Cluster Computing
https://doi.org/10.1007/s10586-021-03457-3

=

Check for
updates

Fair sharing of network resources among workflow ensembles

George Papadimitriou’ ® - Eric Lyons® - Cong Wang? - Komal Thareja® - Ryan Tanaka' - Paul Ruth® -
Ivan Rodero” - Ewa Deelman’ - Michael Zink? - Anirban Mandal®

Received: 3 May 2021 /Revised: 12 October 2021/ Accepted: 19 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Computational science depends on complex, data intensive applications operating on datasets from a variety of scientific
instruments. A major challenge is the integration of data into the scientist’s workflow. Recent advances in dynamic,
networked cloud resources provide the building blocks to construct reconfiguration, end-to-end infrastructure that can
increase scientific productivity, but applications are not taking advantage of them. In our previous work, we introduced
DyNamo, that enabled CASA scientists to improve the efficiency of their operations and effortlessly leverage capabilities
of the cloud resources available to them that previously remained underutilized. However, the provided workflow
automation did not satisfy all the operational requirements of CASA. Custom scripts were still in production to manage
workflow triggering, while multiple layer 2 connections would have to be allocated to maintain network QoS requirements.
To address these issues, we enhance the DyNamo system with advanced network manipulation mechanisms, end-to-end
infrastructure monitoring and ensemble workflow management capabilities. DyNamo’s Virtual Software Defined
Exchange (vSDX) capabilities have been extended, enabling link adaptation, flow prioritization and traffic control between
endpoints. These new features allow us to enforce network QoS requirements for each workflow ensemble and can lead to
more fair network sharing. Additionally, to accommodate CASA’s operational needs we have extended the newly inte-
grated Pegasus Ensemble Manager with event based triggering functionality, that improves managing CASA’s workflow
ensembles. The Pegasus Ensemble Manager, apart from managing the workflow ensembles can also create conditions for a
more fair resource usage, by employing throttling techniques to reduce compute and network resource contention. We
evaluate the effects of the DyNamo’s vSDX policies by using two CASA workflow ensembles competing for network
resources, and we show that traffic shaping of the ensembles can lead to a fairer sharing of the network links. Finally, we
study how changing the Pegasus Ensemble Manager’s throttling for each of the two workflow ensembles affects their
performance while they compete for the same network resources, and we assess if this approach is a viable alternative
compared to the vSDX policies.

Keywords Network-centric platform - Distributed cloud infrastructure - Scientific workflow automation - Dynamic network
and resource provisioning - Virtual software defined exchange - Ensemble manag

3 RENCI, University of North Carolina at Chapel Hill,
< George Papadimitriou Chapel Hill, NC, USA

georgpap @isi.edu 4

SCI Institute, University of Utah, Salt Lake City, USA
Ivan Rodero
ivan.rodero@utah.edu

Information Sciences Institute, University of Southern
California, Los Angeles, CA, USA

Electrical and Computer Engineering Department, University
of Massachusetts at Amherst, Amherst, MA, USA

Published online: 22 November 2021 @ Springer

http://orcid.org/0000-0001-9384-5034
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03457-3&domain=pdf
https://doi.org/10.1007/s10586-021-03457-3

Cluster Computing

1 Introduction

Computational sciences rely on complex, data-intensive
applications to manage the processing of distributed data-
sets that are produced by a diverse set of scientific instru-
ments and reside in geographically scattered locations. One
of the biggest challenges these applications face, is the
efficient data movement between the heterogeneous com-
pute and storage resources, and the integration of the data
into the scientists’ workflows. These workflows might
depend on specialized resources, such as hardware accel-
erators (e.g., GPUs and FPGAs), that are available in dif-
ferent compute locations, require access to input data
hosted under different domains, and produce a significant
amount of intermediate data that have to be transferred
between tasks to facilitate their execution. To accommo-
date the needs of these scientific applications and increase
scientific productivity, two or more infrastructure domains
must be integrated and offered transparently to the scien-
tists. Mechanisms to support this integration are currently
not readily available, and scientific communities that
require such integration have resorted to their own custom
solutions that don’t provide flexibility to generalize their
approach. However, recent advances in dynamic networked
cloud infrastructure, such as ExoGENI [1], provide the
technical building blocks to construct and manage such
integrated, reconfigurable, end-to-end infrastructure, built-
to-order with isolated resources that satisfy workflow
compute and data movement requirements.

Data-driven applications and workflows have not ade-
quately taken advantage of the rich set of capabilities
offered by a new set of dynamic, networked infrastructures.
They are not designed to utilize adaptive features offered
by state-of-the-art, networked cloud infrastructures, espe-
cially with respect to managing end-to-end, high-perfor-
mance data flows. As a result, domain scientists in weather
modeling, ocean sciences, seismology, etc., struggle to
analyze data available in community resources. They often
download the data to their own environment, processing it
at limited scales in modest chunks, losing crucial time to
react to the observed phenomenon and/or missing longi-
tudinal patterns.

Additionally, managing the execution of workflow
ensembles over the sophisticated inter-domain infrastruc-
tures remains a significant challenge. Traditional workflow
management approaches make use of statically provi-
sioned, dedicated, pre-configured compute and network
infrastructure. Such approaches are often associated with
high cost, since the resources are usually provisioned such
that the highest workload can be handled. This imposes
extra cost when the system stays idle. Therefore, the bursty
computational and network demands for science workflows

@ Springer

warrant flexible processing solutions on diverse infras-
tructures for computing, and malleable, high-performance
data movements for efficient data delivery.

In a previous work, we presented the DyNamo system
[2] which addresses the above challenges and we focused
on its networking capabilities that enable high-perfor-
mance, adaptive, performance-isolated data-flows across a
federation of distributed cloud resources and community
data repositories. Even though this system introduced a
robust way of connecting distributed data repositories to
cloud compute resources with guaranteed performance, and
automated the deployment of weather modeling workflows,
it didn’t address all the operational needs of weather
modeling scientists.

In this paper, we extend the DyNamo system with more
advanced capabilities in layer 2 network resource alloca-
tion. We integrate DyNamo with the virtual Software
Defined Exchange (vSDX) [3] architecture, which serves
as a virtual interconnect among different domain infras-
tructures providing flexible, high-performance data transfer
over dedicated network circuits. Additionally, we enhance
the workflow management capabilities of DyNamo with a
workflow ensemble manager featuring automatic triggering
of workflow ensembles and improved ensemble control.
We also introduce a third party tool for end-to-end
infrastructure monitoring and visualization.

Specifically, in this paper we make the following
contributions:

— We present a data-driven science application, named
Collaborative Adaptive Sensing of the Atmosphere
(CASA), and describe its revised requirements and
challenges that need to be addressed by the DyNamo
system.

— We briefly present the architectural components of the
DyNamo system, which provides federated infrastruc-
ture support to enable malleable, high-performance data
flows between diverse, distributed, national-scale
research cloud platforms (ExoGENI [1] and Chameleon
[4]) and the CASA data repository.

— We present the architecture of the vSDX network
infrastructure, which enables high-performance data
transfer among heterogeneous compute and storage
infrastructures, and we describe the newly introduced
functionality that allows link adaptation, flow prioriti-
zation and traffic shaping.

— We present new features of the Pegasus Ensemble
Manager that enable event based workflow triggering,
and discuss how CASA’s workflow ensembles can
benefit from its functionality

— We provide an in-depth evaluation and analysis of the
network performance on the inter-domain, multi-cloud
infrastructures. While network resource sharing is

Cluster Computing

unavoidable, we discuss how DyNamo can create an
environment that promotes a more fair utilization of the
network resources either by employing features of the
vSDX component or the Pegasus Ensemble Manager.

The rest of this paper is organized as follows: Sect. 2
provides an overview of the related work. Section 3 dis-
cusses background information for the DyNamo compo-
nents. Section 4 introduces the components of the CASA
weather forecasting application. Section 5 presents the
extended components that work together to support science
workflows. In Section 6, we evaluate the performance of
the DyNamo ensemble manager and of the enhanced
DyNamo networking features. Finally, Section 7 concludes
the paper.

2 Related work

Cloud services allow users to easily spawn and dismiss
resources around the globe upon their realtime needs. With
its great flexibility, cloud computing has rapidly emerged
as one of the most popular approaches for compute inten-
sive and data intensive applications. There has been
extensive prior work on the topics of cloud support for
various types of science applications. In this section, we
review the related works, which can be classified into three
categories: cloud platforms, inter-domain networking and
compute infrastructure provisioning for science workflows,
and science workflow management systems.

2.1 Cloud platforms

A lot of work has been done on the development of
research and commercial cloud infrastructures. A number
of public cloud providers, such as Amazon EC2 [5] and
Microsoft Azure [6], offer IaaS abstractions and some
ability to orchestrate them together with networks through
mechanisms like CloudFormation [7] and Heat [8]. How-
ever, data movement among different cloud providers and
infrastructures is expensive and hard to implement, which
significantly limits the use of commercial clouds in science
applications [9]. The Globus [10] project provides users the
ability to efficiently move data from one computing
resource to another, however, it does not provide unified
environments for science workloads. In the work presented
in this paper, we focus on integration of scalable, recon-
figurable distributed testbeds, including ExoGENI [1] and
Chameleon [4] with emphasis on data movement and
optimization of network resource sharing.

2.2 Inter-domain networking and compute
infrastructure provisioning for science
workflows

Resource management and provisioning for distributed
applications has been the subject of many research efforts.
There have been extensive survey papers [11-13] in
regards to provisioning IaaS cloud resource for scientific
workflows. Wang et al. [14] propose an approach to build
and run scientific workflows on a federation of clouds using
Kepler and CometCloud. Moreover, there have been
strategies for workflow systems to deploy virtual machines
in the cloud with limited support for on-demand provi-
sioning and elasticity, while none or minimal support to
infrastructure optimization is enabled. Ostermann et al.
[15] discussed a set of VM provisioning policies to acquire
and release cloud resources for overflow grid jobs from
workflows, and characterized the impact of those policies
on execution time and overall cost. In prior work [2], we
presented dynamic provisioning techniques that spawn
resources based on compute elasticity using Mobius [16].

On the perspective of networking between the compute,
storage and instrument sites, Macker et al. [17] describe
workflow paradigms to address network edge workflow
scenarios. Ramakrishnan et al. [18] present experience for
virtualized reservations for batch queue systems, as well as
coordinated usage of TeraGrid, Amazon EC2 and Euca-
lyptus (cloud) resources with fault tolerance through
automated task replication. Liu et al. [19] developed the
Virtual Science Network Environment (VSNE) that emu-
lates the multi-site host and network infrastructure, wherein
software can be tested based on mininet with SDN
capabilities.

As an important factor, many of the prior works have
thrived to achieve a satisfactory Quality of Service (QoS)
for the provisioned resources, as indicated by many recent
survey papers [20, 21]. Varshney et al. [21] proposed QoS
based workload scheduling mechanism by considering
energy consumption, execution cost and execution time as
QoS parameters. The Department of Energy’s ESNet has
proposed an On-Demand Secure Circuits and Advance
Reservation System [22], which provides software system
for booking time and resources on high-speed science
networks used by large teams of researchers to share vast
amounts of data.

Our work presented in this paper differs from the above
by presenting easy-to-use, on-demand resource provision-
ing mechanisms for malleable data movement and compute
provisioning for inter-cloud workflows. We provide dedi-
cated network connections among multiple cloud provider
sites with guaranteed performance and QoS policies
enforced by a virtual software defined exchange (vSDX).

@ Springer

Cluster Computing

2.3 Science workflow management systems

Several workflow management systems focus on the opti-
mization of science application management on cloud
platforms. Islam et al. [23] presented a scalable workflow
management system specifically for Hadoop applications.
Senturk et al. [24] deal with bioinformatics applications on
multi-clouds with a focus on resource provisioning.
Malawski et al. [25] presented cost optimization modeling
for scheduling workflows on public clouds to minimize the
cost of workflow execution under deadline constraints.
Abrishami et al. [26] presented workflow scheduling
algorithms based on partial critical paths, which also
optimize for cost of workflow execution while meeting
deadlines. With the rise of multi-clouds, many workflow
management systems have focused on this type of plat-
form. Matthew et al. [27] discuss workflow management on
multi-cloud brokering among multi-cloud domains with
heterogeneous security postures. In this paper, we propose
a new approach to enable dynamic resource provisioning in
the clouds, which is integrated with a workflow manage-
ment system coupled with advanced workflow ensemble
management, and demonstrated through deployments with
science applications.

3 Background
3.1 Pegasus WMS

Pegasus [28] is a popular workflow management system
that enables users to design workflows at a high-level of
abstraction. The Pegasus workflow descriptions are inde-
pendent of the resources available to execute the workflow
tasks and are also independent of the location of data and
executables. Pegasus transforms these abstract workflows
into executable workflows that can be deployed onto dis-
tributed and high-performance computing resources such
as Leadership Computing Facilities (e.g., NERSC [29] and
OLCF [30]), shared computing resources (e.g., XSEDE
[31], OSG [32]), local clusters, and commercial (e.g.,
Amazon AWS [33]) and academic clouds (e.g., ExoGENI
[1], Chameleon [34]). During the compilation process,
Pegasus performs data discovery, locating input data files
and executables. Data transfer tasks are automatically
added to the executable workflow and perform two key
functions: (1) move input files to staging areas associated
with the target computing resources, and (2) transfer the
generated outputs back to a user-specified location. Addi-
tionally, data cleanup (removal of data that is no longer
required by the workflow at the execution site) and data
registration tasks (that catalog the output files) are also

@ Springer

added to the workflow. To manage user data, Pegasus
interfaces with a wide variety of backend storage systems
that use different data access and transfer protocols.

Pegasus relies on HTCondor [35] DAGMan as its
workflow execution engine to run and manage the gener-
ated executable workflows. DAGMan in turn, submits the
workflow jobs, as they become ready to run (when all
parent jobs have completed successfully) to the internal job
queue managed by HTCondor. During workflow execution,
provenance information from workflow and job logs is
automatically parsed and stored in a relational datastore by
a monitoring daemon [36].

3.2 HTCondor

HTCondor [35] is a comprehensive job management sys-
tem. In contrast to other batch systems such as PBS [37]
and SLURM [38], it is particularly suited for distributed
high throughout computing (HTC) environments, where
one can setup a compute pool of nodes connected over a
local area network or a wide area network. HTCondor
provides users with a local job queue managed by a dae-
mon HTCondor Schedd to which users submit jobs. Fur-
thermore, HTCondor supports matchmaking [39] that
allows users to match their jobs with compute nodes that
support specific resources. The matchmaking takes place
during the negotiation of the resources and is based on
HTCondor ClassAds advertised by the compute nodes.
Finally, in addition to submitting jobs to HTCondor man-
aged compute resources, HTCondor also provides a com-
ponent, called HTCondor-G [40], that allows users to
submit jobs to other types of schedulers.

3.3 Mobius

A network-centric platform called Mobius [41] depicted in
(Fig. 1) includes (a) support for integrated, multi-cloud
resource provisioning and for high-performance science
data flows across diverse infrastructures, and (b) enhanced
mechanisms for interacting with higher level application
and workflow management systems and transforming high-
level resource requests to low-level provisioning actions,
thereby bridging the abstraction gap between data-driven
science applications and resource provisioning systems,
and (c) transparently maintain the quality of service of the
provisioned end-to-end infrastructure through continuous
monitoring and control. Mobius was enhanced in our pre-
vious work [2] to support the provisioning of network
connections between compute resources across sites/clouds
and modulating the bandwidth on these network
connections.

Cluster Computing

Fig. 1 Mobius—network
centric platform overview

Mobius REST API

e

Ahab adapter
(ExoGENI cloud +
network + vSDX)

Multi-cloud and Network Resource Manager

Mobius Network-centric Platform \

Mobius Controller
| A H A
A\ 4 g ' '
v
Periodic
Processor

Monitoring and
Control

Jclouds adapter
(Openstack:
Chameleon,

Jetstream, MOC)

AWS adapter

\

ExoGENI Layer2 ~~

EGCN @ ameleon fetstream

3.4 DyNamo

Data-driven workflows need to automatically and flexibly
provision resources to satisfy scientists’ bursty computa-
tional and network demands. In the case of CASA work-
flows (Sect. 4), the nature of ever-changing weather events,
the number of available sensors, and end user-defined
triggers all contribute to load variability.

As presented in previous work [2], DyNamo enables
CASA scientists to transparently acquire cloud resources
from multiple cloud providers based on high-level resource
requirements. As depicted in Fig. 2, DyNamo provides
network integration and programmatic provisioning of
specific cloud resources using their native APIs. With this
approach, domain scientists no longer need to directly
interact with diverse cloud providers. To achieve this goal,
DyNamo brings together the 3 major components defined
earlier in this section: Pegasus WMS is used to provide
workflow automation to the applications. HTCondor is
used to manage the computational resources and distribute
the computations. Mobius is used to allocate compute and
network resources and create the interconnect between data
sources and execution sites. Later in Sect. 5, we will pre-
sent additional components for DyNamo, making it an
integrated, network-aware instrument and monitoring tool
for data-driven science applications in multi-cloud
environments.

P

Network Overlay ‘\ M T
% <),

/
3 |

Collects metrics from all
Science Data reSOUrces

Repositories
A~ . O Prometheus

3.5 Target cyberinfrastructure

In this paper, we make use of two national scale research
cloud providers: ExoGENI and the Chameleon cloud.

— ExoGENI [1] is a networked Infrastructure-as-a-Service
(TaaS) testbed that links 20 cloud sites on campuses
across the US through regional and national transit
networks, such as Internet2 [42] and ESnet [43].
ExoGENI allows users to dynamically provision iso-
lated “slices” of compute and networking resources
from multiple sites and to integrate various resources
using layer 2 global dynamic-circuit networks like
Internet2 and ESnet, and private clouds like OpenStack
[44]. ExoGENI allows users to instantiate customized,
distributed topologies, and by provisioning the appro-
priate network resources corresponding to the topolo-
gies, thereby creating end-to-end layer-2 paths.

— NSF Chameleon Cloud [34] is a large-scale, deeply
programmable testbed designed for systems and net-
working experiments. Similar to ExoGENI, it leverages
OpenStack to deploy isolated slices of cloud resources
for user experiments. However, ExoGENI scales in
geographic distribution, while Chameleon scales by
providing large amounts of compute, storage, and
networking resources spread across two sites: Univer-
sity of Chicago (UC) and the Texas Advanced Com-
puting Center (TACC). Chameleon provides over 15K
cores and 5 PB storage across the two sites. Users can

@ Springer

Cluster Computing

~
J

Mobius

-

e

J
~N

~

Stichport to
compute clouds

—@—— jelstream

Exoplex Slice Controller

HTCondor

~

7
N

B

pagdsus Pegasus WMS
Ensemble Manager
. J

O Prometheus 0

| €x0GEN

SDX

Virtualized

m

o

HTCondor Pool

'
| AWS Direct Connect

] 5
‘ '

HICondsr :

N

Dynamo Services

Fig. 2 Dynamo framework

provision bare metal compute nodes with custom
system configuration connected to user-controlled
OpenFlow switches operating at up to 100 Gbps. In
addition, Chameleon networks can be stitched to
external partners including ExoGENI slices.

4 CASA—motivation

The NSF Engineering Research Center for Collaborative
Adaptive Sensing of the Atmosphere (CASA) was formed
to study the lower atmosphere with networks of high res-
olution Doppler weather radars with the goal to improve
severe weather awareness [45]. The volumetric data pro-
duced by these continuously operating remote sensors must
be distributed to processing servers quickly and efficiently
such that analysis can occur in near real time for the sake of
warning the public to fast developing threats such as tor-
nadoes and high winds. The networked radar concept
requires that asynchronous raw data from multiple sources
are blended together to create value-added meteorological
products. At any given time the characteristics of the
ongoing weather regime determine the necessity and pri-
ority of certain products. For example, a hail detection
algorithm takes on high importance only when strong
thunderstorms are ongoing, whereas forecasting algorithms
may be of more importance well in advance of such severe
weather events and perhaps somewhat less so once the
event has started.

For years, CASA’s scientific workflows associated with
product creation have been executed on dedicated servers
existing at individual radar sites and at compute centers at
NOAA Southern Region Headquarters and at the

@ Springer

| Carameleon

University of Massachusetts Amherst. Servers have been
assigned dedicated processing tasks carefully tailored to
their hardware and networking resources through trial and
error with estimates made regarding the largest likely
compute loads associated with each task. The careful
management required implies that reconfiguration is highly
complex and not feasible by an operator on short notice
during an event. To help mitigate this limitation, and to
create a more scalable system, in recent years CASA has
developed several containerized scientific workflows for
calculating these weather products that can be deployed
and prioritized as needed [2]. CASA workflows are gen-
erally multi-step processes that can include a collection of
necessary radar and non-radar sensor data access, grid
transformations, format conversions, derived product cre-
ation, raster image generation, contouring, GIS based data
extraction, and customized notification and alerting [46].
These require complex scheduling and in some cases sig-
nificant resource consumption, especially during wide-
spread impactful weather when they take on their greatest
utility to the end users. For these workflows, CASA now
relies on Mobius to provision and modulate compute and
networking resources on demand, and uses the Pegasus
Workflow Management System to manage the execution of
the workflow steps [2].

In the following subsections, we briefly introduce the
weather products that are generated by the CASA work-
flows studied in this paper.

4.1 Nowcast
Nowcasts are short-term advection forecasts that use

observed reflectivity data from multiple radars, composite
them for a certain number of minutes, and project into the

Cluster Computing

future by estimating the derivatives of motion and intensity
with respect to time [47, 48]. Every minute the CASA
nowcasting system generates 31 grids of predicted reflec-
tivity, one for each minute into the future from minutes 0 to
30. The workflow associated with Nowcasting creates
raster images for all 31 grids every minute, and also con-
tours for multiple reflectivity levels on each of these grids.
The contours are sent to a database where they are used for
notification purposes as simplified boundaries containing
forecast reflectivity levels of importance for particular
applications such as route planning, deployment of spot-
ters, and keeping emergency responders out of harm’s way.
Nowcast rasters and contours are sent to CASA’s data
repository over layer 2 stitchports [1] where they are used
in web and mobile applications.

4.2 Wind speed

A Doppler radar is able to estimate the velocity of moving
objects based on a phase shift that occurs if the objects are
moving toward or away from the radar beam. Components
of velocity perpendicular to the beam are not sensed. For a
given radar this means that there will be substantial
underestimations of true wind speed over portions of the
sensing domain where certain directional components of
the winds are not able to be sampled. However, with an
overlapping network of radars (as in CASA’s case), areas
not adequately sampled by one radar are often better
sampled by other radars with different relative angles.
Therefore CASA’s maximum observed velocity workflow
ingests the single radar base data from all of the radars in
the network and creates a gridded product representing the
maximum observed wind speeds. As part of this workflow,
areas of severe winds are identified, contoured, and
checked against the location of known infrastructure, with
email alerts sent out to locations likely to be affected.
Workflows that use the large single radar raw data as input
have a substantially higher network bandwidth requirement
than those operating on derived data. Input rates of over
100Mbps are common, and given that high winds, which
are associated with tornadoes and downbursts are often
short lived, one must minimize transmission delays as
much as possible to adequately provide warnings for users
downstream of the observations.

5 Approach—DyNamo extensions

In order to accommodate different application QoS policies
and make a more efficient and fair use of the infrastructure
among the workflow ensembles, we are extending the
DyNamo system (Fig. 2) with a more sophisticated net-
work configuration component, end-to-end infrastructure

monitoring and
techniques.

advanced workflow management

5.1 vSDX module

A Virtual Software Defined Exchange (vSDX) is defined as
a virtual interconnect point between multiple adjacent
domains, e.g, instruments, compute resources, or data/
storage systems. Like a static SDX, a vSDX uses Software
Define Networking (SDN) within the exchange to enforce
different network policies.

In our case, the vSDX support is provided by the Exo-
Plex [49] network architecture depicted in (Fig. 3). Exo-
Plex uses an elastic slice controller to coordinate dynamic
circuits and the Zeek (formerly Bro) [50] security monitors
via Ahab [51]. The controller runs outside of the vSDX
slice and exposes a REST API for clients to request net-
work stitching and connectivity and to express QoS
parameters. Clients (i.e. Mobius) invoke this API to bind
named subnets under its control to the vSDX via L2
stitching and request bandwidth provisioned connectivity
with other subnets. The vSDX slice is comprised by virtual
compute nodes running OpenVSwitch [52], OpenFlow
controllers [53], and Zeek traffic monitors. Traffic flow and
routing within the vSDX slice are governed by a variant of
the Ryu [54] rest router [55] SDN controller. The vSDX
slice controller computes routes internally for traffic tran-
siting through the vSDX network, and invokes the SDN
controller API to install them. The SDN controller runs
another Ryu module (rest ofctl) to block traffic from
offending senders. If a Zeek node detects that traffic vio-
lates a Zeek policy, it blocks the sender’s traffic by
invoking a rest ofctl API call via the Zeek NetControl
plugin.

As client requests for bandwidth provisioned connec-
tivity arrive at the vSDX, the slice controller instantiates
slice resources as needed to carry the expected traffic.
These resources include peering stitchport interfaces at
each point of presence (PoP), the OVS nodes that host
these vSDX edge interfaces, Zeek (Bro) nodes to monitor
the traffic, and backplane links to carry the traffic among
the PoPs. The controller reuses existing resources in the
slice if they have sufficient idle capacity to carry the newly
provisioned traffic, and instantiates new resources as nee-
ded. In particular, it adapts the vSDX backplane topology
by allocating and releasing dynamic network circuits as
needed to meet its bandwidth assurances to its customers.
The flows are inspected by out of band Zeek network
security monitor appliances to detect intrusion. As a simple
form of intrusion prevention, it uses Zeek’s NetControl
framework to interrupt all traffic from the source of a
suspect flow. The vSDX controller deploys Zeek instances
elastically to scale capacity.

@ Springer

Cluster Computing

Fig. 3 Virtual software defined
exchange (SDX) network
architecture

ExoPlex

" Client Domain 1

9
'
'
i
i
'
'
'
'
'
'
'
'
'
'
i

REST API

Network
connec-

tivity

Network
stitching

Ahab
network manager

In our scenario, the Exoplex Slice controller [56] runs as
a docker container. Mobius has been enhanced to com-
municate with the ExoPlex Slice controller via its REST
API to establish network connectivity between ExoGENI
and Chameleon via layer 2 networks and to allocate
bandwidth to individual workflows. Once connectivity is
established, Mobius triggers REST API calls to publish
network prefixes, sets up routes between network prefixes
and dynamically applies different bandwidths as needed.
Additionally, we have implemented a Python based inter-
face that can be used to provision the required resources.
This interface enables programmatic resource provisioning
and is capable of spinning up resources, establishing con-
nectivity and implementing network QoS policies on a per
workflow ensemble level.

5.2 Pegasus ensemble manager

The Pegasus WMS can manage collections of related
workflows, commonly referred to as ensembles, through a
service called the Pegasus Ensemble Manager (Pegasus-
EM) [57]. Pegasus-EM supports ensemble creation, work-
flow prioritization, workflow submission, throttling of
concurrent executions, and ensemble level monitoring
capabilities.

To support dynamic execution of workflow ensembles
based on the continuous flow of data obtained from various
sources, we have have extended Pegasus-EM with work-
flow triggering capability that supports three triggering
modes (a) cron, (b) monitoring for local files, and
(c) monitoring for web files.

— Cron This mode is similar to a cron job. On a
predefined interval specified during the trigger’s cre-
ation, Pegasus-EM executes a user-defined script that
generates a new Pegasus workflow, which is in turn
added to the targeted ensemble.

@ Springer

— Monitoring local files In this mode Pegasus-EM
monitors a local directory for new files. Based on an
interval specified during its creation, it checks for new
files that match a file pattern and passes them to a user-
defined workflow generation script that dynamically
creates and plans a Pegasus workflow based on the
incoming data. Pegasus-EM executes the workflow
generation script and queues up the generated workflow
for execution.

— Monitoring web files This triggering mode is similar to
the local file mode. In this case, however, Pegasus-EM
will monitor a remote web location (HTTP) for new
files that match the provided file patterns.

An example of a Pegasus-EM trigger monitoring for web
files is presented on Fig. 4. In the definition of the trigger
the following parameters need to be specified.

— Ensemble: The targeted ensembe to which Pegasus-EM
will queue up the new workflow

— Trigger: A unique name for the trigger

— Interval: The polling period that Pegasus-EM will
check for changes

— Script: User-defined script that handles workflow
generation

— Web_location: Web url of the remote repository

#!/bin/bash
pegasus-em create wind-ensemble

pegasus-em web-file-pattern-trigger
--ensemble wind-ensemble
--trigger wind_1lmin
--interval 60s
--script run_script.sh
--web_location https://data.casa.umass.edu
--file_patterns .*netcdf.tar.gz
--timeout 60m
--args -n 10

Fig. 4 Pegasus-EM web file trigger example

Cluster Computing

— File_patterns: A list of regex patterns that will be
checked against the file names

— Timeout: After an optional timeout time has elapsed
and no new files have appeared, the trigger will be
deleted

— Args: An optional parameter for any extra arguments
that need to be passed to the user-defined script

5.3 Prometheus monitoring

The Prometheus monitoring system [58] has been added to
the DyNamo ecosystem. Mobius automatically config-
ures the Prometheus node exporter [59] on each compute
node to push system metrics to a Prometheus server hosted
at RENCI. The metrics collected by

Prometheus give us the opportunity to dynamically take
actions to ensure the infrastructure QoS. The actions
include enabling compute, storage and network elasticity,
i.e., growing and shrinking compute or storage resource
pools and increasing or decreasing network properties of
links. To visualize the collected data in a comprehensive
and easy to understand way, an instance of Grafana [60]
has been configured to pull the metric data from Pro-
metheus and plot various graphs on a dashboard depicted in
Fig. 5. To persist the data for long periods of time, we store
the Prometheus collected metrics into an Elasticsearch [61]
instance.

88 Node Exporter Full -

e Prometheus v st indis-2020master2 ~ Port 9100~

Quick CPU / Mem / Disk

CPU Busy ! sysLoad (5m avg) Sys Load (15m avg) RAM Used

Basic CPU / Mem / Net / Disk

CPU Basic

0%
2210 2220 2230 2240

= BusySystem BusyUser Busylowait == BusyIRQs BusyOther == idle

Network Traffic Basic
2.0 Gbps
1.06bps
Obps

-1.0Gbps

2.0 Gbps
2

210 2220 2230 2240 2250 2300
== recv docker0 == recv ethd == recvethl == recveth2 == recvethd = recvio
== trans eth? = transeth3 == trans lo

Fig. 5 Grafana dashboard depicting prometheus metrics

trans dockerd == trans eth0 == trans eth1

5.4 Operational effect on CASA’s workflows

CASA workflows, due to their nature, can benefit from all
of these enhancements to the DyNamo framework. As
described in Sect. 4, CASA workflows need to process and
respond to a continuous flow of weather radar data arriving
at different rates. With the additions to the Pegasus-EM,
CASA workflows can be started automatically as new files
arrive at CASA’s remote data repositories, with direct
support by the DyNamo framework. In the past, this
functionality was implemented using perl scripts that were
invoked manually at the processing initiation stage. On top
of this Pegasus-EM can alleviate pressure from the com-
pute and network resources via its throttling mechanisms,
by limiting ensembles that can flood the resources and
allowing other ensembles to compete for their fair share.
Moreover, with the introduction of the vSDX capabilities
CASA workflow ensembles can now share the same layer 2
link in an isolated fashion. l.e, traffic from one workflow
can only consume the maximum assigned bandwidth
without impacting the network resources assigned to other
workflows. CASA’s workflows have different requirements
that not only depend on the data being processed and the
pipeline, but also the workflow configuration. With the
vSDX, CASA can reserve a single layer 2 circuit to its data
repository while distributing the network bandwidth based
on the network subnet each worker node resides in. Each
worker is assigned a specific CASA workflow ensemble by

SWAP Used Root FS Used CPU Cores. RAM Total ...

4 12GiB 0B

SWAP Tota..

Sys Load (..
1] 75GiB 1.8 weeks

ROOtFS Tot... Uptime

Memory Basic

==RAMTotal ==RAMUsed RAM Cache + Buffer == RAM Free -~ SWAP Used

Disk Space Used Basic

@ Springer

Cluster Computing

advertising a target workflow tag in its HTCondor adver-
tisements. Previously this functionality was supported by
reserving multiple layer 2 circuits on CASA’s data repos-
itory, but due to the limited number of the available links
this couldn’t be achieved consistently.

6 Evaluation
6.1 CASA Pegasus workflows description

For the evaluation of the QoS impact we have selected two
CASA workflows that produce nowcasts and wind speed
estimates as described in Sect. 4. The workflow tasks
include input data collection and product generation,
visualization, contouring into polygon objects, spatial
comparisons of identified weather features with infras-
tructure, and dissemination of notifications.

6.1.1 Nowcast

The Pegasus Nowcast workflow [62] computes short-term
advection forecasts, as described in Sect. 4.1, by splitting
grided reflectivity data into 31 grids and computing
reflectivity predictions over the next 30 min. An abstract
version of the workflow’s DAG is presented in Fig. 6,
which reveals that the size of the workflow doesn’t depend
on the input, and the number of compute tasks is fixed. The
nowcast workflow contains 63 compute tasks in total, 1
task for splitting the input data into 31 individual grids, and
then 62 independent tasks that compute the reflectivity and
the respective contour images. All tasks run within a

Fig. 6 CASA nowcast Pegasus
workflow

Singularity container that is managed by Pegasus and has a
size of 153MB.

6.1.2 Wind

The Pegasus Wind Speed workflow [63] computes the
maximum wind velocity, by combining multiple single
radar output to account for single radar measurement
inaccuracies (Sect. 4.2). An abstract version of this work-
flow’s DAG is depicted in Fig. 7. To construct the input for
the wind speed pipeline (preprocessing phase), single radar
data files are accumulated over a variable time window
(minimum 1 min), which regulates how often CASA pro-
duces maximum wind velocity contours, but also affects
the size of the input of a single workflow run. As a result
the first level of tasks (unzipping any zipped files) in the
wind speed workflow (Fig. 7) depends on the number of
input files, and thus the workflow has a variable number of
tasks. The unzipping phase is followed by four compute
tasks that output the wind products and notify points of
interest for severe weather. These four tasks are running
within a Singularity container, 163MB in size.

6.1.3 Workflow testcases

To conduct our evaluation, both workflows are processing
30 min of pre-captured real weather data, which we replay
as if they were arriving in real-time to simulate a produc-
tion scenario from CASA’s operations. The individual files
consumed by the nowcast workflow are 9.6MB in size and
the total size is 287MB. On the other hand the dataset for
the wind workflows is comprised by files with individual
size of . 12MB, and the total dataset size is .. 6GB. For the

@ Input File

O

@ Output File
@ Compute Job

PredictedReflectivity_Omin.nc

PredictedReflectivity_30min.nc

@ Springer

Cluster Computing

radar 1.netcdf ‘ radar 2.netcdf ‘ radar N.| netcdf‘

Y‘ Input File
@ Output File

@ Compute Job
Fig. 7 CASA wind Pegasus workflow

two workflows we replay the data using an accumulation
interval of 1 min and we are using Pegasus-EM to identify
the newly added files and queue nowcast or wind workflow
to their respective ensembles.

6.2 Experimental infrastructure

For evaluation, we used the DyNamo system to deploy a
production scenario that is similar to CASA’s day to day
operational radar data processing setup, and spreads across
both ExoGENI and Chameleon testbeds (Fig. 8). In our
setup Mobius and the vSDX controller are running within
Docker containers at our USC Information Sciences Insti-
tute (ISI) Docker cluster.

Additionally, we are using one of CASA’s operational
nodes at the University of North Texas (UNT) in Denton,
TX, to host the data and submit the Pegasus workflows.
The vSDX nodes and the workflow master node are located
on ExoGENI at the University of Massachusetts Amherst
(UMass) rack, on separate slices, while the compute nodes
are located on Chameleon at TACC. To establish the layer
2 connectivity between the sites, Mobius “stitched” the
UNT server to the workflow master node and instructed the
vSDX controller to stitch the same node to the Chameleon
nodes via the vSDX slice. The Chameleon compute cluster
contains 5 nodes, 4 compute nodes and 1 storage node. 3 of
the compute nodes reside in the 192.168.40.0/24 subnet
while the other compute node and the storage node reside
in subnet 192.168.30.0/24. Each node has 24 physical cores
with hyperthreading (48 threads), 192GB RAM, 250GB
SSD and is connected to a shared 10Gbps network. During

the experiments we did not use the storage node to opti-
mize for network traffic, but it was used as a next hop to
route traffic from the subnet (192.168.40.0/24) that did not
match the Chameleon stitchport’s subnet.

As we have shown in our initial evaluation of the
DyNamo system [2] 144 and 48 HTCondor compute slots
are enough to execute the nowcast and the wind speed
workflow ensembles, respectively, without any compute
imposed delays. Using HTCondor tags, the 3 compute
nodes residing on the subnet 192.168.40.0/24 have been
assigned to nowcast workflow tasks, while the node on the
subnet 192.168.30.0/24 has been assigned to the wind
speed workflow. Finally, all the stitchable networks were
created with a network bandwidth of 1Gbps.

6.2.1 Software

On the submit node (where parts of the Dynamo system
reside), the master node and the worker nodes we have
installed HTCondor v8.8.9, and we have customized its
configuration to match the role of each node. In this setup, the
workers are configured with partitionable slots and they
advertise a workflow tag so they can be matched to the correct
workflow. Additionally, on the submit node we have installed
the nightly build of Pegasus v5.0.0 and the Apache HTTP
server, to allow the workers to retrieve input files, configu-
ration files and the application containers over HTTP. All of
the workers use Singularity v3.6.1, and Mobius was used to
provision compute resources on ExoGENI and Chameleon,
and establish the network connections between ExoGENI,
Chameleon and the CASA repository.

6.3 Workflow ensembles—network
requirements

The two workflow ensembles present different network
requirements due to the amount of tasks and the container
transfers they instantiate. We profile the network utilization
on CASA’s data repository at UNT, during the execution of
the two workflow ensembles, using a dedicated 1Gbps
layer 2 connection and the testcase datasets described in
Sect. 6.1.

Figure 9 shows that the wind workflow ensemble is
executed for . 2100 s, has an average bandwidth usage of
~200Mbps with a peak close to 240Mbps, while the total
amount of data transferred is . 44GBs.

Figure 10 depicts the network utilization imposed by the
nowcast workflow ensemble. The nowcast calculations are
occupying resources for .. 3200 s and they lead the network
to congestion for prolonged periods of time. The average
network utilization is close to 900Mbps with spikes
reaching 960Mbps, and the total amount of data transferred

~280GBs.

@ Springer

Cluster Computing

Worker2
TACC
192.168.40.7

Worker3
TACC
192.168.40.8

Worker4
TACC
192.168.40.9

vSDX
© Condor Master

Provision Compute Resources;}[& Mobius

wExoplex Slice Controller]
ha

Worker1
TACC

Storage0
TACC

Performs Stitching and provisions prefixes, routes

192.168.30.7

192.168.30.6

Workflow Chameleon Compute Resources

0 Condor workers on subnet 192.168.30.0/24
O Condor workers on subnet 192.168.40.0/24

Fi

Egress
500

Ingress

g. 8 CASA vSDX workflow deployment

Total Data

400 -

300 -

Mbps

200

100

240

Fi

Egress

192.168130.5

Provision Compute Resources

Workflow Node at UNT

Submit-Data

(UNT)
local - 10.7.6.1

StitchPort_________ 5

and bandwidths

plexusserver

Broadcast
Network

Master
(Umass)

Slice UNT-10.7.6.3
Stitching local - 192.168.10.3

_ SDX-192.168.20.3)
J

192.168,20.11

vSDX Slice Workflow Exogeni Slice at UMass

Mobius configures plexus server via SDX Server to apply
different bandwidths on paths on different subnets

45
40
35
30
25
20
15
10
5

0

1000 1500 2000 2500
Runtime (Seconds)

Ingress

g. 9 Wind ensemble—network utilization

Total Data

1000 T
900 -
800 -
700
600 -
500
400 [
300 H
200 H
100

Mbps

_ U

0 ==

300

250

200

150

100

50

0

0 500 1000 1500 2000 2500 3000 3500
Runtime (Seconds)

Fig. 10 Nowcast ensemble—network utilization

@ Springer

GBs

GBs

From Figs. 9 and 10 it is clear that the two workflow
ensembles cannot fairly share the shame network resources
without one of them impacting the other’s QoS constraints,
since the nowcast workflow ensemble will lead to pro-
longed network congestion. In our previous work [2] we
used workflow runtime optimizations provided by Pegasus
(e.g., task clustering) in order to lower nowcast’s network
requirements, but we did not apply them to this study since
it is our goal to evaluate the effectiveness of DyNamo’s
new network QoS capabilities and ensemble management
throttling techniques.

6.4 Experimental results

To conduct our vSDX study, we used three scenarios
without throttling the ensembles via Pegasus-EM.

— 1 Gbps Dedicated: Each workflow ensemble had a
dedicated 1 Gbps layer 2 link provisioned with Mobius,
connecting the data repository to the compute
resources.

— 1 Gbps vSDX-Shared: Both workflow ensembles
shared the same 1 Gbps layer 2 link provisioned with
Mobius, connecting the data and compute. No QoS
policies where applied.

— 1 Gbps vSDX-Shared-QoS: Both workflow ensembles
shared the same 1 Gbps layer 2 link provisioned with
Mobius, connecting the data and compute. Individual
QoS policies were applied to each workflow ensemble.
300Mbps for Wind and 700Mbps for Nowcast.

Cluster Computing

For each of the 3 scenarios, we repeated the workflow
ensemble executions 5 times, leading to 900 workflow
submissions and over 240,000 file transfers generating over
4TBs of network traffic. Figs. 11 and 12 present makespan
statistics of the individual workflows of the ensembles,
while Figs. 13 and 14 present statistics of the individual
data transfers of the workflow ensembles.

To explore the space for different ensemble throttling
configurations, we executed the two workflow ensembles
under 42 unique configurations, varying the number of
maximun concurrent wind and nowcast workflows. In
every configuration we make sure that wind ensemble
concurrency is greater or equal of the nowcast ensemble
concurrency. We justify this decision to prune some of the
possible configurations, on the fact that nowcast is con-
gesting the network while wind doesn’t, and by exploring
that space we won’t get useful insight.

— Wind ensemble: Concurrency was altered from 1 to 16
with a step of 2.

— Nowcast ensemble: Concurrency was altered from 1 to
12 with a step of 2.

This resulted in over 2000 additional workflow executions
and over 13TBs of data transfers. Figs. 15 and 16 present
heatmaps of the average individual workflow makespans of
the two ensembles. Figs. 17 and 18 present heatmaps of the
makespans of the two workflow ensembles. These results
are discussion in Sect. 6.4.4

6.4.1 Dedicated link performance

To conduct our vSDX analysis, we first executed the
nowcast and wind workflow ensembles under the best
conditions possible, using 1 Gbps dedicated layer 2 con-
nection and no Pegasus-EM throttling. For the wind
ensemble Figs. 11 and 13 show a very consistent workflow
duration (. 300 s) and file transfer duration with very little
deviation. On the other hand, since the nowcast workflow
was creating network congestion we observe a noticeable
deviation in both the workflow and file transfer durations

2000 T T T

1800 - T b
1600 |- b
1400 - b
1200 - B b
1000 |- b

800 b
600 [: b

400 - N %; -
200 L ‘
1Gbps 1Gbps
Dedicated SDX-Shared
Network Configuration

Runtime (Seconds)

1
300Mbps
SDX-Shared-QoS

Fig. 11 Wind ensemble workflow makespans

3500 . T T

3000 g
2500]
2000 g

1500 |- b

Runtime (Seconds)

1000 |- i

1
1Gbps
SDX-Shared

Network Configuration

1
700Mbps
SDX-Shared-QoS

1
1Gbps
Dedicated

Fig. 12 Nowcast ensemble—workflow makespans

40 T T T
35 T :]
B 30 : J
o :
c :
S 25 : b
g :
—~ 20 . : -
c :
o H
£ 151 : -
8 10 :]
| o |
0
1Gbps 1Gbps 300Mbps
Dedicated SDX-Shared SDX-Shared-QoS

Network Configuration

Fig. 13 Wind ensemble—data transfer durations

20 T T T

= =
o w
T T
I I

Duration (Seconds)
w
T
1

1Gbps
Dedicated

1Gbps
SDX-Shared

Network Configuration

700Mbps
SDX-Shared-QoS

Fig. 14 Nowcast ensemble—data transfer durations

(Figs. 12 and 14). More than half of the workflows in the
nowcast ensemble are completed within less than 1500 s.
However, there are workflow executions that take from 500
s all the way to 2,400 s.

6.4.2 Uncontrolled network sharing

When we allow the two workflow ensembles to share the
same network resources without any QoS policy, then we
observe a very noticeable increase to the workflow make-
spans (Figs. 11, 12 middle). The most impacted are the
workflows of the wind ensemble, where the average
workflow duration increases from 300 s to over 1000 s,

@ Springer

Cluster Computing

€
k0
]
E)
©
o S
5 g
k=] 2
=}
(9] c
Q ©
x (e}
w wn
@ v
o) ©
[S =
b o
= >
w2 | 320 405 <
2
= 1| 349
=
1 2 4 6 8 10 12
Nowcast Ensemble Execution Parallelism
Fig. 15 Wind average workflow makespans
€
K
S
E)
©
o S
C o
o [}
k=] 2
=}
9] c
Q ©
x o
w wn
o v
Q ©
IS =
@ o
= >
w2 | 389 410 <
e
= 1| 380
=
1 2 4 6 8 10 12
Nowcast Ensemble Execution Parallelism
Fig. 16 Nowcast average workflow makespans
E 16 | 2094 2229 2140 2564 2714 3116 2825
O
T 14| 2142 2261 2428 2520 2705 2977 3035
—
5 —
O 12| 2106 2226 2310 2572 2986 3493 3300 3
c c
o o
£ 10| 2092 2017 2508 2759 3532 3567 9
(v} 9]
¢ 8| 2112 2227 3027 3701 3827 e
w ©
Q 6| 2059 2677 3475 3825 oy
e ¢
© 4| 3171 3370 4645 g
(%}
C
w2
2
= 1
=

1 2 4 6 8 10 12
Nowcast Ensemble Execution Parallelism

Fig. 17 Wind ensemble makespans

with some workflows completing execution close to 1800
s. This is an increase of over 500%. The impact of the
additional network overhead is also visible in the nowcast
workflows, although more subtle. The median nowcast
workflow duration increased by about 200 s, while there
were more workflows to the far ends of the spectrum.

@ Springer

4818 3705 3799 3723 3760
4573 3937 3697 3916 3597
4446 3897 3785 3822 3823
4746 3846 3689 3658

4598 3900 3813

4719 3893

4446

Makespan (Seconds)

Wind Ensemble Execution Parallelism

1 2 4 6 8 10 12
Nowcast Ensemble Execution Parallelism

Fig. 18 Nowcast ensemble makespans
6.4.3 Applying SDX QoS policies

Finally, based on the network profiles presented in Figs. 9
and 10 we allocated 300Mbps of the available network
bandwidth to the wind workflow ensemble and 700Mbps to
the nowcast workflow ensemble, in an attempt to accom-
modate any network spikes of the wind ensemble. Both
Figs. 11 and 13 (right) show an improvement of the wind
workflow median makespan and data transfer durations.
The wind ensemble’s statistics have returned to a more
consistent and predictable state with small deviation, sim-
ilar to the execution conditions when a dedicated network
link was used. Meanwhile, as it was expected, the median
runtime of the nowcast workflows has increased since there
is less available bandwidth (700Mbps) than what the
workflow would optimally require (.. 900Mbps). However,
the relative increase in comparison to the dedicated link
runtimes is less than 60%. Something we did not expect to
see was that even though the median duration of the file
transfers in the nowcast ensemble increased by a few
seconds, the transfers became more consistent, reducing
the duration of the slowest transfers.

6.4.4 Applying QoS policies using Pegasus-EM

DyNamo, through the Pegasus Ensemble Manager throt-
tling capabilities, it offers another opportunity to apply
QoS policies on workflow ensembles that share network
resources. We executed the wind workflow ensemble with
workflow execution parallelism ranging from 1 to 16, and
the nowcast ensemble with workflow execution parallelism
ranging from 1 to 12. Figures 15 and 16 present the aver-
age workflow makespans of the two ensembles and we can
distinguish a pattern for both cases. As we increase the
concurrency of the nowcast ensemble (moving to the right)
the average workflow execution time increases in both
cases, and affects the turnaround times. For the wind

Cluster Computing

workflows there is a 350% worst case increase, and for the
nowcast workflows there is a 320% worst case increase. On
the other hand increasing the concurrency of the wind
ensemble (moving to the top) doesn’t affect the execution
times, which was expected.

Figures 17 and 18 show the makespans of the whole
ensembles. In Fig. 17 as we increase the wind ensemble
parallelism (moving to the top) and maintaining the now-
cast ensemble parallelism equal to 1, the makespan of the
wind ensemble decreases, but only until max concurrency
equals 6. After that there is no improvement. However as
we increase the nowcast ensemble parallelism (moving to
the right) we need to increase wind ensemble parallelism
again to improve the makespans. In Fig. 18 the makespan
of the nowcast ensembles is governed only by the execu-
tion parallelism set for them. As we increase the nowcast
ensemble execution parallelism (moving to the right) the
makespan of the ensembles is reduced, until max concur-
rency of 8 is reached. After this point we don’t observe any
significant improvements, the network gets significantly
saturated and the workflow turnaround time is tripled
(Figs. 15, 16) compared to the non-congested state.

One thing that is notable with the Pegasus-EM throt-
tling, is that we were able to get better workflow

turnaround times for the nowcast ensemble under a
shared resource scenario, than in the 1 Gbps dedicated link
scenario (Fig. 12 left boxplot). By setting the nowcast
ensemble’s workflow execution parallelism to 8 the aver-
age workflow turnaround time is under 1000 s (Fig. 16).
This can be explained due to the fact that the nowcast
ensemble overly saturates the network (Fig. 10) and by
pacing the rate of the dispatched nowcast workflows we
can achieve better average workflow execution times.

6.4.5 Discussion

Based on our experimentation DyNamo can aid to maintain
the QoS of workflow ensembles when they are facing
unfair network contention. Even though, TCP congestion
algorithms attempt to provide a fair share of the network to
all of the flows occupying it [64], they cannot provide it at
the level of workflow ensembles. Workflow ensembles that
flood the network with transfers are claiming a bigger
chunk of the available bandwidth, impacting other
ensembles with fewer transfers, which struggle to gain their
network share. When vSDX policies can be enabled,
DyNamo, through well-thought infrastructure deployment-
design, can identify the individual flows that belong to
specific workflow ensembles and effectively allocate
bandwidth to meet their QoS expectations. In the case that
vSDX policies cannot be applied, DyNamo, through the
Pegasus-EM, can throttle workflow ensembles that congest

the network and allow a more fair network allocation to the
rest of the ensembles competing for their share.

In our current implementation all the aforementioned
policies and techniques are considered not adaptive. Even
though they can be changed and take effect on the fly
during the execution of the workflow ensembles, there’s no
automated mechanism adapting the policies to maximize
the utilization of the resources. A simple example is having
one workflow ensemble actively using the resources. In this
case it is not an optimal strategy to throttle the workflow
ensemble’s network bandwidth in the name of a future
ensemble that needs higher network priority. The incor-
poration of Prometheus monitoring in the DyNamo
framework opens up the possibility of applying reactive
QoS policies by monitoring the state of the infrastructure in
combination with workflow level feedback.

7 Conclusion

In this paper we introduced three new additions to the
DyNamo system. These extensions address monitoring,
infrastructure and operational challenges of CASA’s dis-
tributed, atmospheric science workflows. The newly added
Virtual Software Defined Exchange (vSDX) capabilities
provide fine-grained control over the dynamically estab-
lished networks, via link adaptation, flow prioritization and
traffic control between endpoints. These policies can be an
effective way to avoid unfair use of network resources.
Even if single workflow ensembles are capable of flooding
and congesting the network, other ensembles can maintain
their own QoS requirements. To evaluate the QoS polices
we deployed two of CASA’s workflow ensembles (wind
speed and nowcast) and we showed that even though the
nowcast ensemble is capable of interfering with the wind
ensemble, by applying the QoS policies the interference is
removed and the wind ensemble’s performance returns to
levels close to the ones observed using a dedicated network
link. Another contribution was the Pegasus Ensemble
Manager (Pegasus-EM) extension. Pegasus-EM now sup-
ports file and time-based workflow triggering logic that
allows CASA to automatically execute its workflows as
new data arrive while managing the number of the con-
current workflows being executed. In our evaluation we
showed that Pegasus-EM provides an alternative way of
applying QoS policies using DyNamo and can promote a
fairer sharing of both network and compute resources. This
is essential for the infrastructures that don’t offer Software
Defined Network (SDN) support and QoS policies need to
be applied. Finally we incorporated the Prometheus mon-
itoring system into the DyNamo framework, providing
comprehensive information about the status of the network
and the compute resources, allowing CASA scientists to

@ Springer

Cluster Computing

better understand the performance of their provisioned
resources across the clouds. In the future, we plan to extend
the DyNamo system’s capabilities by stitching to more
resource providers, supporting streaming workflows,
developing new CASA workflows and provide mecha-
nisms that will allow the applications to automatically
evaluate the current pressure applied on the provisioned
resources and make adjustments to the infrastructure
without user intervention (e.g., change the QoS policies of
workflow ensembles).

Acknowledgements This work is funded by NSF award #1826997.
We thank Mert Cevik (RENCI), engineers from UNT and LEARN for
the UNT stitchport setup. Results in this paper were obtained using
Chameleon and ExoGENI testbeds supported by NSF.

References

1. Baldin, I., Chase, J., Xin, Y., Mandal, A., Ruth, P., Castillo, C.,
Orlikowski, V., Heermann, C., Mills, J.: ExoGENI: a multi-do-
main infrastructure-as-a-service testbed, pp. 279-315. Springer,
Cham (2016)

2. Lyons, E., Papadimitriou, G., Wang, C., Thareja, K., Ruth, P.,
Villalobos, J., Rodero, 1., Deelman, E.,Zink, M., Mandal, A.:
Toward a dynamic network-centric distributed cloud platform for
scientific workflows: A case study for adaptive weather sensing.
In: 2019 15th International Conference on eScience (eScience),
pp. 67-76. (2019)

3. Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S.P., Schlinker,
B., Feamster, N., Rexford, J., Shenker, S., Clark, R., Katz-Bas-
sett, E.: Sdx: a software defined internet exchange. SIGCOMM
44, 551-562 (2014)

4. Mambretti, J., Chen, J., Yeh, F.: Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn),
In: 2015 international conference on cloud computing research
and innovation (ICCCRI), pp. 73-79. (2015)

. Amazon Elastic Compute Cloud. http://www.amazon.com/ec2

. Microsoft Azure Cloud. https://azure.microsoft.com/en-us/

AWS CloudFormation. http://aws.amazon.com/cloudformation

. OpenStack Heat Project. https://wiki.openstack.org/wiki/Heat

. Baldin, I., Ruth, P., Wang, C., Chase, J. S.: The future of multi-
clouds: a survey of essential architectural elements, In: 2018
international scientific and technical conference modern com-
puter network technologies (MoNeTeC), pp. 1-13. (2018)

10. Foster, I.: Globus online: accelerating and democratizing science
through cloud-based services. IEEE Internet Comput. 15(3),
70-73 (2011)

11. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-
intensive scientific workflow management. J. Grid Comput.
13(4), 457-493 (2015)

12. Galante, G., Erpen De Bona, L.C., Mury, A.R., Schulze, B., Rosa
Righi, R.: An analysis of public clouds elasticity in the execution
of scientific applications: a survey. J. Grid. Comput. 14(2),
193-216 (2016)

13. Coutinho, E.. F.., de Carvalho Sousa, F.. R.., Rego, P.. A.. L.,
Gomes, D.. G.., de Souza, J.. N..: Elasticity in cloud computing:
a survey. Ann.Telecommun. - annales des telecommunications
70(7), 289-309 (2015)

14. Wang, J., AbdelBaky, M., Diaz-Montes, J., Purawat, S., Parashar,
M., Altintas, I.: “Kepler + cometcloud: Dynamic scientific
workflow execution on federated cloud resources (international

© oW

@ Springer

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Conference on Computational Science 2016, ICCS 2016, 6-8
June 2016. San Diego, California, USA), Proced. Comput. Sci.
80, 700-711 (2016)

Ostermann, S., Prodan, R., Fahringer, T.: Dynamic cloud provi-
sioning for scientific grid workflows. In: 2010 11th IEEE/ACM
international conference on grid computing, pp. 97-104. (2010)
Mandal, A., Ruth, P., Baldin, I., Xin, Y., Castillo, C., Juve, G.,
Rynge, M., Deelman, E., Chase, J.: Adapting scientific workflows
on networked clouds using proactive introspection, In: IEEE/
ACM Utility and Cloud Computing (UCC). (2015)

Macker, J.P., Taylor, I.: Orchestration and analysis of decen-
tralized workflows within heterogeneous networking infrastruc-
tures. Future Gener. Comput. Syst. 75, 388—401 (2017)
Ramakrishnan, L., Koelbel, C., Kee, Y., Wolski, Y., Nurmi, Y.,
Gannon, D., Obertelli, G., YarKhan, A., Mandal, A., Huang,
T. M., Thyagaraja, T. M., Zagorodnov, D.: Vgrads: enabling
e-science workflows on grids and clouds with fault tolerance. In:
Proceedings of the conference on high performance computing
networking, storage and analysis, pp. 1-12. (2009)

Liu, Q., Rao, N. S. V., Sen, S., Settlemyer, B. W., Chen, H.-B.,
Boley, J. M., Kettimuthu, R., Katramatos, D.: Virtual environ-
ment for testing software-defined networking solutions for sci-
entific workflows. In: Proceedings of the 1st international
workshop on autonomous infrastructure for Science, ser. Al-
Science’18. New York, NY, USA: Association for Computing
Machinery. (2018). https://doi.org/10.1145/3217197.3217202
Ghahramani, M.H., Zhou, M., Hon, C.T.: Toward cloud com-
puting qos architecture: analysis of cloud systems and cloud
services. IEEE/CAA J. At. Sin. 4(1), 6-18 (2017)

Varshney, S., Sandhu, R., Gupta, P.K.: Qos based resource pro-
visioning in cloud computing environment: a technical survey. In:
Singh, M., Gupta, P., Tyagi, V., Flusser, J., Oren, T., Kashyap, R.
(eds.) Advances in computing and data sciences, pp. 711-723.
Springer, Singapore (2019)

On-demand secure circuits and advance reservation system.
https://doi.org/10.1145/2443416.2443420

Islam, M.,Huang, A. K., Battisha, M., Chiang, M., Srinivasan, S.,
Peters, C., Neumann, A.,Abdelnur,a.: Oozie: Towards a scalable
workflow management system for hadoop. In: Proceedings of the
Ist ACM SIGMOD workshop on scalable workflow execution
engines and technologies, ser. SWEET ’12. Association for
Computing Machinery, New York, (2012). https://doi.org/10.
1145/2443416.2443420

Senturk, I. F., Balakrishnan, P., Abu-Doleh, A., Kaya, K., Mal-
luhi, Q., ., Catalyiirek, Umit. V.. A resource provisioning
framework for bioinformatics applications in multi-cloud envi-
ronments. Future Gener. Comput. Syst. 78, 379-391 (2018)
Malawski, M., Figiela, K., Bubak, M., Deelman, E., Nabrzyski,
J.: Scheduling multilevel deadline-constrained scientific work-
flows on clouds based on cost optimization. Sci. Pogram. 29,
158-169 (2015)

Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-con-
strained workflow scheduling algorithms for infrastructure as a
service clouds. Future Gener. Comput. Syst. 29(1), 158-169
(2013)

Dickinson, M., Debroy, S., Calyam, P., Valluripally, S., Zhang,
Y., Bazan Antequera, R., Joshi, T., White, T., Xu, D.: Multi-
cloud performance and security driven federated workflow
management. IEEE Trans.Cloud Comput. 9, 240-257 (2018)
Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S.,
Maechling, P.J., Mayani, R., Chen, W., Ferreira da Silva, R.,
Livny, M., Wenger, K.: Pegasus: a workflow management system
for science automation (funding Acknowledgements: NSF ACI
SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF OCI-
1053575). Future Gener. Comput. Syst. 46, 17-35 (2015)

http://www.amazon.com/ec2
https://azure.microsoft.com/en-us/
http://aws.amazon.com/cloudformation
https://wiki.openstack.org/wiki/Heat
https://doi.org/10.1145/3217197.3217202
https://doi.org/10.1145/2443416.2443420
https://doi.org/10.1145/2443416.2443420
https://doi.org/10.1145/2443416.2443420

Cluster Computing

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.
44.
45.

46.

47.

48.

National Energy Research Scientific
(NERSC). https://www.nersc.gov

Oak Ridge Leadership Computing Facility. https://www.olcf.
ornl.gov

Extreme science and engineering discovery environment (xsede).
http://www.xsede.org

Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy,
A., Avery, P., Blackburn, K., Wenaus, T., Wiirthwein, F., Foster,
I., Gardner, R., Wilde, M., Blatecky, A., McGee, J., Quick, R.:
The open science grid. J.Phys. Conf.Ser. 78, 012057 (2007)
Amazon.com, Inc.: Amazon Web Services (AWS). http://aws.
amazon.com

Keahey, K., Riteau, K., Stanzione, D., Cockerill, K., Mambretti,
J., Rad, P., Ruth, P.: “Chameleon: a scalable production testbed
for computer science research,” in Contemporary High Perfor-
mance Computing: From Petascale toward Exascale, 1st ed., ser.
Chapman & Hall/CRC Computational Science, J. Vetter,
Ed.Boca Raton, FL: CRC Press, 2018, vol. 3, ch. 5

Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in
practice: the condor experience. Concurr. Comput. 17(2-4),
323-356 (2005)

Gunter, D., Deelman, E., Samak, T., Brooks, C., Goode, M., Juve,
G., Mehta, G., Moraes, P., Silva, F., Swany, M., Vahi, K.:
“Online workflow management and performance analysis with
stampede,” in 7th International Conference on Network and
Service Management (CNSM-2011), (2011)

Bayucan, A., Henderson, R. L., Lesiak, C., Mann, B., Proett, T.,
Tweten, D.: Portable batch system: external reference specifica-
tion. In: Technical report, MRJ technology solutions, vol. 5,
(1999)

Simple Linux Utility for Resource Management. http://slurm.
schedmd.com/

Raman, R., Livny, M., Solomon, M.: “Matchmaking: distributed
resource management for high throughput computing,” in Pro-
ceedings. The Seventh International Symposium on High Per-
formance Distributed Computing (Cat. No.98TB100244),
pp.- 140-146(1998)

Frey, J., Tannenbaum, T., Foster, 1., Livny, M., Tuecke, S.:
“Condor-G: A computation management agent for multi-insti-
tutional grids,” in Proceedings of the Tenth IEEE Symposium on
High Performance Distributed Computing (HPDC), pp. 7-9.
California, August, San Francisco (2001)

Mobius Github Repository. https://github.com/RENCI-NRIG/
Mobius

Internet 2. https://www.internet2.edu/

The energy science network. https://www.es.net/

OpenStack Cloud Software. http://openstack.org

McLaughlin, D., Pepyne, D., Chandrasekar, V., Philips, B.,
Kurose, J., Zink, M., Droegemeier, K., Cruz-Pol, S., Junyent, F.,
Brotzge, J., Westbrook, D., Bharadwaj, N., Wang, Y., Lyons, E.,
Hondl, K., Liu, Y., Knapp, E., Xue, M., Hopf, A., Kloesel, K.,
DeFonzo, A., Kollias, P., Brewster, K., Contreras, R., Dolan, B.,
Djaferis, T., Insanic, E., Frasier, S., Carr, F.: Short-wavelength
technology and the potential for distributed networks of small
radar systems. Bull. Am. Meteorol. Soc. 90(12), 1797-1818
(2009). https://doi.org/10.1175/2009BAMS2507.1.

Lyons, E. J., Zink, M.,Philips, B.: Efficient data processing with
exogeni for the casa dfw urban testbed. In: 2017 IEEE interna-
tional geoscience and remote sensing symposium (IGARSS),
pp. 5977-5980, (2017)

Li, L., Schmid, W., Joss, J.: Nowcasting of motion and growth of
precipitation with radar over a complex orography. J. Appl.
Meteorol. 34(6), 1286—1300 (1995)

Ruzanski, E., Chandrasekar, V.: Weather radar data interpolation
using a kernel-based lagrangian nowcasting technique. IEEE
Trans. Geosci. Remote Sens. 53(6), 3073-3083 (2015)

Computing Center

49.

50.
51.
52.
53.

54.
55.

56.

57.

58.
. Node Exporter. https://prometheus.io/docs/guides/node-exporter/
60.
61.
62.

63.

64.

Yao, Y., Cao, Q., Farias, R., Chase, J., Orlikowski, V., Ruth, P.,
Cevik, M., Wang, C., Buraglio, N.: Toward live inter-domain
network services on the exogeni testbed. In: IEEE INFOCOM
2018—IEEE conference on computer communications work-
shops (INFOCOM WKSHPS), pp. 772-777, (2018)

Zeek Github Repository. https://github.com/zeek/zeek

Ahab Github Repository. https://github.com/RENCI-NRIG/ahab
Linux Foundation Collaborative Projects. https://www.open
vswitch.org/

Open flow SDN Controllers. https://en.wikipedia.org/wiki/List_
of _SDN_controller_software/

Ryu SDN Controller. https://ryu-sdn.org/

Ryu Rest Router. https://github.com/faucetsdn/ryu/blob/master/
ryu/app/rest_router.py

Exoplex Github Repository. https://github.com/RENCI-NRIG/
CICI-SAFE

Pandey, S., Vahi, K., Ferreira da Silva, R., Deelman, E., Jian, M.,
Harrison, C., Chu, A., Casanova, A.: Event-based triggering and
management of scientific workflow ensembles, In: 2018, poster
presented at the HPC Asia 2018: Tokyo, Japan. http://sighpc.ips;j.
or.jp/HPCAsia2018/poster/post102s2-filel.pdf

Prometheus. https://prometheus.io/

Grafana. https://grafana.com/

ELK stack. (2018). https://www.elastic.co/elk-stack

Scitech, CASA Nowcast Pegasus Workflow. https://github.com/
pegasus-isi/casa-nowcast-workflow

Scitech: CASA Wind Pegasus Workflow. https://github.com/
pegasus-isi/casa-wind-workflow

Hasegawa, G., Murata, M., Miyahara, H.: Fairness and stability
of congestion control mechanisms of tcp. In: IEEE INFOCOM
’99. Conference on computer communications. Proceedings.
Eighteenth annual joint conference of the IEEE computer and
communications societies. The future is now (Cat.
No.99CH36320), vol. 3, pp. 1329-1336, (1999)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

George Papadimitriou is a
Computer Science PhD student
at the University of Southern
California, and a Graduate
Research Assistant in the Sci-
ence Automation Technologies
group at the USC Information
Sciences Institute.His research
interests lie within the intersec-
tion of Data Intensive Applica-
tions and Distributed
Computing. He received his BS
in Electrical and Computer
Engineering from the National
Technical University of Athens.

@ Springer

https://www.nersc.gov
https://www.olcf.ornl.gov
https://www.olcf.ornl.gov
http://www.xsede.org
http://aws.amazon.com
http://aws.amazon.com
http://slurm.schedmd.com/
http://slurm.schedmd.com/
https://github.com/RENCI-NRIG/Mobius
https://github.com/RENCI-NRIG/Mobius
https://www.internet2.edu/
https://www.es.net/
http://openstack.org
https://doi.org/10.1175/2009BAMS2507.1
https://github.com/zeek/zeek
https://github.com/RENCI-NRIG/ahab
https://www.openvswitch.org/
https://www.openvswitch.org/
https://en.wikipedia.org/wiki/List_of_SDN_controller_software/
https://en.wikipedia.org/wiki/List_of_SDN_controller_software/
https://ryu-sdn.org/
https://github.com/faucetsdn/ryu/blob/master/ryu/app/rest_router.py
https://github.com/faucetsdn/ryu/blob/master/ryu/app/rest_router.py
https://github.com/RENCI-NRIG/CICI-SAFE
https://github.com/RENCI-NRIG/CICI-SAFE
http://sighpc.ipsj.or.jp/HPCAsia2018/poster/post102s2-file1.pdf
http://sighpc.ipsj.or.jp/HPCAsia2018/poster/post102s2-file1.pdf
https://prometheus.io/
https://prometheus.io/docs/guides/node-exporter/
https://grafana.com/
https://www.elastic.co/elk-stack
https://github.com/pegasus-isi/casa-nowcast-workflow
https://github.com/pegasus-isi/casa-nowcast-workflow
https://github.com/pegasus-isi/casa-wind-workflow
https://github.com/pegasus-isi/casa-wind-workflow

Cluster Computing

Eric Lyons is a Research Fellow
at the University of Mas-
sachusetts ~Ambherst in the
Department of Electrical and
Computer Engineering (ECE).
Eric has been a member of the
Engineering Research Center
for Collaborative Adaptive
Sensing of the Atmosphere
(CASA) since 2004. He has
served as the radar operations
lead and since 2011 also the
chief Systems and Software
engineer for the CASA DFW
living lab in north Texas and is
additionally responsible for IT, security, and data management. Eric’s
research also extends into cloud computing and networking, with a
focus on scalable workflow management and the development of
toolsets to assist data scientists. In the last few years, Eric has lead
development of tailored weather extractions for GIS and aviation and
created a flight path routing suite to dynamically steer unmanned
aircraft around impactful meteorological and non-meteorological
objects.

Cong Wang is a senior network
and systems researcher at
RENCI, University of North
Carolina at Chapel Hill. His
research focuses on cloud com-
puting, networking, and dis-
tributed systems. He obtained
his PhD in department of Elec-
trical and Computer Engineer-
ing at University of
Massachusetts Amherst.

Komal Thareja is a Distributed
Systems Software Engineer at
RENCI, University of North
Chapel Hill.

@ Springer

Ryan Tanaka is a research pro-
grammer in the Science
Automation Technologies group
at ISI. He received his Master’s
degree in Computer Science
from the University of Hawaii at
Manoa in 2019. His interests
include distributed systems and
data intensive applications.

Paul Ruth is an Assistant
Director in Network Research
and Infrastructure at RENCI,
UNC-Chapel Hill. His research
interests include building and
using dynamic cloud computing
and network testbeds for soft-
ware defined exchanges targeted
at data driven scientific work-
flows. He earned his Ph.D.
degree in Computer Science
from Purdue University in 2007.

Ivan Rodero is a Research
Computer Scientist at the Sci-
entific Computing and Imaging
(SCI) Institute at the University
of Utah. His research focuses on
data-driven science and engi-
neering, high performance par-
allel and distributed computing
and advanced cyberinfrastruc-
ture. He has received various
awards for his research and
publications, including the
IEEE TCSC Young Achievers
in Scalable Computing Award.
He is senior member of IEEE

Ewa Deelman is a Research
Professor at the USC Computer
Science Department and a
Research Director of the Sci-
ence Automation Technologies
group at the USC Information
Sciences Institute (ISI). Her
group has lead the design and
development of the Pegasus
Workflow Management soft-
ware and conducts research in
job scheduling and resource
provisioning in distributed sys-
tems, workflow performance
modeling, provenance capture,

reproducibility, and the use of cloud platforms for science. Her group

Cluster Computing

has also experience in deploying and leveraging other advanced
cyberinfrastructure for science. Dr. Deelman received her PhD in
Computer Science from the Rensselaer Polytechnic Institute in 1998
and before joining ISI in 2000 she held a postdoc at the UCLA
Computer Science Department. She is an AAAS and IEEE Fellow.

Michael Zink is an Associate
Professor in the Electrical and
Computer Engineering Depart-
ment at the University of Mas-
sachusetts in Amherst. He
received his PhD in 2003 from
the Multimedia Communica-
tions Laboratory at Darmstadt
University of Technology. He
works in the areas of future

Anirban Mandal serves as the
Assistant Director for network
research and infrastructure at
Renaissance Computing Insti-
tute (RENCI) at University of
North Carolina, Chapel Hill. He
leads several efforts in cyberin-
frastructure research in support
of science. His research interests
lie in the areas of distributed
systems, cloud computing, net-
working, and data-driven scien-
tific workflows. His research
deals with resource provision-
ing, scheduling, performance

multimedia systems, Internet
architectures, and sensor
networks.

analysis, machine learning, and anomaly detection for large scale
scientific cyberinfrastructures, next generation networks and experi-
mental testbeds. Prior to joining RENCI, he earned his PhD degree in
Computer Science from Rice University in 2006 and a Bachelor’s
degree in Computer Science & Engineering from IIT Mumbai, India
in 2000.

@ Springer

	Fair sharing of network resources among workflow ensembles
	Abstract
	Introduction
	Related work
	Cloud platforms
	Inter-domain networking and compute infrastructure provisioning for science workflows
	Science workflow management systems

	Background
	Pegasus WMS
	HTCondor
	Mobius
	DyNamo
	Target cyberinfrastructure

	CASA---motivation
	Nowcast
	Wind speed

	Approach---DyNamo extensions
	vSDX module
	Pegasus ensemble manager
	Prometheus monitoring
	Operational effect on CASA’s workflows

	Evaluation
	CASA Pegasus workflows description
	Nowcast
	Wind
	Workflow testcases

	Experimental infrastructure
	Software

	Workflow ensembles---network requirements
	Experimental results
	Dedicated link performance
	Uncontrolled network sharing
	Applying SDX QoS policies
	Applying QoS policies using Pegasus-EM
	Discussion

	Conclusion
	Acknowledgements
	References

