
Autonomous Robots
https://doi.org/10.1007/s10514-021-10024-7

ALGAMES: a fast augmented Lagrangian solver for constrained
dynamic games

Simon Le Cleac’h1 ·Mac Schwager2 · Zachary Manchester3

Received: 31 January 2021 / Accepted: 27 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Dynamic games are an effective paradigm for dealing with the control of multiple interacting actors. This paper introduces
augmented Lagrangian GAME-theoretic solver (ALGAMES), a solver that handles trajectory-optimization problems with
multiple actors and general nonlinear state and input constraints. Its novelty resides in satisfying the first-order optimality
conditions with a quasi-Newton root-finding algorithm and rigorously enforcing constraints using an augmented Lagrangian
method. We evaluate our solver in the context of autonomous driving on scenarios with a strong level of interactions between
the vehicles. We assess the robustness of the solver using Monte Carlo simulations. It is able to reliably solve complex
problems like ramp merging with three vehicles three times faster than a state-of-the-art DDP-based approach. A model-
predictive control (MPC) implementation of the algorithm, running at more than 60 Hz, demonstrates ALGAMES’ ability to
mitigate the “frozen robot” problem on complex autonomous driving scenarios like merging onto a crowded highway.

Keywords Dynamic game · Nash equilibrium · Autonomous driving

1 Introduction

Controlling a robot in an environment where it interacts with
other agents is a complex task. Traditional approaches in
the literature adopt a predict-then-plan architecture. First,

This work was supported in part by NSF NRI Grant 1830402, DARPA
Grant D18AP00064 and ONR Grant N00014-18-1-2830. Toyota
Research Institute (“TRI”) provided funds to assist the authors with
their research, but this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity.
This is one of the several papers published in Autonomous
Robotscomprising the Special Issue on Robotics: Science and
Systems 2020.

B Simon Le Cleac’h
simonlc@stanford.edu

Mac Schwager
schwager@stanford.edu

Zachary Manchester
zacm@cmu.edu

1 Department of Mechanical Engineering, Stanford University,
Stanford, USA

2 Department of Aeronautics and Astronautics, Stanford
University, Stanford, USA

3 The Robotics Institute, Carnegie Mellon University,
Pittsburgh, USA

predictions of other agents’ trajectories are computed, then
they are fed into a planner that considers them as immutable
obstacles. This approach is limiting because the effect of the
robot’s trajectory on the other agents is ignored. Moreover,
it can lead to the “frozen robot” problem that arises when
the planner finds that all paths to the goal are unsafe (Traut-
man and Krause 2010). It is, therefore, crucial for a robot to
simultaneously predict the trajectories of other vehicles on
the road while planning its own trajectory, in order to capture
the reactive nature of all the agents in the scene. ALGAMES
provides such a joint trajectory predictor and planner by con-
sidering all agents as players in a Nash-style dynamic game.
We envision ALGAMES being run on-line by a robot in a
receding-horizon loop, at each iteration planning a trajectory
for the robot by explicitly accounting for the reactive nature
of all agents in its vicinity.

Joint trajectory prediction and planning in scenarios with
multiple interacting agents is well-described by a dynamic
game. Dealing with the game-theoretic aspect of multi-agent
planning problems is a critical issue that has a broad range
of applications. For instance, in autonomous driving, ramp
merging, lane changing, intersection crossing, and overtak-
ing maneuvers all comprise some degree of game-theoretic
interactions (Sadigh et al. 2016a, b; Fridovich-Keil et al.
2020; Dreves and Gerdts 2018; Fisac et al. 2019; Schmer-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-021-10024-7&domain=pdf
http://orcid.org/0000-0002-7430-8396

Autonomous Robots

Fig. 1 Amerging maneuver on a crowded highway is carried out using
a receding horizon implementation of ALGAMES. On the left, the red
car controlled by ALGAMES merges between the orange and green
cars with minimal disruption to the traffic. On the right, the red car
controlled by a non-game-theoretic MPC, is “frozen,” i.e. it cannot find
a feasible path. It has to slow down significantly and wait for the three
cars to pass before merging

ling et al. 2018). Other potential applications include mobile
robots navigating in crowds, like package-delivery robots,
tour guides, or domestic robots; robots interacting with peo-
ple in factories, such asmobile robots or fixed-basemulti-link
manipulators; and competitive settings like drone and car rac-
ing (Wang et al. 2021; Liniger and Lygeros 2019).

In thiswork, we seek solutions to constrainedmulti-player
dynamic games. In dynamic games, the players’ strategies are
sequences of decisions. It is important to notice that, unlike
traditional optimization problems, non-cooperative ga-mes
have no “optimal” solution. Depending on the structure of
the game, asymmetry between players, etc., different con-
cepts of solutions are possible. In this work, we search for
Nash-equilibrium solutions. This type of equilibrium mod-
els symmetry between the players; All players are treated
equally. At such equilibria, no player can reduce its cost by
unilaterally changing its strategy. For extensive details about
the game-theory concepts addressed in this paper, we refer
readers to the work of Basar and Olsder (1999).

Our solver is aimed at finding a Nash equilibrium for
multi-player dynamic games, and can handle general nonlin-
ear state and input constraints. This is particularly important
for robotic applications, where the agents often interact
through their desire to avoid collisions with one another or
with the environment. Such interactions are most naturally
represented as (typically nonlinear) state constraints. This is a
crucial feature that sets game-theoretic methods for robotics
apart from game-theoretic methods in other domains, such
as economics, behavioral sciences, and robust control. In
these domains, the agent interactions are traditionally repre-
sented in the objective functions themselves, and these games
typically have no state or input constraints. In mathematics

literature, Nash equilibria with constraints are referred to as
Generalized Nash Equilibria (Facchinei and Kanzow 2007).
Hence, in this paper we present an augmented Lagrangian
solver for finding Generalized Nash Equilibria specifically
tailored to robotics applications.

Our solver assumes that players are rational agents acting
to minimize their costs. This rational behavior is formulated
using the first-order necessary conditions forNash equilibria,
analogous to the Karush–Kuhn–Tucker (KKT) conditions
in optimization. By relying on an augmented Lagrangian
approach to handle constraints, the solver is able to solve
multi-player games with several agents and a high level of
interactions at real-time speeds. Finding a Nash equilibrium
for 3 autonomous cars in a freeway merging scenario takes
90 ms. Our primary contributions are:

1. A general solver for dynamic games aimed at identifying
Generalized Nash Equilibrium strategies.

2. A real-timeMPC implementation of the solver mitigating
the “frozen robot” problem that arises in complex driving
scenarios for non-game-theoretic MPC approach (Fig. 1).

3. An analysis of the non-uniqueness of Nash equilibria in
driving scenarios with constraints and an assessment of
the practical impact it has on players’ coordination.

4. A comparison with iLQGames (Fridovich-Keil et al.
2020). ALGAMES finds Nash equilibria 3 times faster
than iLQGames for a fixed constraint satisfaction crite-
rion.

2 Related work

2.1 Equilibrium selection

Recentwork focused on solvingmulti-player dynamic games
can be categorized by the type of equilibrium they select.
Several works Sadigh et al. (2016a, b), Liniger and Lygeros
(2019), Yoo and Langari (2012) have opted to search
for Stackelberg equilibria, which model an asymmetry of
information between players. These approaches are usu-
ally formulated for games with two players: a leader and
a follower. The leader chooses its strategy first, then the
follower selects the best response to the leader’s strategy.
Alternatively, a Nash equilibrium does not introduce hier-
archy between players; each player’s strategy is the best
response to the other players’ strategies. As pointed out in
Fisac et al. (2019), searching for open-loop Stackelberg equi-
librium strategies can fail on simple examples. In the context
of autonomous driving, for instance,when players’ cost func-
tions only depend on their own state and control trajectories,
the solution becomes trivial. The leader ignores mutual colli-
sion constraints and the follower has to adapt to this strategy.
This behavior can be overly aggressive for the leader (or

123

Autonomous Robots

overly passive for the follower) and does not capture the
game-theoretic nature of the problem.

Nash equilibria have been investigated in Fridovich-Keil
et al. (2020), Dreves and Gerdts (2018), Wang et al. (2021),
Britzelmeier et al. (2019), Di and Lamperski (2018, 2019,
2020). We also take the approach of searching for Nash
equilibria, as this type of equilibrium seems better suited
to symmetric, multi-robot interaction scenarios. Indeed, we
have observed more natural behavior emerging from Nash
equilibria compared to Stackelberg when solving for open-
loop strategies.

2.2 Game-theoretic trajectory optimization

Most of the algorithms proposed in the robotics literature to
solve for game-theoretic equilibria can be grouped into four
types: First are algorithms aimed at finding Nash equilibria
that rely on decomposition, such as Jacobi or Gauss-Siedel
methods (Wang et al. 2021; Britzelmeier et al. 2019). These
algorithms are based on an iterative best-response (IBR)
scheme in which players take turns at improving their strate-
gies considering the other agents’ strategies as immutable
(Facchinei and Kanzow 2007). This type of approach is easy
to interpret and scales reasonably well with the number of
players.However, convergenceof these algorithms is notwell
understood (Facchinei andKanzow 2007), and special care is
required to capture the game-theoretic nature of the problem
(Wang et al. 2021).Moreover, solving for a Nash equilibrium
until convergence can require many iterations, each of which
is a (possibly expensive) trajectory-optimization problem.
This can lead to prohibitively long solution times.

Second, there are a variety of algorithmsbased ondynamic
programming. In Fisac et al. (2019), a Markovian Stackel-
berg strategy is computed via dynamic programming. This
approach seems to capture the game-theoretic nature of
autonomous driving. However, dynamic programming suf-
fers from the curse of dimensionality and, therefore, practical
implementations rely on simplified dynamics models cou-
pled with coarse discretization of the state and input spaces.
To counterbalance these approximations, a lower-level plan-
ner informed by the state values under the Markovian
Stackelberg strategy is run. This approach, which scales
exponentially with the state dimension, has been demon-
strated in a two-player setting. Adding more players is likely
to prevent real-time application of this algorithm. In contrast,
our proposed approach scales polynomially with the number
of players (see Sect. 4.5).

Third, algorithms akin to differential dynamic program-
ming have been developed for robust control (Morimoto
and Atkeson 2003; Sun et al. 2015), and later applied to
game-theoretic problems (Fridovich-Keil et al. 2020; Di
and Lamperski 2018). Similar methods were applied in
the stochastic (Sun et al. 2016), and belief-space planning

settings (Schwarting et al. 2021). This approach scales poly-
nomially with the number of players and is fast enough to
run real-time in a MPC fashion (Fridovich-Keil et al. 2020).
However, contrary to ALGAMES, this type of approach does
not natively handle constraints. Collision-avoidance con-
straints are typically handled using large penalties that can
result in numerical ill-conditioningwhich, in turn, can impact
the robustness or the convergence rate of the solver. More-
over, it leads to a trade-off between trajectory efficiency and
avoiding collisions with other players.

Finally, algorithms that are analogous to direct methods
in trajectory optimization have also been developed (Di and
Lamperski 2019, 2020). An algorithm based on a first-order
splitting method that is known to have a linear convergence
rate was proposed by Di and Lamperski (2020). Di’s experi-
ments show convergence of the algorithm after typically 103

to 104 iterations. A different approach based on Newton’s
method has been proposed (Di and Lamperski 2019), but
it is restricted to unconstrained dynamic games. Our solver
belongs to this family of approaches. It also relies on a
second-order Newton-type method, but it is able to handle
general state and control input constraints. In addition, we
demonstrate convergence on relatively complex problems in
typically less than 102 iterations.

2.3 Generalized nash equilibrium problems

We focus on finding Nash equilibria for multi-player games
in which players are coupled through shared state constraints
(such as collision-avoidance). Therefore, these problems
are instances of Generalized Nash Equilibrium Problems
(GNEPs). The operations research field has a rich literature
on GNEPs (Pang and Fukushima 2005; Facchinei and Pang
2006; Facchinei et al. 2009; Facchinei and Kanzow 2010;
Fukushima 2011). Exact penalty methods have been pro-
posed to solve GNEPs (Facchinei and Pang 2006; Facchinei
et al. 2009). Complex constraints such as those that cou-
ple players’ strategies are handled using penalties, allowing
solution of multi-player games jointly for all the players.
However, these exact penalty methods require minimization
of nonsmooth objective functions, which leads to slow con-
vergence rates in practice.

In the same vein, a penalty approach relying on an aug-
mented Lagrangian formulation of the problem has been
advanced by Pang and Fukushima (2005). This work, how-
ever, converts the augmented Lagrangian formulation to
a set of KKT conditions, including complementarity con-
straints. The resulting constraint-satisfaction problem is
solved with an off-the-shelf linear complementarity problem
(LCP) solver that exploits the linearity of a specific prob-
lem. Our solver, in contrast, is not tailored for a specific
example and can solve general GNEPs. It draws inspiration
from the augmented Lagrangian formulation, which does

123

Autonomous Robots

not introduce nonsmooth terms in the objective function,
enabling fast convergence.Moreover, this formulation avoids
ill-conditioning, which improves the numerical robustness of
our solver.

Another solution method based on KKT conditions for
constrained dynamic games has been proposed (Schwarting
et al. 2019). It consists of stacking together the individual
KKT conditions of all the players and solve the resulting
problem as a single optimization using an off-the-shelf inte-
rior point solver (IPOPT) (Wächter and Biegler 2006). This
approach has been explored with box constraints but not with
more complicated inequality constraints such as collision
avoidance. Indeed, when the individual problems contain
inequality constraints, complementarity constraints are intro-
duced in the stacked KKT system. Those constraints are not
natively handled by interior point solvers as the KKT system
has no interior at the solution. They also violate constraint
qualifications that are required for well-posed, nonlinear pro-
grams (Biegler 2010). Off-the-shelf solvers typically rely on
iterative relaxation schemes that may lead to solution times
precluding their use in an MPC framework. ALGAMES is
less general than a general-purpose optimization package
such as IPOPT, but is targeted specifically at solving GNEPs
involving complex inequality constraints with an augmented
Lagrangian scheme that allows for fast solution times.

3 Problem statement

In the discretized trajectory-optimization settingwith N time
steps, we denote by n the state size, m the control-input
size, xk the state, and uν

k the control input of player ν at
the time step k. In formulating the game, we do not distin-
guish between the robot carrying out the computation, and
the other agents whose trajectories it is predicting. All agents
are modeled equivalently, as is typical in the case of Nash-
style games.

Following the formalismofFacchinei andKanzow(2007),
we consider theGNEPwithM players. Each player ν decides
over its control input variablesU ν = [(uν

1)
T . . . (uν

N−1)
T]T ∈

R
m̄ν

. This is player ν’s strategy where mν denotes the
dimension of the control inputs controlled by player ν and
m̄ν = mν(N − 1) is the dimension of the whole trajectory
of player ν’s control inputs. By U−ν , we denote the vec-
tor of all the players’ strategies except the one of player
ν. Additionally, we define the trajectory of state variables
X = [(x2)T . . . (xN)T]T ∈ R

n̄ where n̄ = n(N − 1), which
results from applying all the control inputs decided by the
players to a joint dynamical system,

xk+1 = f
(
xk, u

1
k, . . . , u

M
k

)
= f (xk, uk), (1)

with k denoting the time-step index. The kinodynamic con-
straints over the whole trajectory can be expressed with n̄
equality constraints,

D
(
X ,U 1, . . . ,UM) = D(X ,U) = 0 ∈ R

n̄ . (2)

The cost function of each player is noted J ν(X ,U ν) : Rn̄+m̄ν

→ R. It depends on player ν’s control inputs U ν as well
as on the state trajectory X , which is shared with all the
other players. The goal of player ν is to select a strategy U ν

and a state trajectory X that minimizes the cost function J ν .
Naturally, the choice of state trajectory X is constrained by
the other players’ strategies U−ν and the dynamics of the
system via Eq. 2. In addition, the strategy U ν must respect
a set of constraints that depends on the state trajectory X as
well as on the other players strategies U−ν (e.g., collision-
avoidance constraints). We express this with a concatenated
set of inequality constraintsC : Rn̄+m̄ → R

nc .Wemodel the
behavior of the players by assuming that each player chooses
inputs to solve its own constrained optimization problem,
formally,

min
X ,U1

J 1(X ,U 1)

s.t. D(X ,U) = 0,

C(X ,U) ≤ 0,

. . .

min
X ,UM

J M (X ,UM)

s.t. D(X ,U) = 0,

C(X ,U) ≤ 0,

(3)

GeneralizedNashEquilibriumProblem—ANashequilib-
rium is reached when each of these M coupled optimization
problems reaches an optimal point. This set of M Problems
(3), forms a GNEP because of the constraints that couple the
strategies of all the players. A solution of this GNEP (a gen-
eralized Nash equilibrium), is a vector Û such that, for all
ν = 1, . . . , M , Û ν is a solution to (3) with the other players’
strategies fixed to Û−ν . This means that at an equilibrium
point Û , no player can decrease their cost by unilaterally
changing their strategy U ν to any other feasible point.

When solving for a generalized Nash equilibrium of the
game, U , we identify open-loop Nash equilibrium trajecto-
ries, in the sense that the whole trajectory U ν is the best
response to the other players’ strategiesU−ν given the initial
state of the system x0. Thus, the control signal is a function
of time, not of the current state of the system1 xk . How-
ever, one can repeatedly resolve the open-loop game as new
information is obtained over time to obtain a policy that is
closed-loop in the model-predictive control sense, as demon-
strated in Sect. 7. This formulation is general enough to
comprise multi-player dynamic games with nonlinear con-
straints on the states and control inputs. Practically, in the

1 One might also explore solving for feedback Nash equilibria, where
the strategies are functions of the state of all agents. This is an interesting
direction for future work.

123

Autonomous Robots

context of autonomous driving and other scenarios in multi-
robot autonomy, the cost function J ν encodes the objective
of player ν, while the concatenated set of constraints, C ,
includes collision constraints coupled between players. We
assume differentiability of the constraints and twice differ-
entiability of the cost functions.

4 Augmented Lagrangian formulation

We propose an algorithm to solve the previously defined
GNEP in the context of trajectory optimization. We express
the condition that players are acting optimally to minimize
their cost functions subject to constraints as an equality con-
straint. To do so, we first derive the augmented Lagrangian
associated with Problem (3) solved by each player. Then,
we use the fact that, at an optimal point, the gradient of the
augmented Lagrangian is null (Bertsekas 2014). Therefore,
at a generalized Nash equilibrium point, the gradients of the
augmented Lagrangians of all players must be null. Concate-
nating this set of M equality constraints with the dynamics
equality constraints, we obtain a set of equations that we
solve using a quasi-Newton root-finding algorithm.

4.1 Individual optimality

First, without loss of generality, we suppose that the vector
C is actually the concatenated set of inequality and equality
constraints, i.e.,C = [CT

i CT
e]T ∈ R

nci+nce , whereCi ≤ 0 is
the vector of inequality constraints andCe = 0 is the vector of
equality constraints (e.g. terminal state equality constraints).
To embed the notion that each player is acting optimally,
we formulate the augmented Lagrangian associated with
Problem (3) for player ν. The dynamics constraints are han-
dled with the Lagrange multiplier term μν ∈ R

n̄ , while the
other constraints are dealt with using both a multiplier and a
quadratic penalty term specific to the augmented Lagrangian
formulation. As a motivation for this differential treatment;
one typically handles inequality and highly nonlinear equal-
ity constraints with an augmented Lagrangian formulation
for its improved robustness. We denote by λ ∈ R

nc the
Lagrangemultipliers associatedwith the vector of constraints
C ; ρ ∈ R

nc is a penalty weight;

Lν(X ,U) = J ν + μνT D + λTC + 1

2
CT IρC . (4)

Iρ is a diagonal matrix defined as,

Iρ,kk =
{
0 if Ck(X ,U) < 0 ∧ λk = 0, k ≤ nci ,

ρk otherwise,
(5)

where k = 1, . . . , nci + nce indicates the kth constraint.
It is important to notice that the Lagrange multipliers μν

associated with the dynamics constraints are specific to
each player ν, but the Lagrange multipliers and penalties
λ and ρ are common to all players. Given the appropriate
Lagrangemultipliersμν andλ, the gradient of the augmented
Lagrangian with respect to the individual decision variables
∇X ,U ν Lν = Gν is null at an optimal point of Problem (3).
The fact that player ν is acting optimally to minimize J ν

under the constraints D and C can therefore be expressed as
follows,

∇X ,U ν Lν(X ,U , μν) = Gν(X ,U , μν) = 0. (6)

It is important to note that this equality constraint preserves
coupling between players since the gradient Gν depends on
the other players’ strategies U−ν .

4.2 Root-finding problem

At a generalizedNash equilibrium, all players are acting opti-
mally and the dynamics constraints are respected. Therefore,
to find an equilibrium point, we have to solve the following
root-finding problem,

min
X ,U ,μ

0,

s.t. Gν(X ,U , μν) = 0, ∀ ν ∈ {1, . . . , M}
D(X ,U) = 0.

(7)

We note that the set of constraints, C , is embedded in
G and implicitly handled through augmented Lagrangian
penalties. Therefore, we do not need to add the primal
feasibility constraint, C(X ,U) ≤ 0, to Problem 7. We
use Newton’s method to solve the root-finding problem.
We denote by G the concatenation of the augmented
Lagrangian gradients of all players and the dynamics con-
straints, G(X ,U , μ) = [(G1)T , . . . , (GM)T , DT]T , where
μ = [(μ1)T , . . . , (μM)T]T ∈ R

n̄M . We compute the first-
order deri-vative of G with respect to the primal variables
X ,U and the dual variables μ that we concatenate in a sin-
gle vector y = [(X)T , (U)T , (μ)T],

H = ∇X ,U ,μG = ∇yG. (8)

Newton’s method allows us to identify a search direction δy
in the primal-dual space,

δy = −H−1G. (9)

We couple this search direction with a backtracking line-
search (Nocedal and Wright 2006) given in Algorithm 1
to ensure local convergence to a solution using Newton’s

123

Autonomous Robots

Method (Nocedal andWright 2006) detailed in Algorithm 2.

Algorithm 1 Backtracking line-search
1: procedure LineSearch(y,G, δy)
2: Parameters
3: α = 1,
4: β ∈ (0, 1/2),
5: τ ∈ (0, 1),
6: Until ||G(y + αδy)||1 < (1 − αβ)||G(y)||1 do
7: α ← τα

8: return α

Algorithm 2 Newton’s method for root-finding problem
1: procedure Newton’sMethod(y)
2: Until Convergence do
3: G ← [(∇X ,U1 L1)T , . . . , (∇X ,UM LM)T , DT]T
4: H ← ∇yG
5: δy ← −H−1G
6: α ← LineSearch(y,G, δy)
7: y ← y + αδy
8: return y

Algorithm 3 ALGAMES solver
1: procedure ALGAMES(y0, ρ0)
2: Initialization
3: ρ ← ρ(0),

4: λ ← 0,
5: μν ← 0, ∀ν

6: X ,U ← X (0),U (0)

7: Until Convergence do
8: y ← Newton’sMethod(y)
9: λ ← DualAscent(y, λ, ρ), 	 Eq. 10
10: ρ ← IncreasingSchedule(ρ), 	 Eq. 11
11: return y

4.3 Augmented Lagrangian updates

To obtain convergence of the Lagrange multipliers λ, we
update them with a dual-ascent step. This update can be seen
as shifting the value of the penalty terms into the Lagrange
multiplier terms,

λk ←
{
max(0, λk + ρkCk(X ,U)) k ≤ nci ,

λk + ρkCk(X ,U) nci < k ≤ nci + nce.

(10)

Wealsoupdate thepenaltyweights according to an increasing
schedule, with γ > 1:

ρk ← γρk, ∀k ∈ {1, . . . , nc}. (11)

4.4 ALGAMES

By combining Newton’s method for finding the point where
the dynamics is respected and the gradients of the aug-
mented Lagrangians are null with the Lagrange multiplier
and penalty updates, we obtain our solver ALGAMES (Aug-
mented Lagrangian GAME-theoretic Solver) presented in
Algorithm 3. The algorithm, which iteratively solves the
GNEP, requires as inputs an initial guess for the primal-dual
variables y(0) and initial penalty weights ρ(0). The algo-
rithm outputs the open-loop strategies of all players X ,U
and the Lagrange multipliers associated with the dynamics
constraints μ.

4.5 Algorithm complexity

Following a quasi-Newton approximation of the matrix H
(Nocedal and Wright 2006), we neglect some of the second-
order derivative terms associatedwith the constraints. Indeed,
these terms involve third-order tensors which require sig-
nificant amounts of computation per iteration; while only
marginally increasing the progressmade per iteration. There-
fore, the most expensive part of the algorithm is the Newton
step defined by Eq. 9. By exploiting the sparsity pattern of
the matrix H , we can solve Eq. 9 using a back-substitution
scheme akin to solving a Riccati recursion with complex-
ity O(N (n + m)3). The complexity is cubic in the number
of states n and the number of control inputs m, which are
typically linear in the number of players M . Therefore, the
complexity of one iteration of the algorithm is O(NM3). We
evaluate the scalability of ALGAMES for a varying number
of players in a drone navigation scenario (Fig. 2b) on 5 dif-
ferent dynamical systems (unicycle, bicycle, quadrotor etc.)
with varying number of states and control inputs (Fig. 2a).
The timing results are shown in Fig. 2c.

ForNewton-typemethods, the overall algorithm complex-
ity is the same as the iteration complexity since the number
of iterations required to converge to an optimal solution is
independent of the problem size; provided that the initial
guess is close to an optimal solution (Facchinei and Kan-
zow 2007). The same reasoning about complexity holds for
iLQGames. On the other hand, IBR has a smaller iteration
complexity, O(NM), it is linear in terms of the number of
players. However, the overall algorithm complexity depends
on rate of convergence to a Nash equilibrium. In theory, con-
vergence is guaranteed under extremely restrictive conditions
(Facchinei and Kanzow 2007). In practice, we have observed
low convergence rates on a simple problem where the only
constraints were linear kinodynamics constraints (Fig. 2d).
ALGAMES is 4–10 times faster than IBR for a typical con-
vergence threshold (residual < 10−4.) Thus, even with a
large number of players, ALGAMES remains significantly
faster than IBR.

123

Autonomous Robots

(a)

(b)

(c)

(d)

Fig. 2 We evaluate the scalability of ALGAMES for an increasing
number of players and compare its performance to IBR

4.6 Algorithm discussion

Here we discuss the inherent difficulty in solving for Nash
equilibria in large problems, and explain some of the limita-
tions of our approach. First of all, finding a Nash equilibrium
is a non-convex problem in general. Indeed, it is known that
even for single-shot discrete games, solving for exact Nash
equilibria is computationally intractable for a large num-
ber of players (Daskalakis et al. 2009). It is, therefore, not
surprising that, in our more difficult setting of a dynamic

game in continuous space, no guarantees can be provided
about finding an exact Nash equilibrium. Furthermore, in
complex interaction spaces, constraints can be highly non-
linear and nonconvex. This is the case in the autonomous
driving context with collision-avoidance constraints. In this
setting, one cannot expect to find an algorithm working in
polynomial time with guaranteed convergence to a Nash
equilibrium respecting constraints. On the other hand, local
convergence of Newton’s method to open-loop Nash equi-
libria has been established in the unconstrained case (that
is, starting sufficiently close to the equilibrium, the algo-
rithm will converge to it) (Di and Lamperski 2019). Our
approach solves a sequence of unconstrained problems via
the augmented Lagrangian formulation. Each of these prob-
lems, therefore, has guaranteed local convergence. However,
as expected, the overall method has no guarantee of global
convergence to a generalized Nash equilibrium.

Second, our algorithm requires an initial guess for the
state and control input trajectories X , U and the dynamics
multipliers μ. Empirically, we observe that choosing μ = 0
and simply rolling out the dynamics starting from the initial
state x0 without any control was a sufficiently good initial
guess to get convergence to a local optimum that respects both
the constraints and the first-order optimality conditions. For
a detailed empirical study of the convergence of ALGAMES
and its failure cases, we refer to Sects. 5.5 and 5.6.

Finally, even for simple linear-quadratic games, the Nash
equilibrium solution is not necessarily unique. In general, an
entire subspace of equilibria exists. In this case, the matrix
H in Equation 9 will be singular. In practice, we regularize
this matrix so that large steps δy are penalized, resulting in
an invertible matrix H .

5 Simulations: design and setup

We choose to apply our algorithm in the autonomous driving
context. Indeed, many maneuvers like lane changing, ramp
merging, overtaking, and intersection crossing involve a high
level of interaction between vehicles. We assume a single car
is computing the trajectories for all cars in its neighborhood,
so as to find its own trajectory to act safely among the group.
We assume that this car has access to a relatively good esti-
mate of the surrounding cars’ objective functions. Such an
estimate could, in principle, be obtained by applying inverse
optimal control on observed trajectories of the surrounding
cars.

In a real application, the car would compute its strategy
as frequently as possible in a receding-horizon loop to adapt
to unforeseen changes in the environment. We demonstrate
the feasibility of this approach on complex driving scenar-
ios where a classical predict-then-plan architecture fails to
overcome the “frozen robot” problem.

123

Autonomous Robots

5.1 Autonomous driving problem

ConstraintsEach vehicle in the scene is an agent of the game.
Our objective is to find a generalized Nash equilibrium tra-
jectory for all of the vehicles. These trajectories have to be
dynamically feasible. The dynamics constraints at time step
k are expressed as follows,

xk+1 = f
(
xk, u

1
k, . . . , u

M
k

)
. (12)

We consider a nonlinear unicycle model for the dynamics of
each vehicle. A vehicle state, xν

k , is composed of a 2D posi-
tion, a heading angle and a scalar velocity. The control input
uν
k is composed of an angular velocity and a scalar accel-

eration. In addition, it is critical that the trajectories respect
collision-avoidance constraints. Wemodel the collision zone
of the vehicles as circles of radius r . The collision constraints
between vehicles are then simply expressed in terms of the
position x̃ν

k of each vehicle,

(2r)2 − ||x̃ν
k − x̃ω

k ||22 ≤ 0, ∀ ν, ω ∈ {1, . . . , M}, ν
= ω.

(13)

We also model boundaries of the road to force the vehicles to
remain on the roadway. This means that the distance between
the vehicle and the closest point, q, on each boundary, b, has
to remain larger than the collision-circle radius, r ,

r2 − ||x̃ν
k − qb||22 ≤ 0, ∀ b, ∀ ν ∈ {1, . . . , M}. (14)

In summary, based on reasonable simplifying assump-
tions, we have expressed the driving problem in terms of
non-convex and non-linear coupled constraints.
Cost Function We use a quadratic cost function penalizing
the use of control inputs and the distance between the current
state and the desired final state x f of the trajectory. We also
add a quadratic penalty on being close to other cars,

J ν(X ,U ν) =
N−1∑
k=1

1

2
(xk − x f)

T Q(xk − x f) + 1

2
uν
k
T Ruν

k

+ 1

2
(xN − x f)

T Q f (xN − x f)

+
N∑

k=1

∑
ω
=ν

γ

(
max

(
0, ||x̃ν

k − x̃ω
k ||2 − η

))2

,

(15)

η controls the distance at which this penalty is “activated”,
and γ controls its magnitude.

Fig. 3 Two driving environments are considered: a ramp merging sce-
nario (top) and an intersection crossing scenario (bottom)

5.2 Comparison to iLQGames

In order to evaluate the merits of ALGAMES, we compare it
to iLQGames (Fridovich-Keil et al. 2020) which is a DDP-
based algorithm for solving general dynamic games. Both
algorithms solve the problem by iteratively solving linear-
quadratic approximations that have an analytical solution
(Basar and Olsder 1999). For iLQGames, the augmented
objective function Ĵ ν differs from the objective function, J ν ,
by a quadratic term penalizing constraint violations,

Ĵ ν(X ,U) = J ν(X ,U) + 1

2
C(X ,U)T IρC(X ,U). (16)

where Iρ is defined by,

Iρ,kk =
{
0 if Ck(X ,U) < 0, k ≤ nci ,

ρk otherwise.
(17)

Here ρ is an optimization hyperparameter that we can tune to
satisfy constraints. For ALGAMES, the augmented objective
function, Lν , is actually an augmented Lagrangian, see Eq.
4. The hyperparameters for ALGAMES are the initial value
of ρ(0) and its increase rate γ defined in Eq. 11.

5.3 Timing experiments

We evaluate the performance of both algorithms in two sce-
narios (see Fig. 3) with the number of players varying from
two to four. To compare the speed of both algorithms, we
set the termination criterion as a threshold on constraint vio-
lations C ≤ 10−3. The timing results averaged over 100
samples are presented in Table 4a. First, we notice that both
algorithms achieve real-time or near-real-time performance
on complex autonomous driving scenarios (the horizon of
the solvers is fixed to 5s).

123

Autonomous Robots

(a)

(b)

(c)

Fig. 4 We compare ALGAMES and iLQGames, both in terms of solve
time (top) and ability to reliably enforce constraints (middle). Addi-
tionally, we evaluate the update frequency of ALGAMES in the MPC
setting (bottom)

We observe that the speed performance of ALGAMES
and iLQGames are comparable in the ramp merging sce-
nario. For this scenario, we tuned the value of the penalty
for iLQGames to ρ = 102. Notice that for all scenarios
the dimensions of the problem are scaled so that the veloci-
ties and displacements are all the same order of magnitude.
For the intersection scenario, we observe that the two-player
and four-player cases both have much higher solve times for
iLQGames compared to the 3-player case. Indeed, in those
two cases, we had to increase the penalty to ρ = 103, oth-
erwise the iLQGames would plateau and never reach the
constraint satisfaction criterion. This, in turn, slowed the

algorithm down by decreasing the constraint violation con-
vergence rate.

5.4 Discussion

Themain takeaway from these experiments is that, for a given
scenario, it is generally possible to find a suitable value for ρ
that will ensure the convergence of iLQGames to constraint
satisfaction. With higher values for ρ, we can reach better
constraint satisfaction at the expense of slower convergence
rate. In the context of a receding horizon implementation
(MPC), finding a good choice of ρ that would suit the whole
sequence of scenarios encountered by a vehicle could be dif-
ficult. In contrast, the same hyperparameters ρ(0) = 1 and
γ = 10 were used in ALGAMES for all the experiments
across this paper. This supports the idea that, thanks to its
adaptive penalty scheme, ALGAMES requires little tuning.

While performing the timing experiments, we also noticed
several instances of oscillatory behavior for iLQGames. The
solution would oscillate, preventing it from converging. This
happened even after an adaptive regularization scheme was
implemented to regularize iLQGames’ Riccati backward
passes. Oscillatory behavior was not seen with ALGAMES.
We hypothesize that this is due to the dual ascent update cou-
pled with the penalty logic detailed in Eqs. 5 and 10, which
add hysteresis to the solver.

5.5 Monte Carlo analysis

To evaluate the robustness of ALGAMES, we performed a
Monte Carlo analysis of its performance on a ramp merging
problem. First, we set up a roadway with hard boundaries as
pictured in Fig. 3a. We position two vehicles on the roadway
and one on the ramp in a collision-free initial configuration.
We choose a desired final state where the incoming vehicle
has merged into the traffic. Our objective is to generate gen-
eralized Nash equilibrium trajectories for the three vehicles.
These trajectories are collision-free and cannot be improved
unilaterally by any player. To introduce randomness in the
solving process, we apply a random perturbation to the initial
state of the problem. Specifically, we perturb x0 by adding
a uniformly sampled noise. This would typically correspond
to displacing the initial position of the vehicles by ±1m,
changing their initial velocity by ±3% and their heading by
±2.5◦.

We observe in Fig. 4b, that ALGAMES consistently finds
a satisfactory solution to the problem using the same hyper-
parameters ρ(0) = 1 and γ = 10. Out of the 1000 samples
99.5% converged to constraint satisfaction C ≤ 10−3 while
respecting the optimality criterion ||G||1 < 10−2. By defini-
tion, ||G||1 is a merit function for satisfying optimality and
dynamics constraints. We also observe that the solver con-
verges to a solution in less than 0.2s for 96% of the samples.

123

Autonomous Robots

These empirical data tend to support the fact that ALGAMES
is able to solve the class of ramp merging problem quickly
and reliably.

For comparison, we present in Fig. 4b the results obtained
with iLQGames. We apply the same constraint satisfaction
criterion C ≤ 10−3. We fixed the value of the penalty hyper-
parameter ρ for all the samples as it would not be a fair
comparison to tune it for each sample. Only 3 samples did
not converge with iLQGames, this is a performance compa-
rable to ALGAMES for which 5 samples failed to converge.
However, we observe that iLQGames is 3 times slower than
ALGAMES with an average solve time of 350 ms compared
to 110 ms and require on average 4 times more iterations (9
against 41).

5.6 Solver failure cases

The Monte Carlo analysis allows us to identify the typical
failure cases of our solver, i.e. the cases where the solver
does not satisfy the constraints or the optimality criterion.
Typically in such cases, the initial guess, which consists
of rolling out the dynamics with no control, is far from a
reasonable solution. Since the constraints are ignored dur-
ing this initial rollout, the car at the back can overtake the
car at the front by driving through it. This creates an ini-
tial guess where constraints are strongly violated. Moreover,
we hypothesize that the tight roadway-boundary constraints
tend to strongly penalize solutions that would ’disentangle’
the car trajectories because they would require large bound-
ary violation at first. Therefore, the solver gets stuck in this
local optimum where cars overlap each other. Sampling sev-
eral initial guesses with random initial control inputs and
solving in parallel could reduce the occurrence of these fail-
ure cases. Also, being able to detect, reject, and re-sample
initial guesses when the initial car trajectories are strongly
entangled could also improve the robustness of the solver.

6 Non-uniqueness of nash equilibria

A Nash equilibrium corresponds to a situation where all
players are acting optimally given the other players’ strate-
gies. This is a way for players to compete in a coordinated
fashion without communication. However, if the Nash equi-
librium is non-unique, the coordination is ambiguous and
players have to decide individually which Nash equilibrium
to follow. This can lead to inconsistencies. The non-unique-
ness of Nash equilibrium solutions has been observed in
practical robotics applications such as autonomous driving
(Peters et al. 2020). Peters et al. identified isolated clusters
of solutions in unconstrainedNash equilibrium problems and
proposed an estimation method to improve players’ coordi-
nation. In this section, we detail several underlying causes

of non-uniqueness that arise in practical robotics scenarios.
Additionally, we present the behavior of ALGAMES in such
circumstances.

6.1 Linear-quadratic dynamic games

Linear-quadratic (LQ) dynamic games are an important
building block for optimization algorithms relying on
sequential-quadratic approximations such as ALGAMES or
iLQGames (Fridovich-Keil et al. 2020). The conditions for
the existence and uniqueness of a Nash equilibrium have
been extensively studied (Basar 1976;AbrahamandKulkarni
2019). In the continuous-time setting, Eisele characterized
the different solution regimes for the LQ game, includ-
ing non-existence and non-uniqueness (Eisele 1982). In the
discrete-time setting, the open-loop Nash equilibrium prob-
lem is equivalent to a static quadratic game (i.e., a one-step
game). For such problems, the Nash equilibrium solutions
can either be non-existant, can form an affine subspace, or
be a single point in the case of a unique solution.

Proof Sketch We focus on the two-player case, the result can
easily be extended to the M-player case. We denote, sν and
J ν , the strategy and quadratic cost function of player ν,

J ν(s1, s2) = 1

2

[
s1

s2

]T [
Qν

1,1 Qν
1,2

Qν
2,1 Qν

2,2

] [
s1

s2

]
+

[
s1

s2

]T [
qν
1

qν
2

]
+ cν .

(18)

The first-order necessary conditions for optimality of a Nash
equilibrium, ê = (ŝ1, ŝ2), can be written as an affine equa-
tion,

[
Q1

1,1 + Q2
2,1 Q2

2,2 + Q1
1,2

] [
ŝ1

ŝ2

]
+

[
q11
q22

]
= 0. (19)

The second-order necessary conditions are independent of
the Nash equilibrium point considered. They require positive
semi-definiteness of the matrices Qν

ν,ν , for all ν ∈ {1, 2}.
Therefore, any point, e, in the affine subspace defined by
Eq. 19, will respect both the first-order and second-order
necessary conditions for optimality. �

In case of a unique Nash Equilibrium, ALGAMES con-
verges in oneNewton iteration to the solution.When theNash
equilibrium solutions form an affine subspace, ALGAMES
converges to the point in the subspace closest to the initial
guess. This is due to the regularization added to the Jacobian
of the KKT condition, H , defined in Eq. 8.

6.2 Isolated nash equilibria

We have seen that an LQ game can generate an affine Nash
equilibrium subspace. Thus, it cannot lead to multiple iso-
lated Nash equilibria. However, in general, a dynamic game

123

Autonomous Robots

Fig. 5 We illustrate isolated Nash equilibria (top), and non-isolated
Nash equilibrium solutions stemming from an underdetermined KKT
system (bottom)

can admit multiple isolated Nash equilibria as highlighted
by Peters et al. (2020). In unconstrained autonomous driving
scenarios, they generally appear when collision-avoidance
costs are introduced. These costs are non-convex and intro-
duce a coupling between the players’ strategies. Typically,
these isolated Nash equilibria correspond to “topologically”
different driving strategies. For instance, in a ramp merg-
ing scenario, the merging vehicle can merge in front of or
behind an incoming vehicle (Fig. 5a). The equilibrium point
to which ALGAMES converges is typically the closest to the
initial guess, thanks to the regularization scheme. This is a
desirable property, especially in the MPC setting , because it
prevents the re-planned trajectory from oscillating between
different Nash equilibria.

6.3 Generalized nash equilibrium

Identifying the solution set of a GNEP remains a major chal-
lenge as pointed out by Fisher et al. in an extensive survey
(Fischer et al. 2014). In general, the solution set of the GNEP
can be constituted of one or many isolated points or even
non-isolated points. Theoretical results in this domain often
rely on strong assumptions, such as convexity of the feasible
set, absence of shared constraints, or decoupled cost func-
tions (Dreves and Gerdts 2018). All these assumptions could
be violated in a typical robotic scenario. Indeed, collision-

avoidance constraints are shared and non-convex. Similarly,
collision-avoidance costs or congestion terms introduce cou-
pling between the players’ costs.

We explore the structure of the generalized Nash equilib-
rium (GNE) solutions in the presence of shared collision-
avoidance constraints. We denote, cν,ω

k : R
n → R, the

collision-avoidance constraint between player ν and playerω
at time step k. For each collision-avoidance constraint cν,ω

k ,
we introduce two Lagrange multipliers λν

k ∈ R and λω
k ∈ R;

one for each player. We remark that, for a single constraint,
we add twoLagrangemultipliers.We denote, Nc, the number
of collision-avoidance constraints. By concatenating these
constraints with the residual vector G, we add Nc entries
and Nc rows to its Jacobian. We denote Ĝ and Ĥ the “aug-
mented” residual vector and Jacobian matrix. We need to
differentiate the residual Ĝ, with respect to the 2Nc Lagrange
multipliers associated with the collision constraints. This
adds 2Nc columns to the Jacobian Ĥ . Thus, the Jacobian
is an underdetermined linear system, with Nc more columns
than rows (Fig. 5b).However, only active collision-avoidance
constraints should be included in the Jacobian. Therefore,
the Jacobian only has Na more columns than rows, where
Na denotes the number of active collision-avoidance con-
straints. Thus, the nullspace of the underdetermined linear
system Ĥ is at least of dimension Na (Fig. 5b). Consequently,
the solution set of a GNEP can potentially be composed of
non-isolated points and could span in multiple dimensions
locally around a known equilibrium point.

We explore this nullspace at a Nash equilibrium point by
slightly disturbing the current generalized Nash equilibrium
in one of the nullspace’s directions (Fig. 6a).We obtain a con-
tinuumofGNE.Additionally, Fig. 6b, c, present the twomain
directions in which the solution can drift while remaining a
GNE.The nullspacewas of dimension 17,which corresponds
to the number of active constraints at the equilibrium point.
Yet, we notice that most of the trajectory variability is cap-
tured by a limited number of eigenvectors. We remark that
the two principal eigenvectors have an elegant interpretation:
they both favor one vehicle over the others. Additionally,
they nicely show how disturbing the trajectory of one player
influences the trajectories of the other players through the
collision constraints. Finally, by combining these two eigen-
vectors and stepping in the resulting direction, one could
favor any of the three vehicles.

6.4 ALGAMES’ convergence to normalized nash
equilibrium

We observe that the multipliers λν
k and λω

k associated with
the shared constraint, cν,ω

k , are equal at every iteration of the
solver. Indeed, we can assume that the multipliers are initial-
ized with the same value (typically zero). Moveover, these
multipliers are updated with identical dual ascent updates,

123

Autonomous Robots

(b)

(c)

(a)

Fig. 6 We explore the generalized equilibrium subspace in one direc-
tion and obtain a sequence of GNE (top). Additionally, we represent
the two principal vectors along which the trajectories can evolve while
remaining a GNE (middle and bottom)

defined in Equation 10,

λ
ν(0)
k = λ

ω(0)
k (20)

λ
ν(t+1)
k = max

(
0, λν(t)

k + ρkc
ν,ω
k (xk)

)
(21)

λ
ω(t+1)
k = max

(
0, λω(t)

k + ρkc
ν,ω
k (xk)

)
(22)

�⇒ λ
ν(t+1)
k = λ

ω(t+1)
k (23)

Here, t denotes the iteration index. A consequence of this
trivial recursion is that the multipliers associated with the
same shared constraint are equal at the solution. Therefore,
if ALGAMES converges, it converges to a Normalized Nash
Equilibrium (NNE) in the sense of Rosen (1965). An NNE
is a GNE with the additional requirement that the multipliers
associated with shared constraints are equal. This reason-

ing was applied by Dreves to a potential reduction method
(Dreves 2011).We transcribe it in the augmented Lagrangian
context. At an NNE, because the multipliers are equal, the
price to pay for violating the collision-avoidance constraint is
the same for both players. This can be interpreted as enforc-
ing a notion of “fairness” between the players in addition
to optimality. One interesting characteristic of NNE, com-
pared to GNE, is that they are not subject to the nullspace
issue described in Sect. 6.3. Indeed, thanks to the additional
constraints enforcing equality between multipliers, active
constraints no longer introduce more columns than rows in
the KKT system.

7 MPC implementation of ALGAMES

In this section, we propose an MPC implementation of the
algorithm that provides us with a feedback policy instead
of an open-loop strategy and demonstrates real-time per-
formance. We compare this MPC to a non-game-theoretic
baseline on a crowded ramp merging which is known to be
conducive to the “frozen robot” problem.

7.1 MPC feedback policy

The strategies identified by ALGAMES are open-loop Nash
equilibrium strategies. They are sequences of control inputs.
On the contrary, DDP-based approaches like iLQGames
solve for feedback Nash equilibrium strategies that provide a
sequence of control gains. In the MPC setting, we can obtain
a feedback policy with ALGAMES by updating the strategy
as fast as possible and only executing the beginning of the
strategy. This assumes a fast update rate of the solution. To
support the feasibility of the approach, we implemented an
MPC on the ramp merging scenario described in Fig. 3a.
There are 3 players constantly maintaining a 40 time step
strategy with 3 s of horizon. We simulate 3 s of operation of
the MPC by constantly updating the strategies and propagat-
ing noisy unicycle dynamics for each vehicle.We compile the
results from 100MPC trajectories in Table 4c.We obtain a 69
Hz update frequency for the planner on average. We observe
similar performance on the intersection problem defined in
Fig. 3b, with an update frequency of 66 Hz.

7.2 “Unfreezing” the robot

To illustrate the benefits of using ALGAMES in a receding-
horizon loop, we compare it to a non-game-theoretic baseline
MPC. With this baseline, the prediction step and the plan-
ning step are decoupled. Specifically, each agent predicts
the trajectories of the surrounding vehicles by propagating
straight, constant velocity trajectories. Then, each agent plans
for itself assuming these predicted trajectories are immutable

123

Autonomous Robots

obstacles. We test these two controllers on a challenging sce-
nario where a vehicle has to merge on a crowded highway
as presented in Fig. 1. We perform a Monte Carlo analysis
by uniformly sampling the initial state, x0, around a nominal
state with perturbations corresponding to a ±2.5 m longi-
tudinal displacement, ±25 cm lateral displacement, ±3◦ in
angular displacement for each car. Given the initial state, the
vehicle on the ramp should be able to merge between the
blue and orange cars or the orange and green cars, taking
the 2nd and 3rd place respectively. However, waiting for all
cars to pass before merging into 4th place is not a desirable
behavior. Indeed, with such a policy, the merging vehicle has
to slow down significantly and could get stuck on the ramp if
the highway does not clear.We run ALGAMES in a receding
horizon loop and the baseline MPC to generate 6-s trajecto-
ries for 100 different initial states. We record the position of
the merging vehicle at the end of the simulation and compile
the results in Fig. 7a.

We observe that the “frozen robot” problem occurs with
the baseline MPC for 85% of the simulations. An interpreta-
tion of this result is that the vehicle on the ramp cannot find
a merging maneuver that is not colliding with its constant-
velocity trajectory predictions. Since there is no feasible
merging maneuver, the only option left is to wait for the
other vehicles to pass before merging.

On the contrary, by running ALGAMES in a receding-
horizon loop, the vehicle merges into traffic in 2nd or 3rd
place in 96% of the simulations (Fig. 7a). ALGAMES avoids
the “frozen robot” pitfall inmost cases by gradually adjusting
its velocity to merge with minimal disruption to the traffic
(Fig. 1).

7.3 Non-uniqueness of nash equilibria in practice

We assess the effect of the non-uniqueness of Nash equilibria
in the MPC context. We focus on the coordination issue, that
players may face when there exists multiple Nash equilibria.
In our experiment, each car independently runs ALGAMES
as an MPC policy. Each car plans for itself and predicts the
other vehicles’ trajectories. We purposefully provide each
player with a very different initial guess, in order to gener-
ate a mismatch between the Nash equilibrium solution that
each player converges to. We simulate this on a ramp merg-
ing scenario with two players. In this scenario, an example
of Nash equilibrium mismatch could be that both players
think they let the oher player go first (Fig. 7b). The results,
presented in Fig. 7c, suggest that most of the mismatches
disappear rapidly after the initialization, i.e both players con-
verges to the same Nash equilibrium. This can happen, for
instance, when one Nash equilibrium is no longer feasible
because it violates the bounds on the control inputs or the
boundaries of the road. This positive results mitigates the
concern caused by the potential occurrence of non-unique

(a)

(b)

(c)

Fig. 7 Weevaluate the ability ofALGAMES to avoid the “frozen robot”
problem and to handle Nash equilibrium non-uniqueness

Nash equilibria. Nevertheless, it is also important to analyze
the failure cases, where the two Nash equilibrium solutions
found by the two players do not coincide. Typically, in these
cases, each player’s solution remains fairly constant and does
not oscillate between multiple equilibria. In such circum-
stances, it would be appropriate to estimate the equilibrium
that the other player is following in order to switch to this
equilibrium. Peters et al. demonstrated the feasibility of this
approach in similar scenarios, using a particle filter (Peters
et al. 2020).

123

Autonomous Robots

8 Conclusions

We have introduced a new algorithm for finding constrained
Nash equilibrium trajectories inmulti-player dynamicgames.
We demonstrated the performance and robustness of the
solver through a Monte Carlo analysis on complex
autonomous driving scenarios including nonlinear and non-
convex constraints. We have shown real-time performance
for up to 4 players and implemented ALGAMES in a
receding-horizon framework to give a feedback policy.
We empirically demonstrated the ability of ALGAMES to
mitigate the “frozen robot” problem in comparison to a non-
game-theoretic receding horizon planner. The results we
obtained from ALGAMES are promising, as they seem to
let the vehicles share the responsibility for avoiding colli-
sions, leading to natural-looking trajectories where players
are able to negotiate complex, interactive traffic scenarios
that are challenging for traditional, non-game-theoretic tra-
jectory planners. For this reason, we believe that ALGAMES
could be a very efficient tool to generate trajectories in sit-
uations where the level of interaction between players is
strong. Our implementation of ALGAMES is available at
https://github.com/Robotic ExplorationLab/ALGAMES.jl.

References

Abraham,M. P., &Kulkarni, A. A. (2019). New results on the existence
of open loop Nash equilibria in discrete time dynamic games via
generalized Nash games. Mathematical Methods of Operations
Research, 89, 157–172.

Basar, T. (1976). On the uniqueness of the Nash solution in linear-
quadratic differential games. International Journal of Game The-
ory, 5, 65–90.

Basar, T., & Olsder, G. J. (1999). Dynamic Noncooperative Game The-
ory (Vol. 23). SIAM.

Bertsekas, D. P. (2014). Constrained optimization and Lagrange mul-
tiplier methods. Academic press.

Biegler, L. T. (2010). Nonlinear programming: concepts, algorithms,
and applications to chemical processes. Society for Industrial and
Applied Mathematics.

Britzelmeier, A., Dreves, A., & Gerdts, M. (2019). Numerical solution
of potential games arising in the control of cooperative automatic
vehicles. In S. Levine & R. Stockbridge (Eds.) 2019 Proceedings
of the conference on control and its applications (Philadelphia, PA
) (pp. 38–45). Society for Industrial and Applied Mathematics.

Daskalakis, C., Goldberg, P. W., & Papadimitriou, C. H. (2009). The
complexity of computing a Nash equilibrium. SIAM Journal on
Computing, 39(1), 195–259.

Di, B., & Lamperski, A. (2018). Differential dynamic programming for
nonlinear dynamic games. arXiv:1809.08302 [math].

Di, B., & Lamperski, A. (2019). Newton’s method and differen-
tial dynamic programming for unconstrained nonlinear dynamic
games. In 2019 IEEE 58th conference on decision and control
(CDC), (Nice, France) (pp. 4073–40780. IEEE.

Di, B., & Lamperski, A. (2020). First-order algorithms for constrained
nonlinear dynamic games. arXiv:2001.01826 [cs, eess].

Dreves, A. (2011). Globally convergent algorithms for the solution
of generalized nash equilibrium problems. Ph.D. Thesis, Julius-
Maximilians-Universitat Wurzburg, Wurzburg.

Dreves, A., & Gerdts, M. (2018). A generalized Nash equilibrium
approach for optimal control problems of autonomous cars: A gen-
eralized Nash equilibrium approach for optimal control problems
of autonomous cars. Optimal Control Applications and Methods,
39, 326–342.

Eisele, T. (1982). Nonexistence and nonuniqueness of open-loop
equilibria in linear-quadratic differential games. Journal of Opti-
mization Theory and Applications, 37, 443–468.

Facchinei, F., Fischer, A., & Piccialli, V. (2009). Generalized Nash
equilibrium problems and Newton methods. Mathematical Pro-
gramming, 117, 163–194.

Facchinei, F., & Kanzow, C. (2007). Generalized Nash equilibrium
problems. 4OR, 5, 173–210.

Facchinei, F., & Kanzow, C. (2010). Penalty methods for the solution
of generalized Nash equilibrium problems. SIAM Journal on Opti-
mization, 20, 2228–2253.

Facchinei, F., & Pang, J.-S. (2006). Exact penalty functions for gen-
eralized Nash problems. Large-Scale Nonlinear Optimization,
115–126.

Fisac, J. F., Bronstein, E., Stefansson, E., Sadigh, D., Sastry, S. S.,
& Dragan, A. D. (2019). Hierarchical game-theoretic planning for
autonomous vehicles. In2019 International conference on robotics
andautomation (ICRA), (Montreal,QC,Canada) (pp. 9590–9596).
IEEE.

Fischer, A., Herrich, M., & Schönefeld, K. (2014). Generalized Nash
equilibrium problems—Recent advances and challenges.Pesquisa
Operacional, 34, 521–558.

Fridovich-Keil, D., Ratner, E., Peters, L., Dragan, A. D., & Tomlin, C. J.
(2020). Efficient iterative linear-quadratic approximations for non-
linear multi-player general-sum differential games. In 2020 IEEE
international conference on robotics and automation (ICRA),
(Paris, France) (pp. 1475–1481). IEEE.

Fukushima, M. (2011). Restricted generalized Nash equilibria and con-
trolled penalty algorithm.Computational Management Science, 8,
201–218.

Liniger, A., & Lygeros, J. (2019). A noncooperative game approach to
autonomous racing. IEEE Transactions on Control Systems Tech-
nology, 1–14.

Morimoto, J., & Atkeson, C. G. (2003). Minimax differential dynamic
programming: An application to robust biped walking. Advances
in Neural Information Processing Systems, 1563–1570.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer.
Pang, J.-S., & Fukushima, M. (2005). Quasi-variational inequalities,

generalized Nash equilibria, and multi-leader-follower games.
Computational Management Science, 2, 21–56.

Peters, L., Fridovich-Keil, D., Tomlin, C. J., & Sunberg, Z. N. (2020).
Inference-based strategy alignment for general-sum differential
games. arXiv:2002.04354 [cs, eess].

Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for
concave N-person games. Econometrica, 33, 520.

Sadigh, D., Sastry, S. S., Seshia, S. A., & Dragan, A. (2016a). Informa-
tion gathering actions over human internal state. In 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
(Daejeon, South Korea) (pp. 66–73). IEEE.

Sadigh, D., Sastry, S., Seshia, S. A., & Dragan, A. D. (2016b). Planning
for autonomous cars that leverage effects on human actions. In
Robotics: science and systems XII, robotics: science and systems
foundation.

Schmerling, E., Leung, K., Vollprecht, W., & Pavone, M. (2018).
Multimodal probabilistic model-based planning for human-robot
interaction. In 2018 IEEE international conference on robotics and
automation (ICRA), (Brisbane, QLD) (pp. 1–9). IEEE.

123

https://github.com/RoboticExplorationLab/ALGAMES.jl
https://github.com/RoboticExplorationLab/ALGAMES.jl
http://arxiv.org/abs/1809.08302
http://arxiv.org/abs/2001.01826
http://arxiv.org/abs/2002.04354

Autonomous Robots

Schwarting, W., Pierson, A., Alonso-Mora, J., Karaman, S., & Rus, D.
(2019). Social behavior for autonomous vehicles. Proceedings of
the National Academy of Sciences, 116, 24972–24978.

Schwarting,W., Pierson, A., Karaman, S., & Rus, D. (2021). Stochastic
dynamic games in belief space. IEEE Transactions on Robotics,
1–16.

Sun, W., Theodorou, E. A., & Tsiotras, P. (2015). Game theoretic con-
tinuous time differential dynamic programming. In 2015American
control conference (ACC), (Chicago, IL, USA) (pp. 5593–5598).
IEEE.

Sun, W., Theodorou, E. A., & Tsiotras, P. (2016). Stochastic game
theoretic trajectory optimization in continuous time. In 2016 IEEE
55th conference on decision and control (CDC), (Las Vegas, NV,
USA) (pp. 6167–6172). IEEE.

Trautman, P., & Krause, A. (2010). Unfreezing the robot: Navigation
in dense, interacting crowds. In 2010 IEEE/RSJ international con-
ference on intelligent robots and systems, (Taipei) (pp. 797–803).
IEEE.

Wächter, A., & Biegler, L. T. (2006). On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106, 25–57.

Wang, M., Wang, Z., Talbot, J., Gerdes, J. C., & Schwager, M. (2021).
Game-theoretic planning for self-driving cars inmultivehicle com-
petitive scenarios. IEEE Transactions on Robotics, 1–13.

Yoo, J. H., & Langari, R. (2012). Stackelberg game based model of
highway driving. In Volume 1: Adaptive control; advanced vehi-
cle propulsion systems; aerospace systems; autonomous systems;
battery modeling; biochemical systems; control over networks;
control systems design; cooperativ, (Fort Lauderdale, Florida,
USA) (pp. 499–508). ASME.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Simon Le Cleac’h is a graduate stu-
dent with the Robotic Exploration
Lab at Carnegie Mellon Univer-
sity and with the Multi-Robot Sys-
tems Lab at Stanford University.
He received his B.S. in Engineer-
ing from Ecole Centrale Paris in
2016 and his M.S. in Mechanical
Engineering from Stanford Uni-
versity in 2019. His research inter-
ests include real-time motion-
planning, game-theoretic
optimization, and inverse optimal
control.

Mac Schwager is an assistant pro-
fessor with the Aeronautics and
Astronautics Department at Stan-
ford University. He obtained his
B.S. degree in 2000 from Stan-
ford University, his MS degree
from MIT in 2005, and his Ph.D.
degree from MIT in 2009. He was
a postdoctoral researcher working
jointly in the GRASP lab at the
University of Pennsylvania and
CSAIL at MIT from 2010 to 2012,
and was an assistant professor at
Boston University from 2012 to

2015. He received the NSF
CAREER award in 2014, the DARPA YFA in 2018, and a Google
faculty research award in 2018, and the IROS Toshio Fukuda Young
Professional Award in 2019. His research interests are in distributed
algorithms for control, perception, and learning in groups of robots,
and models of cooperation and competition in groups of engineered
and natural agents.

ZacharyManchester is an assistant
professor in the Robotics Insti-
tute at Carnegie Mellon Univer-
sity and founder of the Robotic
Exploration Lab. He received a
Ph.D. in aerospace engineering in
2015 and a BS in applied physics
in 2009, both from Cornell Uni-
versity. He was a postdoctoral fel-
low in the Agile Robotics Lab at
Harvard from 2015 to 2017 and
an assistant professor at Stanford
from 2018 to 2020. He received
the NASA Early Career Faculty
Award in 2018 and a Google Fac-

ulty Research Award in 2020. His research interest include numerical
optimization, control and estimation with applications to aerospace
and robotic systems with challenging nonlinear dynamics.

123

	ALGAMES: a fast augmented Lagrangian solver for constrained dynamic games
	Abstract
	1 Introduction
	2 Related work
	2.1 Equilibrium selection
	2.2 Game-theoretic trajectory optimization
	2.3 Generalized nash equilibrium problems

	3 Problem statement
	4 Augmented Lagrangian formulation
	4.1 Individual optimality
	4.2 Root-finding problem
	4.3 Augmented Lagrangian updates
	4.4 ALGAMES
	4.5 Algorithm complexity
	4.6 Algorithm discussion

	5 Simulations: design and setup
	5.1 Autonomous driving problem
	5.2 Comparison to iLQGames
	5.3 Timing experiments
	5.4 Discussion
	5.5 Monte Carlo analysis
	5.6 Solver failure cases

	6 Non-uniqueness of nash equilibria
	6.1 Linear-quadratic dynamic games
	6.2 Isolated nash equilibria
	6.3 Generalized nash equilibrium
	6.4 ALGAMES' convergence to normalized nash equilibrium

	7 MPC implementation of ALGAMES
	7.1 MPC feedback policy
	7.2 ``Unfreezing'' the robot
	7.3 Non-uniqueness of nash equilibria in practice

	8 Conclusions
	References

