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ABSTRACT:  22 
 23 

Background & Aims: Cancer metastasis into distant organs is an evolutionarily selective process. A 24 

better understanding of the driving forces endowing proliferative plasticity of tumor seeds in distant soils is 25 

required to develop and adapt better treatment systems for this lethal stage of the disease. To this end, we aimed 26 

to utilize transcript expression profiling features to predict the site-specific metastases of primary tumors and 27 

second, to identify the determinants of tissue specific progression. Methods: We used statistical machine learning 28 

for transcript feature selection to optimize classification and built tree-based classifiers to predict tissue specific 29 

sites of metastatic progression. Results: We developed a novel machine learning architecture that analyzes 33 30 

types of RNA transcriptome profiles from The Cancer Genome Atlas (TCGA) database. Our classifier identifies 31 

the tumor type, derives synthetic instances of primary tumors metastasizing to distant organs and classifies the 32 

site-specific metastases in 16 types of cancers metastasizing to 12 locations. Conclusions:  We have demonstrated 33 

that site specific metastatic progression is predictable using transcriptomic profiling data from primary tumors 34 

and that the overrepresented biological processes in tumors metastasizing to congruent distant loci are highly 35 

overlapping. These results indicate site-specific progression was organotropic and core features of biological 36 

signaling pathways are identifiable that may describe proliferative plasticity in distant soils.  37 
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INTRODUCTION: 39 
 40 

Metastasis accounts for 90% of cancer associated mortality1. While disease spread is a definitive turning 41 

point in patient pathology, metastasis is a long, arduous, and inefficient process for a primary tumor1,2. In order 42 

to establish an overt colonization in a distant organ, metastasis proceeds through multiple restrictive bottlenecks. 43 

Tumor sheds must first retain membrane integrity during a violent intravasation and successfully navigate the 44 

circulatory vasculature. Arriving in the new settlement, cells must elude immune response, retain activation of 45 

growth signals, and survive radiotherapies or putative ablation via chemotherapeutics3-5. The possible organs sites 46 

of metastasis are tumor type specific; and in part determined by primary lesion anatomic location, intratumor 47 

metabolic reprogramming, augmented protein functions and disrupted biological pathways driving tumor cell 48 

fitness in the distant organs6-10. The dissemination of successful metastases is an organized process known as 49 

metastatic organotropism. 50 

Metastatic organotropism is a long-standing problem in cancer research and characterizing the metastatic 51 

patterns of primary tumors is a critical step towards treating patients with advanced disease11,12. Experimentally 52 

driven investigations have focused on characterizing the biological underpinnings of organotropic metastasis 53 

while computational approaches have developed tools attempting to predict the sites of metastases. Previous 54 

research has described the patterns of bone, liver, and lung tropisms. Bone tropisms arise primarily from breast 55 

and prostate cancers13. In prostate cancers, three major clusters of pathologies have evolved, one of which show 56 

high androgen receptor signaling and high bone-tropism compared to the other clusters14,15. Liver tropisms 57 

primarily arise from breast, lung, and gastrointestinal cancers13. A 17-gene signature has been shown to indicate 58 

adverse outcomes for breast cancer patients and has some correlative evidence suggesting liver progression from 59 

breast tumors16. Lung tropisms are described most commonly in breast, melanoma and thyroid cancers13,17. 60 

Similar to liver tumors, a 54 gene panel expression signature has been developed for showing correlation for 61 

organotropic metastasis from breast tumors progressing to the lung18.  62 

Studies using molecular information for retrospective analyses of tumor metastatic sites have been 63 

xenograft selection studies that extrapolated organotropic features from metastasis microarray data. Studies 64 

leveraging RNA transcript profiling data have been designed for single tumor type progressing to a single site. 65 
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We have found no significant study has been developed on classifying site-specific metastasis from human 66 

primary tumor transcriptomic profiling data5,19-28. The most recent work investigating organotropic progression 67 

used no molecular data and instead used deep data mining of patient clinical data to model temporal patterns of 68 

tumor type site-specific progression and established a powerful co-occurrence based network but did not extract 69 

any biological determinants of tumor plasticity in distant organs24.  70 

Despite the significant progress made from previous modeling methods, a unified approach to predict site 71 

specific metastasis in multiple cancer types that learns the biological determinants of dissemination has not been 72 

resolved. We have leveraged the publicly available omics data and clinical annotations in the TCGA database to 73 

investigate metastatic organotropisms of multiple cancers. In this study, we build off of the previous work and 74 

establish a machine learning architecture that models organotropic metastases by distinguishing the tumor type 75 

and in multiple cancer types predicts the loci of distant tumor metastases. We detail a migration from the canonical 76 

pipelines using differential expression for feature assessment and use statistical machine learning for feature 77 

selection to optimize classification. Our model systematically predicts site-specific metastases of primary tumors 78 

and our methods captured conserved core biological processes overrepresented in tumors of varying origin that 79 

seeded in concordant anatomic locations.  80 

 81 

 82 
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Methods:  92 

Review of synthetic sample generation: 93 

Synthetic samples were generated to balance positive and negative classes using the SMOTE algorithm; 94 

where positive classes were tumors that developed a metastasis in the tested location and negative classes were 95 

tumors that did not develop a metastasis in the tested locaiton29. Briefly, the Synthetic Minority Oversampling 96 

Technique (SMOTE) is an algorithm to increase the representation of a minority class in machine learning 97 

classification problems. The objective function for this approach sits on top of a distance based KNN algorithm. 98 

The synthetic oversampling technique begins by selecting a minority class instance. Then finds the instance’s k 99 

nearest neighbors. One of the minority class neighbors is chosen at random. A line is drawn between these two 100 

instances and a synthetic sample is generated along the line as a convex combination of the two real instances. 101 

This process repeats until it has created the desired number of synthetic samples. The number of synthetic samples 102 

generated was specific for each binary comparison. The authors suggest that the SMOTE algorithm can be used 103 

to generate a large sum of representative synthetic samples, however how large that sum is without over fitting 104 

the model is unknown. We employed an overfit prevention method during sample balancing. We measured 80% 105 

of the majority class and increased the representation of the minority to the match approximately 80% of the 106 

majority class rounded to the closest integer. 107 

Review of Feature Selection: 108 

Feature selection was conducted by splitting the 60,483 features into blocks of approximately 600 features. 109 

The five algorithms were each trained to select the fifty best features that discriminated the tumor classes in each 110 

of the 100 blocks. We used three types of feature selection techniques to diversify the criterion for which the 111 

feature values were judged. We used statistical correlation (chi square), recursive modeling (logistic regression) 112 

embedded method (Random Forest classifier embedded feature selection), lasso regression and finally random 113 

forest regression. We extracted support values for each feature from each selection method.  114 

The transcripts were filtered for features that showed the highest cross-validated support in multiple or all 115 

algorithms. The top 1% of highest scoring features were kept from each block for a total number of 5000 candidate 116 

transcripts. Dimensionality was further reduced by filtering out co-linear features. The remaining transcripts were 117 
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used as the input features in each binary classification. Tree-based models were selected as the best fit for the 118 

classification to account for the variability in selected features and to allow model attributions to be extracted 119 

post-hoc.  120 

 121 

Review of data download of TCGA transcriptomic and clinical annotation data: 122 

The TCGA data portal has the clinical data commons that are publicly available for data mining in the 123 

clinical databank30. These data are accessible in multiple ways including Bulk/Batch API access, TCGA Biolinks 124 

software via Bioconductor, and Cart-Building on the portal website in a patient-by-patient search30. Currently, no 125 

unified patient disease progression information is directly available for bulk data mining on the portal website. 126 

Our progression annotation was built by text mining clinical files of progression annotations project by project 127 

using the batch query function in the TCGA Biolinks package. Each patient has multiple unique identifiers. In a 128 

project-by-project manner, each Case ID was cataloged. Each case ID query produced a case UUID that was used 129 

across the data types including the gene expression counts, VCF files, FASTQ files, images from slides, and 130 

clinical annotation for each experiment for each patient. Each UUID produces a patient summary. Each summary 131 

was broken down into: Data category, Experimental strategy, clinical annotations, and clinical supplemental files. 132 

The transcriptome counts files for each project were downloaded, normalized and analyzed. Each project has 133 

between 53 and 261 clinical annotation columns. The stringr and dplyr software packages were used for clinical 134 

annotation, data cleaning, and anatomical annotation31. Metastatic tumors identified in the clinical annotation file 135 

were drawn from the “metastatic tissue”, “sites of metastases” or “metastatic tissue site” column(s). Tumor 136 

progression labeled as “synchronous” were not included in the metastatic data as the clinical timeline of diagnosis 137 

was ambiguous. The diagnosis allows for tumors to be classified as synchronous ranging between the time of 138 

diagnosis up to 6 months following the diagnosis in varying tumor types.  139 

Review of Model Building: 140 

Random Forest classification and Gradient boosted tree classifiers were built to classify site specific progression 141 

from primary tumors. The selected features in each binary classification were used as input attributes into model 142 

classification. The model is set to report rounded value for classification but is capable of posterior probability 143 
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for class likelihood. The code and the pretrained models are available through the documented github. Model 144 

building and usage is documented on the Github wiki page.   145 

Review of feature recapture: 146 

Feature recapture was the final phase of model building and analysis. Testing the statistical significance 147 

of feature recapture in independently generated lists following bioinformatic analysis is an indirect however well 148 

documented technique to determine non-random enrichment32. Two sets of feature recapture were analyzed and 149 

displayed in Table 4. The tests were conducted; within cancer class seeding loci and the between cancer classes 150 

metastasizing in matching locations. The Fisher’s exact was used to evaluate the significance of recapture between 151 

lists, as the significance of deviation from the null hypothesis can be directly calculated. Our null hypothesis was 152 

that the feature recapture when analyzing matched seeding locations across cancer types was by chance; therefore, 153 

no biological meaning can be drawn from the phenomena. Our alternative hypothesis was that recapture of 154 

features within class and between matching seeding locations indicates similar distant metastatic potential and 155 

offers candidate biomarkers for organotropic metastasis, respectively. The contingency table was set as; the 156 

background of the search space for the information gain algorithm. The starting feature selection space for each 157 

classification was the entire human transcriptome. As all of the binary compassions initially began considering 158 

all 60,483 transcripts, and each set of selected features were independently generated, the total transcriptome 159 

remained the background for all tests. In list A of each contingency table, we place the top 1000 features for each 160 

classification of primary tumor seeding location. In list B, we assess a second primary tumor type and/or 161 

metastatic location feature list. We test the significance of the intersection of the two lists considering the list 162 

sizes, background and overlap in contingency table. The GeneOverlap package on Bioconductor was used to 163 

conduct the Fisher’s exact tests33. 164 

Gene set overrepresentation and Semantic analysis: 165 

The clusterprofiler package was used to conduct an overrepresentation test in the GO database34. The 166 

selected features for each metastatic location in each cancer type were translated into their associated GO 167 

biological process IDs using the bitr function in the clusterProfiler package34. The overrepresented GO biological 168 
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pathways were passed to into the GoSemSim package and simplify enrichment package35. A similarity matrix of 169 

biological functions was made using the simplfyEnrichment package in R36. A heatmap was produced by 170 

clustering the similarity scores of the biological functions using the package default binary cut function. A 171 

Fisher’s exact test was conducted using the base GeneOverlap in R33. The background was changed from the 172 

human transcriptome to the GO database to account for the change in the search space37. The UpsetR package in 173 

R was used to display the bar graph of overlapping biological processes in the tumors seeding in matched 174 

locations38. All overlaps were tested between cancers metastasizing in similar organs.  175 

Data availability and code: 176 

We used public data sets drawn from the TCGA database using the GDC data commons for this project 177 

and its analyses. We have provided all the custom computer code to produce these models39.  178 

Our code is currently available for view and use in a public Github repository: 179 

https://github.com/michaelSkaro/Classification_of_organotropic_metastases. The docker image containing all 180 

relevant environment variables, dependencies and a demo test data set is also made publicly available on docker 181 

hub and integrated into the Github actions. We have a documented wiki page that is available, demonstrating the 182 

installations, displays visualization and describes script usage within the pipeline. We have provided a general 183 

usage script that runs the entire metastatic classification pipeline. At the command line it can be ran using the 184 

metastasis_pipeline.py script within the built docker container. We have provided a general usage feature 185 

selection pipeline Feature_selection.py. We have provided the organotropic features sets for all cancer types 186 

selected in this study in the supplementary data tables. We have provided all enrichment and recapture code in 187 

the source code.  188 

  189 
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RESULTS: 190 

Classification of Tumor type: 191 

Each tumor type is unique and potential metastatic sites of progression are limited based on the tumor 192 

gene expression profile, anatomic location, and blood circulation24. We hypothesized that each tumor type has 193 

subsets of features associated with tissue specific progression. Therefore, classifying tumor type was considered 194 

a critical step towards extracting patterns of organotropic metastasis. Thirty-three tumor types were considered 195 

by the model and are annotated by their four-letter code in the tumor type column in all figures and tables. Figure 196 

1. displays the confusion matrix of the model as a heatmap and displays the model precision, recall and f1-score 197 

with normalized performance for population size classifying 33 cancer types in the TCGA database. Our model 198 

performs in the excellent range on thirty of the cancer classes, Cholangiocarcinoma (CHOL) showed the worst 199 

performance as the population of 45 was too small to develop a strong model for cancer type classification. 200 

Esophageal carcinoma and stomach adenocarcinoma showed some misclassification in between the types, given 201 

these tumors have been shown to be pathologically very similar in previous research this was unsurprising40. 202 

Colorectal adenocarcinoma (COAD) showed considerable misclassification specifically misidentifying COAD 203 

for Renal adenocarcinoma (READ) and vice-versa. The COAD and READ classes are combined in the UCSC 204 

genome browser database, and combined COAD and READ in further analyses as the metastatic progressions 205 

showed a considerable overlap. 206 

Overall, the cancer type classification model performed in the excellent range with a macro average 207 

precision of 94.2, macro average recall of 91.98 and macro average F1 score of 92.77. The classified results were 208 

used to carry forward for site specific metastases prediction. The classification of the primary tumor type 209 

significantly decreased the complexity of predicting possible sites of metastatic progression for each primary 210 

tumor. We annotated 125 metastatic locations in the ten thousand patient samples separated in twenty-three TCGA 211 

projects containing transcriptomic and clinical data (Figure 2). The most observed sites of metastasis were Bone, 212 

Liver, Lung and Lymph Node( Figure 2.). We filtered for metastatic sites with at least eight clinical annotations 213 

of progression for a given site and an overall total population of over fifty patients with documented non-214 
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synonymous progression of disease arising from the primary tumor. Following filtering we were able to analyze 215 

35 tumor metastatic site pairs.  216 

Classification of organotropic progression: 217 

Thirty-three cancer types in TCGA were analyzed in this study, based on the availability of annotated 218 

metastatic progression in the TCGA clinical data. For sixteen cancer types, we predicted site specific organotropic 219 

metastases. The classification of the organotropic metastases in the sixteen cancer types occurred in three phases. 220 

First, synthetic sample generation, followed by feature selection, and finally classification of progression. 221 

Synthetic sample generation was used to increase the representation of tumors that metastasized to each of the 222 

tested locations. Feature selection was used to reduce the dimensionality of the data and to find transcripts that 223 

best separated the tumors that metastasized to a tested locations from negative cases. We combined five feature 224 

selection algorithms to assess feature value discriminating between positive and negative classes in each 225 

classification independent of all other comparisons41. 226 

In Figure 3. we show the performance of classification in sixteen cancer types. We report four metrics for 227 

the classification of site-specific progression in each cancer; precision, recall, F1 Measure and Model Accuracy. 228 

We observed an overall average precision of 0.82, average recall of 0.82, average F1 Measure of 0.82 and average 229 

accuracy of 0.82 considering all sites and all predictions. We performed in the excellent range on twenty six of 230 

35 classification pairs. The projects with the fewest errors were the larger projects; Bladder cancer, Breast cancer, 231 

Colorectal cancers, and lung cancers. Sites with the strongest model support for prediction were Bone, Liver, 232 

Lung and Lymph Node. We used the features from tumors that metastasized to these locations in gene set 233 

enrichment analysis.  234 

After the classification of the organotropic metastases, we predicted tumors metastasizing to congruent 235 

loci may exhibit similar biological changes in the primary tumor endowing proliferative plasticity in the distant 236 

organ locations. To this end, we used the top 1000 selected features from each feature selection to conduct 237 

pathway enrichment. In Figure 4A. We simulated the number of expected biological processes to overlap if 1000 238 

randomly selected transcripts were enriched in the GO database. It is known that Ensemble transcript IDs map to 239 

multiple GO biological process IDs and therefore there is a high probability of false discovery due to random 240 
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chance. To establish that our observed overlap between lists of GO BP IDs were significant, we modified 241 

previously published gene overlap protocols and conducted a weighted simulation of our feature selection 242 

methods where IDs with the least amount of mapping match GO IDs are given priori over IDs with many 243 

matches31. The weighted simulation was conducted by randomly selecting two sets of 1000 transcript features, 244 

conducting a GO over representation test within each list, filtering for significantly overrepresented processes in 245 

the feature sets followed by testing the simulated overlap of the two independently generated GO:ID lists. We 246 

conducted this simulation a total of 750,000 times using 50,000 simulations for each possible intersection 247 

combination. We tested all pairwise combinations of 5 possible lengths of GO:ID lists ranging from 100 GO:IDs 248 

to 500 GO:IDs. The simulated results are stratified by the colored lines in Figure 4A. Our simulation shows that 249 

the feature selection method consistently produced significantly higher overlap than in random simulation. In 250 

Figures 4B-4D we show the number of overrepresented biological processes in the tumors metastasizing to bone, 251 

liver, lung, and Lymph Node, respectively. We reported the list overlaps, odds ratio and adjusted p.value after 252 

Bonferroni adjustment in the supplementary data tables. 253 

In Figure 5B, 5C, and 5D we cluster the sematic similarity of the GO:ID terms that passed the selection 254 

and filtering. We display four heatmaps that describe the biological processes found to be overrepresented in 255 

primary tumors metastasizing to concordant locations. The largest cluster common among all the comparisons 256 

was regulation of morphogenesis and migration. This is a significant result as collective cell migration is a 257 

hallmark of metastatic cancer and further suggests a progressive tumors may be identified by the expression 258 

profiles 42. 259 

 260 

 261 

262 
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Figure 1. Gradient Boosted Tree Classification of tumor type. 263 

264 
Figure 1: Classification of Cancer type. The confusion matrix detailing sample type specific performance for the GBT classification of tumor transcriptomes. 33 cancer 265 
types were considered by the model as annotated by their four letter TCGA code. The scale bar on the right-hand vertical axis denotes the density for each tile where dark 266 
tiles indicate low number of predicted values and red/white values indicate high numbers of predicted values. The major diagonal denotes the cancer type match between 267 
predicted and true labels where true labels are annotated along the left-side vertical axis and predicted labels are annotated across the horizontal axis. 268 
 269 

Classification of cancer type model metrics Classification of cancer type model confusion matrix



Skaro et al. 

 12 

Figure 2. Observed sites of metastatic progression in the TCGA database 270 

 Figure 2.  271 
Thirty-three cancers in the TCGA database have recorded RNA sequencing data. Within twenty-three projects 125 anatomic locations have clinically annotated 272 
metastatic progression. Unique metastatic sites of progression found within the population are annotated on the vertical axis. The cancer type four letter codes are 273 
annotated on the horizontal axis. The heatmaps are stratified by log frequency of occurrence in the data set. The right heatmap are were locations with the greatest 274 
frequency amongst all sites. COAD and READ have been combined in this section of the analysis.  275 
 276 

 277 

 278 

279 
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Figure 3. Prediction of Site-specific Metastases 280 

 281 
 282 

Figure 3. Displayed are the model performance metrics predicting site specific metastasis. The data was classified following a train test split where 30% of the annotated 283 
transcriptome population were held out. The performances reported are on out of bag instances that were not used as synthetic templates for training. Model performances 284 
are reported on a scale of 0 to 1. Cancer type label are in the four-letter code from the TCGA database. Total support are instances in the test set where a positive class 285 
was observed are reported in supplementary data tables. 286 
 287 
Table 1. Average model metrics by cancer 288 
 289 

 290 

Table 1. Displayed are the cumulative model performance metrics aggregating all locations for each cancer type. The cancers are labeled with their four letter TCGA 291 
code. Model metrics reported right to left were classification precision, classification recall, classification F-Measure and classification accuracy. Model performance 292 
variance and standard deviation are reported in the supplementary metails. Positive and Negative class specific performance reported in supplementary data tables.  293 
 294 
 295 
 296 
 297 
 298 

TCGA-Project Avg. Precision Avg. Recall Avg. F-Measure Avg. Model Accuracy
BLCA 0.93 0.87 0.89 0.90
BRCA 0.82 0.80 0.81 0.81
COADREAD 0.76 0.76 0.76 0.75
ESCA 0.77 0.81 0.79 0.81
HNSC 0.86 0.85 0.85 0.86
KIRC 0.93 0.95 0.94 0.95
KIRP 0.87 0.89 0.88 0.89
LIHC 0.95 0.91 0.93 0.93
LUAD 0.76 0.75 0.75 0.75
LUSC 0.65 0.67 0.66 0.67
PAAD 0.75 0.77 0.76 0.77
PRAD 0.88 0.87 0.86 0.87
SARC 0.70 0.75 0.72 0.75
SKCM 0.73 0.79 0.76 0.79
STAD 0.73 0.74 0.74 0.74
THCA 0.61 0.61 0.61 0.61
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Figure 4. Simulated and observed overrepresented GO biological processes  299 

 300 
 301 
 302 
Figure 4: Gene set enrichment analysis was conducted using the clusterProfiler package in R. The Go ontology database was used to investigate feature enrichment in 303 
Biological Processes for each metastatic location in each cancer type that was classified by the model. The upsest plots were generated using the UPsetR package. The 304 
bars represent the GO IDs with an adjusted pvalue <0.05 after Bonferroni correction. A. Simulated enrichment of randomly selected transcript features overrepresented 305 
in GO.  B. Enriched processes in Bone metastases. C. Enriched processes in Liver metastases. D. Enriched processes in Lung metastases. E. Enriched processes in Lymph 306 
Node metastases. Statistical significance and GO:ID enrichment results included in supplementary data tables.  307 
 308 
 309 
 310 
 311 
 312 
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Figure 5. Shared significantly overrepresented biological processes 314 
 315 
 316 

 317 
 318 
Figure 5: Gene set enrichment analysis was conducted using the clusterProfiler package in R. The Go ontology database was used to investigate feature enrichment in 319 
Biological Processes for each metastatic location in each cancer type that was classified by the model. SimplifyEnrichment package was used to cluster the semantic 320 
similarity between shared overrepresented biological processes in tumors metastasizing to concordant locations. A. Enriched processes in Bone metastases. B. Enriched 321 
processes in Liver metastases. C. Enriched processes in Lung metastases. D. Enriched processes in Lymph Node metastases. Statistical significance and GO:ID enrichment 322 
results included in supplementary data tables. Similarity scores are on a scale of 0 to 1. 323 
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DISCUSSION: 324 
 325 

The capacity to accurately determine the site-specific metastases of patients’ primary tumors is directly 326 

applicable to clinical actions for patients. Following tumor resection; transcriptomic analysis of a patient’s tumor 327 

can provide valuable insight into disease progression and can aid clinician’s treatment interventions43. We present 328 

an accurate and precise machine learning architecture that can classify the tumor type and can identify if and 329 

where a primary tumor will metastasize. Embedded in our model we offer potential users the opportunity to report 330 

the locations of the metastases and additionally retain the posterior probabilities of metastatic progression to each 331 

location. This offers users the ability to integrate investigation specific calibration for their data and report the 332 

confidence of the classification in the clinical setting.  333 

The model improves on previous work in two fundamental ways. The model increases the scope and 334 

performance comparison to previous work modeling either a single cancer type or single metastatic location and 335 

identifies biological feature determinants of organotropic metastasis from unified transcript profiling data. The 336 

model was shown to be broadly applicable in 16 different cancer types. Our feature selection method is uncommon 337 

amongst canonical bioinformatics or biomedical pipelines. The differentiation of the positive class feature space 338 

was only discernable from the negative class feature space following statistical machine learning centered feature 339 

selection methods. The features that are represented in the supplementary data tables were produced cross 340 

validating five feature selection method and extracting model attribution support for the best features in each 341 

comparison.  342 

 Our model is not without clear limitations. By breaking down a multi-label, multi-output experiment into 343 

NxM binary classification experiments we sacrificed detecting possible features that may be present in non-344 

mutually exclusive progression. An example of this break down occurs when one patient’s tumor metastasized to 345 

the liver and the lung. The model will fail to find features that may be dictating the multi-organ expansion of the 346 

patient’s disease. We justify this sacrifice with an opportunity cost. While we will not find these coalescent 347 

features as there are not enough coalescent cases to properly model these phenomena, we do produce a model 348 

with very high sensitivity and specificity to detect if and where both metastases will arise in a given case. Further, 349 

the model is built in a way, upon receipt of more data, we can make the necessary modifications from a binary 350 
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comparisons list to an All vs. All classification. The transition to an All vs. All classification presents the clear 351 

second limitation of this model; the very costly overhead of data production. Our model relies on the largest ever 352 

unified conglomerate of tumor transcriptome data to produce the level of precision and recall we achieved on 353 

only 16 cancer types of the 33 TCGA projects we investigated. This model is reliant on the high-quality data 354 

production pipeline in TCGA. The transcript profiling data for each tumor were produced from sequencing of 355 

patient tumors of extremely high purity which is very uncommon in most studies. If this model is to be broadly 356 

incorporated into the medical community it will need a very deep and diverse set of transcriptomes to train on 357 

that is much larger than our current TCGA dataset.  358 

Next Steps: 359 

 Our next steps will be to include more cancer types. As the publicly available data continue to grow as a 360 

super set of TCGA and the International Cancer Genome Consortium (ICGC), more projects will have clinically 361 

annotated tumor and normal transcriptomes. Further, the TCGA database documentation has become more unified 362 

and is continuously growing in its clarity. This will allow us to incorporate multiple data types into a multi-omic 363 

approach that may illuminate genetic, genomic, epigenetic and transcriptomic features working to provide 364 

proliferative plasticity in metastatic soils. Finally, if the public data grows by a significant margin, we can 365 

approach characterizing organotropic metastasis with an All vs. All model. 366 

 367 
CONCLUSION: 368 

Our machine learning architecture expands the understanding of the cancer metastasis. The leading cause 369 

of cancer associated death is metastatic progression of disease, however incorporating this tool into the clinical 370 

timelines for patients may offer clinicians opportunities for pre-metastatic therapeutic interventions. We 371 

demonstrate our model can detect if and where metastases will arise. Our methods of synthetic sample generation 372 

and feature selection produced a clear and concise biological data-based model of metastatic progression in 373 

multiple tumor types. Our recaptured features are offered as candidate biomarkers of site-specific metastatic 374 

organotropism.  375 

  376 



Skaro et al. 

 18 

Bibliography: 377 
 378 
1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J Clin 70, 7-30, 379 

doi:10.3322/caac.21590 (2020). 380 
2 Massague, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298-381 

306, doi:10.1038/nature17038 (2016). 382 
3 Lopez, M. et al. [Role of adjuvant chemotherapy in the choice of chemotherapeutic treatment of 383 

metastatic breast cancer]. Clin Ter 160, 489-497 (2009). 384 
4 Teoh, S. T., Ogrodzinski, M. P., Ross, C., Hunter, K. W. & Lunt, S. Y. Sialic Acid Metabolism: A Key 385 

Player in Breast Cancer Metastasis Revealed by Metabolomics. Front Oncol 8, 174, 386 
doi:10.3389/fonc.2018.00174 (2018). 387 

5 Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not 388 
anticipate. Cancer Cell 21, 297-308, doi:10.1016/j.ccr.2012.02.014 (2012). 389 

6 Hart, I. R. & Fidler, I. J. Role of organ selectivity in the determination of metastatic patterns of B16 390 
melanoma. Cancer Res 40, 2281-2287 (1980). 391 

7 Fidler, I. J. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. 392 
Surg Oncol Clin N Am 10, 257-269, vii-viiii (2001). 393 

8 Langley, R. R. & Fidler, I. J. The seed and soil hypothesis revisited--the role of tumor-stroma 394 
interactions in metastasis to different organs. Int J Cancer 128, 2527-2535, doi:10.1002/ijc.26031 395 
(2011). 396 

9 Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329-335, 397 
doi:10.1038/nature15756 (2015). 398 

10 McDonald, O. G. et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic 399 
glucose metabolism to distant metastasis. Nat Genet 49, 367-376, doi:10.1038/ng.3753 (2017). 400 

11 Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8, 401 
98-101 (1989). 402 

12 Fidler, I. J. & Kripke, M. L. The challenge of targeting metastasis. Cancer Metastasis Rev 34, 635-641, 403 
doi:10.1007/s10555-015-9586-9 (2015). 404 

13 Budczies, J. et al. The landscape of metastatic progression patterns across major human cancers. 405 
Oncotarget 6, 570-583, doi:10.18632/oncotarget.2677 (2015). 406 

14 You, S. et al. Integrated Classification of Prostate Cancer Reveals a Novel Luminal Subtype with Poor 407 
Outcome. Cancer Res 76, 4948-4958, doi:10.1158/0008-5472.CAN-16-0902 (2016). 408 

15 Bendinelli, P. et al. Microenvironmental stimuli affect Endothelin-1 signaling responsible for 409 
invasiveness and osteomimicry of bone metastasis from breast cancer. Biochim Biophys Acta 1843, 815-410 
826, doi:10.1016/j.bbamcr.2013.12.015 (2014). 411 

16 Kimbung, S. et al. Transcriptional Profiling of Breast Cancer Metastases Identifies Liver Metastasis-412 
Selective Genes Associated with Adverse Outcome in Luminal A Primary Breast Cancer. Clin Cancer 413 
Res 22, 146-157, doi:10.1158/1078-0432.CCR-15-0487 (2016). 414 

17 Gao, Y. et al. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell 49, 375-391, 415 
doi:10.1016/j.devcel.2019.04.012 (2019). 416 

18 Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518-524, 417 
doi:10.1038/nature03799 (2005). 418 

19 Landemaine, T. et al. A six-gene signature predicting breast cancer lung metastasis. Cancer Res 68, 419 
6092-6099, doi:10.1158/0008-5472.CAN-08-0436 (2008). 420 

20 Korde, L. A. & Gralow, J. R. Can we predict who's at risk for developing bone metastases in breast 421 
cancer? J Clin Oncol 29, 3600-3604, doi:10.1200/JCO.2011.35.7038 (2011). 422 

21 Skardal, A., Devarasetty, M., Forsythe, S., Atala, A. & Soker, S. A reductionist metastasis-on-a-chip 423 
platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng 113, 2020-424 
2032, doi:10.1002/bit.25950 (2016). 425 

22 Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537-426 
549, doi:10.1016/s1535-6108(03)00132-6 (2003). 427 



Skaro et al. 

 19 

23 Taylor, I. W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. 428 
Nat Biotechnol 27, 199-204, doi:10.1038/nbt.1522 (2009). 429 

24 Chen, L. L., Blumm, N., Christakis, N. A., Barabasi, A. L. & Deisboeck, T. S. Cancer metastasis 430 
networks and the prediction of progression patterns. Br J Cancer 101, 749-758, 431 
doi:10.1038/sj.bjc.6605214 (2009). 432 

25 Zhou, X. & Liu, J. A computational model to predict bone metastasis in breast cancer by integrating the 433 
dysregulated pathways. BMC Cancer 14, 618, doi:10.1186/1471-2407-14-618 (2014). 434 

26 Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat 435 
Cell Biol 17, 816-826, doi:10.1038/ncb3169 (2015). 436 

27 Vakoc, C. R. & Tuveson, D. A. Soils and Seeds That Initiate Pancreatic Cancer Metastasis. Cancer 437 
Discov 7, 1067-1068, doi:10.1158/2159-8290.CD-17-0887 (2017). 438 

28 Liu, Z. et al. Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer. 439 
Nat Commun 11, 4308, doi:10.1038/s41467-020-18162-9 (2020). 440 

29 Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-441 
sampling Technique. arXiv:1106.1813 (2011). 442 
<https://ui.adsabs.harvard.edu/abs/2011arXiv1106.1813C>. 443 

30 Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. 444 
Nucleic Acids Res 44, e71, doi:10.1093/nar/gkv1507 (2016). 445 

31 Wickham, H. et al. Welcome to the Tidyverse. Journal of Open Source Software 4, 1686, 446 
doi:10.21105/joss.01686 (2019). 447 

32 Saeys, Y., Inza, I. & Larranaga, P. A review of feature selection techniques in bioinformatics. 448 
Bioinformatics 23, 2507-2517, doi:10.1093/bioinformatics/btm344 (2007). 449 

33 GeneOverlap: Test and visualize gene overlaps. R package version 1.24.0 (2020). 450 
34 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological 451 

themes among gene clusters. OMICS 16, 284-287, doi:10.1089/omi.2011.0118 (2012). 452 
35 Yu, G. et al. GOSemSim: an R package for measuring semantic similarity among GO terms and gene 453 

products. Bioinformatics 26, 976-978, doi:10.1093/bioinformatics/btq064 (2010). 454 
36 Gu, Z. simplifyEnrichment: Simplify Functional Enrichment Results., 2020). 455 
37 Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, 456 

a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47, 457 
D419-D426, doi:10.1093/nar/gky1038 (2019). 458 

38 Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets 459 
and their properties. Bioinformatics 33, 2938-2940, doi:10.1093/bioinformatics/btx364 (2017). 460 

39 Tomczak, K., Czerwinska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable 461 
source of knowledge. Contemp Oncol (Pozn) 19, A68-77, doi:10.5114/wo.2014.47136 (2015). 462 

40 Cancer Genome Atlas Research, N. et al. Integrated genomic characterization of oesophageal 463 
carcinoma. Nature 541, 169-175, doi:10.1038/nature20805 (2017). 464 

41 Kullback, S. & Leibler, R. A. On Information and Sufficiency. Ann. Math. Statist. 22, 79-86, 465 
doi:10.1214/aoms/1177729694 (1951). 466 

42 Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev 467 
Mol Cell Biol 10, 445-457, doi:10.1038/nrm2720 (2009). 468 

43 Donoghue, M. T. A., Schram, A. M., Hyman, D. M. & Taylor, B. S. Discovery through clinical 469 
sequencing in oncology. Nature Cancer 1, 774-783, doi:10.1038/s43018-020-0100-0 (2020). 470 

 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 



Skaro et al. 

 20 

Competing interests 479 
The authors disclose no conflicts. 480 

 481 
Declarations 482 
'Not applicable' 483 
 484 
Ethics approval and consent to participate 485 
'Not applicable' 486 
 487 
Consent to publish 488 
'Not applicable' 489 
 490 
Availability of data and materials 491 
Cited in the manuscript. 492 
 493 
Competing interests 494 
'Not applicable' 495 
 496 
Funding 497 

• Innovative Interdisciplinary Research Grant. University of Georgia 498 
• Grimes Family Distinguished Graduate Fellowship in Cancer research  499 
• REU site, Genomics and Computational biology.  DBI-1946937,03/30/2020-03/30/2023 (PI: Jonathan 500 
Arnold, Co-PI David Logan, Clark Atlanta University) 501 

Author’s contributions:  502 

MS, MM, AS and JA planned and designed study(Design). MS and YZ collected data from the GDC data 503 
commons API, annotated samples and documented clinicopathologic data in TCGA(data acquisition, data 504 
management). MS, and MH conducted experiments and generated code/models(Analysis). JA, MM, SQ and 505 
MBD provided experimental guidance and support for model development/analysis and revised 506 
manuscript(Design and writing). Specifically: JA advised for statistical analysis, SQ advised on feature selection 507 
and machine learning support and analysis for MS and MH, MBD and MM provided experimental guidance on 508 
patterns in cancer metastasis, biological interpretation (interpretation of data). MS, MH, and JA analyzed data. 509 
MS, AS and JA wrote the manuscript. 510 

All authors approved the final version of the manuscript.  511 

 512 
Acknowledgements: 513 
A major acknowledgement for the Georgia advanced computing resource center for computational support for 514 
this project. 515 
 516 
Cited in the manuscript. 517 
 518 


