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LUCIDGames: Online Unscented Inverse Dynamic
Games for Adaptive Trajectory Prediction

and Planning
Simon Le Cleac’h , Mac Schwager , and Zachary Manchester

Abstract—Existing game-theoretic planning methods assume
that the robot knows the objective functions of the other agents a
priori while, in practical scenarios, this is rarely the case. This letter
introduces LUCIDGames, an inverse optimal control algorithm
that is able to estimate the other agents’ objective functions in
real time, and incorporate those estimates online into a receding-
horizon game-theoretic planner. LUCIDGames solves the inverse
optimal control problem by recasting it in a recursive parameter-
estimation framework. LUCIDGames uses an unscented Kalman
filter (UKF) to iteratively update a Bayesian estimate of the other
agents’ cost function parameters, improving that estimate online
as more data is gathered from the other agents’ observed tra-
jectories. The planner then takes account of the uncertainty in
the Bayesian parameter estimates of other agents by planning a
trajectory for the robot subject to uncertainty ellipse constraints.
The algorithm assumes no explicit communication or coordination
between the robot and the other agents in the environment. An
MPC implementation of LUCIDGames demonstrates real-time
performance on complex autonomous driving scenarios with an
update frequency of 40 Hz. Empirical results demonstrate that
LUCIDGames improves the robot’s performance over existing
game-theoretic and traditional MPC planning approaches. Our
implementation of LUCIDGames is available at https://github.
com/RoboticExplorationLab/LUCIDGames.jl.

Index Terms—Multi-Robot systems, motion and path planning,
intelligent transportation systems.

I. INTRODUCTION

P LANNING trajectories for a robot that interacts with
other agents is challenging, as it requires prediction of the

reactive behaviors of the other agents, in addition to planning for
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Fig. 1. We present three roadway visualizations of a scenario where the
autonomous vehicle (AV) in orange and a human-driven car (blue) have to
overtake a large obstacle (yellow) on the bottom lane. The AV (orange) follows
the robust version of LUCIDGames. At the start, the AV slows down to avoid
the uncertainty-based collision avoidance zone (green), which comprises two
possibilities: either the human cuts in front of the AV, or the human yields to
let the AV go first. Then, by observing the human’s behavior, the AV better
estimates its objective and narrows down the collision avoidance zone to the
first option. Finally, the AV proceeds to overtaking the obstacle before the
human. The AV’s planned trajectory is represented by orange dots.

the robot itself. Classical approaches in the literature decouple
the prediction and planning tasks. Usually, predicted trajectories
of the other agents are computed first and provided as input for
the robot planning module, which considers them as immutable
obstacles. This formulation ignores the influence of the robot’s
decisions on the other agents’ behaviors. Moreover, it can lead
to the “frozen robot” problem, where no safe path to the goal
can be found by the planner [1] because of the false assumption
that other agents will not yield or deviate from their predicted
trajectory in response to the robot. Preserving the coupling
between prediction and planning is thus key to producing richer
interactive behavior for a robot acting among other agents.

Several recent works have used the theory of dynamic games
to capture the coupled interaction among a robot and other
agents, particularly in the context of autonomous driving [2],
[3]. However, these works rely on the strong assumption that the
robot has full knowledge of the other agents’ objective functions.
In many applications, the robot only has access to a coarse
estimate of these objective functions. For instance, in a ramp-
merging scenario, the autonomous car might be aware of the
desired distance drivers usually keep between themselves. These
coarse estimates of the other agents’ objectives can be obtained
using real data like the NGSIM driving dataset [4]. Inverse re-
inforcement learning (IRL) approaches typically learn a general
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Fig. 2. From left to right, we represent an overtaking maneuver, a ramp
merging, and an obstacle avoidance maneuver, the robot is shown in orange.

objective function to suit a large batch of demonstrations from
multiple agents [5]–[7]. On the contrary, our goal is to accurately
estimate the individualized objective functions of specific agents
in the vicinity of the robot we control. This online estimation
process occurs while interacting with the other agents so that
the robot can adapt to each agent individually. For instance, our
approach allows for estimating the level of aggressiveness of a
specific driver in the surroundings of the autonomous car.

The online estimation approach we propose is complementary
to classical offline IRL methods: With IRL, we can learn a
relevant set of objective-function features from real data, as well
as a prior distribution over the objective-function parameters.
Given these features and a prior on the parameters, we can use
LUCIDGames to refine the parameter estimation for a specific
agent based on online observation of this agent. Our approach
assumes that agents solve a dynamic game and follow Nash
equilibrium strategies. This setting models non-cooperating
agents that act optimally to satisfy their individual objectives [2],
[3]. We further assume that we have access to a class of objective
functions parameterized by a small number of parameters. This
could be the desired speed, or driver aggressiveness in the
autonomous driving context.

To estimate these parameters, we adopt the unscented Kalman
filtering (UKF) approach. In our case, the key part of this algo-
rithm is the measurement model that maps the objective function
parameters to the observation of the surrounding agents’ next
state. To obtain this mapping, we use ALGAMES, a trajectory
optimization solver for dynamic games that handles general non-
linear state and input constraints [2].The choice of a derivative-
free estimation method (UKF) is justified by the complexity of
the measurement model, which includes multiple non-convex
constrained optimization problems. Additionally, we design a
planner for the robot that is robust to poor estimates of the other
agents’ objectives. By sampling from the belief over the ob-
jective functions of the other agents and computing trajectories
corresponding to those samples, we can translate the uncertainty
in objective functions into uncertainty in predicted trajectories.
Then, ellipsoidal bounds are fitted to the sampled trajectories to
form “safety constraints”; collision constraints that account for
objective uncertainty. Importantly, the calculation of these safety
constraints reuses samples required by the UKF estimation al-
gorithm. It is, therefore, executed at a negligible additional cost.

Fig. 3. Running the MPC implementation of LUCIDGames 50 times on a
ramp-merging scenario with 2, 3 and 4 players, we obtain the mean update
frequency of the MPC as well as the mean and standard deviation of δt, the
time required to update the MPC plan and the belief over the other players’
objective functions.

Fig. 4. LUCIDGames reduces the estimation error on the desired speed
parameter by a factor of 100 within 12 seconds of interaction (top). The error on
the desired lane is divided by 20 (middle) and the error on the aggressiveness pa-
rameter is halved (bottom). The markers indicate the median error computed over
50 simulations. The faded color areas correspond to the 95% confidence interval.

In a receding-horizon loop, LUCIDGames controls one agent
called the “robot” and estimates the other agents’ objectives
at 40 Hz for a 3-player game with a strong level of interaction
among the agents. Our primary contributions are as follows:

1) We propose a UKF-based method for a robot to estimate
the objective function parameters of non-cooperating
agents online, and show convergence of the estimate to
the ground-truth parameters.(Fig. 4).

2) We combine the online parameter estimator with a
game-theoretic planner. The combined estimator and
planner, called LUCIDGames, runs online at 40 Hz in a
receding-horizon fashion.

3) We include safety constraints within LUCIDGames to
impose ellipsoidal collision-avoidance constraints for
the robot that reflect the uncertainty in the other agents’
future trajectories due to the Bayesian estimate of their
parameters.
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Fig. 5. We present the trajectory prediction error obtained by the robot on
3 scenarios for 4 algorithms: LUCIDGames; a non-game-theoretic baseline
using straight-line predictions; a game-theoretic solver that does not estimate
the other agents’ objective functions and finally, an oracle having access to
the ground-truth objective functions of the other agents. LUCIDGames starts
with a large prediction error and quickly estimates the other agents’ objective
functions to outperform the baselines and reach error levels comparable to
those of the oracle. We represent the medians, computed over 50 simulations, of
the prediction error measuring the �2-distance between the 3-second trajectory
predictions and the ground-truth trajectory. The faded color areas correspond
to the interval between the 1st and 3rd quantile.

We compare LUCIDGames against game-theoretic and
non-game-theoretic baselines. We show that LUCIDGames’
trajectory-prediction error rapidly decreases to match the
accuracy of the oracle predictor that has access to the
ground-truth objectives (Fig. 5). Furthermore,

LUCIDGames with safety constraints allows for realistic,
cautious interactions between a robot and an agent making an
unexpected maneuver (Fig. 1).

II. RELATED WORK

A. Game-Theoretic Trajectory Optimization

Dynamic games have been used as a modeling framework
in a wide variety of applications. For example, in autonomous
driving [2], [3], drone and car racing [8] etc. The solutions of a
dynamic game depend on the type of equilibrium selected [9].
Nash equilibrium models games without hierarchy between
players. Each player’s strategy is the best response to the other
players’ strategies.

Nash equilibrium solutions have been studied extensively [3],
[8], [10]. They seem to capture the game-theoretic interactions
observed in some multi-agent non-cooperative problems. We
follow this approach by solving for open-loop Nash equilibrium
strategies. However, we intend to relax a key assumption made

in previous works by estimating the other agents’ objective
functions instead of assuming that they are known a priori by
the robot we control.

B. Objective Function Estimation

Estimating objective functions from historical data is a well
investigated problem known as Inverse Optimal Control (IOC)
or Inverse Reinforcement Learning (IRL). Typically, with the
IRL approach, the objective function is linear in terms of a given
set of state features [6]. The goal is to identify a parameter vector
that weights these features so that the behavior resulting from
this estimated objective matches the observed behavior. While
these classical approaches are usually framed in the discrete state
and action space setting, they can also be applied to continuous
state and action spaces arising in robotics problems [11], [12].
However, these works are limited to single-agent problems.

In the multi-agent setting, some IRL approaches formulate
the problem by assuming cooperative agents [13] or competing
agents [7], [14]. These approaches have been demonstrated on
discretized state and actions spaces. More recent works consider
the multi-agent competitive setting with continuous state and
action spaces [15], [16]. Their methods have typically been
demonstrated on linear-quadratic games with low-dimensional
states and control inputs. IOC and IRL-based techniques
estimate the objective function’s parameters “offline”. Given
a set of complete trajectories, they intend to identify one
parameter vector that will best fit the data. Our goal is slightly
different: As an agent in the game, we would like to perform the
estimation “online,” with only knowledge of previous steps, and
use our estimate to inform our actions for future time steps. This
means that we have access to fewer demonstrations and that our
computation time is limited to ensure real-time execution. On
the other hand, we assume a low-dimensional parameter space
with a coarse prior.

C. Online Parameter Estimation

Our goal is to estimate the objective functions of the agents
in the robot’s surroundings. We assume that these objectives are
parameterized by a vector of quasistatic parameters, denoted θ.
This means that θ fluctuates at a rate significantly slower than
the filter’s update rate (40 Hz). Indeed, these parameters encode
drivers’ objectives such as desired speed or aggressiveness
level, that vary over periods on the order of tens of seconds to
minutes. In such situation, a common technique is to perform
parameter estimation [17] that relies on a stationary process
model; as opposed to state estimation. In the autonomous
driving context, parameter estimation is commonly performed
using this stationary process model [18]–[23]. The quasistatic
nature of the parameters has been verified empirically on a
large driving dataset [18]. This design choice is additionally
motivated by the desire to make minimal assumptions the
about how the drivers’ objectives will evolve over time [23].
Previous works demonstrated that estimating the other drivers’
objectives helps better predict their future trajectories. However,
this gained information was not used to improve the decision
making of the cars. Indeed, Sunberg et al. [21], [22] showed
that an agent inferring the objectives of the surrounding drivers
improves its objective function satisfaction. We also follow a
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parameter estimation approach, using an UKF with a stationary
process model and a measurement model that relies on a
game-theoretic modeling of vehicle interactions instead of a
rule-based driver model. Additionally, LUCIDGames exploits
the gained information to improve the actions of the robot.

LUCIDGames relies on a UKF parameter estimator that
propagates in time the belief over the unknown objective
parameter vector θ. The procedure that updates this belief is
described in Algorithm 1. Line 2 corresponds to the prediction
step, which exploits the stationary process model corresponding
to an additive white Gaussian noise defined as follows,

θt+1 = θt + δt, δt ∼ N (0, Qt). (1)

Line 3 samples sigma-points from a Gaussian distribution
over the vector θ (2–8),

λ = α2(q + κ)− q, (2)

Θ(0) = μ, (3)

Θ(i) = μ+ (
√
(q + λ)Σ)i, ∀i ∈ {1, . . . , q} (4)

Θ(i) = μ− (
√

(q + λ)Σ)i−q, ∀i ∈ {q + 1, . . . , 2q}
(5)

M (0) = λ/(q + λ), (6)

C(0) = λ/(q + λ) + (1− α2 + β), (7)

M (i) = C(i) = λ/ (2(q + λ)) . ∀i ∈ {1, . . . , 2q} (8)

We follow a classical sampling scheme that relies
on parameters, α, β, κ, controlling the spread of the
sigma-points [24]. Line 4 applies the measurement model
that is specific to LUCIDGames to the sampled sigma-points,
Θ. R denotes the covariance of the Gaussian white noise
associated with the measurement model. Lines 5 to 8 compute
the Kalman gain, K, and measurement prediction x̄t. Finally,
the update step is executed in line 9.

D. Data-Driven Trajectory Prediction

There is a rich literature on applying data-driven approaches
to pedestrian or vehicle trajectory predictions. Such approaches
are usually trained offline as a general model to suit multiple
agents. Additionally, they require a large corpus of data ranging
from a thousand driving scenarios [25], [26], to millions of
examples [27]. On the other hand, we require a small amount
of data and find parameters online for a specific agent. Contrary
to deep-learning approaches, our method adapts in real-time to
each vehicle by reasoning about its individual objective and by
exploiting data gathered online. Offline data-driven methods are
complementary to our approach as they could provide a strong
prior on the parameters estimated online; a prior grounded
on real driving behavior. Data-driven methods can predict a
distribution over future trajectories e.g., offline inverse optimal
control with online goal inference [28]; Conditional Variational
Autoencoders (CVAE) [25] or Generative Adversarial Networks
(GAN) [29]. Our approach maintains a unimodal belief
over objective function parameters,1 which translates into
a distribution over trajectory predictions. A shortcoming

1Our approach can easily be extended to multimodal belief representation of
objective function parameters using a Gaussian mixture model.

Algorithm 1: Parameter Estimation Module.
1: procedure Estimator(xt−1, xt, μt−1, μt, Σt

2: (μ̄t+1, Σ̄t+1)← (μt, Σt +Qt))
3: Θ,M,C ← SigmaPoints(μ̄t+1, Σ̄t+1) � Eq. 2–8
4: χ(i) ←MeasurementModel(xt−1, μt−1,Θ(i)) ∀i
5: x̄t ←

∑
i M

(i)χ(i)

6: P ←∑
i C

(i)[χ(i) − x̄t][χ
(i) − x̄t]

T +R

7: S ←∑
i C

(i)[Θ(i) − μ̄t+1][χ
(i) − x̄t]

T

8: K ← SP−1
9: (μt+1, Σt+1)←

(μ̄t+1 +K(xt − x̄t), Σ̄t+1 −KPKT )
10: return μt+1,Σt+1

of the CVAE-based or GAN-based methods is that they
ignore kinodynamic constraints on the predicted trajectories,
allowing cars to move sideways, for instance. Incorporating
information like drivable area maps which are common for
autonomous driving applications [30], could prevent infeasible
trajectory predictions [27]. Our approach generates dynamically
feasible and collision-free predictions. One notable work in
this field is Trajectron++ [26]. It handles kinodynamic
constraints and incorporates drivable area maps, as well
as the robot’s planned trajectory, to inform the prediction.
However, contrary to our algorithm, these data-driven methods
ignore collision-avoidance constraints between agents and
predict trajectories involving collisions as observed by
Bhattacharyya [19] with a learning-based method [29].

III. PROBLEM STATEMENT

A. Guiding Assumptions

In a multi-player dynamic game, the robot takes its
control decisions using LUCIDGames and carries out all
the computation required by the algorithm. We assume the
other agents are “ideal” players in the game. They have access
to the ground-truth objective functions of all the players in
the game. They take their control decisions by individually
solving for a Nash equilibrium strategy based on these true
objective functions and execute them in a receding-horizon
loop. This assumption is required to avoid the complexity of
the robot having to “estimate the estimates” of the other agents.
Nevertheless, our algorithm shows strong practical performance
even, when this assumption is violated. All the experimental
results presented in this letter are obtained with the “ideal” agents
having incorrect estimates of the objectives of the surrounding
agents in the scene. Moreover, this assumption is way to generate
a human driver model that is reactive to the robot’s actions
and that maintains coupling between planning and trajectory
prediction for the robot. Other approaches replayed prerecorded
driving data to emulate human driving behavior [18], [19],
[23], but this method ignores the reactive nature of human
drivers to the robots’ decisions. Lane-following models, such
as IDM [31] fail to capture complex driving strategies like
nudging or changing lanes that our model can generate. We
further assume that both the robot and the ideal agents plan
by computing open-loop Nash equilibrium trajectories and
execute these planned trajectories in a receding horizon loop.
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Additionally, to keep the estimation process tractable online, we
assume that the agents’ objective functions belong to a known
class of functions parameterized by a reduced set of quasistatic
parameters, as detailed in Section III-C.

B. Dynamic Game Nash Equilibrium

We focus on the discretized dynamic game setting with N
time steps and M players (1 robot and M − 1 agents). We
denote xk ∈ Rn the joint state of the system, and uν

k ∈ Rmν

the control input of player ν at time step k. Player ν’s strategy is
a control input sequence Uν = [(uν

1)
T . . . (uν

N−1)
T ]T ∈ Rm̄ν

where m̄ν = (N − 1)mν . The robot’s strategy is denoted,
Ur, with r ∈ {1, . . . ,M} and U−r designates the combined
strategies of the M − 1 other agents in the game. The state
trajectory is defined as X = [(x1)

T . . . (xN )T ]T ∈ Rn̄ where
n̄ = Nn. It stems from executing the control strategies of all
the players in the game on a joint dynamical system,

xk+1 = f(xk, u
1
k, . . . , u

M
k ) = f(xk, uk), (9)

with k denoting the time step index. We define the objective
function of player ν; Jν(X,Uν) : Rn̄+m̄ν �→ R. It is a function
of its strategy, Uν , and of the state trajectory of the joint
system, X . The goal of player ν is to select a strategy, Uν , that
will minimize its cost, Jν , while respecting kinodynamic and
collision-avoidance constraints defined in Sections V.1 and V.2.
We compactly express these constraints as a set of inequalities
C : Rn̄+m̄ �→ Rnc :

min Jν(X,Uν),
X, Uν

s.t. C(X,U) ≤ 0. (10)

Finding a Nash-equilibrium solution to the set of M
Problems (10) is called a generalized Nash equilibrium problem
(GNEP) [2], [32]. It consists of finding an open-loop Nash
equilibrium control trajectory, i.e. a vector, Û such that, for all
ν = 1, . . . ,M , Ûν is a solution to (10) with the other players’
strategies set to Û−ν . This implies that at a Nash equilibrium
point, Û , no player can decrease their objective function by
unilaterally modifying their strategy, Uν , to any other feasible
point. Solving this GNEP can be done efficiently with a dynamic
game solver such as ALGAMES [2]. We will consider it as
an algorithmic module that takes as inputs the fully observed
initial state of the system and the estimated objective functions,
J1, . . . , JM , and returns an open-loop trajectory of the joint
system comprising the robot and the ideal agents.

C. Objective Function Parameterization

As is typically the case in the IRL and IOC literature [6],
[12], [15], we assume that the objective function of player ν can
be expressed as a linear combination of features, φ, extracted
from the state and control trajectories of this player,

Jν(X,Uν) = φ(X,Uν)T θν . (11)

While restrictive, this parameterization encompasses many
common objective functions like linear and quadratic costs.
The UKF estimates the weight vector θν of all the agents in the
game. We denote by θ ∈ Rq the concatenation of the vectors
θν that the robot has to estimate,

θ = [θ1
T
. . . θr−1T , θr+1T . . . θM

T
]T ∈ Rq. (12)

IV. UNSCENTED KALMAN FILTERING FORMULATION

LUCIDGames allows the robot to estimate the objective
functions’ parameter θ and to exploit this estimation to
predict the other agents’ behaviors and make decisions for
itself. We represent the belief over the parameter θ as a
Gaussian distribution and we sample sigma-points from it.
Each sigma-point is a guess over the parameter θ. Given the
current state of the system, x, we can form a GNEP for each
sigma-point. By solving these GNEPs, we obtain a set of
predicted trajectories for the system. When we receive a new
measurement of the state x, we compare it to the trajectories
we predicted earlier. The Gaussian belief over θ is updated with
the typical UKF [24] update rules, so that the sigma-points that
had better prediction performance are now more likely.

The UKF framework requires two pieces: the process model,
and the measurement model. In a typical filtering context,
these are obvious. However, in our problem these are more
subtle. Specifically, the quantity we estimate with the filter is
θ. Following the parameter estimation framework rationalized
in Section II-C, we use a stationary process model where θ
evolves according to a random walk (1). The crucial part of our
algorithm is the measurement model which is inserted into the
classical UKF parameter estimation algorithm. In our case, the
measured quantity available to the robot (with noise) is the full
system state, xt, at the current time. Hence, the measurement
model is the map relating the parameter vector θ to the system
state xt. This function is itself the solution of the dynamic
game. Our UKF, thus, requires the solution of the dynamic
game for each sigma-point of θ at each time step.

A. Measurement Model

Our estimator is executed in a receding-horizon loop. At
each time step t, the robot updates its Gaussian belief over the
vector θ, which is parameterized by its mean, μt, and covariance
matrix, Σt.

We construct a measurement model, g(·, ·), that maps the
parameter θ and the observed previous state xt−1 to the current
state xt that we observe:2

xt = g(θ, xt−1) + εt, εt ∼ N (0, R). (13)

This nonlinear function, g(·, ·), encapsulates the decision
making process of the agents and the propagation of the system’s
dynamics as detailed in Algorithm 2. It models the vehicles as
game-theoretic agents optimizing their own objective functions.
This sets our method apart from online estimation methods
relying on rule-based driver models.

B. LUCIDGames: Combining Parameter Estimation
and Planning

LUCIDGames exploits the information gained via the
estimator to inform the decision making of the robot. It jointly
plans for itself and predicts the other agents’ trajectories. At
time step t, the robot solves the GNEP using the current state of
the systemxt and its mean estimateμt over θ. We obtain the next
state xt+1 by propagating forward the open-loop plans of both

2A direction for future work could be to consider the case where the robot
has a nonlinear or partial observation of the state.
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Algorithm 2: Game-theoretic Decision Making.
1: procedure MeasurementModel (xt, μt, θ)
2: Ur

t ← ALGAMES(xt, μt) � Robot’s plan
3: U−rt ← ALGAMES(xt, θ) � Ideal agents’ plans
4: Ut ← [Ur

t
T , U−rt

T
]T

5: xt+1← Dynamics(xt, Ut) � Equation 9
6: return xt+1

Algorithm 3: Combined estimator and planning module.
1: procedure LUCIDGames (xt−1, xt, μt−1, μt, Σt)
2: for t = 1, 2, . . . do
3: xt+1 ←MeasurementModel(xt, μt, θ)
4: μt+1,Σt+1 ← Estimator(xt−1, xt, μt−1, μt,Σt)
5: return xt+1, μt+1,Σt+1

the robot and the ideal agents as detailed in Algorithm 2. The
joint estimation and control procedure is detailed in Algorithm 3.

V. SIMULATIONS: DESIGN AND SETUP

We apply our algorithm to highway autonomous driving
scenarios involving a high level of interactions between agents:
overtaking, ramp merging and obstacle avoidance maneuvers
(Fig. 2). We assume the robot follows the LUCIDGames
algorithm for its decision making and estimation. The other
vehicles are modeled as ideal agents solving the dynamic game
with knowledge of the true parameters.

1) Problem Constraints: We consider a unicycle model
for the dynamics of each vehicle. The state, xk, contains a
2D position, a heading angle and a scalar velocity for each
vehicle. The control input, uν

k, consists of an angular velocity
and a scalar acceleration. Additionally, we model the collision
avoidance zone of each vehicle as a disk, preventing collision
between vehicles and with the boundaries of the road.

2) Objective Function: We select a quadratic objective
function incentivizing the agents to reach a desired state, xf ,
while limiting control inputs. On top of this objective function,
we add a quadratic penalty on being close to other vehicles,

Jν(X,Uν) =
N−1∑

k=1

1

2
(xk − xf )

TQ(xk − xf ) +
1

2
uν
k
TRuν

k

+
1

2
(xN − xf )

TQf (xN − xf )

+

N∑

k=1

∑

μ 	=ν

γν
(
max (0, ||pνk−pμk ||2−η(rν+rμ))

)2
.

(14)

For agent ν, pνk and rν designate its 2D position at time step
k and collision avoidance radius. γν and η are scalar collision
avoidance cost parameters encoding the magnitude of the cost
and the distance at which this cost is “activated”.

In this work, we estimate a reduced number of objective
function parameters. We choose 3 parameters with intuitive
interpretations. Two of them are elements of the desired state,
xν
f : the desired speed and desired lateral position on the

roadway (i.e. desired lane) of the vehicle. The last one is γν ,

which encodes the “aggressiveness” of the driver. Indeed, a
large value for γν will penalize a vehicle driving too close
to other vehicles, which will lead to less aggressive behavior.
This parameterization is consistent with an objective function
expressed as a linear combination of features (11). Therefore,
it would be possible to use an IRL algorithm trained on real
driving data to provide a prior on these parameters.

VI. SIMULATION RESULTS

We first assess the tractability and scalability of the approach
for an increasing number of agents on highway driving scenarios
as shown on Figure 2. Then, we perform an ablation study by
removing the two main components of LUCIDGames: the online
estimation and the game-theoretic reasoning. The goal is to
investigate how each of these components affect the performance
of LUCIDGames. This is also a way to compare LUCIDGames
to related approaches proposed in the literature. Indeed, several
works applied dynamic game solvers in a receding-horizon loop
to autonomous driving problems without resorting to online
estimation [2], [3]. Bhattacharyya et al. [19] used highway driv-
ing datasets to compare the trajectory prediction performance
of rule-based and black-box driver models. The set of evaluated
methods included: constant velocity prediction, Generative
Adversarial Imitation Learning (GAIL) [29] and a particle filter
estimating the parameters of the intelligent driver model (IDM)
online. On the trajectory prediction task, the constant velocity
baseline was the best performing method. Thus, we choose to
compare our method to this non-game-theoretic baseline.

A. Tractability

We run LUCIDGames in a receding horizon-loop using a
coarse prior on the vector θ. In practice, the initial belief is a
Gaussian parameterized by its mean and variance:

μ0 = 1, Σ0 = v0Iq. (15)

Where v0 is a large initial variance on each parameter (typically
v0 = 25 in our experiments); and Iq is the identity matrix. We
run LUCIDGames on the ramp-merging scenario involving 2 to
4 agents and we compile the timing results in Table 3. We demon-
strate the tractability of the algorithm for complex autonomous
driving scenarios, and we show real-time performance of the
estimator for three agents (40 Hz) and up to four agents (10 Hz).
In practice, we trivially parallelize the implementation of
LUCIDGames: For each sigma-point, Θ

(i)
t , the algorithm

requires the solution of a dynamic game (Algorithm 1, line
5). We solve these dynamic games simultaneously, in parallel,
by distributing them on a multi-core processor. The number
of dynamic games to solve in parallel scales like the number
of sigma-points, which is linear in terms of the number of
agents M . Each individual dynamic game has a computational
complexity of O(M3). In this work, all the experiments have
been executed on a 16-core processor (AMD Ryzen 2950X).

B. Parameter Estimation

We assess the ability of LUCIDGames to correctly estimate
the ground-truth objectives of the other agents with only a
few seconds of driving interaction on three scenarios: highway
overtaking, ramp merging and obstacle avoidance. We compute
the relative error between the ground-truth parameter θ and
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the mean of the Gaussian belief μt along the 12-second
MPC simulation. We perform a Monte-Carlo analysis of the
algorithm by sampling the initial state of the system as well
as the objective parameter θ. The aggregated results from 50
samples are presented in Figure 4. They show a significant
decrease of the parameter estimation error.

C. Trajectory Prediction

Additionally, we show that LUCIDGames allows the robot
to better predict the trajectory of the other agents. We use
the same Monte Carlo analysis as described above on three
driving scenario (Fig. 5). First, we observe that LUCIDGames
initialized with a coarse prior starts with a large prediction error;
around 4 meters in all scenarios. However, it converges to a
prediction error very much comparable to the one obtained with
the oracle in about 1 s. This illustrates the ability of the robot
using LUCIDGames to quickly improve its predictions about
the surrounding agents by gathering information about them.
The error obtained by keeping the coarse prior remains high and
fairly constant during the simulation. The one obtained using
LUCIDGames is an order of magnitude lower, in comparison,
by the end of the simulation.

Second, we compare LUCIDGames to a non-game-theoretic
baseline on trajectory prediction error. This baseline predicts
the trajectories of the agents surrounding the robot by propagat-
ing straight-line and constant-speed trajectories for each agent.
These predicted trajectories are of the same duration (3 sec-
onds) as the open-loop predictions made by LUCIDGames. This
line-prediction baseline may seem very coarse. However, in the
context of highway driving, straight line trajectories are very per-
tinent for short (3 seconds) horizon predictions. In practice, we
use a straight highway environment for our simulations (Fig. 2).
As the roadway is not curved, the only causes of trajectory
curvature are lane changes, nudging and merging maneuvers.
LUCIDGames is able to outperform the baseline by capturing
these natural driving behaviors that go beyond lane following.

For the overtaking scenario (Figure 5), LUCIDGames
starts off with a large prediction error but quickly converges
to prediction error lower than the line-prediction baseline.
However, the performance gap is small confirming that the
line prediction baseline is a suitable model for short horizon
prediction in typical highway driving.

On the other hand, for more complex driving scenarios like
ramp merging, the gap between LUCIDGames and the line
prediction technique is significant. We observe that this gap
is the highest after 1 s when LUCIDGames has successfully
converged. The gap consistently decreases afterwards as the
system converges to a steady state where all the vehicles drive
in straight lines following their desired lanes.

Similarly, for the collision-avoidance scenario, the prediction
error obtained using LUCIDGames is around half that obtained
using the line-prediction baseline after the parameter estimation
has converged (1 s). We observe that the line prediction
baseline almost matches LUCIDGames’ when the vehicles are
constrained to drive on a narrower roadway (t ∈ [3, 4]s). Finally,
after the obstacle is passed (t ∈ [4, 6]s), the performance gap
increases in favor of LUCIDGames. Indeed, it is able to predict
that vehicles are going to return to their desired lanes after
avoiding the obstacle.

D. Safe Trajectory Planning

We implement a robust trajectory planning scheme for the
robot that accounts for uncertainty in the objective of the other
agents by enforcing “safety constraints.” With LUCIDGames,
we maintain a Gaussian belief over the other agents’ objectives.
We thus quantify the uncertainty of our current objective
function estimates. Taking into account such uncertainty can
be instrumental in preventing the robot from making unsafe
decisions. For instance, an autonomous vehicle should act
cautiously when overtaking an agent for which it has an
uncertain estimate of its desired speed and desired lane.

For many multi-robot systems, safety is ensured by avoiding
collisions with other agents. Thus, we encode safe decision mak-
ing for the robot by ensuring its decisions are robust to misesti-
mation of the objective functions. First, the robot computes the
“safety constraints,” which are inflated collision avoidance con-
straints around other agents by fitting ellipses around the trajec-
tories sampled by the UKF (e.g., in the 95%-confidence ellipse).
These safety constraints can be seen as approximate chance con-
straints that can be efficiently computed. Then, the robot solves
the dynamic game corresponding to the mean of the belief over
θ, with the safety constraints. In practice, when the uncertainty
about θ is large, the sampled sigma-points and their correspond-
ing trajectories are scattered and generate a large collision avoid-
ance zone. The top roadway visualization in Figure 1 illustrates
this situation. These safety constraints can be seen as a lifting of
the uncertainty in the low-dimensional space of objective param-
eters onto the high-dimensional space of predicted trajectories.

We showcase the driving strategy emerging from this robust
planning scheme in Figure 1. The human driver and the robot
are confronted with an obstacle. Using LUCIDGames, the robot
infers the human’s intent to change lanes (to avoid the obstacle),
and negotiates, through the game theoretic planner, whether to
yield to the human, or to let the human yield. In phase 1, the
robot has a large initial uncertainty about the objective of the
human-driven vehicle (blue). Indeed, the set of sampled trajec-
tories contains both predictions where the human cuts in front
of the robot, and ones in which the human yields to let the robot
go first. Thus, the robot slows down to comply with the safety
constraints which covers both hypotheses. In phase 2, the robot
has correctly estimated the human’s intent to yield to the robot,
to change lanes after the robot passes. The collision avoidance
zone generated by the safety constraints shrinks. This allows the
robot to plan an overtaking maneuver and regain speed, while
the human changes lanes behind the robot to avoid the obstacle
(phase 3). LUCIDGames without these safety constraints does
not slow down to account for the initial uncertainty. The same
is true for the oracle and the straight line prediction baseline.

E. Results Discussion

1) Parameter Estimation: We have observed challenging
scenarios demonstrating the complexity of the objective
estimation task. For instance, if all the agents are far from each
other, none of the collision avoidance penalties (14) are “active”.
In such a situation, it is impossible to estimate the aggressiveness
parameter that scales the cost of these collision avoidance
penalties. Nevertheless, we argue that this observability issue
is not crucial in practice. Indeed, as long as the agents remain
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far from each other the aggressiveness parameter will not affect
the trajectory prediction of the robot.

2) Trajectory Prediction: The human-driven vehicles in
these simulations are modeled as agents solving the ground-truth
dynamic game for a Nash equilibrium strategy in a receding
horizon loop. We notice in Figure 5 that even when the robot
has access to the ground-truth objective functions, its trajectory
prediction error is not null because of the noise added to the
dynamics. LUCIDGames consistently converges to error levels
similar to the ones of the agent having access to the ground-truth
objective functions.

VII. CONCLUSION

We have presented LUCIDGames, a game theoretic planning
framework that includes the solution of an inverse optimal con-
trol problem online to estimate the objective function parameters
of other agents. We demonstrate that this algorithm is fast enough
to run online in a receding-horizon loop, and is effective in plan-
ning for an autonomous vehicle to negotiate complex driving
scenarios while interacting with other vehicles. We showed that
this method outperforms two benchmark planning algorithms,
one assuming straight-line predictions for other agents, and
one incorporating game-theoretic planning, but without online
parameter estimation of other agents’ objective functions.

We envision several promising directions for future work:
In this work, the set of objective function parameters has been
designed with “expert” knowledge of the problem at hand,
so that they encompass a large diversity of driving behaviors
while remaining low dimensional. However, one could envision
these parameters and associated features being identified via a
data-driven approach. The overall approach of estimating online
a reduced set of parameters to better predict the behavior of the
system is appealing. Indeed, in this framework, the dynamic
game solver lifts the low dimensional space of objective
function parameters (order 101) into the high dimensional
space of predicted trajectories (order 102 - 103). This lifting
or “generative model” natively embeds safety requirements by
generating dynamically feasible trajectories respecting collision
avoidance constraints. It also accounts for the fact that agents
tend to act optimally with respect to some objective functions.
Finally, through its game-theoretic nature, it captures the reactive
nature of the agents surrounding the robot in autonomous driving
scenarios, where negotiation between players is a crucial feature.
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