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In a seminal paper, Page found the exact formula for the average entanglement entropy for a pure random state.
We consider the analogous problem for the ensemble of pure fermionic Gaussian states, which plays a crucial
role in the context of random free Hamiltonians. Using recent results from random matrix theory, we show
that the average entanglement entropy of pure random fermionic Gaussian states in a subsystem of N, out of
N degrees of freedom is given by (Sa)g = (N — DHWERN) + (3 — NOWN) + (3 + Ny — N)WRN — 2N,) —
%lII(N — Ni) — N4, where W is the digamma function. Its asymptotic behavior in the thermodynamic limit is
given by (Sa)g = N(log2 — 1)f + N(f — 1) log(1 — f) + %f—l— %log(l — f) + O(1/N), where f = Ny/N <
1/2. Remarkably, its leading order agrees with the average over eigenstates of random quadratic Hamiltonians
with number conservation, as found by Lydzba, Rigol, and Vidmar. Finally, we compute the variance in the
thermodynamic limit, given by the constant limy_,o(AS4)g = 3[f + f* +log(1 — f)].
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Introduction. Entanglement is a hallmark of quantum
theory [1,2]. The study of the von Neumann bipartite en-
tanglement entropy plays a central role in the quantum
foundations of statistical mechanics [3-21], in quantum infor-
mation theory [22-29], in the formulation of the black hole
information puzzle [30-37], and the study of the quantum
nature of spacetime geometry [38—43]. Also experimentally
there has been recently tremendous progress in measuring
entanglement entropy in optical lattices with ultracold atoms
[44].

In a seminal paper [45], Page showed that, when an iso-
lated quantum system is in a random pure state, the average
entanglement entropy of a subsystem is close to maximal.
In particular, he conjectured an exact formula for the aver-
age, taken with respect to the Haar measure over states in a
finite-dimensional Hilbert space. In this letter we address the
analogous problem for the ensemble of pure fermionic Gaus-
sian states. We compute the average entanglement entropy
(Sa)g of those states (6) and study its properties (Fig. 1) with
the help of random matrix theory.

Pure fermionic Gaussian states appear as ground states
and eigenstates of free, i.e.,quadratic, Hamiltonians, and re-
main Gaussian in the time evolution after a free quantum
quench [46,47]. They play an important role in quantum
computing in the context of matchgates [48]. Moreover,
there has been an increased interest in fermionic Gaussian
states from the perspective of quantum chaos [4], and the
eigenstate thermalization hypothesis [5,49,50]. The average
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eigenstate entanglement is of particular interest in this con-
text [13,15,16], where one averages the entanglement entropy
over the discrete set of eigenstates, which are Gaussian states
for a given quadratic Hamiltonian. Our main results, the av-
erage entropy (6) and particularly its thermodynamic limit
(7), unveil close relations to recent work on the average en-
tanglement entropy of eigenstates of quadratic Hamiltonians
[14,19,20]. In particular, our formula (7) coincides in the
thermodynamic limit with the average of the entanglement
entropy with respect to the eigenstates of random quadratic
Hamiltonians with number conservation (later numerically
confirmed in [20] to also apply to random Hamiltonians with-
out number conservation).

The Page curve. Before we come to the fermionic Gaus-
sian states, let us briefly recall Page’s result. In a quantum
system consisting of N spin 1/2 fermions, a subsystem of
N, fermions (with N = Ny + Np and N4 < Np) defines a
bipartition of the Hilbert space of states as H = Ha ® Hsp,
with dimensions dim H4 = 2™ and dim Hg = 2V5. We as-
sume Ny < Np throughout this work without loss of generality
(as we can swap N4 <> Ng when N4 > Np). Given a pure
state |¢) € H, the entanglement entropy of the subsystem
is Sa(1Y)) = —Tr(palog pa) with ps = Trg|¥) (] the in-
duced density operator where the other Np fermions are traced
out. The average over all states in H is

(Sa) =/dM(W)SA(I¢>)=/

Uel@2V)

dU Sx(U 10)), (1)

where du(y) is the uniform measure in H. This uniform
measure on the 22V — 1 dimensional sphere can be obtained
by fixing an arbitrary reference state |0) and acting on it with
a unitary transformation U distributed uniformly with respect
to the Haar measure dU over the unitary group U € U (2V).

©2021 American Physical Society
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FIG. 1. We compare the Page curve for random states (S,) to the
Page curve for random Gaussian states (Ss)g for a system with N
fermionic degrees of freedom.

In [45] Page conjectured the formula (later proven in [51-53])
(Sa) = WQ¥ + 1) —wEN M 1) - 20L (2

where W(z) = I''(z)/T'(z) is the digamma function.
In the thermodynamic limit N — oo with finite subsystem
fraction f = Ny /N < 1/2, the average entropy reduces to

(Sa) ~ fNlog2 — Le—(1-2)Nlog2, 3)

Hence, for f < 1/2, the average entanglement entropy ap-
proaches exponentially the entropy of a maximally mixed
state. Similarly, in the thermodynamic limit, the dispersion
around the average [18,54,55] scales as

2—(=fIN-7
—iN-1

0<f<l,

4
P )

ASA’\’{

and vanishes exponentially. Consequently, a typical state in
the Hilbert space is extremely close to being maximally en-
tangled.

Let us turn our focus to fermionic Gaussian states which
are states annihilated by a set of fermionic annihilation opera-
tors. Given a reference Gaussian state |Jp), all Gaussian states
|Jar) can be generated via Bogoliubov transformations. These
states form a submanifold in the manifold of pure states. The
uniform measure d ug(J) over Gaussian states can be defined
in terms of the Haar measure over Bogoliubov transformation,
i.e., real orthogonal transformations M € O(2N) [56]. The
average entanglement entropy over fermionic Gaussian states
is then

(Sa)g =/dMG(J)SA(|J))=/ dM Sa(lJu)).  (5)

MeOQN)

Using random matrix theory, we derive the following exact
formula for the average entanglement entropy:

(Sa)o = (N — 3)WUQN) + (3 + Ny — N) V(2N — 2N,)
+ (3 = Na) W) — TN = Ny) = Ny (6)

In the thermodynamic limit N — oo with finite fraction f =
N4 /N < 1/2, a series expansion in N yields

(Salg ~ N[(og2 —1)f + (f — Dlog(l — f)]
+3f + glog (1= f) + O(1/N), (7
whose leading order term agrees with the expression deduced
in [19] for the average over a different set of states, as we

will review in our discussion. We also find that the standard
deviation approaches the constant

2 —
Jim (ASp)a =\/f+f +;°g(l D, 8)

We outline the derivation of these results in the ensuing dis-
cussion.

Average entropy. A quantum system with N fermionic
degrees of freedom can be formulated in terms of a set of
creation and annihilation operators Ezj and a; with canoni-
cal anticommutation relations {&;, 21;} =4, {a4;,a;} = 0 and
i, j=1,...,N.Equivalently, we can introduce 2N Majorana
modes éﬂ withpu =1,...,2N and

§i= 5@ +a) and Eyy= 5@ —a). )

A Bogoliubov transformation a; = leyzl(ot[ jaj+ B j&j)
transforms the operators &, to the new ones él: according to

é,; = Zizl M, é,,, where the 2N x 2N matrix M,,, is given
by [57]

_ (Re(a+B)
M= <Im<a +5)

The requirement that the anticommutation relations are pre-
served is equivalent to the condition MMT =1, i.e., M must
be an orthogonal matrix in O(2N).

To define the uniform average over fermionic Gaussian
states, we exploit the notion of a complex structure J (i.e.,
J? = —1) and its relation to the correlation function [56]. The
starting point is that a fermionic Gaussian state is defined as
the ground state of a set of annihilation operators. We call |Jj)
the state annihilated by the reference operators &; and |J) the
state annihilated by the Bogoliubov-transformed operators &;,
i.e., a/|J) = 0. The label J stands for the matrix J = MJoM ™!
determined by the expectation value of the commutator of two
Majorana modes [56],

Im(8 — a)
Re(a _ﬂ)>. (10)

(I1Ew &11) =i Ju  with Jo=< > g) (1

The entanglement entropy of a Gaussian state |J) is directly
related to the spectrum of the 2N, x 2Ny left-upper subblock

[J]4 of J via the formula S4(]J)) = 21\21 s(x;) with [56-59]

s(x):_<1;x)log(1;x> _ <l‘§x>log(1;‘x>’

(12)

where x; € [0, 1] are the singular values of [J],.

Having defined fermionic Gaussian states in terms of a ref-
erence state |Jy) and an orthogonal matrix M, we can express
the uniform measure over Gaussian states in terms of the Haar
measure over O(2N) and compute the average entanglement
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entropy of Gaussian states exploiting (5). What we need to
derive first is the joint probability distribution of the singular
values x; of [J]4. For this purpose we make repetitive use of
[60, Proposition A.2] by projecting away always two rows of
the matrix J; first to [J]y_1, then [J]y_> until we arrive at
[/1n,- This yields for x = (xy, ..., xx,) the distribution

2 — —
PO = SO (T e A =2 0%), (13
where we have the Ny x N4 matrix X and c;,
Xij = pj-1(x) = P55 (), (14)

222 (25 + AP
c; = ,
TN+ 2M) (4 +2A + 1)
A =Ng—Ny=0. (16)

5)

The functions P*#)(z) are the Jacobi polynomials and the
distribution (13) is related to the Jacobi ensemble [61], one
of the classical random matrix ensembles that can arise in
various ways.

The k-point correlation functions [61] encode the whole
spectral statistics of a random matrix,

Ri(x1y ..o x1) = /P(xl, e Xi Ve 7}’NA—k)dNA_ky
Ny — k)!
= Mdetl((xa,xb), a7
Ny!

where K(x,,x;) refers to the k x k matrix (with a, b =
1, ..., k) given by [61]

Na—1 (1 _ xZ)A/Z
K(x,y) = ]ZOj VOV, i) = Tp,(x),

(18)

with /01 Y (x)¥r(x)dx = & jx. Then the level density is p(x) =
Ri(x) = 3-K(x,x) = 3= 20 2 (o).
J

1

1
(AS)E =/ sz(x)K(x,x)dx—f
0 0

The average entropy is then given by the integral

1
(Si)g = Na /0 SCp). (19)

which can be evaluated by computing

b x(1 = x)* (1—x2)€)
I = — dx, 20
/_1< > 1 )exDdx 20)

such that (Sa)g = Na (0c1e +1og2)c_,0. We combine the Ja-
cobi polynomials with the other terms in the integrand whose
integrals altogether give ratios of Gamma functions which,
after the derivative, yield the digamma functions in (6).

We can compare the Gaussian Page curve (6) with the
original Page curve (2), as illustrated in Fig. 1. In the Gaus-
sian case the thermodynamic limit is approached from above,
while the original Page curve is approached from below. In
fact, we can compute (Sy) = 1/3 and (Sp)g = 1/2for Ny = 1
with N = 2, which shows that for small N the average en-
tanglement entropy of Gaussian states is above the one of all
states. This is in stark contrast to the thermodynamic limit,
where the average entanglement entropy of Gaussian states is
almost half of the one for all states.

Variance. An important question in the context of comput-
ing the average entanglement entropy is if this average is also
typical, i.e., if almost all states have an entanglement entropy
close to the average as we take the thermodynamic limit.
To answer this question, we compute the variance (ASy )é =
(S%)G - (SA)é of the probability distribution. For this, it is
useful to define

1
5y = /0 SCOVE Y (¥)dx

1 1 —x 1+€
=—[a€ / (—2 ) w,(x)w,-(x)dx} ,
-1 €e—0

where we used ¥;(x) = ¥;(—x) to produce the two terms
in (12) by integrating over [—1, 1]. We can interpret s;; as
the matrix elements of the operator s(x) with respect to the
orthonormal basis ¥;(x) in [0,1]. With this we find

2y

1
sCe)sC)K 2 (xy, x0)d2x = /0 sCGe)s()K (e, x)[8(x1 — x2) — K (x1, x2)]d%x

1 Ny—1 ) Npy—1 oo
= /0 s(x)s(y)(z wl-(xnm/f,-(xz))(Z a/x;(xl)m/fj(xz))dzx =Y > s with (22)

i=0 =Ny i=0 j=Ny

2 _ CHIQA+4i+ DA+ j+ DA +2j+ DRA+4j + D[2(A + DI[(1 + A —2A%)i —2(A — l)i2+(A+1)(2j+1)(A+j)]2 fori < i

KA 202012 = 2j + 12— (=2 +2j + 1D?[2(A+ j+ DIA+i+ (A +i+ j+ 1D2QA+2i+2j+1)? -
(23)

where (23) is only valid for i < j, which is all we need for
the sum in (25). Despite all terms in the sum of (25) are

nonzero for large N, it is dominated by the summand s,%,A_], Ny

(see Fig. 2, where we compare the sum vs this dominating
summand), so that it makes sense to consider the limit

5= ngnoo 512\/A7171.NA+1<
1 —2(k+1+1) 2
(7—1) [Rk+21+3—4f(k+1+1)]

= , 24
Ak + 1+ D22k + 21 + 122k + 21 + 3)2 @49

[
with fixed f = Ny /N. From this we find the variance

o 2
. ), fHSlog(l=f)
Jim (AS)E = ]§k_oj 57, = : .29

where we could evaluate the sum analytically. That the vari-
ance approaches a constant is in line with numerical findings
in [19,20] and analytical studies of Renyi entropies [21]. Re-
call that the Page variance AS4 from (4) converges to zero
(with a behavior that differs for f = %), while the Gaussian
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FIG. 2. We compare the standard deviation limy_, o, (AS4 ) from

(25) with the leading summand [5oo| = limy o [Sy, _1x, | = (g(j‘{ff))f
from (24).

standard deviation (AS4)g approaches a constant and only
its relative dispersion (AS4)g/ (Sa)g will behave as 1/N. In
contrast, the standard deviation for (Gaussian) eigenstates of
translationally invariant quadratic Hamiltonians was found in
[13] to scale as +/N (relative dispersion scaling as 1/+/N),
which thus differs from both the Gaussian behavior found here
and Page’s result.

The stark contrast of the behavior of the standard deviation
for all states vs Gaussian states, i.e.,exponential vs constant, is
closely connected to the dimension of the respective family of
states (see Fig. 3). While the real dimension of the manifold
of pure fermionic states scales as 2V, the manifold of pure
fermionic Gaussian states consists of two disconnected com-
ponents of dimension N(N — 1) each. This behavior can be
understood via Dyson’s Brownian motion where the number
of eigenvalues of the underlying random matrix (exponential
in N, for pure fermionic states and quadratic in Ny) is crucial
for the rate of convergence.

Relation to random Hamiltonians. So far we adopted the
perspective of studying properties of a given ensemble of
quantum states, namely the family of fermionic Gaussian
states, without asking in what physical system one may nec-

essarily encounter them. This is also the perspective of Page’s
original paper [45] where he considers the family of all
pure states, without reference to a specific Hamiltonian. Re-
markably, for Hamiltonians with local interactions, while the
ground state is far from Page typical as it generally satisfies
an area law [62], the entanglement entropy of energy eigen-
states can be obtained from typicality arguments [3—13,15—
18]. Similarly, it is instructive to investigate for which ran-
dom Hamiltonians the resulting ground states constitute the
considered ensemble of fermionic Gaussian states discussed
here.

For this aim we consider the most general quadratic Hamil-
tonian for N fermionic degrees of freedom,

N 2N
A=) (Ayaja; + Byjala, + He) = Y ihy, £, (26)
i,j=1 nv=l

where the 2N Majorana modes were introduced in (9) and &,
is an antisymmetric matrix with real entries (as also consid-
ered in [20]). Any such antisymmetric matrix can be block
diagonalized by means of an orthogonal transformation M,
such that

N .
MM~ = @iﬁ(_?u ‘8) 27)

where w; > 0 leading to H= vazl w; (l;:fl;,- — %) with trans-
formed creation and annihilation operators.

If we randomly generate the matrix entries of A, with
respect to some O(2N) invariant probability distribution, for
instance a Gaussian distribution, the orthogonal transforma-
tion M that diagonalizes it will be Haar distributed. Therefore,
the resulting ground state of H is the state annihilated by
b; and is distributed according to the ensemble of fermionic
Gaussian states considered so far. Moreover, the excited en-
ergy eigenstates of this random Hamiltonian are also Gaussian
states and distributed according to the same ensemble. Re-
markably, the result does not depend on which specific choice
of O(2N)) invariant distribution we use to generate H: in fact,
only the one-particle spectrum w; depends on this choice, and
the properties of the energy eigenstates are independent of
the associated eigenvalues (as long as no degeneracies are
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FIG. 3. We compare the probability distributions P(S, ) of the entanglement entropy S4 for Gaussian states and general states in a fermionic
system with Ny = Ng = 5. The expectation value (S,) and (S4)g for Ny = Np and their thermodynamic limits are indicated by vertical lines
and vertical dashed lines, respectively. The insets depict the scaling of the standard deviation AS4 and (AS,)g for Ny = Ny — 0.
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present). Therefore, the eigenstates of (26) are distributed as
random Gaussian states |J) with Haar measure dug(J) as in
(5).

This result provides an analytical derivation of the numeri-
cal evidence found by Lydzba, Rigol, and Vidmar in [20] that
in the thermodynamic limit the average entropy of eigenstates
of a random Hamiltonian (26) is given by (7). Moreover, the
argument above extents the result to systems of finite size: the
average eigenstate entanglement entropy of O(2N )-invariant
random quadratic Hamiltonians is given by the exact analytic
formula (6).

On the other hand, imposing further constraints on the
Hamiltonian (26), such as requiring it to be particle number
preserving or translationally invariant, will result in a sub-
manifold of the manifold of fermionic Gaussian states (5).
Therefore we cannot expect to find the same statistical proper-
ties (average, variance) for the entanglement entropy at finite
system size. Yet, in the large N limit, the average over eigen-
states of number preserving Hamiltonians studied in [14,19]
leads to an average entanglement entropy that agrees with our
result (7) in the thermodynamic limit.

Discussion. The main result of this letter is the analytical
expression (6), which is the analog of Page’s result for the
ensemble of fermionic Gaussian states for systems of finite
size, and its large N behavior (7). The derivation was made
possible by recent advances in random matrix theory [60],
which bear promise to be also relevant for other ensembles
of states. Our results enable us to deduce a number of in-
teresting properties of the Page curve of fermionic Gaussian
states: (a) The curve admits a closed form expression in terms
of digamma functions from which finite size corrections to
the thermodynamic limit can be extracted. (b) In contrast to
Page’s typicality, for fermionic Gaussian states the thermody-
namic limit is approached from above and only algebraically
fast, rather than exponentially. (c) The variance approaches
a constant at large N rather than decaying exponentially as
in Page’s case. (d) Finally, our result shows that whenever
the subsystem fraction is finite in the thermodynamic limit,
the average entanglement entropy is smaller than the maximal
value flog?2, but approaches it as the subsystem fraction f
goes to zero.

Our proof helps to clarify the relationship to the aver-
age entanglement entropy of ground states and eigenstates
of random quadratic Hamiltonians, namely that these aver-
ages coincide in the thermodynamic limit provided that the
Hamiltonian is sufficiently random. Let us emphasize that the
function

Jim 3 (Sa)g = (og2 = )f +(f = Dlog(1 = /) (28)

was found by Lydzba, Rigol, and Vidmar in [19] as an av-
erage over energy eigenstates of random Hamiltonians with
number conservation (and later shown numerically [20] to
also apply to eigenstates of random quadratic Hamiltonians

without number conservation). In the thermodynamic limit,
the associated level density of the matrix [J]4 for a similar
model was also found previously in [14], from which the
value limy—sn,—c0 ﬁ (S4) =log2 — % was computed. Both
papers construct their family of states from number pre-
serving quadratic Hamiltonians, namely either as the ground
state of the SYK2 Hamiltonian [14] or as one of its eigen-
states [19]. In both cases, the set of states is determined
by the subgroup U(N) of number-preserving Bogoliubov
transformations, which is only a submanifold of the O(2N)
manifold of Gaussian states considered here. For O(2N)-
invariant random quadratic Hamiltonians, we find that the
average eigenstate entanglement entropy is given by the an-
alytic formula (6) for systems of finite size. Explaining from
general arguments why in the thermodynamic limit the av-
erage (28) arises more generally, identifying what is the
universality class and computing the finite size corrections
to the average and variance for different classes of random
Hamiltonians would be an interesting avenue for future work.

The random matrix techniques used here can also be ap-
plied to derive similar “Page-like curves” for Renyi entropies
[21] and other information-theoretic quantities. While here we
focused on energy eigenstates and time-independent Hamilto-
nians, our results provide also a prediction for the value of
the equilibrium entanglement entropy under unitary evolution
generated by a random time-dependent quadratic Hamiltonian
[46,63,64].

Another Page-like curve was considered recently
[13,15,16] in the context of translationally invariant quadratic
Hamiltonians, for which the average entanglement entropy
over all eigenstates was computed. While this average
involves a discrete set of states which differs depending on the
chosen Hamiltonians, numerical evidence for several classes
of translationally invariant quadratic models suggested the
conjecture that the resulting curve is actually universal [56] in
the thermodynamic limit. The most compelling explanation
for such a behavior relies again on random matrix theory
and assumes that any such discrete set will ultimately sample
from the Haar measure on the manifold of translationally
invariant Gaussian states. It would therefore be a meaningful
avenue to adapt the methods developed in this letter to derive
similar analytical expressions for the average entanglement
entropy of translationally invariant Gaussian states.
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