
Fair sharing of network resources among workflow ensembles

George Papadimitriou1 • Eric Lyons2 • Cong Wang3 • Komal Thareja3 • Ryan Tanaka1 • Paul Ruth3 •

Ivan Rodero4 • Ewa Deelman1 • Michael Zink2 • Anirban Mandal3

Received: 3 May 2021 / Revised: 12 October 2021 / Accepted: 19 October 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Computational science depends on complex, data intensive applications operating on datasets from a variety of scientific

instruments. A major challenge is the integration of data into the scientist’s workflow. Recent advances in dynamic,

networked cloud resources provide the building blocks to construct reconfiguration, end-to-end infrastructure that can

increase scientific productivity, but applications are not taking advantage of them. In our previous work, we introduced

DyNamo, that enabled CASA scientists to improve the efficiency of their operations and effortlessly leverage capabilities

of the cloud resources available to them that previously remained underutilized. However, the provided workflow

automation did not satisfy all the operational requirements of CASA. Custom scripts were still in production to manage

workflow triggering, while multiple layer 2 connections would have to be allocated to maintain network QoS requirements.

To address these issues, we enhance the DyNamo system with advanced network manipulation mechanisms, end-to-end

infrastructure monitoring and ensemble workflow management capabilities. DyNamo’s Virtual Software Defined

Exchange (vSDX) capabilities have been extended, enabling link adaptation, flow prioritization and traffic control between

endpoints. These new features allow us to enforce network QoS requirements for each workflow ensemble and can lead to

more fair network sharing. Additionally, to accommodate CASA’s operational needs we have extended the newly inte-

grated Pegasus Ensemble Manager with event based triggering functionality, that improves managing CASA’s workflow

ensembles. The Pegasus Ensemble Manager, apart from managing the workflow ensembles can also create conditions for a

more fair resource usage, by employing throttling techniques to reduce compute and network resource contention. We

evaluate the effects of the DyNamo’s vSDX policies by using two CASA workflow ensembles competing for network

resources, and we show that traffic shaping of the ensembles can lead to a fairer sharing of the network links. Finally, we

study how changing the Pegasus Ensemble Manager’s throttling for each of the two workflow ensembles affects their

performance while they compete for the same network resources, and we assess if this approach is a viable alternative

compared to the vSDX policies.

Keywords Network-centric platform � Distributed cloud infrastructure � Scientific workflow automation � Dynamic network

and resource provisioning � Virtual software defined exchange � Ensemble manag

& George Papadimitriou

georgpap@isi.edu

Ivan Rodero

ivan.rodero@utah.edu

1 Information Sciences Institute, University of Southern

California, Los Angeles, CA, USA

2 Electrical and Computer Engineering Department, University

of Massachusetts at Amherst, Amherst, MA, USA

3 RENCI, University of North Carolina at Chapel Hill,

Chapel Hill, NC, USA

4 SCI Institute, University of Utah, Salt Lake City, USA

123

Cluster Computing
https://doi.org/10.1007/s10586-021-03457-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9384-5034
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03457-3&domain=pdf
https://doi.org/10.1007/s10586-021-03457-3

1 Introduction

Computational sciences rely on complex, data-intensive

applications to manage the processing of distributed data-

sets that are produced by a diverse set of scientific instru-

ments and reside in geographically scattered locations. One

of the biggest challenges these applications face, is the

efficient data movement between the heterogeneous com-

pute and storage resources, and the integration of the data

into the scientists’ workflows. These workflows might

depend on specialized resources, such as hardware accel-

erators (e.g., GPUs and FPGAs), that are available in dif-

ferent compute locations, require access to input data

hosted under different domains, and produce a significant

amount of intermediate data that have to be transferred

between tasks to facilitate their execution. To accommo-

date the needs of these scientific applications and increase

scientific productivity, two or more infrastructure domains

must be integrated and offered transparently to the scien-

tists. Mechanisms to support this integration are currently

not readily available, and scientific communities that

require such integration have resorted to their own custom

solutions that don’t provide flexibility to generalize their

approach. However, recent advances in dynamic networked

cloud infrastructure, such as ExoGENI [1], provide the

technical building blocks to construct and manage such

integrated, reconfigurable, end-to-end infrastructure, built-

to-order with isolated resources that satisfy workflow

compute and data movement requirements.

Data-driven applications and workflows have not ade-

quately taken advantage of the rich set of capabilities

offered by a new set of dynamic, networked infrastructures.

They are not designed to utilize adaptive features offered

by state-of-the-art, networked cloud infrastructures, espe-

cially with respect to managing end-to-end, high-perfor-

mance data flows. As a result, domain scientists in weather

modeling, ocean sciences, seismology, etc., struggle to

analyze data available in community resources. They often

download the data to their own environment, processing it

at limited scales in modest chunks, losing crucial time to

react to the observed phenomenon and/or missing longi-

tudinal patterns.

Additionally, managing the execution of workflow

ensembles over the sophisticated inter-domain infrastruc-

tures remains a significant challenge. Traditional workflow

management approaches make use of statically provi-

sioned, dedicated, pre-configured compute and network

infrastructure. Such approaches are often associated with

high cost, since the resources are usually provisioned such

that the highest workload can be handled. This imposes

extra cost when the system stays idle. Therefore, the bursty

computational and network demands for science workflows

warrant flexible processing solutions on diverse infras-

tructures for computing, and malleable, high-performance

data movements for efficient data delivery.

In a previous work, we presented the DyNamo system

[2] which addresses the above challenges and we focused

on its networking capabilities that enable high-perfor-

mance, adaptive, performance-isolated data-flows across a

federation of distributed cloud resources and community

data repositories. Even though this system introduced a

robust way of connecting distributed data repositories to

cloud compute resources with guaranteed performance, and

automated the deployment of weather modeling workflows,

it didn’t address all the operational needs of weather

modeling scientists.

In this paper, we extend the DyNamo system with more

advanced capabilities in layer 2 network resource alloca-

tion. We integrate DyNamo with the virtual Software

Defined Exchange (vSDX) [3] architecture, which serves

as a virtual interconnect among different domain infras-

tructures providing flexible, high-performance data transfer

over dedicated network circuits. Additionally, we enhance

the workflow management capabilities of DyNamo with a

workflow ensemble manager featuring automatic triggering

of workflow ensembles and improved ensemble control.

We also introduce a third party tool for end-to-end

infrastructure monitoring and visualization.

Specifically, in this paper we make the following

contributions:

– We present a data-driven science application, named

Collaborative Adaptive Sensing of the Atmosphere

(CASA), and describe its revised requirements and

challenges that need to be addressed by the DyNamo

system.

– We briefly present the architectural components of the

DyNamo system, which provides federated infrastruc-

ture support to enable malleable, high-performance data

flows between diverse, distributed, national-scale

research cloud platforms (ExoGENI [1] and Chameleon

[4]) and the CASA data repository.

– We present the architecture of the vSDX network

infrastructure, which enables high-performance data

transfer among heterogeneous compute and storage

infrastructures, and we describe the newly introduced

functionality that allows link adaptation, flow prioriti-

zation and traffic shaping.

– We present new features of the Pegasus Ensemble

Manager that enable event based workflow triggering,

and discuss how CASA’s workflow ensembles can

benefit from its functionality

– We provide an in-depth evaluation and analysis of the

network performance on the inter-domain, multi-cloud

infrastructures. While network resource sharing is

Cluster Computing

123

unavoidable, we discuss how DyNamo can create an

environment that promotes a more fair utilization of the

network resources either by employing features of the

vSDX component or the Pegasus Ensemble Manager.

The rest of this paper is organized as follows: Sect. 2

provides an overview of the related work. Section 3 dis-

cusses background information for the DyNamo compo-

nents. Section 4 introduces the components of the CASA

weather forecasting application. Section 5 presents the

extended components that work together to support science

workflows. In Section 6, we evaluate the performance of

the DyNamo ensemble manager and of the enhanced

DyNamo networking features. Finally, Section 7 concludes

the paper.

2 Related work

Cloud services allow users to easily spawn and dismiss

resources around the globe upon their realtime needs. With

its great flexibility, cloud computing has rapidly emerged

as one of the most popular approaches for compute inten-

sive and data intensive applications. There has been

extensive prior work on the topics of cloud support for

various types of science applications. In this section, we

review the related works, which can be classified into three

categories: cloud platforms, inter-domain networking and

compute infrastructure provisioning for science workflows,

and science workflow management systems.

2.1 Cloud platforms

A lot of work has been done on the development of

research and commercial cloud infrastructures. A number

of public cloud providers, such as Amazon EC2 [5] and

Microsoft Azure [6], offer IaaS abstractions and some

ability to orchestrate them together with networks through

mechanisms like CloudFormation [7] and Heat [8]. How-

ever, data movement among different cloud providers and

infrastructures is expensive and hard to implement, which

significantly limits the use of commercial clouds in science

applications [9]. The Globus [10] project provides users the

ability to efficiently move data from one computing

resource to another, however, it does not provide unified

environments for science workloads. In the work presented

in this paper, we focus on integration of scalable, recon-

figurable distributed testbeds, including ExoGENI [1] and

Chameleon [4] with emphasis on data movement and

optimization of network resource sharing.

2.2 Inter-domain networking and compute
infrastructure provisioning for science
workflows

Resource management and provisioning for distributed

applications has been the subject of many research efforts.

There have been extensive survey papers [11–13] in

regards to provisioning IaaS cloud resource for scientific

workflows. Wang et al. [14] propose an approach to build

and run scientific workflows on a federation of clouds using

Kepler and CometCloud. Moreover, there have been

strategies for workflow systems to deploy virtual machines

in the cloud with limited support for on-demand provi-

sioning and elasticity, while none or minimal support to

infrastructure optimization is enabled. Ostermann et al.

[15] discussed a set of VM provisioning policies to acquire

and release cloud resources for overflow grid jobs from

workflows, and characterized the impact of those policies

on execution time and overall cost. In prior work [2], we

presented dynamic provisioning techniques that spawn

resources based on compute elasticity using Mobius [16].

On the perspective of networking between the compute,

storage and instrument sites, Macker et al. [17] describe

workflow paradigms to address network edge workflow

scenarios. Ramakrishnan et al. [18] present experience for

virtualized reservations for batch queue systems, as well as

coordinated usage of TeraGrid, Amazon EC2 and Euca-

lyptus (cloud) resources with fault tolerance through

automated task replication. Liu et al. [19] developed the

Virtual Science Network Environment (VSNE) that emu-

lates the multi-site host and network infrastructure, wherein

software can be tested based on mininet with SDN

capabilities.

As an important factor, many of the prior works have

thrived to achieve a satisfactory Quality of Service (QoS)

for the provisioned resources, as indicated by many recent

survey papers [20, 21]. Varshney et al. [21] proposed QoS

based workload scheduling mechanism by considering

energy consumption, execution cost and execution time as

QoS parameters. The Department of Energy’s ESNet has

proposed an On-Demand Secure Circuits and Advance

Reservation System [22], which provides software system

for booking time and resources on high-speed science

networks used by large teams of researchers to share vast

amounts of data.

Our work presented in this paper differs from the above

by presenting easy-to-use, on-demand resource provision-

ing mechanisms for malleable data movement and compute

provisioning for inter-cloud workflows. We provide dedi-

cated network connections among multiple cloud provider

sites with guaranteed performance and QoS policies

enforced by a virtual software defined exchange (vSDX).

Cluster Computing

123

2.3 Science workflow management systems

Several workflow management systems focus on the opti-

mization of science application management on cloud

platforms. Islam et al. [23] presented a scalable workflow

management system specifically for Hadoop applications.

Senturk et al. [24] deal with bioinformatics applications on

multi-clouds with a focus on resource provisioning.

Malawski et al. [25] presented cost optimization modeling

for scheduling workflows on public clouds to minimize the

cost of workflow execution under deadline constraints.

Abrishami et al. [26] presented workflow scheduling

algorithms based on partial critical paths, which also

optimize for cost of workflow execution while meeting

deadlines. With the rise of multi-clouds, many workflow

management systems have focused on this type of plat-

form. Matthew et al. [27] discuss workflow management on

multi-cloud brokering among multi-cloud domains with

heterogeneous security postures. In this paper, we propose

a new approach to enable dynamic resource provisioning in

the clouds, which is integrated with a workflow manage-

ment system coupled with advanced workflow ensemble

management, and demonstrated through deployments with

science applications.

3 Background

3.1 Pegasus WMS

Pegasus [28] is a popular workflow management system

that enables users to design workflows at a high-level of

abstraction. The Pegasus workflow descriptions are inde-

pendent of the resources available to execute the workflow

tasks and are also independent of the location of data and

executables. Pegasus transforms these abstract workflows

into executable workflows that can be deployed onto dis-

tributed and high-performance computing resources such

as Leadership Computing Facilities (e.g., NERSC [29] and

OLCF [30]), shared computing resources (e.g., XSEDE

[31], OSG [32]), local clusters, and commercial (e.g.,

Amazon AWS [33]) and academic clouds (e.g., ExoGENI

[1], Chameleon [34]). During the compilation process,

Pegasus performs data discovery, locating input data files

and executables. Data transfer tasks are automatically

added to the executable workflow and perform two key

functions: (1) move input files to staging areas associated

with the target computing resources, and (2) transfer the

generated outputs back to a user-specified location. Addi-

tionally, data cleanup (removal of data that is no longer

required by the workflow at the execution site) and data

registration tasks (that catalog the output files) are also

added to the workflow. To manage user data, Pegasus

interfaces with a wide variety of backend storage systems

that use different data access and transfer protocols.

Pegasus relies on HTCondor [35] DAGMan as its

workflow execution engine to run and manage the gener-

ated executable workflows. DAGMan in turn, submits the

workflow jobs, as they become ready to run (when all

parent jobs have completed successfully) to the internal job

queue managed by HTCondor. During workflow execution,

provenance information from workflow and job logs is

automatically parsed and stored in a relational datastore by

a monitoring daemon [36].

3.2 HTCondor

HTCondor [35] is a comprehensive job management sys-

tem. In contrast to other batch systems such as PBS [37]

and SLURM [38], it is particularly suited for distributed

high throughout computing (HTC) environments, where

one can setup a compute pool of nodes connected over a

local area network or a wide area network. HTCondor

provides users with a local job queue managed by a dae-

mon HTCondor Schedd to which users submit jobs. Fur-

thermore, HTCondor supports matchmaking [39] that

allows users to match their jobs with compute nodes that

support specific resources. The matchmaking takes place

during the negotiation of the resources and is based on

HTCondor ClassAds advertised by the compute nodes.

Finally, in addition to submitting jobs to HTCondor man-

aged compute resources, HTCondor also provides a com-

ponent, called HTCondor-G [40], that allows users to

submit jobs to other types of schedulers.

3.3 Mobius

A network-centric platform called Mobius [41] depicted in

(Fig. 1) includes (a) support for integrated, multi-cloud

resource provisioning and for high-performance science

data flows across diverse infrastructures, and (b) enhanced

mechanisms for interacting with higher level application

and workflow management systems and transforming high-

level resource requests to low-level provisioning actions,

thereby bridging the abstraction gap between data-driven

science applications and resource provisioning systems,

and (c) transparently maintain the quality of service of the

provisioned end-to-end infrastructure through continuous

monitoring and control. Mobius was enhanced in our pre-

vious work [2] to support the provisioning of network

connections between compute resources across sites/clouds

and modulating the bandwidth on these network

connections.

Cluster Computing

123

3.4 DyNamo

Data-driven workflows need to automatically and flexibly

provision resources to satisfy scientists’ bursty computa-

tional and network demands. In the case of CASA work-

flows (Sect. 4), the nature of ever-changing weather events,

the number of available sensors, and end user-defined

triggers all contribute to load variability.

As presented in previous work [2], DyNamo enables

CASA scientists to transparently acquire cloud resources

from multiple cloud providers based on high-level resource

requirements. As depicted in Fig. 2, DyNamo provides

network integration and programmatic provisioning of

specific cloud resources using their native APIs. With this

approach, domain scientists no longer need to directly

interact with diverse cloud providers. To achieve this goal,

DyNamo brings together the 3 major components defined

earlier in this section: Pegasus WMS is used to provide

workflow automation to the applications. HTCondor is

used to manage the computational resources and distribute

the computations. Mobius is used to allocate compute and

network resources and create the interconnect between data

sources and execution sites. Later in Sect. 5, we will pre-

sent additional components for DyNamo, making it an

integrated, network-aware instrument and monitoring tool

for data-driven science applications in multi-cloud

environments.

3.5 Target cyberinfrastructure

In this paper, we make use of two national scale research

cloud providers: ExoGENI and the Chameleon cloud.

– ExoGENI [1] is a networked Infrastructure-as-a-Service

(IaaS) testbed that links 20 cloud sites on campuses

across the US through regional and national transit

networks, such as Internet2 [42] and ESnet [43].

ExoGENI allows users to dynamically provision iso-

lated ‘‘slices’’ of compute and networking resources

from multiple sites and to integrate various resources

using layer 2 global dynamic-circuit networks like

Internet2 and ESnet, and private clouds like OpenStack

[44]. ExoGENI allows users to instantiate customized,

distributed topologies, and by provisioning the appro-

priate network resources corresponding to the topolo-

gies, thereby creating end-to-end layer-2 paths.

– NSF Chameleon Cloud [34] is a large-scale, deeply

programmable testbed designed for systems and net-

working experiments. Similar to ExoGENI, it leverages

OpenStack to deploy isolated slices of cloud resources

for user experiments. However, ExoGENI scales in

geographic distribution, while Chameleon scales by

providing large amounts of compute, storage, and

networking resources spread across two sites: Univer-

sity of Chicago (UC) and the Texas Advanced Com-

puting Center (TACC). Chameleon provides over 15K

cores and 5 PB storage across the two sites. Users can

Mobius Network-centric Platform

Mobius Controller

Multi-cloud and Network Resource Manager

Ahab adapter
(ExoGENI cloud +
network + vSDX)

Jclouds adapter
(Openstack:
Chameleon,

Jetstream, MOC)

AWS adapter

Periodic
Processor

Monitoring and
ControlWorkflow

Database

Collects metrics from all
resources

Mobius REST API

Fig. 1 Mobius—network

centric platform overview

Cluster Computing

123

provision bare metal compute nodes with custom

system configuration connected to user-controlled

OpenFlow switches operating at up to 100 Gbps. In

addition, Chameleon networks can be stitched to

external partners including ExoGENI slices.

4 CASA—motivation

The NSF Engineering Research Center for Collaborative

Adaptive Sensing of the Atmosphere (CASA) was formed

to study the lower atmosphere with networks of high res-

olution Doppler weather radars with the goal to improve

severe weather awareness [45]. The volumetric data pro-

duced by these continuously operating remote sensors must

be distributed to processing servers quickly and efficiently

such that analysis can occur in near real time for the sake of

warning the public to fast developing threats such as tor-

nadoes and high winds. The networked radar concept

requires that asynchronous raw data from multiple sources

are blended together to create value-added meteorological

products. At any given time the characteristics of the

ongoing weather regime determine the necessity and pri-

ority of certain products. For example, a hail detection

algorithm takes on high importance only when strong

thunderstorms are ongoing, whereas forecasting algorithms

may be of more importance well in advance of such severe

weather events and perhaps somewhat less so once the

event has started.

For years, CASA’s scientific workflows associated with

product creation have been executed on dedicated servers

existing at individual radar sites and at compute centers at

NOAA Southern Region Headquarters and at the

University of Massachusetts Amherst. Servers have been

assigned dedicated processing tasks carefully tailored to

their hardware and networking resources through trial and

error with estimates made regarding the largest likely

compute loads associated with each task. The careful

management required implies that reconfiguration is highly

complex and not feasible by an operator on short notice

during an event. To help mitigate this limitation, and to

create a more scalable system, in recent years CASA has

developed several containerized scientific workflows for

calculating these weather products that can be deployed

and prioritized as needed [2]. CASA workflows are gen-

erally multi-step processes that can include a collection of

necessary radar and non-radar sensor data access, grid

transformations, format conversions, derived product cre-

ation, raster image generation, contouring, GIS based data

extraction, and customized notification and alerting [46].

These require complex scheduling and in some cases sig-

nificant resource consumption, especially during wide-

spread impactful weather when they take on their greatest

utility to the end users. For these workflows, CASA now

relies on Mobius to provision and modulate compute and

networking resources on demand, and uses the Pegasus

Workflow Management System to manage the execution of

the workflow steps [2].

In the following subsections, we briefly introduce the

weather products that are generated by the CASA work-

flows studied in this paper.

4.1 Nowcast

Nowcasts are short-term advection forecasts that use

observed reflectivity data from multiple radars, composite

them for a certain number of minutes, and project into the

Fig. 2 Dynamo framework

Cluster Computing

123

future by estimating the derivatives of motion and intensity

with respect to time [47, 48]. Every minute the CASA

nowcasting system generates 31 grids of predicted reflec-

tivity, one for each minute into the future from minutes 0 to

30. The workflow associated with Nowcasting creates

raster images for all 31 grids every minute, and also con-

tours for multiple reflectivity levels on each of these grids.

The contours are sent to a database where they are used for

notification purposes as simplified boundaries containing

forecast reflectivity levels of importance for particular

applications such as route planning, deployment of spot-

ters, and keeping emergency responders out of harm’s way.

Nowcast rasters and contours are sent to CASA’s data

repository over layer 2 stitchports [1] where they are used

in web and mobile applications.

4.2 Wind speed

A Doppler radar is able to estimate the velocity of moving

objects based on a phase shift that occurs if the objects are

moving toward or away from the radar beam. Components

of velocity perpendicular to the beam are not sensed. For a

given radar this means that there will be substantial

underestimations of true wind speed over portions of the

sensing domain where certain directional components of

the winds are not able to be sampled. However, with an

overlapping network of radars (as in CASA’s case), areas

not adequately sampled by one radar are often better

sampled by other radars with different relative angles.

Therefore CASA’s maximum observed velocity workflow

ingests the single radar base data from all of the radars in

the network and creates a gridded product representing the

maximum observed wind speeds. As part of this workflow,

areas of severe winds are identified, contoured, and

checked against the location of known infrastructure, with

email alerts sent out to locations likely to be affected.

Workflows that use the large single radar raw data as input

have a substantially higher network bandwidth requirement

than those operating on derived data. Input rates of over

100Mbps are common, and given that high winds, which

are associated with tornadoes and downbursts are often

short lived, one must minimize transmission delays as

much as possible to adequately provide warnings for users

downstream of the observations.

5 Approach—DyNamo extensions

In order to accommodate different application QoS policies

and make a more efficient and fair use of the infrastructure

among the workflow ensembles, we are extending the

DyNamo system (Fig. 2) with a more sophisticated net-

work configuration component, end-to-end infrastructure

monitoring and advanced workflow management

techniques.

5.1 vSDX module

A Virtual Software Defined Exchange (vSDX) is defined as

a virtual interconnect point between multiple adjacent

domains, e.g, instruments, compute resources, or data/

storage systems. Like a static SDX, a vSDX uses Software

Define Networking (SDN) within the exchange to enforce

different network policies.

In our case, the vSDX support is provided by the Exo-

Plex [49] network architecture depicted in (Fig. 3). Exo-

Plex uses an elastic slice controller to coordinate dynamic

circuits and the Zeek (formerly Bro) [50] security monitors

via Ahab [51]. The controller runs outside of the vSDX

slice and exposes a REST API for clients to request net-

work stitching and connectivity and to express QoS

parameters. Clients (i.e. Mobius) invoke this API to bind

named subnets under its control to the vSDX via L2

stitching and request bandwidth provisioned connectivity

with other subnets. The vSDX slice is comprised by virtual

compute nodes running OpenVSwitch [52], OpenFlow

controllers [53], and Zeek traffic monitors. Traffic flow and

routing within the vSDX slice are governed by a variant of

the Ryu [54] rest router [55] SDN controller. The vSDX

slice controller computes routes internally for traffic tran-

siting through the vSDX network, and invokes the SDN

controller API to install them. The SDN controller runs

another Ryu module (rest ofctl) to block traffic from

offending senders. If a Zeek node detects that traffic vio-

lates a Zeek policy, it blocks the sender’s traffic by

invoking a rest ofctl API call via the Zeek NetControl

plugin.

As client requests for bandwidth provisioned connec-

tivity arrive at the vSDX, the slice controller instantiates

slice resources as needed to carry the expected traffic.

These resources include peering stitchport interfaces at

each point of presence (PoP), the OVS nodes that host

these vSDX edge interfaces, Zeek (Bro) nodes to monitor

the traffic, and backplane links to carry the traffic among

the PoPs. The controller reuses existing resources in the

slice if they have sufficient idle capacity to carry the newly

provisioned traffic, and instantiates new resources as nee-

ded. In particular, it adapts the vSDX backplane topology

by allocating and releasing dynamic network circuits as

needed to meet its bandwidth assurances to its customers.

The flows are inspected by out of band Zeek network

security monitor appliances to detect intrusion. As a simple

form of intrusion prevention, it uses Zeek’s NetControl

framework to interrupt all traffic from the source of a

suspect flow. The vSDX controller deploys Zeek instances

elastically to scale capacity.

Cluster Computing

123

In our scenario, the Exoplex Slice controller [56] runs as

a docker container. Mobius has been enhanced to com-

municate with the ExoPlex Slice controller via its REST

API to establish network connectivity between ExoGENI

and Chameleon via layer 2 networks and to allocate

bandwidth to individual workflows. Once connectivity is

established, Mobius triggers REST API calls to publish

network prefixes, sets up routes between network prefixes

and dynamically applies different bandwidths as needed.

Additionally, we have implemented a Python based inter-

face that can be used to provision the required resources.

This interface enables programmatic resource provisioning

and is capable of spinning up resources, establishing con-

nectivity and implementing network QoS policies on a per

workflow ensemble level.

5.2 Pegasus ensemble manager

The Pegasus WMS can manage collections of related

workflows, commonly referred to as ensembles, through a

service called the Pegasus Ensemble Manager (Pegasus-

EM) [57]. Pegasus-EM supports ensemble creation, work-

flow prioritization, workflow submission, throttling of

concurrent executions, and ensemble level monitoring

capabilities.

To support dynamic execution of workflow ensembles

based on the continuous flow of data obtained from various

sources, we have have extended Pegasus-EM with work-

flow triggering capability that supports three triggering

modes (a) cron, (b) monitoring for local files, and

(c) monitoring for web files.

– Cron This mode is similar to a cron job. On a

predefined interval specified during the trigger’s cre-

ation, Pegasus-EM executes a user-defined script that

generates a new Pegasus workflow, which is in turn

added to the targeted ensemble.

– Monitoring local files In this mode Pegasus-EM

monitors a local directory for new files. Based on an

interval specified during its creation, it checks for new

files that match a file pattern and passes them to a user-

defined workflow generation script that dynamically

creates and plans a Pegasus workflow based on the

incoming data. Pegasus-EM executes the workflow

generation script and queues up the generated workflow

for execution.

– Monitoring web files This triggering mode is similar to

the local file mode. In this case, however, Pegasus-EM

will monitor a remote web location (HTTP) for new

files that match the provided file patterns.

An example of a Pegasus-EM trigger monitoring for web

files is presented on Fig. 4. In the definition of the trigger

the following parameters need to be specified.

– Ensemble: The targeted ensembe to which Pegasus-EM

will queue up the new workflow

– Trigger: A unique name for the trigger

– Interval: The polling period that Pegasus-EM will

check for changes

– Script: User-defined script that handles workflow

generation

– Web_location: Web url of the remote repository

Fig. 3 Virtual software defined

exchange (SDX) network

architecture

Fig. 4 Pegasus-EM web file trigger example

Cluster Computing

123

– File_patterns: A list of regex patterns that will be

checked against the file names

– Timeout: After an optional timeout time has elapsed

and no new files have appeared, the trigger will be

deleted

– Args: An optional parameter for any extra arguments

that need to be passed to the user-defined script

5.3 Prometheus monitoring

The Prometheus monitoring system [58] has been added to

the DyNamo ecosystem. Mobius automatically config-

ures the Prometheus node exporter [59] on each compute

node to push system metrics to a Prometheus server hosted

at RENCI. The metrics collected by

Prometheus give us the opportunity to dynamically take

actions to ensure the infrastructure QoS. The actions

include enabling compute, storage and network elasticity,

i.e., growing and shrinking compute or storage resource

pools and increasing or decreasing network properties of

links. To visualize the collected data in a comprehensive

and easy to understand way, an instance of Grafana [60]

has been configured to pull the metric data from Pro-

metheus and plot various graphs on a dashboard depicted in

Fig. 5. To persist the data for long periods of time, we store

the Prometheus collected metrics into an Elasticsearch [61]

instance.

5.4 Operational effect on CASA’s workflows

CASA workflows, due to their nature, can benefit from all

of these enhancements to the DyNamo framework. As

described in Sect. 4, CASA workflows need to process and

respond to a continuous flow of weather radar data arriving

at different rates. With the additions to the Pegasus-EM,

CASA workflows can be started automatically as new files

arrive at CASA’s remote data repositories, with direct

support by the DyNamo framework. In the past, this

functionality was implemented using perl scripts that were

invoked manually at the processing initiation stage. On top

of this Pegasus-EM can alleviate pressure from the com-

pute and network resources via its throttling mechanisms,

by limiting ensembles that can flood the resources and

allowing other ensembles to compete for their fair share.

Moreover, with the introduction of the vSDX capabilities

CASA workflow ensembles can now share the same layer 2

link in an isolated fashion. I.e, traffic from one workflow

can only consume the maximum assigned bandwidth

without impacting the network resources assigned to other

workflows. CASA’s workflows have different requirements

that not only depend on the data being processed and the

pipeline, but also the workflow configuration. With the

vSDX, CASA can reserve a single layer 2 circuit to its data

repository while distributing the network bandwidth based

on the network subnet each worker node resides in. Each

worker is assigned a specific CASA workflow ensemble by

Fig. 5 Grafana dashboard depicting prometheus metrics

Cluster Computing

123

advertising a target workflow tag in its HTCondor adver-

tisements. Previously this functionality was supported by

reserving multiple layer 2 circuits on CASA’s data repos-

itory, but due to the limited number of the available links

this couldn’t be achieved consistently.

6 Evaluation

6.1 CASA Pegasus workflows description

For the evaluation of the QoS impact we have selected two

CASA workflows that produce nowcasts and wind speed

estimates as described in Sect. 4. The workflow tasks

include input data collection and product generation,

visualization, contouring into polygon objects, spatial

comparisons of identified weather features with infras-

tructure, and dissemination of notifications.

6.1.1 Nowcast

The Pegasus Nowcast workflow [62] computes short-term

advection forecasts, as described in Sect. 4.1, by splitting

grided reflectivity data into 31 grids and computing

reflectivity predictions over the next 30 min. An abstract

version of the workflow’s DAG is presented in Fig. 6,

which reveals that the size of the workflow doesn’t depend

on the input, and the number of compute tasks is fixed. The

nowcast workflow contains 63 compute tasks in total, 1

task for splitting the input data into 31 individual grids, and

then 62 independent tasks that compute the reflectivity and

the respective contour images. All tasks run within a

Singularity container that is managed by Pegasus and has a

size of 153MB.

6.1.2 Wind

The Pegasus Wind Speed workflow [63] computes the

maximum wind velocity, by combining multiple single

radar output to account for single radar measurement

inaccuracies (Sect. 4.2). An abstract version of this work-

flow’s DAG is depicted in Fig. 7. To construct the input for

the wind speed pipeline (preprocessing phase), single radar

data files are accumulated over a variable time window

(minimum 1 min), which regulates how often CASA pro-

duces maximum wind velocity contours, but also affects

the size of the input of a single workflow run. As a result

the first level of tasks (unzipping any zipped files) in the

wind speed workflow (Fig. 7) depends on the number of

input files, and thus the workflow has a variable number of

tasks. The unzipping phase is followed by four compute

tasks that output the wind products and notify points of

interest for severe weather. These four tasks are running

within a Singularity container, 163MB in size.

6.1.3 Workflow testcases

To conduct our evaluation, both workflows are processing

30 min of pre-captured real weather data, which we replay

as if they were arriving in real-time to simulate a produc-

tion scenario from CASA’s operations. The individual files

consumed by the nowcast workflow are 9.6MB in size and

the total size is 287MB. On the other hand the dataset for

the wind workflows is comprised by files with individual

size of � 12MB, and the total dataset size is � 6GB. For the

NowcastToWDSS2

MergeDarts.nc

. . .

NetCDFToPNGmrtV2

nexrad_ref.png

Storm_CASA_0.geojson

NetCDFToPNGmrtV2

nexrad_ref.png

Storm_CASA_30.geojson

Input File
Intermediate File
Output File
Compute Job

Fig. 6 CASA nowcast Pegasus

workflow

Cluster Computing

123

two workflows we replay the data using an accumulation

interval of 1 min and we are using Pegasus-EM to identify

the newly added files and queue nowcast or wind workflow

to their respective ensembles.

6.2 Experimental infrastructure

For evaluation, we used the DyNamo system to deploy a

production scenario that is similar to CASA’s day to day

operational radar data processing setup, and spreads across

both ExoGENI and Chameleon testbeds (Fig. 8). In our

setup Mobius and the vSDX controller are running within

Docker containers at our USC Information Sciences Insti-

tute (ISI) Docker cluster.

Additionally, we are using one of CASA’s operational

nodes at the University of North Texas (UNT) in Denton,

TX, to host the data and submit the Pegasus workflows.

The vSDX nodes and the workflow master node are located

on ExoGENI at the University of Massachusetts Amherst

(UMass) rack, on separate slices, while the compute nodes

are located on Chameleon at TACC. To establish the layer

2 connectivity between the sites, Mobius ‘‘stitched’’ the

UNT server to the workflow master node and instructed the

vSDX controller to stitch the same node to the Chameleon

nodes via the vSDX slice. The Chameleon compute cluster

contains 5 nodes, 4 compute nodes and 1 storage node. 3 of

the compute nodes reside in the 192.168.40.0/24 subnet

while the other compute node and the storage node reside

in subnet 192.168.30.0/24. Each node has 24 physical cores

with hyperthreading (48 threads), 192GB RAM, 250GB

SSD and is connected to a shared 10Gbps network. During

the experiments we did not use the storage node to opti-

mize for network traffic, but it was used as a next hop to

route traffic from the subnet (192.168.40.0/24) that did not

match the Chameleon stitchport’s subnet.

As we have shown in our initial evaluation of the

DyNamo system [2] 144 and 48 HTCondor compute slots

are enough to execute the nowcast and the wind speed

workflow ensembles, respectively, without any compute

imposed delays. Using HTCondor tags, the 3 compute

nodes residing on the subnet 192.168.40.0/24 have been

assigned to nowcast workflow tasks, while the node on the

subnet 192.168.30.0/24 has been assigned to the wind

speed workflow. Finally, all the stitchable networks were

created with a network bandwidth of 1Gbps.

6.2.1 Software

On the submit node (where parts of the Dynamo system

reside), the master node and the worker nodes we have

installed HTCondor v8.8.9, and we have customized its

configuration to match the role of each node. In this setup, the

workers are configured with partitionable slots and they

advertise a workflow tag so they can bematched to the correct

workflow. Additionally, on the submit node we have installed

the nightly build of Pegasus v5.0.0 and the Apache HTTP

server, to allow the workers to retrieve input files, configu-

ration files and the application containers over HTTP. All of

the workers use Singularity v3.6.1, and Mobius was used to

provision compute resources on ExoGENI and Chameleon,

and establish the network connections between ExoGENI,

Chameleon and the CASA repository.

6.3 Workflow ensembles—network
requirements

The two workflow ensembles present different network

requirements due to the amount of tasks and the container

transfers they instantiate. We profile the network utilization

on CASA’s data repository at UNT, during the execution of

the two workflow ensembles, using a dedicated 1Gbps

layer 2 connection and the testcase datasets described in

Sect. 6.1.

Figure 9 shows that the wind workflow ensemble is

executed for � 2100 s, has an average bandwidth usage of

� 200Mbps with a peak close to 240Mbps, while the total

amount of data transferred is � 44GBs.
Figure 10 depicts the network utilization imposed by the

nowcast workflow ensemble. The nowcast calculations are

occupying resources for � 3200 s and they lead the network
to congestion for prolonged periods of time. The average

network utilization is close to 900Mbps with spikes

reaching 960Mbps, and the total amount of data transferred

is � 280GBs.

unzip unzip unzip

radar_1.netcdf

radar_1.netcdf.gz radar_2.netcdf.gz

radar_2.netcdf radar_N.netcdf

max_velocity

MaxVelocity.netcdf

max_wind.png

merged_netcdf2png

MaxVelocity.png

mvt

locations.geojson

MaxVelocity.geojson
pointalert

alert.geojson

. . .

Input File
Intermediate File
Output File
Compute Job

radar_2.netcdf.gz

Fig. 7 CASA wind Pegasus workflow

Cluster Computing

123

From Figs. 9 and 10 it is clear that the two workflow

ensembles cannot fairly share the shame network resources

without one of them impacting the other’s QoS constraints,

since the nowcast workflow ensemble will lead to pro-

longed network congestion. In our previous work [2] we

used workflow runtime optimizations provided by Pegasus

(e.g., task clustering) in order to lower nowcast’s network

requirements, but we did not apply them to this study since

it is our goal to evaluate the effectiveness of DyNamo’s

new network QoS capabilities and ensemble management

throttling techniques.

6.4 Experimental results

To conduct our vSDX study, we used three scenarios

without throttling the ensembles via Pegasus-EM.

– 1 Gbps Dedicated: Each workflow ensemble had a

dedicated 1 Gbps layer 2 link provisioned with Mobius,

connecting the data repository to the compute

resources.

– 1 Gbps vSDX-Shared: Both workflow ensembles

shared the same 1 Gbps layer 2 link provisioned with

Mobius, connecting the data and compute. No QoS

policies where applied.

– 1 Gbps vSDX-Shared-QoS: Both workflow ensembles

shared the same 1 Gbps layer 2 link provisioned with

Mobius, connecting the data and compute. Individual

QoS policies were applied to each workflow ensemble.

300Mbps for Wind and 700Mbps for Nowcast.

Fig. 8 CASA vSDX workflow deployment

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

240

M
bp

s

G
Bs

Runtime (Seconds)

Egress Ingress Total Data

Fig. 9 Wind ensemble—network utilization

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 500 1000 1500 2000 2500 3000 3500
 0

 50

 100

 150

 200

 250

 300

M
bp

s

G
Bs

Runtime (Seconds)

Egress Ingress Total Data

Fig. 10 Nowcast ensemble—network utilization

Cluster Computing

123

For each of the 3 scenarios, we repeated the workflow

ensemble executions 5 times, leading to 900 workflow

submissions and over 240,000 file transfers generating over

4TBs of network traffic. Figs. 11 and 12 present makespan

statistics of the individual workflows of the ensembles,

while Figs. 13 and 14 present statistics of the individual

data transfers of the workflow ensembles.

To explore the space for different ensemble throttling

configurations, we executed the two workflow ensembles

under 42 unique configurations, varying the number of

maximun concurrent wind and nowcast workflows. In

every configuration we make sure that wind ensemble

concurrency is greater or equal of the nowcast ensemble

concurrency. We justify this decision to prune some of the

possible configurations, on the fact that nowcast is con-

gesting the network while wind doesn’t, and by exploring

that space we won’t get useful insight.

– Wind ensemble: Concurrency was altered from 1 to 16

with a step of 2.

– Nowcast ensemble: Concurrency was altered from 1 to

12 with a step of 2.

This resulted in over 2000 additional workflow executions

and over 13TBs of data transfers. Figs. 15 and 16 present

heatmaps of the average individual workflow makespans of

the two ensembles. Figs. 17 and 18 present heatmaps of the

makespans of the two workflow ensembles. These results

are discussion in Sect. 6.4.4

6.4.1 Dedicated link performance

To conduct our vSDX analysis, we first executed the

nowcast and wind workflow ensembles under the best

conditions possible, using 1 Gbps dedicated layer 2 con-

nection and no Pegasus-EM throttling. For the wind

ensemble Figs. 11 and 13 show a very consistent workflow

duration (� 300 s) and file transfer duration with very little

deviation. On the other hand, since the nowcast workflow

was creating network congestion we observe a noticeable

deviation in both the workflow and file transfer durations
(Figs. 12 and 14). More than half of the workflows in the

nowcast ensemble are completed within less than 1500 s.

However, there are workflow executions that take from 500

s all the way to � 2,400 s.

6.4.2 Uncontrolled network sharing

When we allow the two workflow ensembles to share the

same network resources without any QoS policy, then we

observe a very noticeable increase to the workflow make-

spans (Figs. 11, 12 middle). The most impacted are the

workflows of the wind ensemble, where the average

workflow duration increases from 300 s to over 1000 s,

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1Gbps
Dedicated

1Gbps
SDX-Shared

300Mbps
SDX-Shared-QoS

Ru
nt

im
e

(S
ec

on
ds

)

Network Configuration

Fig. 11 Wind ensemble workflow makespans

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1Gbps
Dedicated

1Gbps
SDX-Shared

700Mbps
SDX-Shared-QoS

Ru
nt

im
e

(S
ec

on
ds

)

Network Configuration

Fig. 12 Nowcast ensemble—workflow makespans

 0

 5

 10

 15

 20

 25

 30

 35

 40

1Gbps
Dedicated

1Gbps
SDX-Shared

300Mbps
SDX-Shared-QoS

D
ur

at
io

n
(S

ec
on

ds
)

Network Configuration

Fig. 13 Wind ensemble—data transfer durations

 0

 5

 10

 15

 20

1Gbps
Dedicated

1Gbps
SDX-Shared

700Mbps
SDX-Shared-QoS

D
ur

at
io

n
(S

ec
on

ds
)

Network Configuration

Fig. 14 Nowcast ensemble—data transfer durations

Cluster Computing

123

with some workflows completing execution close to 1800

s. This is an increase of over 500%. The impact of the

additional network overhead is also visible in the nowcast

workflows, although more subtle. The median nowcast

workflow duration increased by about 200 s, while there

were more workflows to the far ends of the spectrum.

6.4.3 Applying SDX QoS policies

Finally, based on the network profiles presented in Figs. 9

and 10 we allocated 300Mbps of the available network

bandwidth to the wind workflow ensemble and 700Mbps to

the nowcast workflow ensemble, in an attempt to accom-

modate any network spikes of the wind ensemble. Both

Figs. 11 and 13 (right) show an improvement of the wind

workflow median makespan and data transfer durations.

The wind ensemble’s statistics have returned to a more

consistent and predictable state with small deviation, sim-

ilar to the execution conditions when a dedicated network

link was used. Meanwhile, as it was expected, the median

runtime of the nowcast workflows has increased since there

is less available bandwidth (700Mbps) than what the

workflow would optimally require (� 900Mbps). However,

the relative increase in comparison to the dedicated link

runtimes is less than 60%. Something we did not expect to

see was that even though the median duration of the file

transfers in the nowcast ensemble increased by a few

seconds, the transfers became more consistent, reducing

the duration of the slowest transfers.

6.4.4 Applying QoS policies using Pegasus-EM

DyNamo, through the Pegasus Ensemble Manager throt-

tling capabilities, it offers another opportunity to apply

QoS policies on workflow ensembles that share network

resources. We executed the wind workflow ensemble with

workflow execution parallelism ranging from 1 to 16, and

the nowcast ensemble with workflow execution parallelism

ranging from 1 to 12. Figures 15 and 16 present the aver-

age workflow makespans of the two ensembles and we can

distinguish a pattern for both cases. As we increase the

concurrency of the nowcast ensemble (moving to the right)

the average workflow execution time increases in both

cases, and affects the turnaround times. For the wind

1

2

4

6

8

10

12

14

16

1 2 4 6 8 10 12

W
in

d
En

se
m

bl
e

Ex
ec

ut
io

n
Pa

ra
lle

lis
m

Nowcast Ensemble Execution Parallelism

349

320

346

316

320

326

327

325

323

405

403

436

385

377

382

404

419

572

599

617

607

609

565

624

695

795

737

765

707

765

912

851

868

867

843

918

970

908

891

896

1121

938

Av
g.

 M
ak

es
pa

n
(S

ec
on

ds
)

Fig. 15 Wind average workflow makespans

1

2

4

6

8

10

12

14

16

1 2 4 6 8 10 12

W
in

d
En

se
m

bl
e

Ex
ec

ut
io

n
Pa

ra
lle

lis
m

Nowcast Ensemble Execution Parallelism

380

389

390

395

389

390

393

387

397

410

446

460

484

472

459

439

413

572

597

593

594

559

570

595

692

709

695

713

741

689

910

861

885

873

884

1017

1049

1063

1034

1220

1120

1224

Av
g.

 M
ak

es
pa

n
(S

ec
on

ds
)

Fig. 16 Nowcast average workflow makespans

1

2

4

6

8

10

12

14

16

1 2 4 6 8 10 12

W
in

d
En

se
m

bl
e

Ex
ec

ut
io

n
Pa

ra
lle

lis
m

Nowcast Ensemble Execution Parallelism

11792

5542

3171

2059

2112

2092

2106

2142

2094

6521

3370

2677

2227

2017

2226

2261

2229

4645

3475

3027

2508

2310

2428

2140

3825

3701

2759

2572

2520

2564

3827

3532

2986

2705

2714

3567

3493

2977

3116

3300

3035

2825

M
ak

es
pa

n
(S

ec
on

ds
)

Fig. 17 Wind ensemble makespans

1

2

4

6

8

10

12

14

16

1 2 4 6 8 10 12

W
in

d
En

se
m

bl
e

Ex
ec

ut
io

n
Pa

ra
lle

lis
m

Nowcast Ensemble Execution Parallelism

12206

12447

12083

12081

11828

11872

11531

11740

12033

6079

6880

7025

7564

7192

6872

6708

6490

4446

4719

4598

4746

4446

4573

4818

3893

3900

3846

3897

3937

3705

3813

3689

3785

3697

3799

3658

3822

3916

3723

3823

3597

3760

M
ak

es
pa

n
(S

ec
on

ds
)

Fig. 18 Nowcast ensemble makespans

Cluster Computing

123

workflows there is a 350% worst case increase, and for the

nowcast workflows there is a 320% worst case increase. On

the other hand increasing the concurrency of the wind

ensemble (moving to the top) doesn’t affect the execution

times, which was expected.

Figures 17 and 18 show the makespans of the whole

ensembles. In Fig. 17 as we increase the wind ensemble

parallelism (moving to the top) and maintaining the now-

cast ensemble parallelism equal to 1, the makespan of the

wind ensemble decreases, but only until max concurrency

equals 6. After that there is no improvement. However as

we increase the nowcast ensemble parallelism (moving to

the right) we need to increase wind ensemble parallelism

again to improve the makespans. In Fig. 18 the makespan

of the nowcast ensembles is governed only by the execu-

tion parallelism set for them. As we increase the nowcast

ensemble execution parallelism (moving to the right) the

makespan of the ensembles is reduced, until max concur-

rency of 8 is reached. After this point we don’t observe any

significant improvements, the network gets significantly

saturated and the workflow turnaround time is tripled

(Figs. 15, 16) compared to the non-congested state.

One thing that is notable with the Pegasus-EM throt-

tling, is that we were able to get better workflow

turnaround times for the nowcast ensemble under a

shared resource scenario, than in the 1 Gbps dedicated link

scenario (Fig. 12 left boxplot). By setting the nowcast

ensemble’s workflow execution parallelism to 8 the aver-

age workflow turnaround time is under 1000 s (Fig. 16).

This can be explained due to the fact that the nowcast

ensemble overly saturates the network (Fig. 10) and by

pacing the rate of the dispatched nowcast workflows we

can achieve better average workflow execution times.

6.4.5 Discussion

Based on our experimentation DyNamo can aid to maintain

the QoS of workflow ensembles when they are facing

unfair network contention. Even though, TCP congestion

algorithms attempt to provide a fair share of the network to

all of the flows occupying it [64], they cannot provide it at

the level of workflow ensembles. Workflow ensembles that

flood the network with transfers are claiming a bigger

chunk of the available bandwidth, impacting other

ensembles with fewer transfers, which struggle to gain their

network share. When vSDX policies can be enabled,

DyNamo, through well-thought infrastructure deployment-

design, can identify the individual flows that belong to

specific workflow ensembles and effectively allocate

bandwidth to meet their QoS expectations. In the case that

vSDX policies cannot be applied, DyNamo, through the

Pegasus-EM, can throttle workflow ensembles that congest

the network and allow a more fair network allocation to the

rest of the ensembles competing for their share.

In our current implementation all the aforementioned

policies and techniques are considered not adaptive. Even

though they can be changed and take effect on the fly

during the execution of the workflow ensembles, there’s no

automated mechanism adapting the policies to maximize

the utilization of the resources. A simple example is having

one workflow ensemble actively using the resources. In this

case it is not an optimal strategy to throttle the workflow

ensemble’s network bandwidth in the name of a future

ensemble that needs higher network priority. The incor-

poration of Prometheus monitoring in the DyNamo

framework opens up the possibility of applying reactive

QoS policies by monitoring the state of the infrastructure in

combination with workflow level feedback.

7 Conclusion

In this paper we introduced three new additions to the

DyNamo system. These extensions address monitoring,

infrastructure and operational challenges of CASA’s dis-

tributed, atmospheric science workflows. The newly added

Virtual Software Defined Exchange (vSDX) capabilities

provide fine-grained control over the dynamically estab-

lished networks, via link adaptation, flow prioritization and

traffic control between endpoints. These policies can be an

effective way to avoid unfair use of network resources.

Even if single workflow ensembles are capable of flooding

and congesting the network, other ensembles can maintain

their own QoS requirements. To evaluate the QoS polices

we deployed two of CASA’s workflow ensembles (wind

speed and nowcast) and we showed that even though the

nowcast ensemble is capable of interfering with the wind

ensemble, by applying the QoS policies the interference is

removed and the wind ensemble’s performance returns to

levels close to the ones observed using a dedicated network

link. Another contribution was the Pegasus Ensemble

Manager (Pegasus-EM) extension. Pegasus-EM now sup-

ports file and time-based workflow triggering logic that

allows CASA to automatically execute its workflows as

new data arrive while managing the number of the con-

current workflows being executed. In our evaluation we

showed that Pegasus-EM provides an alternative way of

applying QoS policies using DyNamo and can promote a

fairer sharing of both network and compute resources. This

is essential for the infrastructures that don’t offer Software

Defined Network (SDN) support and QoS policies need to

be applied. Finally we incorporated the Prometheus mon-

itoring system into the DyNamo framework, providing

comprehensive information about the status of the network

and the compute resources, allowing CASA scientists to

Cluster Computing

123

better understand the performance of their provisioned

resources across the clouds. In the future, we plan to extend

the DyNamo system’s capabilities by stitching to more

resource providers, supporting streaming workflows,

developing new CASA workflows and provide mecha-

nisms that will allow the applications to automatically

evaluate the current pressure applied on the provisioned

resources and make adjustments to the infrastructure

without user intervention (e.g., change the QoS policies of

workflow ensembles).

Acknowledgements This work is funded by NSF award #1826997.

We thank Mert Cevik (RENCI), engineers from UNT and LEARN for

the UNT stitchport setup. Results in this paper were obtained using

Chameleon and ExoGENI testbeds supported by NSF.

References

1. Baldin, I., Chase, J., Xin, Y., Mandal, A., Ruth, P., Castillo, C.,

Orlikowski, V., Heermann, C., Mills, J.: ExoGENI: a multi-do-

main infrastructure-as-a-service testbed, pp. 279–315. Springer,

Cham (2016)

2. Lyons, E., Papadimitriou, G., Wang, C., Thareja, K., Ruth, P.,

Villalobos, J., Rodero, I., Deelman, E.,Zink, M., Mandal, A.:

Toward a dynamic network-centric distributed cloud platform for

scientific workflows: A case study for adaptive weather sensing.

In: 2019 15th International Conference on eScience (eScience),

pp. 67–76. (2019)

3. Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S.P., Schlinker,

B., Feamster, N., Rexford, J., Shenker, S., Clark, R., Katz-Bas-

sett, E.: Sdx: a software defined internet exchange. SIGCOMM

44, 551–562 (2014)

4. Mambretti, J., Chen, J., Yeh, F.: Next generation clouds, the

chameleon cloud testbed, and software defined networking (sdn),

In: 2015 international conference on cloud computing research

and innovation (ICCCRI), pp. 73–79. (2015)

5. Amazon Elastic Compute Cloud. http://www.amazon.com/ec2

6. Microsoft Azure Cloud. https://azure.microsoft.com/en-us/

7. AWS CloudFormation. http://aws.amazon.com/cloudformation

8. OpenStack Heat Project. https://wiki.openstack.org/wiki/Heat

9. Baldin, I., Ruth, P., Wang, C., Chase, J. S.: The future of multi-

clouds: a survey of essential architectural elements, In: 2018

international scientific and technical conference modern com-

puter network technologies (MoNeTeC), pp. 1–13. (2018)

10. Foster, I.: Globus online: accelerating and democratizing science

through cloud-based services. IEEE Internet Comput. 15(3),
70–73 (2011)

11. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-

intensive scientific workflow management. J. Grid Comput.

13(4), 457–493 (2015)

12. Galante, G., Erpen De Bona, L.C., Mury, A.R., Schulze, B., Rosa

Righi, R.: An analysis of public clouds elasticity in the execution

of scientific applications: a survey. J. Grid. Comput. 14(2),
193–216 (2016)

13. Coutinho, E.. F.., de Carvalho Sousa, F.. R.., Rego, P.. A.. L..,

Gomes, D.. G.., de Souza, J.. N..: Elasticity in cloud computing:

a survey. Ann.Telecommun. - annales des telecommunications

70(7), 289–309 (2015)

14. Wang, J., AbdelBaky, M., Diaz-Montes, J., Purawat, S., Parashar,

M., Altintas, I.: ‘‘Kepler ? cometcloud: Dynamic scientific

workflow execution on federated cloud resources (international

Conference on Computational Science 2016, ICCS 2016, 6–8

June 2016. San Diego, California, USA), Proced. Comput. Sci.

80, 700–711 (2016)

15. Ostermann, S., Prodan, R., Fahringer, T.: Dynamic cloud provi-

sioning for scientific grid workflows. In: 2010 11th IEEE/ACM

international conference on grid computing, pp. 97–104. (2010)

16. Mandal, A., Ruth, P., Baldin, I., Xin, Y., Castillo, C., Juve, G.,

Rynge, M., Deelman, E., Chase, J.: Adapting scientific workflows

on networked clouds using proactive introspection, In: IEEE/

ACM Utility and Cloud Computing (UCC). (2015)

17. Macker, J.P., Taylor, I.: Orchestration and analysis of decen-

tralized workflows within heterogeneous networking infrastruc-

tures. Future Gener. Comput. Syst. 75, 388–401 (2017)

18. Ramakrishnan, L., Koelbel, C., Kee, Y., Wolski, Y., Nurmi, Y.,

Gannon, D., Obertelli, G., YarKhan, A., Mandal, A., Huang,

T. M., Thyagaraja, T. M., Zagorodnov, D.: Vgrads: enabling

e-science workflows on grids and clouds with fault tolerance. In:

Proceedings of the conference on high performance computing

networking, storage and analysis, pp. 1–12. (2009)

19. Liu, Q., Rao, N. S. V., Sen, S., Settlemyer, B. W., Chen, H.-B.,

Boley, J. M., Kettimuthu, R., Katramatos, D.: Virtual environ-

ment for testing software-defined networking solutions for sci-

entific workflows. In: Proceedings of the 1st international

workshop on autonomous infrastructure for Science, ser. AI-

Science’18. New York, NY, USA: Association for Computing

Machinery. (2018). https://doi.org/10.1145/3217197.3217202

20. Ghahramani, M.H., Zhou, M., Hon, C.T.: Toward cloud com-

puting qos architecture: analysis of cloud systems and cloud

services. IEEE/CAA J. At. Sin. 4(1), 6–18 (2017)

21. Varshney, S., Sandhu, R., Gupta, P.K.: Qos based resource pro-

visioning in cloud computing environment: a technical survey. In:

Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R.

(eds.) Advances in computing and data sciences, pp. 711–723.

Springer, Singapore (2019)

22. On-demand secure circuits and advance reservation system.

https://doi.org/10.1145/2443416.2443420

23. Islam, M.,Huang, A. K., Battisha, M., Chiang, M., Srinivasan, S.,

Peters, C., Neumann, A.,Abdelnur,a.: Oozie: Towards a scalable

workflow management system for hadoop. In: Proceedings of the

1st ACM SIGMOD workshop on scalable workflow execution

engines and technologies, ser. SWEET ’12. Association for

Computing Machinery, New York, (2012). https://doi.org/10.

1145/2443416.2443420

24. Senturk, I. F., Balakrishnan, P., Abu-Doleh, A., Kaya, K., Mal-

luhi, Q., ., Çatalyürek, Ümit. V.: A resource provisioning

framework for bioinformatics applications in multi-cloud envi-

ronments. Future Gener. Comput. Syst. 78, 379–391 (2018)

25. Malawski, M., Figiela, K., Bubak, M., Deelman, E., Nabrzyski,

J.: Scheduling multilevel deadline-constrained scientific work-
flows on clouds based on cost optimization. Sci. Pogram. 29,
158–169 (2015)

26. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-con-

strained workflow scheduling algorithms for infrastructure as a

service clouds. Future Gener. Comput. Syst. 29(1), 158–169

(2013)

27. Dickinson, M., Debroy, S., Calyam, P., Valluripally, S., Zhang,

Y., Bazan Antequera, R., Joshi, T., White, T., Xu, D.: Multi-

cloud performance and security driven federated workflow

management. IEEE Trans.Cloud Comput. 9, 240–257 (2018)

28. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S.,

Maechling, P.J., Mayani, R., Chen, W., Ferreira da Silva, R.,

Livny, M., Wenger, K.: Pegasus: a workflow management system

for science automation (funding Acknowledgements: NSF ACI

SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF OCI-

1053575). Future Gener. Comput. Syst. 46, 17–35 (2015)

Cluster Computing

123

http://www.amazon.com/ec2
https://azure.microsoft.com/en-us/
http://aws.amazon.com/cloudformation
https://wiki.openstack.org/wiki/Heat
https://doi.org/10.1145/3217197.3217202
https://doi.org/10.1145/2443416.2443420
https://doi.org/10.1145/2443416.2443420
https://doi.org/10.1145/2443416.2443420

29. National Energy Research Scientific Computing Center

(NERSC). https://www.nersc.gov

30. Oak Ridge Leadership Computing Facility. https://www.olcf.

ornl.gov

31. Extreme science and engineering discovery environment (xsede).

http://www.xsede.org

32. Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy,

A., Avery, P., Blackburn, K., Wenaus, T., Würthwein, F., Foster,

I., Gardner, R., Wilde, M., Blatecky, A., McGee, J., Quick, R.:

The open science grid. J.Phys. Conf.Ser. 78, 012057 (2007)

33. Amazon.com, Inc.: Amazon Web Services (AWS). http://aws.

amazon.com

34. Keahey, K., Riteau, K., Stanzione, D., Cockerill, K., Mambretti,

J., Rad, P., Ruth, P.: ‘‘Chameleon: a scalable production testbed

for computer science research,’’ in Contemporary High Perfor-
mance Computing: From Petascale toward Exascale, 1st ed., ser.
Chapman & Hall/CRC Computational Science, J. Vetter,

Ed.Boca Raton, FL: CRC Press, 2018, vol. 3, ch. 5

35. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in

practice: the condor experience. Concurr. Comput. 17(2–4),
323–356 (2005)

36. Gunter, D., Deelman, E., Samak, T., Brooks, C., Goode, M., Juve,

G., Mehta, G., Moraes, P., Silva, F., Swany, M., Vahi, K.:

‘‘Online workflow management and performance analysis with

stampede,’’ in 7th International Conference on Network and
Service Management (CNSM-2011), (2011)

37. Bayucan, A., Henderson, R. L., Lesiak, C., Mann, B., Proett, T.,

Tweten, D.: Portable batch system: external reference specifica-

tion. In: Technical report, MRJ technology solutions, vol. 5,

(1999)

38. Simple Linux Utility for Resource Management. http://slurm.

schedmd.com/

39. Raman, R., Livny, M., Solomon, M.: ‘‘Matchmaking: distributed

resource management for high throughput computing,’’ in Pro-
ceedings. The Seventh International Symposium on High Per-
formance Distributed Computing (Cat. No.98TB100244),
pp. 140–146(1998)

40. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.:

‘‘Condor-G: A computation management agent for multi-insti-

tutional grids,’’ in Proceedings of the Tenth IEEE Symposium on

High Performance Distributed Computing (HPDC), pp. 7–9.

California, August, San Francisco (2001)

41. Mobius Github Repository. https://github.com/RENCI-NRIG/

Mobius

42. Internet 2. https://www.internet2.edu/

43. The energy science network. https://www.es.net/

44. OpenStack Cloud Software. http://openstack.org

45. McLaughlin, D., Pepyne, D., Chandrasekar, V., Philips, B.,

Kurose, J., Zink, M., Droegemeier, K., Cruz-Pol, S., Junyent, F.,

Brotzge, J., Westbrook, D., Bharadwaj, N., Wang, Y., Lyons, E.,

Hondl, K., Liu, Y., Knapp, E., Xue, M., Hopf, A., Kloesel, K.,

DeFonzo, A., Kollias, P., Brewster, K., Contreras, R., Dolan, B.,

Djaferis, T., Insanic, E., Frasier, S., Carr, F.: Short-wavelength

technology and the potential for distributed networks of small

radar systems. Bull. Am. Meteorol. Soc. 90(12), 1797–1818

(2009). https://doi.org/10.1175/2009BAMS2507.1.

46. Lyons, E. J., Zink, M.,Philips, B.: Efficient data processing with

exogeni for the casa dfw urban testbed. In: 2017 IEEE interna-

tional geoscience and remote sensing symposium (IGARSS),

pp. 5977–5980, (2017)

47. Li, L., Schmid, W., Joss, J.: Nowcasting of motion and growth of

precipitation with radar over a complex orography. J. Appl.

Meteorol. 34(6), 1286–1300 (1995)

48. Ruzanski, E., Chandrasekar, V.: Weather radar data interpolation

using a kernel-based lagrangian nowcasting technique. IEEE

Trans. Geosci. Remote Sens. 53(6), 3073–3083 (2015)

49. Yao, Y., Cao, Q., Farias, R., Chase, J., Orlikowski, V., Ruth, P.,

Cevik, M., Wang, C., Buraglio, N.: Toward live inter-domain

network services on the exogeni testbed. In: IEEE INFOCOM

2018—IEEE conference on computer communications work-

shops (INFOCOM WKSHPS), pp. 772–777, (2018)

50. Zeek Github Repository. https://github.com/zeek/zeek

51. Ahab Github Repository. https://github.com/RENCI-NRIG/ahab

52. Linux Foundation Collaborative Projects. https://www.open

vswitch.org/

53. Open flow SDN Controllers. https://en.wikipedia.org/wiki/List_

of_SDN_controller_software/

54. Ryu SDN Controller. https://ryu-sdn.org/
55. Ryu Rest Router. https://github.com/faucetsdn/ryu/blob/master/

ryu/app/rest_router.py

56. Exoplex Github Repository. https://github.com/RENCI-NRIG/

CICI-SAFE

57. Pandey, S., Vahi, K., Ferreira da Silva, R., Deelman, E., Jian, M.,

Harrison, C., Chu, A., Casanova, A.: Event-based triggering and

management of scientific workflow ensembles, In: 2018, poster

presented at the HPC Asia 2018: Tokyo, Japan. http://sighpc.ipsj.

or.jp/HPCAsia2018/poster/post102s2-file1.pdf

58. Prometheus. https://prometheus.io/

59. Node Exporter. https://prometheus.io/docs/guides/node-exporter/

60. Grafana. https://grafana.com/

61. ELK stack. (2018). https://www.elastic.co/elk-stack

62. Scitech, CASA Nowcast Pegasus Workflow. https://github.com/

pegasus-isi/casa-nowcast-workflow

63. Scitech: CASA Wind Pegasus Workflow. https://github.com/

pegasus-isi/casa-wind-workflow

64. Hasegawa, G., Murata, M., Miyahara, H.: Fairness and stability

of congestion control mechanisms of tcp. In: IEEE INFOCOM

’99. Conference on computer communications. Proceedings.

Eighteenth annual joint conference of the IEEE computer and

communications societies. The future is now (Cat.

No.99CH36320), vol. 3, pp. 1329–1336, (1999)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

George Papadimitriou is a

Computer Science PhD student

at the University of Southern

California, and a Graduate

Research Assistant in the Sci-

ence Automation Technologies

group at the USC Information

Sciences Institute.His research

interests lie within the intersec-

tion of Data Intensive Applica-

tions and Distributed

Computing. He received his BS

in Electrical and Computer

Engineering from the National

Technical University of Athens.

Cluster Computing

123

https://www.nersc.gov
https://www.olcf.ornl.gov
https://www.olcf.ornl.gov
http://www.xsede.org
http://aws.amazon.com
http://aws.amazon.com
http://slurm.schedmd.com/
http://slurm.schedmd.com/
https://github.com/RENCI-NRIG/Mobius
https://github.com/RENCI-NRIG/Mobius
https://www.internet2.edu/
https://www.es.net/
http://openstack.org
https://doi.org/10.1175/2009BAMS2507.1
https://github.com/zeek/zeek
https://github.com/RENCI-NRIG/ahab
https://www.openvswitch.org/
https://www.openvswitch.org/
https://en.wikipedia.org/wiki/List_of_SDN_controller_software/
https://en.wikipedia.org/wiki/List_of_SDN_controller_software/
https://ryu-sdn.org/
https://github.com/faucetsdn/ryu/blob/master/ryu/app/rest_router.py
https://github.com/faucetsdn/ryu/blob/master/ryu/app/rest_router.py
https://github.com/RENCI-NRIG/CICI-SAFE
https://github.com/RENCI-NRIG/CICI-SAFE
http://sighpc.ipsj.or.jp/HPCAsia2018/poster/post102s2-file1.pdf
http://sighpc.ipsj.or.jp/HPCAsia2018/poster/post102s2-file1.pdf
https://prometheus.io/
https://prometheus.io/docs/guides/node-exporter/
https://grafana.com/
https://www.elastic.co/elk-stack
https://github.com/pegasus-isi/casa-nowcast-workflow
https://github.com/pegasus-isi/casa-nowcast-workflow
https://github.com/pegasus-isi/casa-wind-workflow
https://github.com/pegasus-isi/casa-wind-workflow

Eric Lyons is a Research Fellow

at the University of Mas-

sachusetts Amherst in the

Department of Electrical and

Computer Engineering (ECE).

Eric has been a member of the

Engineering Research Center

for Collaborative Adaptive

Sensing of the Atmosphere

(CASA) since 2004. He has

served as the radar operations

lead and since 2011 also the

chief Systems and Software

engineer for the CASA DFW

living lab in north Texas and is

additionally responsible for IT, security, and data management. Eric’s

research also extends into cloud computing and networking, with a

focus on scalable workflow management and the development of

toolsets to assist data scientists. In the last few years, Eric has lead

development of tailored weather extractions for GIS and aviation and

created a flight path routing suite to dynamically steer unmanned

aircraft around impactful meteorological and non-meteorological

objects.

Cong Wang is a senior network

and systems researcher at

RENCI, University of North

Carolina at Chapel Hill. His

research focuses on cloud com-

puting, networking, and dis-

tributed systems. He obtained

his PhD in department of Elec-

trical and Computer Engineer-

ing at University of

Massachusetts Amherst.

Komal Thareja is a Distributed

Systems Software Engineer at

RENCI, University of North

Chapel Hill.

Ryan Tanaka is a research pro-

grammer in the Science

Automation Technologies group

at ISI. He received his Master’s

degree in Computer Science

from the University of Hawaii at

Manoa in 2019. His interests

include distributed systems and

data intensive applications.

Paul Ruth is an Assistant

Director in Network Research

and Infrastructure at RENCI,

UNC-Chapel Hill. His research

interests include building and

using dynamic cloud computing

and network testbeds for soft-

ware defined exchanges targeted

at data driven scientific work-

flows. He earned his Ph.D.

degree in Computer Science

from Purdue University in 2007.

Ivan Rodero is a Research

Computer Scientist at the Sci-

entific Computing and Imaging

(SCI) Institute at the University

of Utah. His research focuses on

data-driven science and engi-

neering, high performance par-

allel and distributed computing

and advanced cyberinfrastruc-

ture. He has received various

awards for his research and

publications, including the

IEEE TCSC Young Achievers

in Scalable Computing Award.

He is senior member of IEEE

and ACM.

Ewa Deelman is a Research

Professor at the USC Computer

Science Department and a

Research Director of the Sci-

ence Automation Technologies

group at the USC Information

Sciences Institute (ISI). Her

group has lead the design and

development of the Pegasus

Workflow Management soft-

ware and conducts research in

job scheduling and resource

provisioning in distributed sys-

tems, workflow performance

modeling, provenance capture,

reproducibility, and the use of cloud platforms for science. Her group

Cluster Computing

123

has also experience in deploying and leveraging other advanced

cyberinfrastructure for science. Dr. Deelman received her PhD in

Computer Science from the Rensselaer Polytechnic Institute in 1998

and before joining ISI in 2000 she held a postdoc at the UCLA

Computer Science Department. She is an AAAS and IEEE Fellow.

Michael Zink is an Associate

Professor in the Electrical and

Computer Engineering Depart-

ment at the University of Mas-

sachusetts in Amherst. He

received his PhD in 2003 from

the Multimedia Communica-

tions Laboratory at Darmstadt

University of Technology. He

works in the areas of future

multimedia systems, Internet

architectures, and sensor

networks.

Anirban Mandal serves as the

Assistant Director for network

research and infrastructure at

Renaissance Computing Insti-

tute (RENCI) at University of

North Carolina, Chapel Hill. He

leads several efforts in cyberin-

frastructure research in support

of science. His research interests

lie in the areas of distributed

systems, cloud computing, net-

working, and data-driven scien-

tific workflows. His research

deals with resource provision-

ing, scheduling, performance

analysis, machine learning, and anomaly detection for large scale

scientific cyberinfrastructures, next generation networks and experi-

mental testbeds. Prior to joining RENCI, he earned his PhD degree in

Computer Science from Rice University in 2006 and a Bachelor’s

degree in Computer Science & Engineering from IIT Mumbai, India

in 2000.

Cluster Computing

123

	Fair sharing of network resources among workflow ensembles
	Abstract
	Introduction
	Related work
	Cloud platforms
	Inter-domain networking and compute infrastructure provisioning for science workflows
	Science workflow management systems

	Background
	Pegasus WMS
	HTCondor
	Mobius
	DyNamo
	Target cyberinfrastructure

	CASA---motivation
	Nowcast
	Wind speed

	Approach---DyNamo extensions
	vSDX module
	Pegasus ensemble manager
	Prometheus monitoring
	Operational effect on CASA’s workflows

	Evaluation
	CASA Pegasus workflows description
	Nowcast
	Wind
	Workflow testcases

	Experimental infrastructure
	Software

	Workflow ensembles---network requirements
	Experimental results
	Dedicated link performance
	Uncontrolled network sharing
	Applying SDX QoS policies
	Applying QoS policies using Pegasus-EM
	Discussion

	Conclusion
	Acknowledgements
	References

