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ABSTRACT

We propose a new topology-preserving method for 3D im-
age segmentation. We treat the image as a stack of 2D images
so that the topological computation can be carried only within
2D in order to achieve computational efficiency. To enforce
the continuity between slices, we propose a compound multi-
slice representation and a compound multi-slice topological
loss that incorporates rich topological information from adja-
cent slices. The quantitative and qualitative results show that
our proposed method outperforms various strong baselines,
especially for structure-related evaluation metrics.

Index Terms— Topology, 3D Image Segmentation, Com-
pound Multi-Slice

1. INTRODUCTION

In biomedical image analysis, accurate segmentation of
biological entities or anatomical structures remains a very
crucial step for a wide range of clinical applications, such
as computer-aided diagnosis [1], screening of medical con-
ditions [2] and visual augmentation of medical devices [3].
In recent years, deep-learning-based methods have achieved
close-to-human-level performance [4, 5]. However, existing
algorithms, mostly focusing on per-pixel accuracy, are prone
to structural errors, e.g., missing connected components and
broken connections. Such structural errors can be fatal for
downstream analysis of fine-scale structures such as neuron
membranes or processes, vessels, cells, etc. The topology of
these structures carries significant semantic / functional infor-
mation. For example, correct delineation of thin objects, such
as neuron membranes and processes, is vital in providing
accurate morphological and structural quantification of the
underlying system; small pixel-wise errors can lead to broken
membranes, merging different neurons into one connected
region. See Fig. 1 for an illustration.

Recently, a novel method has been proposed to train deep
nets to segment objects with correct topology [6]. The idea
is to introduce a topological loss that complements existing
cross-entropy loss and enforces the network to learn correct
topology. However, the method is restricted to 2D images.

* indicates equal contributions.

Fig. 1. An illustration of structural accuracy. From left to
right: a sample patch, the ground truth, results of UNet,
TopoLoss, and our compound multi-slice Topo-UNet.

An extension to 3D images, although feasible in theory, can
be computationally prohibitive.

Generating 3D results by stacking 2D predictions is a nat-
ural idea. The major shortcoming of such approach is that
slices are treated independently, whereas their spatial conti-
nuity could have been leveraged. When segmenting one slice,
observations from adjacent slices should be used to clarify
challenging cases as consecutive slices likely have similar
segmentations.

To fully leverage the continuity information, we propose
to learn a compound multi-slice representation. For each
slice, we learn a feature representation using not only itself,
but also its adjacent slices. The feature representation is a
compound of multiple slices along Z-dimension; it has com-
pound channels, representing the current slice (si), itself plus
2 immediately adjacent slices ([si�1, si, si+1]), and itself plus
4 nearby slices ([si�2, · · · , si+2]). The compound multi-slice
representation carries contextual information from neigh-
boring slices. It is more robust to noise and leads to more
accurate segmentation for the current slice.

We cannot simply use the topology of adjacent slices as
additional supervision, as they may be incorrect for the cur-
rent slice. Therefore, we propose a novel compound multi-

slice topological loss that leverages the multi-slice represen-
tation and enforces better topological accuracy of the current
slice. The core idea is that the critical locations for topologi-
cal accuracy can be shared among adjacent slices.

In summary, we propose a compound multi-slice repre-
sentation that incorporate information from adjacent slices,
and a compound multi-slice topological loss for training the
network to incorporate topological information. Our pro-
posed topology-preserving approach achieves better perfor-
mance in both per-pixel accuracy and topological accuracy.
See Fig. 1 for an illustration.



2. RELATED WORKS

In pre-deep learning era, heuristic methods such as ran-
dom forest [7] are always used to obtain probability maps.
With the advent of deep learning, convolutional neural net-
works (DCNN) [8, 9] have been used in more and more sce-
narios for medical image segmentation.

In terms of 3D medical image data, we usually segment
the images slice by slice in a 2D way, and then linking meth-
ods are adopted to generate 3D neuronal objects based on pre-
vious 2D segmentation results [10]. Researchers have already
developed efficient deep learning methods for segmenting 2D
EM images [11]. Good 3D segmentation performance de-
pends on both robust 2D segmentation for slices and reason-
able linking methods to aggregate 2D segmentation results.
But the problem is that the probability maps of different slices
are generated independently, and the contextual information
is ignored. As a result, errors are introduced due to inconsis-
tency in the linking stage.

Some other researchers have tried to solve 3D medical
segmentation in a direct 3D way [12, 13, 14]. Though these
approaches could take advantage of contextual information
between different slices, they demand much higher computa-
tion cost, which can be unacceptable in practice. In addition,
3D networks are lacking the resources of pre-trained models
using 2D natural images that many 2D methods adopt. As
a result, it takes much longer training time and can possibly
suffer from unstable convergence [15].

However almost all these methods focus on pixel accuracy
and treat every pixel equally. Beside pixel accuracy, struc-
ture should also be critical for medical scenarios. To preserve
structural accuracy, topological loss functions based on per-
sistent homology was proposed for various tasks such as im-
age segmentation [6, 16], crowd localization [17] and classi-
fier regularization [18]. Also, another topological loss func-
tion based on discrete Morse theory has been proposed for
image segmentation [19]. We note in the EM image context,
one may directly learn to better partition the image rather than
segmenting membranes [14]. But this method cannot handle
other types of topology as our method can.

3. METHOD

Our method treats a 3D image as 2D slices stacked along
the Z-dimension. It segments these 2D slices one by one.
When segmenting each slice, our method leverages adjacent
slices’ information using a compound representation. Topo-
logical information of adjacent slices are also used through a
compound topological loss, so that the trained network pre-
serves the correct topology. Figure 2 illustrates the whole
pipeline of our method.

Figure 2(a) illustrates how the compound multi-slice rep-
resentation is learnt. We learn feature representation of the
same slice with compound networks, namely, using different

Fig. 2. The segmentation pipeline of the proposed method,
and the architecture contains three modules: (a) compound
multi-slice representation module; (b) computation process of
final feature map from compound models; (c) computation of
compound multi-slice topological loss.

collections of nearby slices as input for each. Assume the
slice of interest is the i-th one, denoted as si. We use three
different multi-slice representations (hence the word “com-
pound”), learnt with the slice itself ([si]), the slice and its two
adjacent ones ([si�1, si, si+1]), the slice and its 4 neighbor-
ing slices ([si�2, · · · , si+2]). Take the 3 slices representation
for example. We use a UNet-based sub-network, which takes
the three slices (si�1, si and si+1) as input and predicts the
likelihood maps of foreground and background for slice si.
These likelihood maps are considered the representation of
the 3-slices (3s) sub-network. Similarly, we can have rep-
resentations of 1s sub-network and 5s sub-network. For con-
venience, we call these sub-networks UNet[1s], UNet[3s] and
UNet[5s], respectively. These sub-networks are pre-trained as
standard segmentation UNets, except that they take 1, 3 or 5
input channels. During training, these sub-networks are com-
bined with the prediction and the topological loss evaluation
and are trained end-to-end.

3.1. Compound Multi-Slice Representations

These representations of 1s, 3s and 5s are used to predict a
final likelihood map. We use a max-projection over the fore-
ground likelihood maps of UNet[1s], UNet[3s] and UNet[5s]
to generate the foreground likelihood map. Similarly, we use
a max-projection over the background likelihood maps of the
three UNets to generate the background likelihood map. Af-
ter a re-normalization via softmax, we obtain the final like-
lihood map. This is illustrated in Figure 2(b). The gener-
ated likelihood map is used for final prediction during testing.
During training, it will be compared with ground truth label-
ing through cross-entropy loss. Here we use max-project over
both the foreground likelihood maps and the background like-
lihood maps in order to avoid false negative detection in both
foreground and background. This way, we mitigate the error



Fig. 3. Illustration of the topological loss in [6].

rate in prediction by aggregating over the compound of multi-
slice models (1s, 3s and 5s). The network avoids being either
over-confident or under-confident.

The final likelihood map prediction, denoted as byi, will
also be used to evaluate the topological loss, as will be ex-
plained below.

3.2. Compound Multi-Slice Topological Loss

It remains to introduce the topological loss, which en-
forces the final prediction byi to have the correct topology. The
key difference between our new topological loss and the one
by Hu et al. [6] is the usage of the compound of multi-slice.
Our compound multi-slice topological loss incorporates topo-
logical information from nearby slices to better segment the
current slice.

In [6], the topological loss compares a predicted like-
lihood map and the ground truth segmentation in terms
of their topology. Essentially, the loss identifies critical
points of the likelihood map, e.g., saddles and extrema,
which correspond to topological error. See Figure 3 for
an illustration. The algorithm first samples patches over
the image domain (Figure 3(a)). For the sample patch in
(Figure 3(b)), the topological loss identifies saddle points
(highlighted with red arrows) corresponding to broken han-
dles in the prediction (Figure 3(c)). These critical points
are used to define the topological loss (for the i-th slice) as
Ltopo(byi, yi) =

P
c2C(byi)

(byi(c)� yi(c))2, in which C(byi) is
the set of identified critical points (corresponding to critical
pixels) of the likelihood map byi. yi is the ground truth mask.
In other words, the topological loss identifies these topology-
error-relevant critical points that correspond to difficult lo-
cations (e.g., blurred boundary region). Then it pushes the
prediction at these locations closer to ground truth.

To incorporate topological information from nearby
slices, we need to use the compound representations. We
observe in the original topological loss, and noticed that the
key is to identify critical points and to force the neural nets
to be correct at these critical locations. This inspires us to
identify multiple sets of critical points, each from a different
multi-slice model. These critical points are complementary
to each other and should all be taken into consideration for
computing the topological loss. In particular, recall the repre-
sentations are likelihood maps predicted by different UNets
(UNet[1s], UNet[3s] and UNet[5s]). We can compute the
critical point sets of these likelihood maps corresponding to
incorrect topology. Denote these critical point sets as C1s,
C3s, C5s. We can then rewrite the compound multi-slice

Fig. 4. The motivation of combining critical points from mul-
tiple predicted likelihood maps. (a) the original image, (b),
(c) and (d) the middle three images are likelihood maps pre-
dicted by different sub networks and their corresponding criti-
cal points identified by TopoLoss, (e) the final likelihood map
with combining critical points. Looking at the original im-
age, actually all these critical points are difficult locations for
prediction, which means that these critical points are comple-
mentary to each other and can be combined to achieve better
results.

topological loss as

Lmr�topo(byi, yi) =
X

c2C1s[C3s[C5s

(byi(c)� yi(c))
2.

Note we are still forcing the final prediction byi to be correct
at critical points. The only difference is that the critical points
are identified by inspecting predictions of different models.
See Figure 4 for an example. The critical points identified by
representations of different models ((b)-(d)) all correspond to
challenging locations. Using all of them in the final predic-
tion will efficiently train the neural network to achieve high
topological accuracy.

Note that we also need to sample patches over the whole
image. To further improve efficiency, we only select patches
on which topological error happens. In particular, for each
patch we calculate the Betti error by comparing the Betti
numbers of the prediction and the ground truth mask (Fig-
ure 3 (c)(d)). Betti number counts the number of topological
structures, e.g., connected components or handles. The incen-
tive is that computing and comparing Betti numbers is much
cheaper than finding critical points corresponding to incor-
rect topology (which requires calling the algorithm for per-
sistent homology [20]). Figure 2(c) illustrates how the topo-
logical loss is computed. Finally, our overall loss is L =
LCE +�Lmr�topo, where � is the weight of topological loss.

4. EXPERIMENTS

Datasets. We demonstrate the effectiveness of our proposed
method with two different 3D Electron Microscopic Images
datasets: ISBI13 [21] and CREMI1. The size of ISBI13 is
100x1024x1024 and the size of CREMI is 125x1250x1250.
The goal of this segmentation task is to recognize the mem-
branes and then partition the original image into different re-
gions/neurons. For all the experiments, we use 80% of the
training samples as training and the remaining 20% as valida-
tion, and report the performance over the validation set.

1https://cremi.org/



Evaluation metrics. In this paper we adopt similar evalu-
ation metrics as of [6], which are pixel accuracy and Betti
number error. Details of the evaluation metrics can be found
in the Sec.3 of [6]. Generally speaking, pixel accuracy is
the most traditional metric for segmentation task and could
roughly evaluate the performance of different segmentation
models. Betti number error is directly related to image struc-
ture, which is more applicable to biomedical domain tasks.

4.1. Implementation details

We adopt a classical UNet with depth five as our back-
bone. Also, we use data augmentation techniques, random
noise and brightness changes, to improve the performance.
Baselines. To demonstrate the effectiveness of compound
multi-slice topological loss, we compare the results of the
proposed method with five baselines: 1) Classical UNet
with only one slice as input (traditional 2D segmentation,
UNet[1s]); 2) UNet with 3 sequential slices as input (UNet[3s]);
3) UNet with 5 sequential slices as input (UNet[5s]); 4) UNet
with compound multi-slice representation (UNet[1s3s5s]); 5)
TopoLoss [6]. Because of the computational cost and fair-
ness for comparison, we re-implement the TopoLoss with our
UNet backbone instead of the original version.
Train setting. For UNet training parameters, we set 0.0001
as the learning rate. The number of training epochs are 30 and
100 for CREMI and ISBI13 respectively (without topological
training), followed by another 3 and 10 epochs to train models
with topological loss. So our training contains two parts: for
the first part we only use cross entropy as loss function; for
the second part, weighted topological loss is incorporated into
the networks to fine-tune the pre-trained model.
Topo-incorporating details. As described above, topologi-
cal training is added to the last “UNet with multi deep mod-
els” setting to improve the structure accuracy of the segmenta-
tion. Specifically, the patch size is also 65 * 65 for topological
loss function, and the balanced weight for topological loss is
� = 0.01. To reduce the computation cost, we use pre-trained
model before incorporating the topological loss. To be noted
that for the training of CREMI dataset, the topological loss is
fed into training after 30 epochs. The total loss is somehow
stable before over-training (34 epochs in this case). Before
over-training, the topological loss decreases while the cross
entropy loss is oscillating. This reason is that topological loss
forces the network to identify critical pixels and fix them and
and may fool the cross entropy loss.

4.2. Result Analysis

We compare the proposed method (Topo-UNet) with five
different networks configurations using two different evalu-
ation metrics mentioned above. The quantitative results are
illustrated in Table. 1. The best results are highlighted, most
of which generated by our proposed method. For accuracy

Table 1. Experiment results for different models on two pop-
ular 3D medical datasets

Dataset MODELS Accuracy Betti Error

CREMI

UNet[1s] 0.9620 2.59
UNet[3s] 0.9601 1.98
UNet[5s] 0.9690 1.85

UNet[1s3s5s] 0.9700 1.67
TopoLoss [6] 0.9664 1.90

Topo-UNet[1s3s5s] 0.9713 1.32

ISBI13

UNet[1s] 0.9123 2.54
UNet[3s] 0.9120 1.88
UNet[5s] 0.9099 1.41

UNet[1s3s5s] 0.9168 1.56
TopoLoss 0.9138 1.67

Topo-UNet[1s3s5s] 0.9156 1.25

Fig. 5. Qualitative results of the proposed method compared
to other models. From left to right, sample images, ground
truth, results for UNet[5s], UNet[1s3s5s], TopoLoss and our
proposed Topo-UNet[1s3s5s].

of ISBI13 dataset, our method is second only to our com-
pound multi-slice network without TopoLoss integrated. It
can also be observed that results of compound multi-slice
(UNet[1s3s5s]) are in general better than the results of single-
slice (UNet[1s]) or multi-slices (UNet[3s] and UNet[5s]) con-
figurations.

Fig. 5 shows qualitative results. Results in column 4
(UNet[1s3s5s]) are less fragmented, comparing to one multi-
slice network (column 3). The last column corresponds to the
results of our proposed system, Topo-UNet, which demon-
strates better connectivity in terms of structures and topology,
comparing to other network configurations.

5. CONCLUSION

In this paper, a novel method is proposed to extend the
topology-preserving training to 3D EM images without much
additional computational cost. When segmenting each slice,
our proposed method leverages adjacent slices’ information
using a compound multi-slice representation. Topological in-
formation of adjacent slices are also used through a com-
pound multi-slice topological loss to segment with correct
topology.
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