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Abstract— Complex networked systems are the norm in the
modern world with the human brain being one of the most
complex networks. The control of such systems is a difficult task
due to the interactions among the individual elements of the sys-
tem. In this paper the design of sparse feedback controllers for
complex networks is considered. Specifically, an H∞ controller
synthesis problem with D stability constraints is formulated
and solved for networks with different topological features.
This formulation allows us to examine tradeoffs between con-
trol performance, controller sparsity and speed of closed-loop
response. We applied this formulation to synthetic networks
and the Macaque visual cortical network, assuming Laplacian
node dynamics. The results show that as the requested response
becomes faster, the control performance improves, and the
feedback gain matrix becomes sparser but with larger non-zero
entries. This is analogous to the observation that functional
brain networks during high cognitive demand adopt a more
efficient but also costlier configuration. This analogy suggests a
possible connection between cognitive control and closed-loop
control under sparse feedback.

I. INTRODUCTION

Networks are widely used across disciplines to describe
interactions between elements of a system [1]. A network
can be expressed mathematically by a graph G(V,E), where
V are the nodes (the discrete elements of the system), and
E are the edges (the interactions between the nodes). An
undirected graph can be represented by a binary or weighted
adjacency matrix A. An element (i, j) of a binary Aij is
one if node i is connected to node j and zero otherwise.
In a weighted Aij matrix, non-zero elements correspond to
the strength of the interaction between nodes i and j. The
network perspective of a system can provide information
about its large scale properties. The analysis of a large-
scale networks, e.g. social [2], economic [3], brain [4] and
metabolic [5], has revealed common topological features that
characterize optimal networks, namely, modular structure,
hierarchy, core periphery and small world. These features
has been related to efficient network communication [6] and
robustness [7]. In this paper we focus on the impact of
network topology on the closed-loop control of the system
with a specific exponential decay ratio.

The effect of network topology on network control has
been analyzed primarily from an open-loop control perspec-
tive, focusing on controllability [8], observability [9], selec-
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tion of driver nodes [10] and minimum energy control [11].
Closed-loop control has also been analyzed for networks with
Laplacian dynamics under the sparsity promoting control
approach proposed in [12]. The simultaneous optimization of
control performance and controller sparsity has shown that
under high feedback cost, modular networks lead to lower
total cost [13], [14] compared to non-modular ones.

Concepts of network control have also been applied to
biological systems, including the brain [15], which is charac-
terized by structural and functional networks. Structural net-
works provide anatomical information on physical connec-
tions (neural fiber tracts - the edges) among different brain
regions (nodes) and describe the brain’s neuronanatomical
architecture. Functional networks provide (co)activation (sta-
tistical) information on interactions between different brain
regions in response to cognitive demands, and are thus dy-
namically reconfigured as a function of these demands. Brain
network control has been analyzed using linear models [15]
focusing on controllability [16] and minimum energy control
[17], [18]. Although these approaches provide insights on the
selection of driver nodes and minimum transition cost, they
treat the control of the brain as an open-loop problem.

In this work we expand the scope of our previous work
[13], [14] by considering an H∞ sparse controller synthesis
problem under additional D stability constraints. We consider
synthetic brain networks with Laplacian node dynamics.
We find that a restriction of the eigenvalues of the closed-
loop system leads to a change in the structure of the
optimal feedback gain matrix K, which depends on the graph
structure. We note qualitative analogies between changes in
the feedback matrix K for different D stability constraints
and the observed reconfiguration of brain networks during
low and high cognitive demands. These analogies suggest a
possible connection between functional brain networks and
closed-loop control under sparse feedback.

II. FORMULATION OF THE H∞ OPTIMAL SPARSE
CONTROLLER SYNTHESIS PROBLEM WITH D STABILITY

CONSTRAINTS

We consider a network that is represented by a graph
G(V,E) with n nodes. We assume Laplacian dynamics on
the graph, i.e. the evolution of the state of node i depends on
the discrepancies between states at adjacent nodes, described
by the following equations:

ẋ(t) = −Lx(t) +B2u(t) +B1w(t)

y(t) = Cx(t)
(1)
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where x ∈ Rn are the states of the system (state xi
corresponds to node i), y ∈ Rn are the measured/controlled
outputs, u ∈ Rn are the control inputs, w ∈ Rn are the
exogenous disturbances, B1 ∈ Rn×n, B2 ∈ Rn×n, C ∈
Rn×n and L ∈ Rn×n is the Laplacian matrix of the graph,
which is equal to:

L = D −A (2)

where D = diag(k1, ..., kn) is a diagonal matrix (ki is the
degree of node i) and A (Aij = {0, 1}) is the adjacency
matrix of the graph. We assume that we can control and
measure all the states of the system, hence B1 = B2 =
B = C = 1n×n, where 1n×n, 0n×n is the n × n identity
and zero matrix respectively. We also define the performance
vector z = [Cx(t) u(t)]>. The state space realization of the
generalized system is:

ẋ = −Lx(t) +Bu(t) +Bw(t)

z(t) =

[
C

0n×n

]
x(t) +

[
0n×n
1n×n

]
u(t) + 02n×nw(t)

y(t) = Cx(t) + 0n×nw(t) + 0n×nu(t)

(3)

We use full state feedback, hence u(t) = Kx(t), K ∈
Rn×n. The closed-loop dynamics are:

ẋ = (−L+BK)x(t) +Bw(t)

z(t) = (C1 +D12K)x(t) +D11w(t)
(4)

where
C1 =

[
C 0n×n

]> ∈ R2n×n

D12 =
[
0n×n 1n×n

]T ∈ R2n×n

D11 = 02n×n, B = 1n×n.

(5)

The H∞ sparse controller synthesis problem for
this system is presented in Eq. 6. In this problem, the
optimization variables are the P matrix (P = P> ∈ Rn×n)
which depends on K through the Bounded Real Lemma
(first constraint), the bound on the H∞ norm γ (|G|∞ ≤ γ),
and the feedback gain matrix K. This formulation
incorporates the sparsity term (|K|1) in the objective
function. Specifically, p is a parameter (feedback cost)
that penalizes the feedback gain matrix and thus promotes
sparsity of the controller. The solution of this problem
will provide a sparse controller K that will render the
closed-loop system stable and will guarantee rejection of
exogenous disturbances of all frequencies. A small value of
γ indicates satisfactory control performance, since the effect
of the disturbances on the output is small, and a large |K|1
indicates high control cost. An additional constraint will be
imposed on the dynamic response of the closed-loop system,
by placing the poles of the closed-loop system at a specific
region of the complex plain. These regions are called D
regions and can be described by Linear Matrix Inequalities
[19]. In this work we focus on the restriction of the real
part of the eigenvalues of the closed-loop system below a
certain value −α (α ≥ 0), D(α) = {λ ∈ C : Re(λ) < −α}.

minimize
P,K,γ

γ + p |K|1

subject to

P (−L+B2K) + (−L+BK)>P PB (C1 +D12K)>

B>P −γ1n×n D>11
C1 +D12K D11 −γ12n×2n

 ≺ 04n×4n

P � 0, γ ≥ 0

(6)

This D region can be described by the following D stability
constraint [20]:

(−L+BK)P + P (−L+BK)> ≺ −2αP. (7)

This D stability constraint along with Eq. 6 forms the
H∞ sparse controller synthesis problem under D stability
constraints. This problem seeks to find a trade-off between
control performance (γ) and control cost (|K|1), while
promoting sparsity, for a given speed of closed loop response
(α). For the solution of this problem, we note that if P
(or K) is fixed, the problem is convex with respect to
K, γ (or P, γ). This is a bi-convex optimization problem
and can be solved using block coordinated descent [21].
All the problems were solved in Python using CVXPY
[22], the DCMP package [21] and CVXOPT. Note that the
convergence of block coordinate descent is not guaranteed
and the solution obtained depends on the initialization of the
algorithm.

III. H∞ OPTIMAL SPARSE CONTROLLER DESIGN:
RESULTS FOR DIFFERENT STRUCTURES AND D STABILITY

In this section the optimal sparse controller synthesis
problem is solved for different networks, values of the α
parameter in the D stability constraint, and values of the p
parameter. Three networks are considered with 20 nodes, a
random Erdős-Rényi graph, a graph with community and a
graph with core periphery structure. The graphs are created
using NetworkX [23].

A. Results without the incorporation of the D stability con-
straint (α = 0) (Fig. 1)

1) Erdős-Rényi graph: For this random graph (first col-
umn), increasing the parameter p leads to a sparser feedback
gain matrix K with lower control cost and worse control
performance (γ increases). The feedback matrix does not
have an apparent structure. Based on the individual values
of K, the control cost for nodes with low degree is higher
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Fig. 1: Optimal sparse controller design (without D stability
constraints) for different values of p

compared to nodes with high degree. This is a consequence
of the low connectedness of these nodes which requires more
aggressive control action even for small disturbances in order
to regulate the node.

2) Graph with community structure: For this case (second
column), the feedback gain matrix and the adjacency matrix
have similar structure. This arises since the nodes that belong
in a community are densely connected, hence control action
on a node affects all the other nodes in the community. An
increase in the value of p leads to sparser controllers with
worse control performance and lower control cost. These
results are consistent with [14] where an increase in p was
shown to lead to lower inter-community interactions in the
K matrix. We note that the control action for the nodes that
connect the two communities depends on the state of all the
nodes for all the values of the parameter p. We can consider
these nodes as coordinators that consider the state of both
communities before taking control action.

3) Graph with core periphery structure: In the last graph,
the structures of the Acp and K matrix differ and an increase
in the p parameter leads to an increase in the sparsity of the
controller and decrease in the control cost and performance.
Similar to [24], in the K matrix two different patterns can
be identified. The control in the core is based on the nodes
in the core and the periphery, whereas the control in the
periphery depends mainly on the periphery itself.
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Fig. 2: Sparse feedback gain design results using the D
stability constraint. In the first row the adjacency matrices
are presented. In the next rows the optimal sparse feedback
gain matrix is presented for different values of α (0,2,5,10)

B. Results with the incorporation of the D stability constraint

In this section, theH∞ sparse controller synthesis problem
is solved for three types of randomly generated graphs with
the same structure as in Section III-A, and the results are
presented in Table I. We see that the value of p does not
affect the sparsity of the controller when the value of α in
the D stability constraint is greater than two. Thus we will
fix the value of p at one and analyze the structure of the
controller as the value of α increases from 2 to 10. These
results are presented in Figure 2.

1) Erdős-Rényi graph: For this graph the results are
presented in the first column. As the value of the α pa-
rameter increases, the magnitude of the entries of the K
matrix increases, the controller is sparser, and the control
performance improves (γ decreases, see Table I). Also, for
α = 5, the structure of the K matrix resembles the structure
of the Ar matrix. Finally for α = 10 the diagonal entries of
the K matrix are much larger than the off-diagonal entries.

2) Graph with community structure: The results of the
graph with community structure are presented in the second
column. As the value of α increases, the control performance
improves (γ is smaller) and the structure of the K matrix is
more sparse, with higher non-zero entries, and similar to the
adjacency matrix Ac. For α = 5 the adjacency matrix Ac
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TABLE I: Value of γ, |K|1 for different values of α and p.

Graph α
p = 0.01 p = 0.1 p = 1
γ |K|1 γ |K|1 γ |K|1

Erdős
Rényi

0 1.041 3.5 1.115 2 1.524 0.9
2 1.038 3.9 1.113 2 1.118 2
5 1.020 5.1 1.020 5 1.020 5
10 1.008 10 1.008 10 1.008 10

Community

0 1.040 3.6 1.116 2 1.525 0.9
2 1.040 3.5 1.110 2.1 1.118 2
5 1.020 5 1.020 5 1.020 5
10 1.007 10 1.007 10 1.008 10

Core
Periphery

0 1.040 3.6 1.101 2.2 1.524 0.9
2 1.041 3.5 1.114 2 1.118 2
5 1.020 5.1 1.020 5 1.020 5
10 1.008 10 1.007 10 1.008 10

and the feedback gain matrix have the greatest resemblance.
Finally, for α = 10, the diagonal entries of the K matrix are
higher than the off-diagonal entries.

3) Graph with core periphery structure: The results for
the graph with core periphery are presented in the last
column. For small values of α (0, 2, 5) the results follow
the same pattern as before. Initially the control action (in
terms of magnitude of the elements in K) is higher for the
nodes in the periphery. As α increases, the feedback gain
matrix K becomes sparser with larger nonzero entries and
the control performance improves. However, unlike the two
previous cases, for α = 10 the part of the K matrix that
corresponds to the nodes in the periphery is sparse, with
large non-zero entries, whereas the part corresponding to the
core is dense with lower values. This result indicates that
high connectedness of the core leads to a centralized type of
control for the core nodes.

C. Comparison of the results for all the structures

The values of γ and |K|1 for the different networks and
values of α and p are presented in Table I. The values
of γ for all the networks are similar for a given value
of α. Additionally, for fixed p faster response leads to a
sparser controller whose structure depends on the structure
of the graph. The main observation is that for the Erdős-
Rényi and the community structure graph, as the value of
the α parameter increases, the structure of the K matrix
transitions from a ‘centralized’ to a ‘distributed’ and finally
to a ‘decentralized’ type of control. We define the different
types of control as follows:
• Centralized control: The control action in a node is

based on the state of the other nodes in the graph, not
necessarily in the same block or group, i.e. community
or core (ui(t) =

∑n
j=1Kijxj(t)).

• Distributed control: In this case the control action in a
node is based on the value of the state of neighbor nodes
or nodes in the same block (ui(t) ≈

∑
j∈N Kijxj(t),

N is a subset of the nodes).
• Decentralized control: In this case the control action in a

node is based on the value of the state that corresponds
to the node itself (ui(t) ≈ Kiixi(t)).

For small α, the control action on a node (ui = Kix, where
Ki is the ith row of the matrix) is computed based on the

information from many states. As α increases the control
action depends only on the state value of the neighbors, and
finally for α = 10 the control action is essentially taken
based only on the value of the state itself (Kii >> Kij).
The results for the graph with core periphery show the same
trend only for α = 0, 2, 5. For α = 10, the structure of the
K matrix changes only for the peripheral nodes. In this case
the system is controlled with two different modes. For the
core nodes the control is locally ‘centralized’ and the control
action for each core node is based on the state value of the
other core nodes. In the periphery we have ‘decentralized’
control, where the control action on each peripheral node
is based on the value of the state itself. This result shows
that although the control action for the core is low, the
communication burden is higher since the control action in
the core nodes requires the information of the states of the
other nodes in the core.

Overall, we find that independently of the topology of the
graph, large values of α lead to high control cost (|K|1).
However, the structure of the K matrix depends on the
structure of the graph, since large graph density leads to
centralized type of control whereas low density leads to
decentralized control. The different control modes exhibit
different communication burdens, since in centralized control
the exchange of information between the nodes is higher
compared to distributed control.

IV. APPLICATION TO A BRAIN NETWORK

Using the work in [25] as the basis of our simulations,
in this section the H∞ sparse controller synthesis problem
under D stability constraints will be solved for a network that
resembles the Macaque visual cortical network. Application
of community detection shows two communities, but the
structure of the graph is different than the graphs with com-
munity structure considered in Section III, since more edges
between communities are present. This simulated network
has 30 nodes, each representing a region of the visual system,
and 311 edges. Although structural networks do not change
dynamically (except at scales much longer than the mil-
lisecond time scale of neural dynamics, i.e., developmental
scales that are of the order of years), functional networks do
and are anatomically constrained by structural connections.
So, assuming that there are functional configurations where
all structural connections are actively processing information
(and thus functional connections have comparable activation
strength) in our simulations we impose Laplacian dynamics
to the network. Although clearly an over-simplification of
true neural dynamics, in the context of this preliminary work
this is a reasonable assumption. The control task is to find a
sparse controller K such that the system is regulated at y = 0
with a specified exponential decay ratio (D stability). This
state (y = 0) can be considered as the equilibrium state of
the network when a specific task is performed. The controller
synthesis problem is solved for α = 2, 5, 10 and the results
are presented in Fig. 3.

For slow response (α = 2), the structure of the feedback
gain matrix is similar to the structure of the graph and the
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Fig. 3: Feedback gain matrices for the Macaque visual
cortical network for different values of α (2, 5, 10)
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Fig. 4: Feedback gain matrices for the Macaque visual corti-
cal network for α = 10. The highlighted regions correspond
to different control modes as defined in Section III-C.

control action is concentrated inside the communities. An
increase in the speed of response (α = 5) leads to a less
sparse feedback gain matrix with higher inter-community
interactions and better control performance (γ is reduced).
Finally, for very fast response (α = 10) the K matrix
becomes sparser and three different regions can be identified.
From Fig. 4, for the nodes that belong in the red and green
blocks, the control action depends on the neighbors, whereas
for the nodes in the blue block the control action depends
mainly on the state of the node itself. These results are in
line with the previous observations that larger value of α
results in higher control cost and lower local graph density
leads to decentralized type of control.

V. ANALOGIES BETWEEN SPARSE CONTROLLER DESIGN
AND BRAIN NETWORK RECONFIGURATION

Based on the above results, we can draw some analogies
on qualitative trends we observe in the K matrix for different
values of α and prior work on the reconfiguration of func-
tional brain networks, and the brain’s closed-loop behavior.
Assuming Laplacian dynamics and state feedback control,
the closed-loop dynamics of brain region i with state xi has
the form:

ẋi(t) = (−Lii +Kii)xi(t) +
∑
j 6=i

(−Lij +Kij)xj(t). (8)

The evolution of state xi depends on the state itself through
−Lii+Kii and on state xj through −Lij +Kij . This sum-
mation provides information about the structural coupling
(−Lij) which is fixed, and the controller coupling (Kij)
which is case specific. The feedback gain matrix K captures
the interactions among the brain regions, i.e. nodes in the
brain network, for a specific control task.

Given this interpretation, we can connect our results from
Section IV with the reconfiguration of functional brain net-
works documented in literature. In [26], [27] it is stated that
in response to high cognitive demands, functional networks
adopt a more efficient but costlier configuration compared
to processes involving low cognitive demands, i.e. the brain
seeks a trade-off between wiring cost and information carried
between the nodes. This is consistent with the previous
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observations where it was noted that α = 5 guarantees fast
rejection of a perturbation, i.e. the network is more efficient,
but the control cost (|K|1) is higher, i.e. the feedback
gain matrix is less sparse with higher nonzero entries. On
the contrary, a low value of α (α = 2) leads to lower
control cost, worse performance and a sparser feedback gain
matrix K. Overall, we can consider the case where cognitive
demands are low, as the case with low value of α and low
control cost (|K|1) and performance (large γ), and the case
of high cognitive demand as the case where α is larger and
we have better control performance (γ is lower) and large
control cost (|K|1). Thus, the reconfiguration of functional
brain networks during a task may be analogous to a change
of the feedback gain matrix which solves an optimal sparse
controller synthesis problem under D stability constraints.
This analogy suggests a functional brain network may be
considered as a closed-loop system (−L + K), combining
structural (−L) and case specific (K) interactions among
brain regions.

VI. CONCLUSION

In this paper the effect of the structure of a network on
its closed-loop control was analyzed by considering simul-
taneously the control performance, control cost and speed
of closed-loop response. We found that the restriction of the
eigenvalues of the closed-loop system leads to a change in
the feedback gain matrix K, which depends on the structure
of the network. Specifically, for modular and Erdős-Rényi
graphs, a transition from a distributed control mode with
low control cost to a decentralized type of control with large
control cost is observed as the speed of response increases.
For networks with core periphery structure, fast response
results in two different structures in the feedback matrix K,
namely the control in the core nodes is centralized whereas
in the periphery decentralized.

A simulated brain network was also examined with simpli-
fied (Laplacian) dynamics, and a conceptual relation between
the optimal sparse controller synthesis and network topology
reconfiguration was proposed. Specifically, we showed that
the reconfiguration of brain networks between high and
low cognitive demand, shares analogies with the change
of the feedback gain matrix resulting from an H∞ sparse
controller synthesis problem under D stability constraints.
This lends itself to an interpretation of the observed change
in the functional network in terms of the control cost and
performance subject to sparse H∞ control.
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