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Abstract. Characterization of breast parenchyma on dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) is a challenging task
owing to the complexity of underlying tissue structures. Current quanti-
tative approaches, including radiomics and deep learning models, do not
explicitly capture the complex and subtle parenchymal structures, such
as fibroglandular tissue. In this paper, we propose a novel method to di-
rect a neural network’s attention to a dedicated set of voxels surrounding
biologically relevant tissue structures. By extracting multi-dimensional
topological structures with high saliency, we build a topology-derived
biomarker, TopoTxR. We demonstrate the e�cacy of TopoTxR in pre-
dicting response to neoadjuvant chemotherapy in breast cancer. Our
qualitative and quantitative results suggest di↵erential topological be-
havior of breast tissue on treatment-näıve imaging, in patients who re-
spond favorably to therapy versus those who do not.

Keywords: Topology · Persistent Homology · Breast Cancer· Neoadju-
vant Chemotherapy.

1 Introduction

Traditional cancer imaging biomarker studies have mostly been focused on tex-
ture and shape-based analysis of the lesion, often ignoring valuable information
harbored in the tumor microenvironment. There is an overwhelming evidence of
diagnostic and prognostic information in the tumor periphery, such as the peritu-
moral stroma and parenchyma [4]. In breast cancer, the phenotypic heterogenity
in the extra-tumoral regions stems from factors such as stromal immune infiltra-
tion, vascularity, and a combination of fatty and scattered fibroglandular tissue.
Breast density, composition of fibroglandular tissue, and background parenchy-
mal enhancement have been shown to be associated with breast cancer risk and
are also implicated in di↵erential response to therapy [16]. There is hence a need
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Fig. 1. An example MRI image (a) and di↵erent radiomics features such as (b) tumor
3D shape, (c) intratumoral texture (Haralick entropy), and (d) whole breast texture
(Haralick energy). In (e), we show topological structures from TopoTxR, capturing the
density of fibroglandular tissue.

for novel interpretable quantitative approaches to comprehensively character-
ize breast cancer biology by interrogating the tumor microenvironment and the
surrounding parenchyma as observed on routine imaging scans.

Radiomic approaches have been recently used to learn diagnostic and prog-
nostic signatures from breast tumor and surrounding peritumoral regions. Al-
though promising, radiomic features cannot explicitly model the complex and
subtle parenchymal tissue structures. Therefore, the learning outcome lacks suf-
ficient interpretability; one cannot derive actionable knowledge regarding the
tissue structures from the learnt diagnostic/prognostic models. Convolutional
neural networks (CNNs), on the the other hand, have shown great promise in
various domains, as they learn feature representations in an end-to-end man-
ner. For breast cancer, CNN models trained on mammography images have
shown very strong diagnostic e�cacy [1]. However, mammograms are of rela-
tively low resolution and are only 2D projections of 3D tissue structures. The
loss of true topology and geometry of the 3D tissue structures fundamentally
limits the power of mammography-based models. CNN models have been pro-
posed for MRIs, which can characterize the true 3D tissue structures [20]. Such
models are capable of learning features that combine lower level abstractions
and high order details which maximally discriminate between di↵erent classes.
While promising, these methods take whole breast MRI as direct input; a large
portion of the input volume may be biologically irrelevant and even noisy enough
to significantly bias the prediction task. Besides, 3D CNNs have millions of pa-
rameters, and require a large amount of training data which is often unavailable
for controlled clinical trials such as the I-SPY1 trial (less than 250 cases) [24].
CNNs also su↵er from the limitation of feature interpretability as they lack direct
grounding with the breast tissue structures.

We present a novel topological biomarker for breast DCE-MRI. Our method
bridges the two extremes (hand-crafted imaging features vs. completely data-
driven CNNs). The key idea is to direct the model’s attention to a much
smaller set of voxels surrounding tissue structures with high biological
relevance. This way, the deep convolutional network can be e�ciently trained
with limited MRI data. Meanwhile, the learning outcome has the potential of
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connecting to the biological cause manifested on the tissue structure topology.
As shown in Figure 1, our topological descriptor (e) directly models the breast
parenchymal tissue structures, whereas other features (b-d) do not.

To explicitly extract tissue structure is a challenging task. Training a seg-
mentation model may not be always feasible due to the lack of ground truth.
Instead, we propose an unsupervised approach to extract the tissue structures
using the theory of persistent homology [10]. Our method extracts 1D and 2D
topological structures (loops and bubbles) with high saliency. These structures
correspond to curvelinear tissue structures (e.g., ducts, vessels, etc.) and voids
enclosed by tissues and glands in their proximity. We consider these topologi-
cal structures a reasonable approximation of the tissue structures and combine
them with the original MRI image as the input to train 3D CNNs. By focusing
on such tissue structures and their periphery, we can e↵ectively train a 3D CNN
even with small datasets. Additionally, the tissue-centric representation can be
e↵ectively visualized for better interpretation.

Although our approach is domain-agnostic, as a use case we focus on pre-
dicting treatment response (TxR) in breast cancer treated with neoadjuvant
chemotherapy (NAC). Correct prediction of pathological complete response (pCR)
prior to NAC administration can help avoid ine↵ective treatment that intro-
duces unnecessary su↵ering and costs. However, reliably predicting pCR using
treatment-naive DCE-MRI still remains a challenge with current clinical metrics
and techniques. Our method, called TopoTxR, significantly outperforms existing
methods, including radiomics and image-only CNNs, on the I-SPY1 dataset [24].

Persistent homology has been used in various biomedical image analysis
tasks [14,15,7,8,30,29]. However, most existing approaches focus on only using
the persistence diagrams as direct features. Meanwhile, the topological struc-
tures uncovered through the algorithm carry rich geometric information that
has not been explicitly utilized. Our approach leverages topological struc-
tures based on the persistent homology to explicitly direct the atten-
tion of convolutional neural networks. The topology-driven attention en-
ables the CNNs to learn e�ciently. Our method outperforms various baselines,
including ones that use persistence diagram features. A Python implementa-
tion of TopoTxR can be found at our GitHub repository: https://github.com/
TopoXLab/TopoTxR.

1.1 Related Work

Quantitative imaging features have been used in conjunction with machine learn-
ing classifiers for prediction of pCR [21,5]. Radiomics approaches, involving anal-
ysis of quantitative attributes of tumor texture and shape, have shown promise
in assessment of treatment response. In particular, such features capture appear-
ance of the tumors and, more recently, peritumor regions [11,3]. Such approaches
are often limited by their predefined nature, lack of generalizability, dependency
on accurate lesion segmentation, and inability to explain phenotypic di↵erences
beyond the peritumoral margin. CNNs have been previously applied to breast
DCE-MRI for pCR prediction [19,12,25]. Owing to the sub-optimal performance
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Fig. 2. Our proposed TopoTxR pipeline. We extract 1D and 2D topological structures
from breast MRI with persistent homology. We create new images in which voxels
belonging to these structures have their intensity value from the original breast MRI,
and zero otherwise. We create two images corresponding to 1D and 2D topological
structures. We use two 3D CNNs and a fully connected network for pCR prediction.

of image-only models, image based CNN approaches have been fused with non-
imaging clinical variables in order to bolster prediction [9].

Topological information, in particular, persistent homology, has been used
in various image analysis tasks, such as cardiac image analysis [30], brain net-
work analysis [18], and neuron image segmentation [14]. In recent years, it has
been combined with deep neural networks to enforce topological constraints in
image segmentation tasks [14,7]. Abundant work has been done to learn from
information represented by persistence diagrams, e.g., via vectorization [2], ker-
nel machines [26,17,6], or deep neural networks [13]. However, the topological
structures associated with the diagrams, e.g., cycles and bubbles, have not been
explored. These structures describe geometric details of the breast tissue (e.g. fi-
broglandular tissue) and can be mapped to the original breast volume to provide
an explicit attention mechanism for CNNs.

2 Methodology

We propose a topological approach to (1) extract topological structures with high
saliency as an approximation of the tissue structures, and (2) use the extracted
topological structures as explicit attention to train a deep convolutional network.
Our method is summarized in Fig. 2.

We first compute salient topological structures from the input image based
on the theory of persistent homology [10]. Topological structures of dimensions
1 and 2, i.e., loops and bubbles, can both correspond to important tissue struc-
tures. 1D topological structures capture curvelinear structures such as ducts,
vessels, etc. 2D topological structures represent voids enclosed by the tissue
structures and their attached glands. These topological structures directly de-
lineate the critical tissue structure with high biological relevance. Thus we hy-
pothesize that by focusing on these tissue structures and their a�nity, we will
have relevant contextual information for prediction.
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Next, we propose a topological-cycle-driven CNN to learn from MRIs and
the discovered topological structures. We explicitly mask the input MRI image
so that only voxels of the extracted topological structures and their vicinity re-
gions are visible. We then train a 3D CNN on this masked image. By focusing
on the tissue structure vicinity region, we can train the CNN e↵ectively even
with a limited training set. We note that there are two types of relevant topo-
logical structures, loops and bubbles. Our network consists of two separate 3D
CNNs, treating the two types of topological structures separately. The feature
representation from the two convolutional networks are concatenated and are
provided to fully connected layers for the prediction (pCR vs. no pCR). As will
be shown empirically, both types of topology capture complementary structural
signatures and are necessary to achieve the best predictive performance.

In this section, we will first explain the background knowledge about persis-
tent homology. Next, we introduce cycles representing the topological structures.
Finally, we will describe our topological-cycle-driven CNN.

2.1 Background: Persistent Homology

We review basics of persistent homology in this section. Interested readers may
refer to [10] for more details. Persistent homology extracts the topological in-
formation of data observed via a scalar function. Given an image domain, X,
and a real-valued function f : X ! R, we can construct a sublevel set Xt =
{x 2 X : f(x)  t} where t is a threshold controlling the “progress” of sublevel
sets. The family of sublevel sets X = {Xt}t2R defines a filtration, i.e., a family
of subsets of X nested with respect to the inclusion: X↵ ✓ X� if ↵  �. As
the threshold t increases from �1 to +1, topological structures such as con-
nected components, handles, and voids appear and disappear. The birth time
of a topological structure is the threshold t at which the structure appears in
the filtration. Similarly, the death time is the threshold at which the structure
disappears. Persistent homology tracks the topological changes of sublevel sets
Xt and encodes them in a persistence diagram, i.e., a point set in which each
point (b, d) represents a topological structure born at b and killed at d.

De
at
h

Birth0

𝐝𝟏
𝐝𝟐

𝐛𝟏 𝐛𝟐t = b1 t = b2 t = d2 t = d1function

Fig. 3. From left to right: a synthetic image f , sublevel sets at thresholds b1 < b2 <
d2 < d1 (in black), and the persistence diagram of dimension 1. The red loop represents
a 1D structure born at b1 and killed at d1. The green loop represents a 1D structure
born at b2 and killed at d2. They correspond to the red and green dots in the diagram.
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See Fig. 3 for an example function f and its sublevel sets at di↵erent thresh-
olds. At time b1, a new handle (delineated by the red cycle c1) is created. This
handle is later destroyed at time d1. Another handle delineated by the green
cycle c2 is created and killed at b2 and d2 respectively. The topological changes
are summarized in a persistence diagram on the right. Each handle corresponds
to a 2D dot in R2, whose x and y coordinates are birth and death times. The
di↵erence between a dot’s birth and death times is called its persistence.

2.2 Persistence Cycles and Their Computation

In this section, we introduce cycles that represent topological structures discov-
ered by persistent homology. We also present an algorithm to compute these
cycles. Intuitively, a topological cycle of dimension p is a p-manifold without
boundary. A 1-dimensional (1D) cycle is a loop (or a union of a set of loops).
A 2-dimensional (2D) cycle is a bubble (or a union of a set of bubbles). A cycle
z represents a persistent homology structure if it delineates the structure at its
birth. For example, in Fig. 3, the red and the green loops represent the handles
born at time b1 and b2, respectively.

We assume a discretization of the image domain into distinct elements, i.e.,
vertices (corresponding to voxels), edges connecting adjacent vertices, squares,
and cubes. These elements are 0-, 1-, 2-, and 3-dimensional cells. Any set of p-
cells is called a p-chain. We define the boundary operator of a p-cell, �, as the set
of its (p�1) faces. The boundary of an edge is its two vertices. The boundary of
a square consists of the 4 edges enclosing it. The boundary of a cube consists of
the 6 squares enclosing it. For any p-chain, c, its boundary is @(c) =

P
�2c @(�),

under mod-2 sum. For a set of edges forming a path, its boundary are the two
end vertices. For any set of squares forming a patch, its boundary is the loop
enclosing the patch. The boundary of a set of cubes is the bubble enclosing them.
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Fig. 4. (a) Example of a cubical complex whose cells are sorted according to the func-
tion values. (b) 2D Boundary matrix @. (c) Reduced boundary matrix. (d) Persistence
diagram and resulting cycles corresponding to @. (e) 1D boundary matrix.

A p-chain is a p-cycle if its boundary is empty. All p-cycles form the null
space of the boundary operator, i.e. {c : @(c) = ;}. Any topological structure,
formally defined as a homology class, can be delineated by di↵erent cycles, which
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are equivalent to each other in terms of topology. We can choose any of them
to represent this class. In persistent homology, for each dot in the persistence
diagram, we can represent it with one representative cycle at its birth. In Fig. 3,
the red and green cycles represent the two corresponding handles. Note that
the choice of representative cycle is not unique. A relevant question is to choose
the shortest representative cycle (i.e., one with the least number of edges) for
each dot in the diagram [30,31]. In this paper, we focus on choosing a standard
representative cycle, leaving the optimal cycle for future work.

Computation of persistent homology and representative cycles. We as-
sume a filtration function on a discretization of the image domain. An example
discretization of a 2D image is given in Fig. 4(a). We first sort all cells in in-
creasing order according to their function values. The computation of persistence
diagrams is then performed by encoding the p-dimensional boundary operator
in binary matrices named boundary matrices, @p. @p maps p-cells to their bound-
aries. Fig. 4 shows the 1D and 2D boundary matrices of the given complex and
its filtration. The 1D boundary matrix is essentially the incidence matrix of the
underlying graph (Fig. 4(e)). High dimensional boundary matrices are defined
similarly (e.g., a 2D boundary matrix in Fig. 4(b)).

Persistence diagram is computed by reducing the boundary matrix similar
to Gaussian elimination, but without row or column perturbation. We reduce
through column operations performed on @ from left to right. Fig. 4(c) shows the
reduced 2D boundary matrix. Once the boundary matrices are reduced. Each
non-zero column corresponds to a persistent dot in the diagram. The reduced
column itself is the cycle representing the corresponding topological structure.
In this paper, we pay attention to both 1D and 2D cycles, corresponding to loops
and bubbles. The extracted cycles will be used to explicitly guide 3D CNNs for
analysis. The computation of topological cycles is of the same complexity as the
computation of persistent homology. In theory, it takes O(n!) time (! ⇡ 2.37
is the exponent in the matrix multiplication time, i.e., time to multiply two
n⇥ n matrices) [23]. Here n is the number of voxels in an image. In practice, to
compute all cycles of an input image (2563), it takes approximately 5 minutes.

2.3 Topological-Cycle-Driven 3D CNN

An overview of our topological-cycle-driven 3D CNN has been provided in the
beginning of Section 2. Here we describe the technical details.

To compute persistence and topological cycles, we invert the MRI image
f = �I so that the tissue structures correspond to low intensity. After the
computation, we select topological cycles representing dots of the diagram with
high persistence. The general belief is that low-persistence dots tend to be due
to noise. Thus we only select high-persistence cycles, which are considered more
salient structures, and more likely to represent true tissue structures. The thresh-
old is a hyperparamter tuned in practice.

Next, we create two binary 3D masks representing 1D and 2D topological
cycles, respectively. Both masks are dilated slightly in order to cover both the
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Table 1. Comparisons of proposed method against baseline methods on four metrics:
accuracy, AUC, specificity, and sensitivity. The p-values in the last row are computed
between baseline MRI and TopoTxR.

Accuracy AUC Specificity Sensitivity

Without Feature Selection

Radiomics 0.517±0.086 0.536±0.098 0.557±0.058 0.477±0.176

PD 0.529±0.071 0.537±0.078 0.543±0.075 0.515±0.151

Radiomics+PD 0.533±0.080 0.538±0.095 0.567±0.065 0.5±0.175

With Feature Selection

Radiomics 0.563±0.085 0.593±0.098 0.552±0.180 0.575±0.081

PD 0.549±0.081 0.567±0.097 0.551±0.167 0.547±0.071

Radiomics+PD 0.563±0.093 0.587±0.099 0.592±0.178 0.534±0.087

3D CNN

MRI 0.633±0.200 0.621±0.102 0.570±0.322 0.673±0.354

TopoTxR (MRI+Topo) 0.851±0.045 0.820±0.035 0.736±0.086 0.904±0.068

p-value 0.0625 0.0625 0.3750 0.1875

structures and their vicinity. Instead of directly using these binary masks for
pCR prediction, we fill the foreground voxels with their original image intensity
values. In other words, we mask the input image with the complement of the
cycle mask. SeeTopological Structure Masking step in Fig. 2 for the masked MRI
image. We generate masked images for both 1D and 2D, and provide them to
two CNNs. All masked MRIs are padded to the same size of 256 ⇥ 256 ⇥ 256.

We use separate networks with the same architecture for cycles and bubbles.
The CNN consists of 5 3D convolution layers, each followed by a batch normal-
ization layer and a LeakyReLU. The output feature maps from these two 3D
CNNs are reshaped and concatenated into a feature vector. This feature vector
is sent into a fully connected (FC) network with three FC layers for final pCR
prediction. Besides ReLU and batch normalization, a dropout layer is added to
the second FC layer. The final output is a vector of size 2. All three networks
are trained together in an end-to-end fashion with stochastic gradient descent
(SGD) as the optimizer and cross-entropy as loss.

3 Experimental Results

We validate our method on the task of pCR prediction with ISPY-1 post-contrast
DCE-MRI data [24]. A total of 162 patients are considered - 47 achieving pCR
(mean age = 48.8 years), 115 non-pCR (mean age = 48.5 years). All experiments
were performed in a 5-fold cross-validation setting. The performance was eval-
uated with accuracy, area under curve (AUC), specificity, and sensitivity. Both
mean and standard deviation are reported. For all methods, hyperparameters
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Table 2. Ablation study results. All numbers are reported from 5-fold cross validations.

Accuracy AUC Specificity Sensitivity

Persistence Threshold

90% Remain 0.826±0.069 0.783±0.063 0.675±0.1115 0.891±0.084

60% Remain 0.851±0.021 0.793±0.028 0.647±0.073 0.939±0.017

Dimension

Dimension 1 0.718±0.068 0.697±0.025 0.639±0.149 0.754±0.161

Dimension 2 0.756±0.036 0.691±0.013 0.520±0.116 0.863±0.103

Dilation Radius

Radius 2 0.721±0.036 0.673±0.024 0.569±0.037 0.777±0.055

Radius 4 0.677±0.023 0.603±0.007 0.442±0.063 0.764±0.054

Radius 8 0.646±0.034 0.569±0.040 0.399±0.057 0.737±0.033

(learning rate, momentum, weight decay factor, batch size, and dropout rate for
the dropout layer) are tuned using a grid search, and are selected from a 3-fold
cross validation on a small set held out for validation.

We compare with various baseline methods. Radiomics: We compute a 92
dimensional radiomic signature [28] and train a classifier on it. Features are ex-
tracted solely from the tumor region. PD: We train a classifier using persistence-
diagram-based features, i.e., features extracted from persistence diagrams (PDs)
of the input MRI images. While various classifier options are available and be-
have similarly, we use the sliced Wasserstein kernel distance for PDs as a feature
vector [6]. Radiomics+PD: We combine both radiomics and PD features and
train a classifier on them. With feature selection: We apply feature selec-
tion to all aforementioned methods, using Mutual Information Di↵erence (MID)
and Mutual Information Quotient (MIQ). For all baseline features, we search
exhaustively among all combinations of feature selection schemes and a set of
classifiers (Random Forests, Linear Discriminant Analysis, Quadratic Discrimi-
nant Analysis and SVM). We report the best results. MRI: we directly apply a
3D CNN to the original DCE-MRIs.

Quantitative results. Radiomics and PD features yielded better performance
when used together with a Random Forest classifier (Table 1). We observe that
direct application of a 3D CNN (method MRI) does not perform well, pre-
sumably due to the lack of su�cient amount of data. Our proposed approach
(TopoTxR: MRI+Topo) outperforms all baseline methods. Due to the imbalance
in the dataset, we also report the classifier specificity and sensitivity. Further
evaluation, to address data imbalance, will be carried out in future work.

Ablation study. Recall that the persistence of a topological structure is defined
as the di↵erence between its birth and death times. We threshold out topo-
logical structures with low persistence, as they are generally caused by noise
and could negatively influence the results. We explore the impact of persistence
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Fig. 5. Qualitative comparison of patients with and without pCR. First column: Slices
of breast DCE-MRI with tumor masked in orange (tumor masks are not used in building
TopoTxR). Columns 2-4: 3D renderings of topological structures from three di↵erent
views. 1-D structures (loops) are rendered in blue and 2-D structures (bubbles) in red.
Top row: no pCR, Bottow row: pCR. Right: cumulative density function of topological
structures’ birth times.

thresholding by choosing 3 di↵erent thresholds so that 90%, 60%, and 30% of
the structures remain. According to Table 2, retaining 30% structures (refer to
TopoTxR’s results in Table 1) yielded an optimal trade-o↵ between the quan-
tity and quality of the topological structures. We also tested the method using
1D structures (loops) only and 2D structures (bubbles) only. Both are better
than baseline methods, but still inferior to TopoTxR. This shows that the 1D
and 2D structures provide complementary predictive information. Finally, the
topology structures are dilated to form a mask. We ran an ablation study with
regard to the dilation radius and obtain the best performance when no dilation
is performed. The results of TopoTxR in Table 1 is reported with 30% structures
remaining using combined 1 and 2D structures without dilation.

3.1 Discussion and TopoTxR Feature Interpretation

The topological structures extracted by TopoTxR capture the breast tissue struc-
tures. Learning directly on these structures and their vicinity provides the op-
portunity for interpreting the learning outcomes and drawing novel biological
insights. Here we provide some visual analysis as a proof of concept.

Fig. 5 shows the TopoTxR topographical structures from di↵erent views for
a representative DCE-MRI scan from each group. We observe that the struc-
tures (1D and 2D) are sparse for the case exhibiting pCR, and are relatively
dense for the non-pCR case. In the corresponding MRI images, we note that
the pCR breast has scattered fibroglandular breast density with minimal back-
ground parenchymal enhancement. The non-pCR breast has a more heterogenous
fibroglandular breast density with moderate background parenchymal enhance-
ment. This possibly suggests that the TopoTxR features capture the complex
fibrogladular structure which can be a potential indicator of treatment response.

We also compare the topological behavior of the two populations. Recall the
birth time of a topological structure is the threshold at which a cycle appears.
In our experiments, since we use the inverse image f = �I, the birth time essen-
tially captures -1 times the brightness of a structure. In Fig. 5 (right), we plot the
cumulative density function (CDF) of the birth time of topological structures for
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pCR (red) and non-pCR (blue) patients. The CDFs suggest that pCR patients’
tissue structures are generally less bright (or less visible) compared with that
of non-pCR patients. This is consistent with our observation on qualitative ex-
amples. A Kolmogorov-Smirnov test [22] is performed to compare these CDFs.
The computed p-value is 0.0002, indicating a significant di↵erence between the
distributions of birth times of the pCR and non-pCR patient groups.

4 Conclusion

This paper presents a novel topological biomarker, TopoTxR, that leverages the
rich geometric information embedded in structural MRI and enables improve-
ment in downstream CNN processing. In particular, we compute 1D cycles and
2D bubbles from breast DCE-MRIs with the theory of persistent homology; these
structures are then used to direct the attention of neural networks. We further
demonstrate that TopoTxR on treatment-naive imaging is predictive of pCR.
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