Manuscript submitted to doi:10.3934 /XX.XXXXXXX
AIMS’ Journals
Volume X, Number 0X, XX 20XX pp. X—XX

BAYESIAN TOPOLOGICAL SIGNAL PROCESSING

CHRISTOPHER OBALLE*

University of Notre Dame, Department of Aerospace and Mechanical Engineering
Fitzpatrick Hall of Engineering and Cushing Hall
112 N Notre Dame Ave, Notre Dame, IN 46556

ALAN CHERNE

University of Tennessee, Department of Mathematics
1403 Circle Drive.
Knoxville, TN 37996-1320

DAVE BOOTHE AND SCcOTT KERICK

US Army Research Laboratory
7101 Mulberry Point Road, Bldg. 459
Aberdeen Proving Ground, MD 21005-5425

P1oTR J. FRANASZCZUK

US Army Research Laboratory and Johns Hopkins University
7101 Mulberry Point Road, Bldg. 459
Aberdeen Proving Ground, MD 21005-5425

VASILEIOS MAROULAS*

University of Tennessee, Department of Mathematics
1403 Circle Drive.
Knoxville, TN 37996-1320

ABSTRACT. Topological data analysis encompasses a broad set of techniques
that investigate the shape of data. One of the predominant tools in topological
data analysis is persistent homology, which is used to create topological sum-
maries of data called persistence diagrams. Persistent homology offers a novel
method for signal analysis. Herein, we aid interpretation of the sublevel set
persistence diagrams of signals by 1) showing the effect of frequency and in-
stantaneous amplitude on the persistence diagrams for a family of deterministic
signals, and 2) providing a general equation for the probability density of persis-
tence diagrams of random signals via a pushforward measure. We also provide
a topologically-motivated, efficiently computable statistical descriptor analo-
gous to the power spectral density for signals based on a generalized Bayesian
framework for persistence diagrams. This Bayesian descriptor is shown to be
competitive with power spectral densities and continuous wavelet transforms
at distinguishing signals with different dynamics in a classification problem
with autoregressive signals.
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1. Introduction. Data from measurements sampled in time create time series,
which are useful descriptors of natural phenomena and artificially-created signals
alike. Time series analysis is performed to extract meaningful statistics and other
characteristics from data ?. Frequency-domain methods are particularly suited for
data exhibiting oscillatory behavior. A commonly used tool for nonparametric spec-
tral analysis is the discrete Fourier transform 7. Alternatively, parametric methods
are frequently used to estimate the power spectral density of stochastic, stationary
signals 7. For non-stationary signals, time-frequency methods, e.g. wavelets 7 or
matching pursuits 77, provide useful characterizations of different time series. One
of the important applications of time series analysis is in neuroscience and neurol-
ogy where measurements of electrical activity in the brain (electroencephalography,
EEG) can provide information about brain function and serves as an important
clinical diagnostic tool. In this paper, we present a novel approach to time series
analysis using persistent homology within a Bayesian framework. We illustrate the
method on data generated by an autoregressive model simulating frequency char-
acteristics of EEG signals 7.

Persistent homology is the workhorse of topological data analysis (TDA), a set
of ideas and tools to make inferences about topological and geometric aspects of
data 7. Efficient methods to compute the persistent homology of data were unveiled
in 7. Later, persistence barcodes, topological summaries to describe the shape of
data, were introduced ? and their theoretical properties were investigated 77. In
particular, 7 showed that persistence barcodes were stable under perturbations of
underlying data. A comprehensive survey of persistence barcodes may be found in
o

TDA, persistent homology in particular, has been used for signal processing in
many applications, including detection of periodic behavior, change point moni-
toring in genetic regulatory systems, detection of bifurcation in stochastic delayed
differential systems, acoustic signal identification, and prediction of financial crashes

persistent homology to create error tolerant systems for signal processing. These
applications are bolstered by numerous theoretical results concerning the homol-
ogy of simplicial complexes built on point clouds obtained from delay embeddings
of time series 7?7. Homology of these simplicial complexes is summarized in a
persistence diagram, an equivalent representation of the persistence barcode as a
multiset of points in R2. Recently, the work in ? generated a topological signal
processing approach by viewing a signal as a hypergraph based on the simplicial
complex. Another way to create persistence diagrams is with the sublevel sets of
a continuous function ?. This method is attractive for signal processing as it may
be used directly on signals to summarize their shape without selection of a delay
parameter; however, a framework for inference about qualities such as frequency
and instantaneous amplitude of a signal from its sublevel set persistence diagram
remains wanting. Herein, we examine links between frequency content and instanta-
neous amplitude of signals and their sublevel set persistence diagrams, then explore
a Bayesian method for inference with these topological objects.

A large body of work in TDA is concerned with developing concrete inferential
tools for persistent homology. The work ? introduces persistence landscapes, a
Hilbert space representation of persistence diagrams built with collections of tent
functions; ? introduces another Hilbert space representation, the persistence im-
age, which is a pixellated version of a persistence diagram created by convolving its
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points with a Gaussian kernel then binning. In a different direction, ? provides a
notion of confidence sets for persistent diagrams based on kernel density estimators
constructed from bootstrapped samples of point cloud data along with stability
results for widely-used persistence diagram metrics (e.g., the bottleneck distance).
Probability densities of persistence diagrams themselves, viewed as point processes,
were considered in ? wherein the authors construct a kernel for nonparametric den-
sity estimation. To the best of our knowledge, a Bayesian viewpoint for persistence
diagrams was first espoused in ?. Other works followed that blended Bayesian
ideas with persistent homology. 7 gives a framework for Bayesian optimization
with persistence diagrams, and the work ? discusses persistent-homology-inspired
likelihoods after using tropical geometry to introduce a sufficient statistic for per-
sistence diagrams. Finally, a generalized Bayesian paradigm to describe probability
distributions of persistence diagrams was introduced in 7.

The work ? is based on a point process model for persistence diagrams and
creates probability densities for the space in which they live. In this fashion, the
Bayesian model in 7 abstracts away from the data, choosing instead to focus on the
statistics of its persistence diagrams. Other authors have shown that persistence
diagrams are sufficient summaries of signals to answer pertinent research questions
777 like signal classification and seizure detection when concrete stochastic models
for signals of interest are difficult to specify. On a similar note, we investigate the
capabilities of the Bayesian topological model for signals by testing it to classify
autoregressive signals. We compare this method to other model-free approaches
for signal classification, specifically those based on feature extraction and machine
learning architectures in 7 and ?.

Our major contributions in this work are:

1. The establishment of interpretable links between sublevel set persistence dia-
grams of signals and their frequency domain,

2. The exploration of a Bayesian framework for time series classification, and

3. Evidence that Bayesian topological features of time series are competitive with
well-established features, specifically those from power spectral densities and
continuous wavelets, as distinguishing characteristics.

The paper is organized as follows. Section [2.I] contains our signal processing
background and an overview of the autoregressive model we use for data generation.
Section [2.2] outlines persistent homology of signals, persistence diagrams, and the
high-level stochastic model we use to describe them, namely point processes. Section
begins with Proposition [3.1] and Corollary which provide concrete equations
for the sublevel set persistence diagrams of a family of deterministic signals and
general random signals. Proposition [3.I] motivates the use of a Bayesian framework
for describing persistence diagram densities by showing the complexity of persistence
diagram distributions. The latter part of Section [3|details this Bayesian framework.
In Section we establish heuristic links between parameters of power spectral
densities of autoregressive time series and features of their persistence diagrams.
Then, in Section [.2] we compare Bayesian topological features to power spectral
density and wavelet features for autoregressive time series classification. Section
concludes with a discussion of our results.

2. Background. Throughout, z(t) denotes a real-valued, continuous time signal.
We suppose z is continuous to avoid complications when we introduce topological
concepts. Unless otherwise noted, time ¢ is given in seconds and units of frequency
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are in Hz. In general, + may be a sample from a stochastic process, which we
denote by X. For applications, one often uses a discretized approximation to x
obtained by fixing a sampling rate At > 0 then measuring x at regular intervals.
We denote elements of the discretized collection {z(nAt)}N_; by z,, where N is the
total number of grid points.

2.1. Signal Processing Preliminaries. In this section, we establish concepts and
tools from signal processing employed in Section [} During our analyses, we inves-
tigate autoregressive signals satisfying the AR(p) model z, = > 5 | a;zp—; + wy,
where p is the model order, a; are real-valued coefficients, and w,, are independent,
identically distributed samples from a Gaussian random variable N (0, o) with stan-
dard deviation o. This autoregressive model is used in various applications across
many fields with an easily computable power spectral density, px, that is described
by finitely many parameters 8; and f,

P
logpx (f) =2 (Zlog ’1 - efﬂ**%(f’“*f)’ +10ga> , (1)

k=1

where o is the standard deviation of w,, in AR(p) model. A derivation of Equation
(1) may be found in ?. Through inspection of Equation 7 one surmises that the
fx are locations of local maxima in the log PSD (and therefore also local maxima
of the PSD) and the 8 are corresponding damping factors controlling the width of
each peak. Namely, small and large S are associated with narrow and broad peaks,
respectively. As a peak broadens, the presence of oscillations of its corresponding
frequency diminish in the average signal. Therefore, we expect power spectral
densities with narrow peaks to yield signals with stronger oscillations.

2.2. Persistent Homology of Signals. In this section, we briefly discuss how to
employ the sublevel set filtrations of continuous functions in order to convert signals
to persistence diagrams. Persistence diagrams usually contain fewer elements than
their corresponding signals, so in a sense they compress information about a signal
into a lower dimensional representation.

For a fixed real number V', the sublevel set Cy of a signal z is defined by Cy :=
{zfl((—oo,V]) }, where xil((—oo,V]) ={teR:z(t) <V} z7! ((foo,V]) is
the set of times where z(t) is less than or equal to V. We refer to the collection
C := {Cy}ver as the sublevel set filtration of x. From the sublevel filtration C,
we obtain a persistence diagram for x by tracking the birth and death values of
connected components (which are in this case disjoint continuous intervals) in Cy
as V increases. Specifically, as V increases, connected components appear or merge
in Cy. To create a persistence diagram, we record the values, b and d, respectively,
at which a connected component appears and disappears by merging into one that
appeared earlier (a convention known as the Elder rule ?). For most continuous
signals encountered in applications, it can be shown b is always a local minimum
and d is always a local maximum ?. In the end, we aggregate each connected
component’s birth-death pair (b, d) to create a collection, D, known as a persistence
diagram. For a visual summary of persistence diagram generation through sublevel
set filtrations, see Figure which shows a damped cosine s(t; f, 3) := e~5* cos(27 ft)
with f =4 and 8 = 2. Notice in general that s(¢; f, ) has f local minima (ignoring
units of f) on the interval [0,1]. As the number of points in a persistence diagram is
equal to the number of its local minima, we immediately conclude that the diagram’s
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cardinality is f. To compute the coordinates of points in the persistence diagram,
notice that e~ is monotonically decreasing while each oscillation of cos(2m ft)
starts at a local maximum and has a unique local minimum. The latter implies
that each oscillation gives rise to a connected component during the sublevel set
filtration of s and that this connected component merges into another when the
filtration reaches the value of the local maximum where the oscillation begins. The
former implies that connected components for oscillations occurring later in time
disappear sooner than those born earlier due to the Elder Rule.
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FIGURE 1. Shown above (a) are the sublevel sets C_q 5, Co, Co.25,
and C} for a damped cosine e =2 cos(87t). (b) shows the persistence
diagram of the sublevel set filtration. The points in (b) are colored
to match the connected components their birth coordinates corre-
spond to. The transition from Cy to Cj.o5 depicts the Elder rule;
notice that in Cj, there are light blue and purple connected compo-
nents, which merge together in Cpy 25. A similar merging happens
in the transition from Cyo5 to Cy 5. Since the purple component
has a later birth value, it disappears into the light blue compo-
nent, which persists until it merges into the green component by
the same line of reasoning.

2.3. Point Processes. In practice, we observe random signals. Uncertainty in
signals arises independently from stochasticity in underlying data-generating phe-
nomena and measurement noise due to limitations in data-collection methods. The
latter source of uncertainty is pictured in Figure [2] where a signal is embedded in
different levels of white Gaussian noise. The persistent diagrams created from sto-
chastic signals (subsequently referred to as random persistence diagrams) inherit
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randomness, necessitating a probablisitic description. Intuitively, a random persis-
tence diagram is a random collection of points in a subset of the plane. Elements of
a persistence diagram lack an intrinsic ordering, and moreover persistence diagrams
sampled from the same random signal can have different cardinalities. The theory
of random variables is ill-equipped to handle such objects directly since it concerns
itself with random elements that take values in a Hilbert space. However, the the-
ory of point processes rigorously treats random collections like random persistence
diagrams and provides machinery to model them. A point process is a set-valued
random element characterized by a random variable K that prescribes the cardi-
nality distribution and a set of spatial distributions conditioned on K that dictate
where to place points in samples once cardinality is known. Formally,

Definition 2.1. For a discrete random variable K, a (finite) point process P :=
{z1,...,2K} is a random collection of elements in a Polish Space X characterized
by a collection of symmetric conditional probability distributions P|K = k ~ P.

In general, an exact description for K and the spatial distributions of a random
persistence diagram is computationally intractable, even in scenarios where a reli-
able stochastic model for X is known a priori. Thus, studying random persistence
diagrams requires a well grounded framework for estimating their distributions.
The method we choose is based on the Bayesian paradigm for persistence diagrams
introduced in 7. Central to this framework are Poisson point processes, which are
defined below.

Definition 2.2. Let A : R? — R be a non-negative function satisfying 0 < A < oo
where A := ng A(x) dx. The function A is called the intensity function or simply
the intensity. A Poisson point process, P is a point process satisfying:

K ~ Poisson(A) (2)
1 n
PIK =k~ F];[l)\(xi). (3)

Definition [2.2] prescribes a natural recipe to sample from a Poisson point pro-
cess. First, one determines the cardinality of P by drawing from Poisson(A). With
this number in hand, say n, one then makes n independent draws from the prob-
ability density % to spatially distribute the points in R?. Poisson point processes
are completely characterized by their intensities. This makes them a convenient
tool for Bayesian inference on the space of persistence diagrams since they can be
used to specify prior distributions using a single, real-valued function on R%. With
prior distributions in hand, the last ingredient one needs for Bayesian inference is
a likelihood, which is obtained via marked point processes (defined below).

Definition 2.3. Let {(y|x) be a probability density parameterized by x. A marked
point process is a collection (P, M) where

k
MIP = {x1,...,xx} ~ [ [ tlyilx:). (4)
i=1
Elements of M in Definition [2.3] are determined by independent draws from a

stochastic kernel £(-|p), which is a probability density parameterized by the elements
of samples from P.
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FIGURE 2. This figure illustrates sources of uncertainty in persis-
tence diagrams. Shown above are signals with additive noise (a)
N(0,0.01), and (b) N(0,0.1) along with their persistence diagrams.
The persistence diagram for the true underlying signal is shown in
red. Spurious features arise due to noise and additionally, true
features also shift around.

3. Methods: Uncertainty Quantification for Random Persistence Dia-
grams. The persistence diagram of a signal encodes information about its fre-
quency and peak-to-peak amplitude. This is exemplified in Proposition [3.1] and
Corollary [3.1] below.

Proposition 3.1. Let ag(t) be a monotonically non-increasing function of time
parameterized by a real number 8 and suppose that ¢(27ft) is a periodic signal
parameterized by a positive frequency f such that ¢(0) is a local maximum and
each cycle of ¢ has a unique local minimum. The persistence diagram Dy g of

ag(t)¢(2m ft) on the interval [0,1] is given by Dy = {(ag(ti + tm)o( 2 f(t; +

Lf] )
tm)),aﬁ(ti)qﬁ(wati))};l where, | f] denotes the integer part of f, t; = % and

K3

tm is the time of the first local minimum of ag(t)é(2 ft) in [0, 1].

A proof of Proposition may be found in the Appendix. Proposition
establishes direct links between frequencies and instantaneous amplitudes to the
persistence diagrams for a large class of deterministic signals that naturally occur
in applications. The parameter 5 in Proposition can have various effects on
the statistics of the persistence diagram of the signal. Figure [1| considers the signal
e Pt cos(87t), and in that example increasing the value of 3 increases the variance
in persistence coordinates of the diagram. When in the presence of noise or high-
frequency oscillations, such as in Figures [2] and |3] the effect is inverted - increasing
[ leads to a decrease in variance.

Next, we turn our attention to relationships between stochastic signals and their
persistence diagrams. Figure a) shows the signal s(t;4,2) with additive Gaussian
white noise and its persistence diagram. Although the presence of noise introduces
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FIGURE 3. Top: We consider three signals. The blue signal (Signal
1) and the red signal (Signal 2) are modeled by ag(t) cos(8nt) where
ag(t) = 5e™P! with 8 = 1,4 in Signals 1 and 2 respectively. The
green signal (Signal 3) is then added to each case and the ampli-
tudes are translated to have global minima equal to zero. Bottom:
The associated persistence diagrams are plotted using the method
described in Section We observe that as [ increases, the high-
frequency oscillations are less affected by the low-frequency signal
and converge faster towards the uniform shape of the green sig-
nal. This leads to a decrease in the variance of the persistence
coordinates in the red diagram.

spurious low persistence features in the persistence diagram, the relationship un-
veiled in Proposition [3.1] is evident in the higher persistence points. In this case,
noticeable relationships still exist between the frequency and instantaneous ampli-
tude of the deterministic signal embedded in noise and its persistence diagram.

The relatively simple closed form in Proposition [3.1]is a consequence of the min-
max pairs in the signal, which determine points of its persistence diagram, having
a clear ordering in time. In general, suppose x is sampled from a stochastic process
and consider its discretization {x,}~_,, which we momentarily refer to as = by a
slight abuse of notation. Ideally, the probability distribution P(D¥) for the random
persistence diagram of D¥, would be expressed as P(D*) = U, jez{P(x;,z;)} for a
fixed set of index pairs Z. In this situation, which is similar to the setting of Proposi-
tion[3.1} D7 is a fixed union of joint random variables. Unfortunately, the aforemen-
tioned decomposition of P(D?) does not hold in general, specifically because distinct
orderings of values of elements in x are associated to different minimum-maximum
pairings. The next lemma establishes events £ in which P(D?|€) = U; jez{P(zi, z;)}
holds.

Proposition 3.2. Let = be a signal randomly sampled from a stochastic process
X. Consider the time series {x,}L_; created by measuring = at regular intervals
on [0,1]. Denote the persistence diagram for {z,}L_; by D®. Let II; be the
set of permutations of {1,2,...,L} and suppose for a fixed element 7 of II, say
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7w = {i1,42,...,iL}, Ox is the event that {z;, < x;, < -+ < x;, }. D*|O; is a
fixed union of joint random variables; we denote the probability distribution for
this collection by P(D*|Oy).

Proof. The event O, corresponds to an exact ordering of the values of elements
in z. The exact ordering preserves the minimum-maximum associations used to
construct sublevel sets to create D*. In particular, D* = U, jez, {(z;, x;)} for a
fixed set of index pairs Z, given O,. This establishes the claim.

Corollary 3.1. Let x be a signal randomly sampled from a stochastic process
X. Consider the time series {x,}L_; created by measuring = at regular intervals
on [0,1]. Denote the persistence diagram for {z,}L_; by D®. Let II;, be the
set of permutations of {1,2,...,L} and suppose for a fixed element 7 of II, say
7w = {i1,42,...,i5}, Oy is the event that {z;, < x;, < --- < x;, }. The probability
distribution for D7 is given by

P(D*) = . P(D*|0x)10,(D"). (5)
mell

where P(D?|0,) is the distribution for a random collection of points given the
ordering O,.

Let IT* be the subset of II such that each element of II* is an event with k local
minima. Then, the cardinality distribution of D7 is given by

P(D*|=k)= ) P(m). (6)

wellk
Proof. Equation () follows from Proposition [3.2] by the law of total probability and
Equation @ is established by a straightforward counting argument. O

Intuitively, the frequency content and distribution for instantaneous amplitudes
of a random signal z influence the probability of events in IT in Corollary [3:1] In
general, describing the persistence diagram in its entirety for a time series of length
L arising from a random signal requires one to construct L! different probability dis-
tributions. We circumvent this problem by using a flexible Bayesian framework to
approximate distributions for persistence diagrams. We elaborate on this method-
ology for the remainder of Section [3] With this tool in hand, we can model the
distributions of persistence diagrams in a computationally expedient manner.

For a random signal X, we refer to the random object DX whose samples are
drawn by creating persistence diagrams from samples of X as a random persistence
diagram. Formally, DX is a point process (Section. Corollary demonstrates
that an exact description for the spatial distributions of DX and its cardinality N is
computationally intractable in general, even in scenarios where a reliable stochastic
model for X is known a priori. Thus, studying DX requires a well grounded frame-
work for estimating its distribution. The method we choose is based on a Bayesian
paradigm for persistence diagrams. Let (D, DY) be a collection of point processes.
DX models the random persistence diagram for X while DY models observed per-
sistence diagrams, which are samples from DX obscured by measurement noise. We
impose additional structure on DX and DY to account for common experimental
conditions and model dependencies between DX and DY, namely:

(M1) DX = DV U D? where DV and D© are independent Poisson point processes
with respective intensities (1 — a)Apx and aApx, and
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(M2) DY = D% U DM, where D is a Poisson point process with intensity \g
and DM forms a marked Poisson point process (D?, DM) with D® whose
stochastic kernel is denoted by £.

DV models the event that an element x from a sample of DX does not appear
in the observed, noisy diagram DY, which happens with probability 1 — . On the
other hand, an element from DX may appear in DY as a mark with probability a.
This is accounted for by D® and D™. D models the spurious points that arise
in DY due to noise or other randomness. Theorem gives a closed form for the
posterior intensity of the model outlined in (M1) and (M?2).

Theorem 3.1. Let N (x;u,ol) denote the two-dimensional normal density with
mean g and covariance matrix oI and let N* denote the restriction of A/ to
W := {(b,p) € R?> : p > b > 0}. Suppose in (M1) and (M2) that Apx(x) =
Z]K:l ch*(x;uj,ajI) for positive constants cf, « is a constant, and {(y|x) =
N*(y;x,0Y I). Then, for m independent samples from DY ,DY1:m it follows that

m K
Apxiprim (x) = (1 = a)Apx(x) + %Z S N YN (i, 0YT) (7

=1 ycDYi j=1

where
Cy = w‘g’
PN Fa X ul Q)
s\Y J=1"5 ]
for

wy = ch(y;uj,(JjJraY)I),Q? = /WN(u;u;',cf;'I)du
y . O'jO'Y
I o+ oY’

oy +o¥
= H ,and o
Theorem 3.1 depends on several parameters which need to be effectively chosen.
As the distributions involved are Gaussian we can use bandwidth estimators such
as Silverman’s rule 7 to estimate covariances o; in the prior using a subset of the
training data. In our example we relied on a grid search and cross-validation to
find suitable a?. Notice in the equation for O’;»J if we divide the numerator and
denominator by ¢¥ the denominator only depends on the ratio of o; to o, and
therefore we can fix ¥ in our search. In regards to the frequency and amplitude
of signals, one consideration that must be made is the fineness of the partition for
the sublevel sets. In general, increasing the fineness of a partition will increase the
cardinality of the density as more local minima are captured - this in turn will yield
a different intensity for the underlying point process. This effect is mitigated by the
presence of the noise distribution Ag in the formula for the intensity, as points with
lower persistence are often related to noise. Figure [4] visually depicts the intensity
in Equation using a persistence diagram from a simulated signal. In particular,
Figure [4] demonstrates how Ag in Theorem can be leveraged for regularization
of posterior intensities to prevent overfitting to noise. Figure [5] illustrates more
relationships between properties of signals and those of their posterior intensities
computed according to Theorem [3.1]
Figures 5| (b) and (d) show the persistence diagrams for 5cos(8t) + cos(64t)
and cos(87t) + cos(64nt) on the interval [0, 1], respectively. In both figures, the
points near the Birth axis correspond to the small peaks that ride along the low



BAYESIAN TOPOLOGICAL SIGNAL PROCESSING 11

Signal Persistence Diagram
15
W15
)
£10 g1.0
X k)
wn
0.5 s
9 0.5
0.0 PG N S .
000 025 050 075 1.00 S i ]
t (seconds) Birth
(a) (b)

Prior Intensity 5 Posterior Intensity

N
=]

=
w

I
wn

EE
0.5 1.0 15 20 00 05 1.0 15 20
Birth Birth

(c) (d)

Persistence
=
=)

-
QOFFNNWWAPS
ouvouvouwouowm

Intensity

o
o
o

FIGURE 4. (a) The damped cosine e~2!cos(87t) with additive
noise A(0,0.01) and (b) its persistence diagram. (b) shows an un-
informative prior intensity with a single component at (1,1) with
covariance matrix 10/. Using the model from Equation with
the prior in (c) and the observed diagram in (b) results in the
posterior intensity shown in (d). To account for spurious points,
which we suspected to be low persistence in this example, we placed
components of Ag at (0.5,0.1),(1,0.1), (0.75,0.1) and (1.75,0.1).

frequency wave while the group of points farthest from the Birth axis correspond
to global maxima and minima. As can be seen in Figure [5[ (b), more low frequency
power than high frequency power causes a wider spread in the birth times of low
persistence points. This causes greater variance in the birth dimension of the poste-
rior intensity and also in the persistence dimension, similar to Figure [3] Moreover,
the high persistence points in Figure|5| (b) have smaller birth coordinates and larger
persistence coordinates than those in Figure |5 (d). As a result, the posterior in-
tensity in Figure [5| (b) exhibits an isolated high-persistence mode, which is not as
distinguished in Figure [5] (d).
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FIGURE 5. This figure demonstrates the effect of greater low fre-
quency power on the persistence diagram of a signal. Figures (a)
and (c) show two signals, respectively, which are the result of sum-
ming low-frequency and high-frequency oscillators. The power of
the low-frequency signal is greater in (a) than in (c¢). To ensure
that persistence diagrams in (b) and (d) lie in W, the aggregate
signals in both (a) and (c) have been translated so that their ab-
solute minima are at zero. Notice in (b) that elements of the per-
sistence diagram show greater spread along the Birth axis than in
(d). This results in greater birth variance of the corresponding
posterior intensity. Also notice the isolated high-persistence mode
in (b), which is not present in (d). These phenomena arise because
the low frequency signal scatters the higher frequency peaks along
the Amplitude axis.

4. Results. Electroencephalography is a neuroimaging technique wherein elec-
trodes are placed on a subject’s head to measure local changes in voltage over time,
which are reported as a collection of time series. In our experiments, we examine
synthetic EEG signals generated according to Equation (1). We select EEG signals
because they have well-studied power spectra. In particular, the log power spectral
density for EEG is approximately inversely related to frequency, a phenomena we
subsequently refer to as 1/f behavior. We can easily simulate this behavior with
Equation by including a frequency component f; equal to zero. Moreover, EEG
signals associated with different brain states often exhibit a prominent peak in their
power spectral density at a nonzero frequency, indicating the discernible presence
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of oscillations at that frequency in the signals. For example EEG signals with peaks
in the 4 — 7 Hz, 8 — 12 Hz, or 14 — 32 Hz ranges, referred to as theta, alpha, and
beta signals, respectively, may indicate heightened emotional states, eyes open, or
drowsiness 77. Oscillatory behavior can also be accounted for with Equation by
including a particular nonzero frequency component fs.

Selection of the damping factor 51 for the zero frequency component f;, as well
as ranges for fo and f2 (the location of the oscillatory component in the PSD
and its accompanying damping factor) was done by using the Burg method to fit
autoregressive models to real EEG signals (model order was determined using the
methodology from ?). Two one second and two five second epochs were selected
for their visually apparent oscillations. The exact location of spectral peaks along
with their corresponding damping factors as determined after fitting autoregressive
models are shown in Table [2| of the Appendix.

Informed by the parameters in Table [2] we created 29 x 29 sets of synthetic EEG
signals A? where f € {4,5,...,32} and 8 € {4,5,...,32}. A fixed set A? contained
30 signals simulated by our autoregressive filter with f; =0, fo = f, 1 = 200, and
B2 = B . The signals in A? are draws from a stochastic process whose PSD has a
peak at f with a damping factor of 8, so we expect these signals to resemble an
oscillator of frequency f; the strength of this resemblance diminishes as § increases.
Since the PSD for .A? more closely resembles 1/f as § increases, we expect more
low-power, high frequency signals riding on high-power, low frequency signals as 3
decreases. Moreover, the ratio of the peak at zero to that of the peak at f increases
as [ increases.

4.1. Relationships between the Frequency and Diagram Domains. In this
section, we examine relationships between f and § and the persistence diagrams
of A? . Specifically, we look at how f and S relate to the average cardinality and

variance in birth values for persistence diagrams of signals in A?. As in the deter-
ministic setting, we expect cardinality to show a strong association with the peak
frequency f for .A?. Our choice to inspect birth time variance is motivated by the
discussion at the end of Section Bl

Fig. |§|shows the average cardinality of persistence diagrams in A? against the
location of peak frequencies f with colors showing the damping factors 5. A strong
monotonic trend is apparent for all damping factors. For smaller damping factors,
the relationship more heavily resembles that in the deterministic setting (see Section
3) where PD cardinality from a one second epoch is in fact equal to the frequency of
the signal. Notice the effect of § diminishes as f increases, which implies cardinality
is more sensitive to higher frequencies.

Figure [7] shows the relationship between f, 3, and the birth value variance for
A?. Birth variance increased as the damping factors increased. This is consistent
with the idea that higher low-frequency-power-to-high-frequency-power ratios re-
sult in more variation for low persistence birth times. Interestingly, birth variance
decreased as frequency increased, suggesting this trend is less notable at higher
frequencies.
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FIGURE 6. This plot depicts the relationship between the cardinal-
ity of persistence diagrams and the frequency of the dominant os-
cillation for one second autoregressive signals across various damp-
ing factors. For each included frequency and damping factor, we
simulated thirty signals (each had a component fixed at zero to
give the 1/f PSD commonly seen in EEG), computed their persis-
tence diagrams, then recorded their average cardinality. We see a
strong positive correlation between this average cardinality and the
frequency of the dominant oscillation (i.e., PSD Peak Frequency)
consistent with the idealized deterministic sinusoid case.
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FIGURE 7. The peak frequency f for A? plotted against the aver-
age birth variance for its persistence diagrams. Colors depict the
damping factor (.

4.2. Classification. As a point of comparison to traditional signal processing tech-
niques and to showcase the utility of topological methods, we used features derived
from Bayesian persistent homology (Section [3) and discrete Fourier transforms to
classify signals with different dynamics. Specifically, we considered five classes of
signals in total, each with a distinct rhythm quantified by a nonzero f; parame-
ter in our autoregressive filter (additionally, all classes had a peak at zero with a
fixed damping factor to simulate the 1/f behavior commonly present in the PSD
of EEG). Four classes we considered were: alpha (a), high beta (hb), low beta (Ib),
and theta (t), which had (autoregressive) spectral peaks at 10, 21, 14, and 6 Hz,
respectively. We also included a null (n) class that had no peaks aside from one
at zero. These spectral peaks were chosen for their prevalence in EEG data. We
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considered signals with damping factors of thirty-two to mimic weak oscillatory be-
havior to tackle a challenging problem. Each class of signals contained 30 examples.
Visual descriptions of our data are provided in Figure [8] of the Appendix.

We used three different classifiers in our experiment. The first classifier, logistic
regression (LR), is the most basic and models the probability that a signal belongs
to class i as a function of a linear combination of input features. Another classifier
we used was a support vector machine with a linear kernel (SVM-Lin) , which works
by deciding optimal decision boundaries between the classes in feature space, then
assigning new observations to classes based on these decision boundaries. A hy-
perparameter in SVM-Lin is a regularization term that penalizes mis-classification.
To tune this hyperparameter, we relied on a grid search. The last classifier we
considered was a multilayer perceptron (MLP), also known as a feedforward neu-
ral network. We chose a neural network architecture analogous to one used in ?.
Namely, we used 1 hidden layer of 4 neurons with a saturating linear activation
function, followed by a softmax layer for classification.

We used three sets of features for each classifier. The first two sets were derived
from standard signal processing methods. The first set was based upon PSDs esti-
mated via discrete Fourier transforms. In particular, for each signal, we computed
its DF'T then recovered an estimate to the PSD. We then binned the total power in
frequency bands of interest (0.5-4 Hz, 4-7Hz, 7-12Hz, 12-21 Hz, 21-32Hz, > 32 Hz)
to obtain a 6-dimensional feature vector. The second set of features were created
from continuous wavelet transforms. Specifically, we used the Mexican hat mother
wavelet to obtain time-frequency plots for each signal. These time-frequency esti-
mates were then binned in the same frequency bands as the PSD estimates to obtain
6 dimensional vectorizations. The final set of features we considered were derived
from the Bayesian method outlined in Section [3| For each signal, we computed its
persistence diagram, then used Equation to estimate a posterior intensity. We
then took 6 features of the posterior intensity to obtain 6-dimensional vectoriza-
tions. As the estimated posterior intensities were sensitive to the prior used to fit
them, we tuned parameters in our prior Ap using a grid search and LR as LR had
no hyperparameters to consider, unlike the other two classifiers (see Appendix).
To compete with the 6-dimensional features above, the following features of the
posterior for a diagram D, Ap|p, were chosen:

1. The total intensity, fw Ap|p(u) du, which gives the expected cardinality.
The birth coordinate of the center of mass of Ap|p, fW ulp|p(u) du.

The persistence coordinate of the center of mass.

The variance in birth coordinates for the posterior means of Ap|p.

The variance in persistence coordinates for the posterior means of App.
The covariance of birth and persistence coordinates of posterior means in
)\D|D'

A e

The first feature is the most direct proxy to the frequency of the signal; the second
and third account for defining features of the point process model. The fourth,
fifth, and sixth features capture the variation in birth and persistence coordinates,
as motivated by Figures[3]and [4] Based on the observations surrounding Figure
we expected different ratios of low-frequency to high-frequency power in the signals
to yield posterior distributions with different properties.

For each classifier and vectorization, we used leave-one-out-cross-validation to
assign a label for each signal. Results from our classification are shown in Table
Examining Table [1| shows competitive performance of Bayesian-derived persistence
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diagram features for signal classification to that of well-established features for signal
processing.

Bayesian PSD CWT
Classifier Precision Recall Precision Recall Precision Recall
LR 0.84 £ 0.06 | 0.85+0.07 | 0.90 +0.04 | 0.90 +0.04 | 0.91 +0.03 | 0.90 + 0.04
SVM - Lin. | 0.92 £0.05 | 0.91 £0.04 | 0.91 £0.03 | 0.90 £ 0.05 | 0.91 £0.04 | 0.91 +0.03
MLP 0.89 £0.05 | 0.88 £0.04 | 0.90 +0.02 | 0.89 +0.02 | 0.92 + 0.03 | 0.93 + 0.02

TABLE 1. Precisions and recalls for each feature and classifier. Re-
sults are reported as mean + standard error across each class.

5. Discussion and Conclusions. Herein, we give an interpretable framework for
signal processing via sublevel persistent homology. Explicit representations for per-
sistence diagrams of signals are provided in Propositions [3.1] and which aid
interpretability of persistence diagrams in a signal processing context. In future
work, one may expand on Proposition by finding closed forms for more general
family of signals, and investigate families of stochastic signals for which Proposition
yields tractable probability densities. This would further enhance interpreta-
tion of persistence diagrams, making them more attractive objects for the scientific
community.

We also provide a method to probabilistically describe persistence diagrams of
signals by relying on a Bayesian paradigm for topological data analysis. This ap-
proach imposes no assumptions on the stochastic behavior of the signals. Our results
in classification provide evidence that this probabilistic descriptor is competitive
with well-established descriptors like the power spectral density and continuous
wavelet transform for distinguishing time series dynamics. In the future, one may
examine the effectiveness of higher resolution summaries of posterior intensities for
use in advanced deep learning architectures. This is necessary for the incorporation
of topological methods into state-of-the-art signal processing methods.
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Appendix. The following theorem is useful to the proof of Lemma [5.1} Its proof
can be found in 7.

Theorem 5.1 (The Superposition Theorem). Let {II,, },en be a collection of inde-
pendent Poisson point processes with respective intensity measures A,,. Then, their
superposition IT given by II := J, I, is a Poisson PP with intensity measure

A= ZnEN A

The next lemma originally appeared in 7. Here, we present a simplified proof
without relying on probability generating functionals, as was done in ?.

Lemma 5.1. Let DY and D© be independent Poisson point processes on R? with
intensities (1 — a)A(x) and aA(x), respectively, for a € [0, 1]. Suppose further that
DO is a marked Poisson point process with stochastic kernel /(y|x) and denote
the marks of D? by DM. Let DS be a Poisson point process whose intensity is
Mg, and suppose D? is independent of D€ and DV. Define DX := DV U D and
DY := DMUD?¥, and consider a sample DY from DY. Then, the posterior intensity,
Apx|pv, for the point process Dx|Dy is

) yIX)
Apx|py (x) = (1 ;):Y oy +fA o) (8)

Proof. By definition, Apx|py(x) is uniquely characterized by the identity

/AADXW(X) dx =E (|(D*|DY) N Al) (9)

for any A C R?, where the expectation on the right hand side of Equation @D is
taken with respect to the probability measure of DX |DY . Hence, it suffices to show
that Equation satisfies Equation @ Notice that

DX|DY = (DY u D?)|DY (10)
= DY u(D°|DY) (11)
since DV is independent of DY'. Thus, by Theorem [5.1}
E ((D¥[DY) N Al) =E (IDY U (D°[DY) N A|) (12)
=E (DY nA|) +E ((D°|DPY) N A|) (13)
By assumption, the left hand term in Equation is
E (|DY nA|) = /A(1 — a)A(x) dx. (14)

It remains to compute the right hand term in Equation . To this end, let
P(y € DM ,x € A) be the joint probability that y is drawn from DM and that its
corresponding element in the draw from D@, x, lies in A. Notice,

E((DCDY)NA) = Y Ply e DM,x € A) (15)
yeDY
= Y Py e DM)P(x € Aly € DV) (16)

yeDY
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since elements of DY are drawn from D or DM: in the former case, the elements
bear no association to those in draws from D while in the latter, each element
corresponds to exactly one element in a draw from D?. Moreover, each element in
DY is an independent draw from the scaled intensity of DY since it can be shown
DY is a Poisson process ?. Now, since DY is an independent mixture of Poisson
processes with intensities Aj; and Ag, it follows
Am(y)

Am(y) + As( )
B f a\(x y|x ) dx

© As(y) + [ aA(x)(y|x) dx
where the identity Ay (y) = [ A(x)€(y|x) dx follows by the Marking Theorem. To

compute the other component in Equation (I6)), we rely on Bayes rule to compute
a posterior probability:

P(y € DY) = (17)

(18)

P(x ) (y[x)

POY) = OBl i (19)

Using the fact that D is a marked Poisson point process, we substitute for each
of the components in Equation :

__ PP(y[x)
PN = TRGop(y) ax 0
AUy [x)
= TAGUy ) dx @)
Next, we integrate Equation over A:
P(x € Aly € DM) = f)\1y|udu_/ A(x)0(y|x) dx (22)

Substituting Equations and (| in Equatlon 6f) yields

) Y (Y|X)
E(|(D°DY)NA|) = gy/ e +IA T dx ) dx. (23)

Finally, substituting Equations (23|) and into Equation |§| reveals:

X|pY = —a)\(x
B (0¥ DY) n4)) = [ (1-ae)

(.VIX)
+ Z As(y +f)\ )dx)dx’ (24)

o

which upon inspection establishes the lemma. O

Lemma 5.2. Let DYtm = {DY1 DYz ... DYm} be independent samples from DY
in Lemma |8 Then Apx pvi.. (X) = Ly Apx|pv; (x) is an unbiased estimator
of the intensity Apx|pv (x) in Lemma

Proof. By Theorem the intensity for the point process given by the superposi-
tion U2, DX DY is mApx pv (x). The claim now follows. O

The last tool we need to prove Theorem is a standard result that gives a
closed form for the product of two Gaussian densities. Its proof may be found in ?.
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Lemma 5.3. Let N (x; i, P) denote the two-dimensional normal density with mean
p and covariance matrix P. For 2x2 matrices H and R, with H positive definite,
N(y; Hx, R)N (x; 1, P) = q(y)N'(X; pis, P.), where q(y) = N'(y; Hu, R+ HPHT),
pe =p+ K(y —Hp), P. = (I — KH)P, and K = PHT(HPHT + R)~!.

With Lemma [5.1] Lemma [5.2] and Lemma [5.3] in hand, we are ready to prove
Theorem [B.11
Proof of Theorem By Lemmas [5.1] and we have:

)\DX|'DY1:m (X) = (1 — a))\DX (X)+

o & Apx (x)((y[x)
m2 2 N e a2

Theorem follows by substituting the densities for A\px, £, Ap, then appealing to
the identities in Lemma [5.3] O

Next, we prove Proposition [3.1} which directly relates the persistence diagrams
of a family of signals to their frequencies and instantaneuos amplitudes.

Proof. Without loss of generality, suppose f is an integer. The case for real-valued
f is similar. By definition, ag(t)¢(27 ft) has f cycles in [0,1]. Let M; and m; re-
spectively denote the maximum and local minimum of the ith cycle of ag(t)$ (27 ft)
in [0,1]. Since each cycle has a unique local minimum, the only connected compo-
nents that arise during the sublevel set filtration of ag(t)¢(2n ft) are Cp,,, which
are clearly born at values m; of the sublevel set filtration. It remains to deduce
the value at which each C,,, disappears. From the assumption that ¢(0) is a local
maximum, each cycle begins at a local maximum and monotonicity of ag(t) ensures
that M; occurs at the beginning of the ith cycle and at the end of the (i — 1)th
cycle. Recall that connected components merge at values M; during the sublevel
set filtration. By monotonicity of ag, the smallest of the M; (and hence the first
one encountered in the sublevel set filtration) is M. This merges connected com-
ponents C,, and C,,_,. Once again by monotonicity of ag(t), my < my_1, so by
the Elder Rule, C,,, disappears by merging into Cy,,_,. Thus, the first point in
D7 is (mg, My). Using the monotonicity of ag(t) to continue in this fashion, we
see that D8 = {(m;, Mi)}le. The result now follows by explicitly computing m;
and M;, which is done by exploiting the periodicity of ¢. O
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Signal Length 1 Second 5 Seconds
filfe f3 fa| B Bo | B3 | Ba|fi]|fe f3 fa B B2 B3 Ba
Signal 1 0 587 | 1859 | - [344.80|537|166| - |0 |6.00 |14.4 | 20.85|24.98 | 10.54 | 31.64 | 26.97
Signal 2 0 |10.70 - - 120278 | 741 - - |0 |10.16 | 23.02 - 17.24 | 4.06 | 20.37 -

TABLE 2. Parameter values for autoregressive model determined
by fitting to real EEG. Missing values indicate that the optimal AR
model order did not include a corresponding frequency component.

Damping Factor = 32
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FIGURE 8. The average (log) power spectral densities along with
examples of signals and persistence diagrams from each class for

damping factors of top) 4, and bottom) 32.
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