compared to the diurnal cycle of air tem-
perature (Tair) obtained from the forcing product for
each land cover type. As expected, during most of the
daytime (0700–1700 local time), Tair is lower than
LST, while during the nighttime, Tair is larger than
LST. Differences in the temporal lags between Tair

and LST are likely due to the variable heating
between the atmosphere and the specific thermal and
irrigation conditions in each land cover type (Song
et al. 2017). Inspection of particular days (not shown)
indicates that the evaporative cooling effect in VIC-
IRR can be substantial enough to lead to Tair and
LST having similar diurnal cycles over the study
region, as noted in the work of Vivoni et al. (2020).

Figure 8 presents the spatial patterns of daytime
and nighttime LST as obtained from VIC-IRR and
MODIS, each averaged over 2004 to 2013. To comple-
ment this, Table 5 shows differences (VIC-IRR minus
MODIS) and RMSE values for each year. The perfor-
mance of VIC-IRR is stable across the study period,
suggesting that the model can capture LST under

different conditions. Due to the cooling effect of irri-
gation, croplands and urban areas generally exhibit a
lower daytime LST as compared with shrublands
with no irrigation (39°C and 40°C vs. 41°C), as
obtained from MODIS. VIC-IRR captures this pattern
well, but exhibits higher daily averaged LST than
MODIS over shrublands and urban areas in the day-
time (+2.67°C and +2.01°C) and higher LST over
croplands at nighttime (+2.34°C). In light of the
many factors affecting the simulation of LST, these
small differences suggest that the VIC model is reli-
able for studying the ICC in the region.

Overall, the variations in LST are represented well
in the study region and comparable with results from
previous modeling efforts (e.g., Xiang et al. 2014;
Salamanca et al. 2018; Ko et al. 2019). The model
comparison to LST derived from longwave radiation
observations showed that the bias of simulated aver-
age daily LST is −0.6°C, which is similar to the
remote sensing products (−0.6°C and −0.7°C for
GOES and MODIS, respectively). At the regional
scale, the VIC-IRR simulated LST is 1.1°C lower than
MODIS observations when averaged from 2004 to
2013, with RMSE of 4.4°C. The relatively large
RMSE values reflected the interplay of uncertainties
associated with the meteorological forcing product
(L15), vegetation parameterization, and model
assumptions made when calculating LST. Neverthe-
less, the stable model performance of LST across dif-
ferent years under varying climate conditions and

FIGURE 6. Monthly differences (estimate minus observation) at EC tower during (a) daytime and (b) nighttime. Symbols are average values
and error bars are �1 std.
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FIGURE 7. Comparison of Tair and simulated LST with GOES LST over shrubland, cropland, and urban areas (2011–2013). (a–c) Spatial
average Tair and LST. (d–f) Average simulation differences (VIC minus GOES) as symbols with �1 spatial std as error bars.

FIGURE 8. Comparison of spatial maps of LST from MODIS and VIC-IRR obtained as averages during daytime and nighttime periods from
2004 to 2013.
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irrigation practices indicates that the model is robust
in capturing the irrigation cooling effect on LST.

Irrigation Cooling Capacity

Given the confidence obtained on the model perfor-
mance, we then explored the spatiotemporal varia-
tions of the evaporative cooling effect of irrigation.
Figure 9 shows the difference between VIC-NOIRR
and VIC-IRR (ΔLST = LSTNOIRR − LSTIRR) averaged
over winter (January–March) and summer (July–-
September) seasons from 2004 to 2013. While
irrigation-induced cooling is significant, the magni-
tude of ΔLST varies for different areas within the
study region and for different seasons. For instance,
the average ΔLST is higher over croplands (1.85°C)
than the urban area (1.43°C) due to a larger firr.
There is also a seasonal evolution of ΔLST, suggest-
ing stronger irrigation cooling effects over croplands
and urban areas during the summer (2.49°C and
1.87°C) with more intensive irrigation than in the
winter (0.77°C and 0.65°C) which has more limited
irrigation. Note that the seasonal average of Irr is
2.32 mm/day in the winter and 4.16 mm/day in the
summer for croplands, whereas the average Irr is
1.78 mm/day (winter) and 2.87 mm/day (summer)
when averaged over urban areas. In addition, a lar-
ger spatial variation of ΔLST is obtained over crop-
lands (std of 1.39°C) as compared to urban areas (std
of 0.88°C). This is primarily due to variations in crop-
ping practices in different irrigation districts and at
the farm level, including crop rotations, fallow fields,
and crop phenology. In contrast, the urban area
mostly reflects differences in outdoor water use in
vegetated landscaping between low-, medium-, and
high-density classes.

We compared the CLM and DYN experiments to
determine the effects of interannual variations in cli-
mate and vegetation on ICC. CLM only captures
year-to-year variations in P, while DYN also includes
interannual changes in vegetation parameters (e.g., fv
and firr). Table 6 summarizes the simulation results
with respect to Irr, ΔLST, and ICC for croplands,
urban areas, and all irrigated locations. First, we pre-
sent the relation between annual values of Irr and
ΔLST in Figure 10a with the symbol size proportional
to annual P (i.e., smaller size is lower P). Irr gener-
ally increases as the annual P decreases since addi-
tional irrigation is needed to meet the water demand
from crops and urban vegetation. The positive rela-
tion between Irr and ΔLST implies that higher reduc-
tions in LST occur with greater irrigation amounts,
as expected. Croplands receive more Irr as compared
to urban areas and have larger reductions in LST in
both CLM and DYN experiments. As a result, crop-
lands require a higher Irr to obtain a 1°C reduction
in LST as captured by ICC in Table 6. Furthermore,
the DYN experiment has lower ICC than CLM,
implying that time-varying vegetation reduces the
need for irrigation for an equivalent reduction of
LST. This is consistent with the larger std values
obtained in the DYN experiment which includes both
climate and vegetation variations from year to year.

To explore this further, we present the spatial varia-
tion of the Irr difference between the wettest (2005) and
driest (2012) years for the CLM experiment in Fig-
ure 10b. Since these years use the same seasonally vary-
ing vegetation, any differences are due to meteorological
variations, including P and vapor pressure deficit. Dif-
ferences in Irr are relatively uniform across irrigated
areas, with croplands having slightly higher values than
urban areas (0.33 vs. 0.22 mm/day). Interannual varia-
tions in climate conditions have a modest control on ICC

TABLE 5. Annual differences (VIC-IRR minus MODIS) and root mean square error (RMSE) in daily average daytime and nighttime LST for
shrubland, cropland, and urban areas from 2004 to 2013.

Year

Difference (RMSE) in °C

Daytime Nighttime

Shrubland Cropland Urban Shrubland Cropland Urban

2004 2.80 (5.37) 0.89 (4.93) 1.91 (4.63) −0.24 (3.83) 2.79 (4.37) 1.00 (3.25)
2005 2.39 (5.09) 1.22 (4.91) 2.66 (4.85) −1.51 (4.29) 2.03 (4.07) 0.47 (3.13)
2006 3.09 (5.62) 1.28 (5.11) 2.45 (4.94) −1.42 (4.21) 2.02 (4.12) 0.06 (3.16)
2007 3.65 (5.89) 1.35 (5.15) 2.58 (4.91) −0.71 (3.87) 2.22 (4.06) 0.20 (3.05)
2008 2.26 (4.85) 0.87 (4.71) 1.87 (4.39) −0.41 (4.62) 2.57 (4.87) 0.76 (4.00)
2009 3.11 (5.34) 0.94 (4.95) 2.09 (4.44) −1.08 (3.91) 2.22 (4.13) −0.08 (3.10)
2010 2.45 (4.96) 0.83 (4.88) 2.07 (4.59) −0.87 (3.93) 2.30 (4.12) 0.35 (3.15)
2011 2.88 (5.47) 0.92 (5.11) 1.91 (4.59) −0.74 (3.84) 2.21 (4.05) −0.18 (3.11)
2012 1.78 (4.64) 0.18 (4.68) 1.06 (4.04) −0.51 (3.81) 2.33 (4.10) −0.23 (3.04)
2013 2.31 (4.94) 0.53 (4.76) 1.59 (4.25) −0.31 (3.88) 2.75 (4.39) 0.35 (3.17)
All 2.67 (5.23) 0.90 (4.92) 2.01 (4.57) −0.77 (4.02) 2.34 (4.23) 0.26 (3.22)
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FIGURE 9. Comparison of LST between VIC-IRR and VIC-NOIRR during winter (January–March) and summer (July–September) seasons
from 2004 to 2013 and their difference (ΔLST).

TABLE 6. Mean and std of Irr, ΔLST, and ICC for cropland, urban, and all irrigated areas for experiments with CLM and DYN vegetation
parameters.

Areas

Mean (std)

Irr (mm/day) ΔLST (°C) ICC (mm/day/°C)

CLM DYN CLM DYN CLM DYN

Cropland 3.36 (1.26) 3.31 (1.44) 1.79 (0.48) 1.85 (0.55) 2.06 (0.17) 1.99 (0.21)
Urban 2.29 (0.70) 2.31 (0.73) 1.41 (0.32) 1.43 (0.33) 1.78 (0.14) 1.77 (0.14)
All 2.82 (1.15) 2.80 (1.25) 1.61 (0.45) 1.64 (0.50) 1.91 (0.21) 1.87 (0.20)

FIGURE 10. (a) Dependence of irrigation amount (Irr) on ΔLST over irrigated areas from 2004 to 2013 for the CLM and DYN experiments.
(b) Difference in Irr for CLM between 2005 and 2012. (c) Difference in Irr between DYN and CLM for 2008.
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(difference of 0.07 mm/day/°C between 2005 and 2012),
especially in urban areas where irrigation is consistent
from year to year. In contrast, the impact of dynamic
vegetation on Irr and ICC is significant, as demon-
strated in the spatial variation of the difference in Irr
between the DYN and CLM experiments (IrrDYN–-
IrrCLM) in Figure 10c for the year 2008 which had an
average value of P. Clearly, the difference in Irr has
large spatial variability, especially over croplands (std of
1.44 mm/day). The magnitude of Irr difference (average
of 0.13 mm/day) demonstrates that the dynamic inter-
annual variation of land surface conditions, particularly
over agricultural areas with varying cropping practices,
has a more important effect than year-to-year differ-
ences in climatic conditions. Thus, capturing vegetation
parameters in central Arizona from remote sensing
products is considered essential for adequately repre-
senting the irrigation cooling efficiency.

DISCUSSION

Uncertainty of Remote Sensing Products

While the study results shed light on the value of
simulated LST for tracking the effects of irrigation,
there are uncertainties associated with the remote
sensing products used to build confidence in the
model. Due to their relative coarse spatial resolu-
tions, MODIS products generally encounter the
mixed pixel problem when compared to higher resolu-
tion datasets from other platforms such as Landsat
and SPOT (Tian et al. 2002). As compared to irri-
gated croplands, urban areas have a more heteroge-
neous structure with both built and natural surfaces,
which consequently may increase the classification
uncertainty and retrieval algorithms in MODIS Yang
et al. (2014). For example, we compared MODIS and
Landsat NDVI over a vegetated golf course in Phoe-
nix from 2004 to 2007, finding similar seasonal varia-
tions; however, MODIS NDVI is ~8% lower than
Landsat NDVI values. As a consequence, the VIC
model parameterization can be improved by using
remote sensing products with higher spatial resolu-
tion and spectral accuracy or through the use of data
fusion products, for example, the Spatial and Tempo-
ral Reflectance Unmixing Model (STRUM, Gevaert
and Garcı́a-Haro 2015).

Improvements in Modeling Approach

Despite the acceptable model performance in repro-
ducing LST observations, further improvements are

possible. In particular, we used a simple NDVI
threshold to determine the irrigation period and a
soil moisture deficit approach that might deviate from
urban and agricultural practices. For example, cotton
irrigation in central Arizona begins before plant ger-
mination. As a result, the initial watering period is
not detectable from NDVI (Thorp et al. 2017). We
estimate that this would cause a 10%–20% underesti-
mation of irrigation water use. Given that cotton
occupies about 30% of croplands in the region, there
is a need to improve the parameterization of the irri-
gation period for this specific crop. In addition, some
urban plants might not have NDVI signal that allows
the threshold method to work, especially during win-
ter seasons. This suggests that urban irrigation prac-
tices that capture residential landscaping choices
(e.g., Volo et al. 2014; Vivoni et al. 2020) should be
included in future studies.

Impact of Model Bias on ICC

There are considerable challenges to diagnosing
the individual contributions of the various uncertain-
ties in the VIC simulations of LST over the study
region. Future studies using structured scenarios
that vary individual component processes, along with
intercomparison to other models (e.g., Xiang et al.
2017), and the use of innovative spatial performance
metrics (e.g., Mascaro et al. 2015; Koch et al. 2016)
would be fruitful avenues. The bias of simulated LST
across the study domain (+1.86°C and +0.26°C for
daytime and nighttime, respectively) corresponds to
4.6% and 4.8% of MODIS LST observations (40°C
and 15°C for daytime and nighttime) in relative
terms. Model results showed that 2.0 mm/day of irri-
gation is required to reduce LST by 1°C across the
region, with slightly lower values in urban areas
(1.8 mm/day). As a result, it is appropriate to con-
sider a model error of 5% when simulating LST
changes resulting from applied irrigation. This sug-
gests that the average ICC (2.0 mm/day/°C) might
vary from 1.9 to 2.1 mm/day/°C when considering the
estimated error in simulating LST.

CONCLUSIONS

As a key state variable of the surface energy and
water balance, LST has received attention due to the
embedded signature of climate variability superim-
posed on site-specific properties such as soil, vegeta-
tion, and topographic conditions, as well as
management activities (Xiang et al. 2014; Ko et al.
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2019; Yang et al. 2020). In this study, we utilized the
strong effect of irrigation on LST in an arid and semi-
arid region to test a high-resolution modeling system.
Through detailed comparisons to multiyear observa-
tions spanning from a single site up to the regional
scale, we demonstrated the VIC model capacity using
a soil moisture deficit irrigation scheme to reliably
reproduce the diurnal cycle, seasonal variations, and
spatial differences in LST. The model was further
used to evaluate the spatiotemporal variations of ICC
over the agricultural–urban interface in central Ari-
zona. Results from the study indicate:

1. Through a series of improvements to the VIC
application, the model achieved a good representa-
tion of LST as compared to ground and remotely
sensed observations over shrubland, cropland, and
urban areas. While some mismatches exist
between simulations and observations, these are
likely due to uncertainties in the gridded forcing
and the complex nature of irrigation practices.
More importantly, the model reproduced the large
reductions in LST due to irrigation. For instance,
the average LST over irrigated croplands is 3°C
(or 7% in relative terms) lower than surrounding
shrublands during the daytime (~43°C) based on
VIC simulations.

2. Numerical experiments (VIC-IRR and VIC-
NOIRR) revealed the spatiotemporal variations
of LST reduction and their underlying controls.
Model results also showed that the irrigation
cooling effect on LST is more pronounced (by
~1.47°C) during the summer than in the winter.
Additionally, a larger LST reduction (by ~0.42°C)
occurs in irrigated croplands as compared to
urban areas. Larger spatiotemporal variations
are noted in LST from year to year in croplands,
which is consistent with the identified spatiotem-
poral variations in the irrigation fraction and
land surface properties. This suggests the impor-
tance of the irrigation scheme as well as the
proper parameterization of irrigation for model-
ing LST correctly.

3. Through the various experiments, we identified
that the interannual variability in cropping prac-
tices has a dominant effect on irrigation water
use that is considerably stronger than variations
in meteorological conditions across different
years. In addition, accounting for time-varying
vegetation generally reduces the need for irriga-
tion to achieve an equivalent reduction of LST.
These findings imply that quantifying how irri-
gation can ameliorate heat in central Arizona
must account for decisions made in irrigation dis-
tricts and at the individual farm level.

To conclude, the modeling effort resulted in spa-
tiotemporal patterns that represented well the
observed differences between urban, cropland, and
natural ecosystems lending support to its use for
quantifying the irrigation cooling efficiency in
central Arizona. Furthermore, this work highlights
the essential nature of time-varying vegetation
parameters for reliable LSM performance in evalu-
ating irrigation water demand and its evaporative
cooling effects. As such, a fruitful avenue of
research is to incorporate remotely sensed products
to determine the spatiotemporal patterns of vegeta-
tion conditions in evaluations of ICC in other
regions with outdoor water use. The impacts of
these dynamics should also be taken into account
when considering the impact of irrigation on atmo-
spheric conditions, for instance, through coupled
land-atmosphere modeling (e.g., Xiang et al. 2018;
Yang et al. 2019).
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