
MSL-RAPTOR: A 6DoF Relative Pose Tracker
for Onboard Robotic Perception

Benjamin Ramtoula1, Adam Caccavale2(B), Giovanni Beltrame3, and Mac Schwager2

1 University of Oxford, Oxford, UK
benjamin@robots.ox.ac.uk

2 Stanford University, Stanford, USA
{awc11,schwager}@stanford.edu

3 Polytechnique Montréal, Montréal, Canada
giovanni.beltrame@polymtl.ca

Abstract. Determining the relative position and orientation of objects in an envi-
ronment is a fundamental building block for a wide range of robotics applica-
tions. To accomplish this task efficiently in practical settings, a method must
be fast, use common sensors, and generalize easily to new objects and environ-
ments. We present MSL-RAPTOR, a two-stage algorithm for tracking a rigid
body with a monocular camera. The image is first processed by an efficient neu-
ral network-based front-end to detect new objects and track 2D bounding boxes
between frames. The class label and bounding box is passed to the back-end that
updates the object’s pose using an unscented Kalman filter (UKF). The measure-
ment posterior is fed back to the 2D tracker to improve robustness. The object’s
class is identified so a class-specific UKF can be used if custom dynamics and
constraints are known. Adapting to track the pose of new classes only requires
providing a trained 2D object detector or labeled 2D bounding box data, as well
as the approximate size of the objects. The performance of MSL-RAPTOR is first
verified on the NOCS-REAL275 dataset, achieving results comparable to RGB-D
approaches despite not using depth measurements. When tracking a flying drone
from onboard another drone, it outperforms the fastest comparable method in
speed by a factor of 3, while giving lower translation and rotation median errors
by 66% and 23% respectively.

Keywords: Perception · Aerial robots · Machine learning

1 Introduction

For a robot to intelligently interact with its environment, it must quickly and accurately
determine the relative position and orientation of neighboring robots, people, vehicles,
and a variety of other static and dynamic obstacles in the scene. From drone racing
[1] to pedestrian avoidance [2], tasks relying on such estimates are numerous and are

B. Ramtoula and A. Caccavale—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. Siciliano et al. (Eds.): ISER 2020, SPAR 19, pp. 520–532, 2021.
https://doi.org/10.1007/978-3-030-71151-1_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71151-1_46&domain=pdf
https://doi.org/10.1007/978-3-030-71151-1_46


MSL-RAPTOR 521

Fig. 1. Overview of MSL-RAPTOR. The front-end generates angled-bounding boxes & class
labels from monocular images. The back-end tracks the object’s pose with a class-specific UKF,
and passes its uncertainty metrics to the front-end to detect when the tracker has lost the object.

essential to creating truly autonomous robots. Regardless, the ability to track the six
Degree of Freedom (6DoF) relative pose of a dynamic object in real-time, with onboard
sensing and computation, is largely beyond the reach of existing robot perception frame-
works. To fill this need, we propose Monocular Sequential Lightweight Rotation And
Position Tracking On-Robots (MSL-RAPTOR), a lightweight, general-purpose robot
perception module for tracking the 6DoF relative pose of a dynamic object using only
an onboard monocular camera. MSL-RAPTOR performs similarly to state-of-the-art
approaches relying on more sensors (e.g. depth) and greater computation capability.

Existing methods for 6DoF relative pose estimation from vision can be divided
into model-based, deep learning-based, and hybrid methods. Existing model-based
approaches rely on matching the view of an object to a database of templates or visual
features. These methods are limited in the face of scenes with low textures or chang-
ing conditions, and cannot be used when prior 3D models of objects are not available
[3,4]. Deep learning methods such as PoseCNN [5] and LieNets [6] overcome these
challenges by directly estimating the relative pose from images, learning this inverse
map from a large corpus of training data. Hybrid approaches combine elements of
deep neural networks and model-based methods. For example, BB8 [7], SSD-6D [8],
and SingleShotPose [9] (SSP) all use deep neural networks to estimate the 2D pro-
jections of the 3D bounding box encompassing the object. These projections are then
used to solve the Perspective-n-Point (PnP) problem to obtain a pose estimate [10].
Another hybrid method, NOCS [11], estimates pose using pixel correspondences and
depth data with category-level canonical representations. However, the above deep and
hybrid methods ignore temporal correlations among multiple frames to aid in tracking
objects. In contrast, 6-PACK [12] leverages temporal consistency by learning to rep-
resent objects using keypoints that are matched between frames. While these methods
present impressive pose estimation performance, they are either too slow, too computa-
tionally demanding, or require too much prior model knowledge to be used for practical
onboard relative pose perception for resource-limited robots.

These same limitations apply to the many pose tracking approaches developed for
self-driving cars, for which tracking methods represent a key component of the system
[2]. These rely on the use of rich sensors and/or advanced computational capabilities to
achieve online performance and often assume planar constraints since they deal solely



522 B. Ramtoula et al.

with land-based objects (e.g. pedestrians, other vehicles), hence are only SE(2) trackers
with 3DoF (e.g. [13,14]).

Contribution. With the requirements for onboard robotic perception in mind, we pro-
pose MSL-RAPTOR, which seeks to combine the best aspects of deep learning-based
and model-based perception paradigms. MSL-RAPTOR takes raw image data with a
dual deep neural network architecture on the front-end to produce and track an angled
2D bounding box around an object in the scene. A single 2D bounding box is not
enough information to determine the object’s pose (see Fig. 2(a)), so this semanti-
cally labeled bounding box is passed to a model-based unscented Kalman filter (UKF)
[17,18] back-end to fuse measurements across time and produce a Bayesian relative
pose estimate for the object. The deep front-end uses a YOLOv3 network [15], retrained
with robot-specific object classes, for initial object detection and labeling, together with
a SiamMask network [16] for quickly tracking the 2D object bounding box from frame
to frame once it has been detected. The 2D bounding box corners and semantic object
labels (e.g., “person”, “UAV”, “car”, “tree”) are then passed to the UKF back-end. The
back-end uses the bounding box corners as pseudo-measurements, which are fused over
time to infer the full 6DoF relative pose of the object. The UKF propagates the target’s
motion with a label-specific motion model (since people, cars, and UAVs all move dif-
ferently). We then close the loop between back-end and front-end with a re-detection
trigger. If the Mahalanobis distance between the measurement and its posterior is above
a threshold or if the pose estimate is too close to the edge of the field of view (judged
using the z-test based on its covariance), the target is considered lost, and we re-trigger
the YOLO target detection on the front-end. With this framework, we can track an object
through occlusions and temporary absences from the field of view. MSL-RAPTOR cur-
rently assumes a single object in the scene, but the extension to multiple objects (and
classes) is straightforward.

We demonstrate MSL-RAPTOR running on a Jetson TX2 onboard a standard
quadrotor UAV platform while tracking another UAV at 8.7 frames per second. This
is 3 times faster than the fastest comparable state-of-the-art method, SSP [9], and pro-
duces pose estimates with 66% and 23% lower translation and rotation median errors,
respectively. We also compare performance with several state-of-the-art deep learning
methods for 6DoF pose tracking using a depth camera. We show on standard datasets
that MSL-RAPTOR performs similarly to these existing methods despite only using a
monocular camera with no depth information.

2 Problem Formulation

We consider the scenario where a computationally-limited mobile robotic agent with
a calibrated monocular camera needs to identify and track the relative pose of a
dynamic object O from a series of RGB images It ∈ R

W×H . The state at time t is
xt = [pt ,vt ,qt ,ωωω t ] ∈ R

13 where pt ∈ R
3 is 3D position, vt ∈ R

3 is linear velocity,
qt ∈ R×R

3 is the orientation as a quaternion, and ωωω t ∈ R
3 is angular velocity. The

position and orientation component of this state can be represented as the object pose
Tt ∈ SE(3). Henceforth the time superscripts will be dropped for notational conve-
nience unless they are needed for clarity.



MSL-RAPTOR 523

Fig. 2. Illustration of the pose ambiguity from bounding box measurements: (a) same 2D bound-
ing box produced from difference poses; (b) pose ambiguity can be reduced with an angled
bounding box, but not eliminated.

The object O has a span in 3D space that can be approximated with a sparse set
of n points B ∈ R

n×3, most commonly the corners of its 3D bounding box which we
use by default. Additionally, each object has a corresponding class label (e.g. drone,
bottle, etc.) denoted c. Each class of object has an associated dynamics model used to
propagate the components of the state in the UKF back-end: xt2 = Fc(xt1). By default
a simple constant velocity model is used, but more sophisticated class-specific models
may be provided. In general we assume no knowledge of the tracked object’s control
input.

When processing an image, the 2D projections of the object’s points B onto the
image I are enclosed in the minimum-area angled bounding box: z= [x,y,w,h,α] where
x and y are the column and row of the box center, w and h are the box width and
height, and α is the box angle from the horizontal image axis. If instead an axis-aligned
bounding box is produced (i.e. α = 0), it is denoted z̃ (Fig. 2(b)). The distribution of
estimates over states and measurements are both modeled as Gaussians, N (x̂, Σ̂) and
N (ẑ, Ŝ) respectively. When evaluating the consistency of a measurement zt with our
prior estimate, we use the Mahalanobis distance defined as:

M(zt , ẑt−1, Ŝt−1) .=

√
(zt − ẑt−1)T

(
Ŝt−1

)−1
(zt − ẑt−1). (1)

3 Algorithm

The architecture of our approach is illustrated in Fig. 1. The front-end has two com-
ponents for processing the images: a detector and a visual tracker. The detector can
identify all objects in an image and their class labels, but is slower and only gener-
ates axis-aligned bounding boxes. The tracker is faster and produces angled bounding
boxes, but requires an accurate 2D bounding box from the previous timestep. The back-
end relies on a class-specific UKF, taking in an angled bounding box measurement from
the front-end to produce pose estimates. For each image, the decision to use the tracker
vs. detection is determined by the consistency of the new bounding box measurement
with the measurement posterior generated by the back-end’s UKF.



524 B. Ramtoula et al.

3.1 Object Detection

Upon receiving an image I, the angled bounding boxes must be extracted. If the object
has not been previously located, or if re-detection has been triggered, a pre-trained, out-
of-the-box object detector outputs the axis-aligned bounding box z̃ and class label c for
each visible object Oi: D(I) → {z̃i,ci}.

Only bounding boxes for the class of interest are considered, and if multiple boxes
are found, the one closest to our current estimate as measured by Eq. 1 is used. If our
estimate’s uncertainty is too high, then the box with highest confidence is chosen. This
axis-aligned bounding box is then used to initialize the visual tracker (Sect. 3.2) which
produces an angled bounding box measurement z. This, along with the class label c
from the detector, serves to initialize the UKF (Sect. 3.3). Because the filter requires an
initial pose estimate, the initial 6D pose is roughly approximated assuming the width,
height, and roll are aligned with the 2D bounding box. This is a poor assumption in
general, but the robustness of the filter will compensate for the initialization error. As
the class of the object is also identified, class-based initialization rules can also be used
(e.g. mugs are usually upright).

3.2 Visual Tracking

Once an object has been detected and the associated tracker and UKF are initialized,
MSL-RAPTOR’s front-end only relies on the tracker to provide measurements to the
UKF. The tracker is an object-agnostic method, which produces an angled bounding
box measurement given the previous bounding box and a new image T(It ,zt−1) → zt .

When a new image is available, the tracker generates an angled bounding box that
serves as an observation for the UKF predicting the object’s pose (Sect. 3.3).

Aside from the speed benefit, we use a visual tracking method that produces angled
bounding boxes that are more informative measurements than the axis-aligned boxes
as illustrated in Fig. 2. While the angle is still not sufficient to uniquely determine an
object’s pose, it reduces the set of poses that would result in the given measurement
which improves tracking performance.

3.3 Unscented Kalman Filter

To estimate pose from a series of angled bounding box measurements, we use a class-
dependent unscented Kalman filter. Probabilistic filters like the UKF consist of a pre-
diction and update step. During prediction, the state is propagated forward using the
object dynamics, and the expected measurement from the resulting anticipated state is
calculated. In the update step, the difference between the predicted and actual measure-
ment is used to adjust the state estimate and uncertainty. A typical output of a UKF is
the mean and covariance of the state, but as part of the update process, the measure-
ment mean and covariance are also calculated. These are passed to the front-end for
determining whether to trigger re-detection (Sect. 3.4).

The prediction step of the UKF relies on a dynamics model, which can optionally
depend on the object tracked. The MSL-RAPTOR framework gives access to a class
label for each object, enabling the use of class-specific dynamics if available, or a simple



MSL-RAPTOR 525

constant velocity model if not. For systems without significant inertial effects this is a
good approximation, otherwise, we rely on the robustness of the filter to correct for the
modeling error.

To predict the expected measurement associated to a pose, the knowledge of the
3D points representing the tracked object is used. The vertices B are projected into
the image plane using the known camera intrinsic matrix K and the estimate of the
object’s pose in the camera frame T [19]. The minimum area rectangle that encloses
these projected pixels is the predicted measurement πK(B,T) → z.

A UKF is chosen over alternatives such as an EKF or PF due to its efficient handling
of the non-linearities inherent in the system. The PF’s natural ability to track multiple-
hypothesis potentially could allow it to better determine poses that best explain the
series of bounding box measurements, but empirical testing showed the computational
requirements of this method to be too high to run onboard.

3.4 Updating the Tracked Objects

Occlusions, objects leaving the field of view, and poor measurements (e.g. due to light
reflections) can all cause tracking failures that lead to inaccurate bounding boxes. No
assumptions are made regarding these scenarios. To address these challenges, detection
is triggered periodically to identify and locate when the object has become unoccluded
or has entered the image. This has the advantage of compensating for any drift or errors
that might occur in the visual tracking. The front-end’s verification mechanisms can
also trigger detection to correct for uncertain measurements.

Bounding Box Verification

Detected Measurements. Detection returns both the bounding box and the class label
of the object. This can be used to filter detections by class and to set class-specific
rejection conditions for the measurement that can help prevent false-positive matches.
For example, an aspect ratio condition can be set so that a bounding box z̃ is valid only
if it is in a valid class-specific aspect-ratio range:

Γmin(c)< w̃/h̃< Γmax(c),

where the thresholds Γmin(c) and Γmax(c) can be determined from the typical geometry
of the class. Additionally, a threshold on the minimum distance dmin to the edge of the
image can prevent bad measurements due to truncated bounding boxes:

dmin < x̃− w̃/2 < x̃+ w̃/2 <W −dmin

dmin < ỹ− h̃/2 < ỹ+ h̃/2 < H −dmin.

Tracker Measurements. At each iteration of the UKF, anticipated measurements are
predicted for a range of perturbations about the current state estimate. From this set
of possible measurements, a mean ẑ and covariance Ŝ representing the distribution of
observations is calculated. The Mahalanobis distance (Eq. 1) is compared against a



526 B. Ramtoula et al.

threshold to evaluate the likelihood of new measurements. If a mismatch between the
state estimate of the back-end and the new measurement is detected, this could indicate
drift in the tracker or some other failure, and detection is triggered.

Additionally, to ensure the object is fully in view, z-tests using the diagonal values
of Ŝ are performed at each edge. The results are compared with a threshold.

The probabilistic thresholds in this section can be chosen from the quantiles of the
chi-squared distribution and normal distribution, respectively. When the test fails, the
system switches into detection mode to either confirm it should stop tracking the object,
or to correct its tracked bounding box.

4 Experimental Results

4.1 Implementation Choices

For our experiments we implement MSL-RAPTOR with YOLOv3 [15] from Ultralytics
[20] for our front-end’s object detector. We chose YOLOv3 due to its ubiquity, speed,
and demonstrated ability to detect a range of objects. To support the objects used in
our experiments, we retrain it on the COCO dataset mixed with a custom dataset con-
taining images of a flying quadrotor, which leads to 81 supported object categories. For
our visual tracker, we rely on the implementation of SiamMask [16] provided by the
authors, which is object-agnostic and therefore does not require retraining. We chose
SiamMask for its speed, ability to produce angled bounding boxes, and impressive
tracking performance. We use the provided weights trained on the VOT dataset [21].

4.2 Evaluation on the NOCS-REAL275 Dataset

We begin by evaluating MSL-RAPTOR on the NOCS-REAL275 dataset [11] to answer
a fundamental question about the method: can the algorithm track pose accurately for a
range of objects? In all, the dataset contains seven training videos and six testing videos
from a camera moving in different scenes. The scenes contain objects with class labels
in {bowl, mug, can, bottle, laptop, and camera}. We tune our class-specific UKF
parameters using the training set and present the results evaluated on the testing set.
Similarly to the baseline methods, we do not penalize orientation errors about axes of
symmetry for the can, bowl, and bottle classes.

Implementation Details. Our re-detection and verification mechanisms presented in
Sect. 3.4 serve to make the tracking robust to occlusions and to handle objects exit-
ing and entering the frame. However, sequences of the dataset are relatively short and
mostly maintain all objects in the field of view. Moreover, the datasets used to train
our detector did not contain instances of all the classes appearing in the scenes, and the
training set from NOCS-REAL275 would not be general enough to train the detector to
properly detect new instances of objects in the testing set. For these reasons, we disable
the probabilistic detection and verification mechanisms for evaluation on this dataset
and rely only on visual tracking in the front-end. This is a conservative approach as
violations of these assumptions will reduce our performance.



MSL-RAPTOR 527

To replace MSL-RAPTOR’s filter initialization, which is based on the disabled
detection, the same method is used as the baselines [12,22,23]. For a given object
O, random uniform translation noise of up to 4cm is added to the ground truth ini-
tial pose T0. From this initialized pose, the first bounding box is calculated using the
UKF’s measurement prediction function πK(B,T0). We add uniformly sampled noise
of up to 5% of the width and height of the box to its row and width, and its column and
height respectively. With this first bounding box, the visual tracker will generate future
measurements.

For objects in the dataset with shapes not well approximated by a 3D bounding box
(bowl, laptop, mug), we add additional vertices to restrict the volume. For example,
12 points are used instead of 8 for the laptop, resulting in an “L” shape when viewed
from the side. For mugs and bowls, extra points allow a tighter fit around curved rims.
Using these refined volumes reduces the mismatch between predicted and observed
measurements in the UKF, which can lead to incorrect adjustments of the pose estimate.
This effect is greatest when objects are close to the camera, as in the NOCS dataset.

Table 1. Results on NOCS-REAL275. Translations are in cm and rotations are in degrees.

Method Modality Bottle Bowl Camera Can Laptop Mug Overall

Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr

NOCS [11] RGB-D 25.6 1.2 4.7 3.1 33.8 14.4 16.9 4.0 8.6 2.4 31.5 4.0 20.2 4.9

ICP [24] RGB-D 48.0 4.7 19.0 12.2 80.5 15.7 47.1 9.4 37.7 9.2 56.3 9.2 48.1 10.5

Keypoint Net [25] RGB-D 28.5 8.2 9.8 8.5 45.2 9.5 28.8 13.1 6.5 4.4 61.2 6.7 30.0 8.4

6-PACK [12] RGB-D 15.6 1.7 5.2 5.6 35.7 4.0 13.9 4.8 4.7 2.5 21.3 2.3 16.0 3.5

Ours Mono. 18.7 9.8 16.2 4.0 23.4 8.5 17.6 9.0 17.4 11.6 35.3 7.7 21.8 8.2

Fig. 3. Empirical cumulative distribution function on errors: (a) translation only; (b) rotation only;
(c) translation in-plane error (solid line) and depth error (dashed line)

Finally, as the baseline methods are evaluated using desktop GPUs, for this set of
experiments only we use a desktop computer with an Nvidia RTX 2060 GPU.

Baselines. We compare our results with those reported by Wang et al. over the same
dataset [12] for four methods, all of which use RGB-D input:



528 B. Ramtoula et al.

– NOCS [11], a recent 6D pose estimation solution relying on pixel correspondences
to a canonical representation.

– ICP [24], the Open3D implementation of the iterative closest point algorithm.
– KeypointNet [25], a category-based 3D keypoint generator.
– 6-PACK [12], a state-of-the-art method using learned 3D keypoints with an anchor-

ing mechanism incorporating temporal information for improved tracking.

Results. The average rotation and translation errors over each class are presented in
Table 1 and the accuracy visualized in Fig. 3. Despite relying only on monocular images,
MSL-RAPTOR achieves comparable performance to state-of-the-art methods that use
RGB-D. As is expected for a monocular camera, depth estimates are less accurate than
translations perpendicular to the agent’s camera axis (i.e. parallel to the image plane).
This can be seen in Fig. 3(c) where these are broken out into separate errors. This is a
problem that comes with the use of monocular images rather than RGB-D data.

4.3 Baseline Evaluation in an Aerial Robotics Scenario

To demonstrate that MSL-RAPTOR provides robust onboard perception, we ran the
algorithm onboard a drone with an Nvidia Jetson TX2 to track another drone. The ego
quadrotor uses the DJI F330 frame and is equipped with off-the-shelf and custom made
components as shown in Fig. 4. The quadrotor uses an RGB camera (640 × 480 resolu-
tion). Experiments were designed so that the ego drone moves about the experimental
space causing the image background to change substantially, a challenge which demon-
strates the robustness of the system. The flights varied from slow to aggressive, with the
tracked object occasionally exiting and reentering the field of view or being occluded
by other objects. As would be expected in collision avoidance situations, the distances
between the ego and tracked drone routinely reached 8 m (a substantially larger sepa-
ration distance than what is seen in most existing pose estimation datasets). This pro-
vides important validation of the use of this method for planning and decision making
onboard agile robots. From our collected data, we use 5500 images over several runs to
form a training set for the detector and baseline, and use 5000 different images to form
a testing set to evaluate pose predictions.

Fig. 4. Quadrotor used for tracking objects in robotic perception scenarios.



MSL-RAPTOR 529

Implementation Details. We do not assume knowledge about the control input of the
tracked drones, and a simple constant velocity dynamics model is used. Since we are
looking at tracking the other drone at up to 10 m distance from the ego drone, we treat
the tracked drone as symmetric about the vertical axis considering the yaw angle does
not have an appreciable effect on our measurements, and does not provide useful infor-
mation about its behavior. For a fair comparison, the same assumption is made for the
baseline method. With a higher resolution camera or for tracking at closer ranges this
constraint could be removed.

Baseline. While most state-of-the-art methods struggle to achieve real-time speeds on
desktop GPUs, SSP [9] reports inference-only speeds of 50 Hz. This, in addition to its
impressive accuracy, makes it the only candidate likely to be competitive when running
onboard. SSP takes in an image and outputs the estimated locations of the projected
3D bounding box of the object on the image plane. Its network is based on YOLO’s
architecture and is modified to produce the 3D bounding box projections instead of a
2D bounding box. The relative rigid body transformation is then calculated from the
projected vertex locations and the 3D bounding box geometry using a PnP algorithm.

SSP requires the full object pose for each image when training. Outside of labo-
ratory environments with specialized equipment, this is more challenging to acquire
than the 2D bounding boxes used by MSL-RAPTOR. Moreover, SSP is presented as an
instance-based method, meaning it must be trained on specific objects for which it will
infer pose. For this reason, we did not evaluate it on the NOCS dataset that contains
unseen objects instances in the testing set.

We train SSP using a desktop GPU, and present results for both SSP and MSL-
RAPTOR evaluated on an Nvidia Jetson TX2.

Fig. 5. Empirical cumulative distribution function on errors: (a) translation only; (b) rotation only;
(c) translation in-plane error (solid line) and depth error (dashed line)

Results. Figure 5 shows the better accuracy of MSL-RAPTOR compared to SSP. The
median translation and rotation errors are 0.82 m and 8.59◦ for MSL-RAPTOR com-
pared to 2.45 m and 11.26◦ for SSP (66% less translation error and 23% less rotation
error). When tracking a drone, MSL-RAPTOR runs 3X faster than SSP on a TX2, with
an average pose prediction speed of 0.115 s (8.7 Hz) compared to 0.335 s (2.98 Hz) for
SSP.



530 B. Ramtoula et al.

SSP directly outputs the locations of the 3D bounding box projections on the image,
so when the drone is far away or moving quickly (causing blur), these points can be
warped and scaled (Fig. 6). Regardless, the PnP algorithm will find a rigid body trans-
formation that best matches these projections to the actual 3D bounding box, leading to
significant depth errors as seen in Fig. 5(c). Since the in-plane translation is affected by
the average of these points, and the rotation by the relative positioning, the difference
in performance is less stark for the rotation and in-plane translation errors. As SSP does
not incorporate temporal information it cannot identify nor correct for these situations
which lead to estimates with large errors, resulting in the apparent asymptotes in Fig. 5.

Fig. 6. Left: SSP’s prediction for the projected 3D bounding box (red), and the ground truth
box (blue). Note that due to the fast motion of the drone, the blurry image results in a distorted
prediction. Right: MSL-RAPTOR’s prediction for the same frame (purple).

5 Conclusions

In this paper, we propose MSL-RAPTOR, an efficient monocular relative pose track-
ing algorithm that combines the image processing capabilities of modern neural net-
works with the robustness advantages of classical probabilistic filters. The front-end
extracts class labels and angled bounding boxes, which are used as observations by
the back-end’s UKF. The back-end estimates the relative pose and returns measure-
ment uncertainty parameters to the front-end for methodically determining when to
trigger the slower, but more accurate, re-detection. When not detecting, the faster visual
tracking method is used. The algorithm runs 3 times faster than the quickest state-of-
the-art method, while still out-performing it in terms of precision in onboard robotic
perception scenarios. Furthermore, despite not using depth measurements, comparable
performance to state-of-the-art results is achieved on the NOCS-REAL275 dataset.

Acknowledgements. This research was supported in part by ONR grant number N00014-18-
1-2830, NSF NRI grant 1830402, the Stanford Ford Alliance program, the Mitacs Globalink
research award IT15240, and the NSERC Discovery Grant 2019-05165. We are grateful for this
support.

References

1. Spica, R., Falanga, D., Cristofalo, E., Montijano, E., Scaramuzza, D., Schwager, M.: A real-
time game theoretic planner for autonomous two-player drone racing. In: Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylvania (2018)



MSL-RAPTOR 531

2. Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)
3. Schmidt, T., Newcombe, R., Fox, D.: DART: dense articulated real-time tracking. In: Pro-

ceedings of Robotics: Science and Systems, Berkeley, USA (2014)
4. Andriluka, M., Roth, S., Schiele, B.: Monocular 3D pose estimation and tracking by detec-

tion. In: Conference on Computer Vision and Pattern Recognition, pp. 623–630. IEEE (2010)
5. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for

6D object pose estimation in cluttered scenes. In: Robotics: Science and Systems, Pittsburgh,
Pennsylvania (2018)

6. Do, T.T., Pham, T., Cai, M., Reid, I.: Real-time monocular object instance 6d pose estimation.
In: British Machine Vision Conference (BMVC), vol. 1, p. 6 (2018)

7. Rad, M., Lepetit, V.: BB8: a scalable, accurate, robust to partial occlusion method for pre-
dicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 3828–3836 (2017)

8. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making RGB-based 3D
detection and 6D pose estimation great again. In: IEEE International Conference on Com-
puter Vision, pp. 1521–1529 (2017)

9. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 292–301 (2018)

10. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem.
Int. J. Comput. Vis. 81(2), 155 (2009)

11. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object
coordinate space for category-level 6D object pose and size estimation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)

12. Wang, C., Martı́n-Martı́n, R., Xu, D., Lv, J., Lu, C., Fei-Fei, L., Savarese, S., Zhu, Y.: 6-
PACK: category-level 6D pose tracker with anchor-based keypoints. In: IEEE Conference
on Robotics and Automation (ICRA), Paris, France (2020)

13. Cho, H., Seo, Y.W., Kumar, B.V., Rajkumar, R.R.: A multi-sensor fusion system for mov-
ing object detection and tracking in urban driving environments. In: IEEE Conference on
Robotics and Automation (ICRA), pp. 1836–1843 (2014)

14. Buyval, A., Gabdullin, A., Mustafin, R., Shimchik, I.: Realtime vehicle and pedestrian track-
ing for didi udacity self-driving car challenge. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2064–2069. IEEE (2018)

15. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv:1804.02767 (2018)
16. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and

segmentation: a unifying approach. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1328–1338 (2019)

17. Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the nonlinear transformation
of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–
482 (2000)

18. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In:
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications,
and Control Symposium, pp. 153–158 (2000)

19. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge Univer-
sity Press (2004)

20. Jocher, G., guigarfr, perry0418, Ttayu, Veitch-Michaelis, J., Bianconi, G., Baltacı, F., Suess,
D., WannaSea, U., IlyaOvodov: ultralytics/yolov3: Rectangular Inference, Conv2d + Batch-
norm2d Layer Fusion, April 2019

21. Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., Nebehay,
G., Porikli, F., Čehovin, L.: A novel performance evaluation methodology for single-target
trackers. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2137–2155 (2016)

http://arxiv.org/abs/1804.02767


532 B. Ramtoula et al.

22. Issac, J., Wuthrich, M., Cifuentes, C.G., Bohg, J., Trimpe, S., Schaal, S.: Depth-based object
tracking using a robust gaussian filter. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA), Stockholm, Sweden (2016)

23. Wuthrich, M., Pastor, P., Kalakrishnan, M., Bohg, J., Schaal, S.: Probabilistic object tracking
using a range camera. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (2013)

24. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv
preprint arXiv:1801.09847 (2018)

25. Suwajanakorn, S., Snavely, N., Tompson, J.J., Norouzi, M.: Discovery of latent 3D key-
points via end-to-end geometric reasoning. In: Advances in Neural Information Processing
Systems, pp. 2059–2070 (2018)

http://arxiv.org/abs/1801.09847

	MSL-RAPTOR: A 6DoF Relative Pose Tracker for Onboard Robotic Perception
	1 Introduction
	2 Problem Formulation
	3 Algorithm
	3.1 Object Detection
	3.2 Visual Tracking
	3.3 Unscented Kalman Filter
	3.4 Updating the Tracked Objects

	4 Experimental Results
	4.1 Implementation Choices
	4.2 Evaluation on the NOCS-REAL275 Dataset
	4.3 Baseline Evaluation in an Aerial Robotics Scenario

	5 Conclusions
	References




