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Abstract: We present enabling experimental tools and atom interferometer implementations in a vertical 

“fountain” geometry with ytterbium Bose–Einstein condensates. To meet the unique challenge of the 

heavy, non-magnetic atom, we apply a shaped optical potential to balance against gravity following 

evaporative cooling and demonstrate a double Mach–Zehnder interferometer suitable for applications such 

as gravity gradient measurements. Furthermore, we also investigate the use of a pulsed optical potential to 

act as a matter wave lens in the vertical direction during expansion of the Bose–Einstein condensate. This 

method is shown to be even more effective than the aforementioned shaped optical potential. The 

application of this method results in a reduction of velocity spread (or equivalently an increase in source 

brightness) of more than a factor of five, which we demonstrate using a two-pulse momentum-space 

Ramsey interferometer. The vertical geometry implementation of our diffraction beams ensures that the 

atomic center of mass maintains overlap with the pulsed atom optical elements, thus allowing extension of 

atom interferometer times beyond what is possible in a horizontal geometry. Our results thus provide 

useful tools for enhancing the precision of atom interferometry with ultracold ytterbium atoms.  

Keywords: atom interferometry; Bose–Einstein condensate; quantum sensing  

1. Introduction  

Pulsed optical lattices are crucial tools for high precision atom interferometry (AI), with 

applications ranging from tests of fundamental physics to force sensing [1–5]. AI in free space 

rather than in a trapped geometry has the inherent advantage of not being susceptible to 

systematic effects from the confining potentials. Terrestrial pulsed-lattice atom interferometers 

have relied on a vertical geometry of diffraction beams in order to fully realize the inherent 

power of the method, as the loss of spatial overlap with the pulsed lattice from atoms falling due 

to gravity is suppressed in this configuration.  
While laser cooled atoms have found pronounced success as sources for precision AI, a 

Bose–Einstein condensate (BEC) source offers improvement with an inherently narrow velocity 

distribution, which increases the coherence length and allows for longer interferometer times 

due to the slow spread of the atomic spatial distribution during free expansion. Spin-singlet 

ground state atoms, such as Sr and Yb, are particularly appealing for AI because of their 

near-insensitivity to external magnetic fields and the availability of several narrow optical 

transitions [2,6,7]. Furthermore, the heavy nucleus of the Yb atom supports the stability of 

multiple isotopes allowing for systematic cross-checks within the same apparatus as well as the 

possibility to perform AI with degenerate Bose or Fermi gases.  

Prior work with Yb BEC atom interferometers [6,8–10] have all been restricted to geometries 

with horizontally oriented laser beams as the atom-optic elements. Adapting to a vertical 

geometry poses significant challenges due to the larger velocity spread in the vertical direction 

for BECs expanding out of typical atom traps. In this paper, we investigate solutions to these 

challenges using two separate methods of atom manipulation  
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via light shifts from laser beams shaped in position and in time. Using these methods, we 

successfully demonstrate AI with Yb BECs in a vertically oriented atomic fountain geometry and 
establish tools for future enhancement of AI precision.  

The rest of this paper is organized as follows. In Section 2, we describe the production of our BEC 

source and the vertical fountain launch which prepares the atoms for interferometry. In Section 

3, we present a gravity compensation beam method for reducing vertical velocity spread. With 

this method in place, we report on the first vertical Yb interferometer, performed in a double 

Mach–Zehnder configuration, in Section 4. Finally, in Section 5, we implement delta-kick 

collimation as an alternative method to the gravity compensation beam, and we demonstrate 

effectiveness of the technique through coherence length measurements using momentum-space 

Ramsey interferometry.  

2. Yb BEC Fountain  

We first briefly describe Yb BEC production in our apparatus [8,11] and then present the launch 

process which initiates the atomic fountain.  

2.1. BEC Source and Atom Optics  

Each of the experiments reported in this work begins with a trapping and cooling sequence for 

the production of a ytterbium (
174

Yb) Bose–Einstein condensate consisting of 10
5 
atoms [11]. A Yb 

atomic beam emerging from an effusive oven is slowed in a first stage through an increasing-field 

Zeeman slower and in a second stage using a pair of crossed laser beams [12]. The slowed atoms 

are then captured in a magneto-optic trap (MOT). The broad (Γb = 2π × 29 MHz) dipole transition 

(
1
S0 → 

1
P1) at λb = 399 nm is used to slow the atoms, while the narrow (Γg = 2π × 182 kHz) 

intercombination transition (
1
S0 → 

3
P1) at λg = 556 nm is used for the MOT trapping beams (see 

Figure 1a).  
Following cooling in the MOT, atoms are transferred into a crossed optical dipole trap (ODT) for 

evaporative cooling towards BEC. The ODT is formed by a pair of 532 nm beams: one oriented 

horizontally, defining the x-axis, and the other nearly along the vertical y-axis. The evaporative 

cooling stage concludes with a BEC of 10
5 
atoms in harmonic confinement characterized by trap 

frequencies ωx,y,z = 2π × (16, 200, 80) Hz. Subsequently, the BEC is released by suddenly switching 

off the ODT before the application of atom optics pulses. We note that the tightest confinement 

direction in the ODT is along the vertical axis, in order to counter the gravitational force on the 

heavy atom. A consequence of this general characteristic of optically trapped Yb is that the 

expansion of the BEC after release is mostly along the vertical, as most of the initial chemical 

potential is converted to kinetic energy in this direction [13,14], a quantity we measure to be kB × 

(42 ± 5) nK through absorption imaging after long expansion times.  

The optical lattice used for the vertical fountain launch and the interferometer optics has a waist 

of 1.8 mm and is composed of a pair of vertically-oriented counter-propagating laser beams that 

are aligned to the atoms and controlled by independent acousto-optic modulators (AOMs). The 

optical frequency of the lattice is detuned from the 
1
S0 → 

3
P1 transition by Δ and the frequency 

difference between the two lattice laser beams is δ (see Figure 1a and inset to Figure 1b). For the 

work presented here, Δ is set to +3500Γg (2π × 637 MHz), except in Section 5, where Δ = −3500Γg. 

In general, the positive detuning leads to lower spontaneous scattering rates in the lattice. 

However, for either sign, the spontaneous scattering rate is less than 1 Hz in this work and 

negligible, even for the highest lattice depths used. For the experiments in Section 5, we choose 

the negative detuning to more easily allow generation of the attractive pulsed optical potential 

for delta-kick collimation using the same 556 nm laser source. The case where Δ =+3500Γg is 

depicted in Figure 1a. The quantity δ is always less than 2π × 1 MHz and varied with sub-Hz 

precision using direct digital synthesis radio-frequency sources that drive the lattice AOMs.  

We note that the measured kinetic energy in the vertical direction corresponds to a velocity 

spread of Δv � 0.5vrec, where vrec = hkg/m is the recoil velocity with kg ¯= 2π/λg and m is the mass of a Yb atom. Since the coherence time relevant for signal-to-noise in  



atom interferometry typically scales with 1/Δv, it is important to address the reduction of this 
value, and much of the present work demonstrates successful techniques towards this end for 
Yb BEC vertical interferometers.  

2.2. Vertical Fountain Launch  

The vertical launch is performed by using Bloch oscillations for large momentum transfer. Such 
processes were carried out in the following sequence: (i) adiabatically turning on the optical 
lattice in the frame of the falling atoms, (ii) chirping the relative frequency difference of the 
lattice beams, δ, to accelerate the atoms, and (iii) adiabatically turning off the lattice once the 
desired atom velocity had been reached. During lattice turn-on and turn-off, an additional chirp 

of δ
˙ 
= 2gkg was necessary to maintain an inertial frame. Here, g is the acceleration due to gravity. 

The frequency sweep during the acceleration step was uniquely chosen for each set of 
experiments to optimize momentum transfer efficiency. A representative fountain launch is 
shown in Figure 1b.  

Figure 1. (a) Energy level diagram for ytterbium showing the optical transitions used in the experiment; (b) demonstration of a 

vertical fountain launch with 30 ground-band Bloch oscillations. The relative frequency sweep of the lattice beams was δ
˙ 
= 2π × 600 

kHz/ms. Time-of-flight absorption images show the trajectory of the atom cloud at variable times following the launch. The dashed 

line indicates the part of the trajectory that is out of view of the absorption imaging setup.  

3. Gravity Compensation by Shaped Optical Beam  

Atoms trapped in our ODT experience a potential proportional to the shape of the ODT beams as 

well as gravity. Due to the linear gravitational potential, there is a nonzero minimum allowable 

depth of the ODT such that it remains a trapping potential. This value increases as the vertical 

width of the horizontal ODT beam increases, resulting in a conflict between desires for both low 

trap frequency and low trap depth. This constraint can be lifted, however, by compensating the 

gravitational potential with an appropriately tuned linear optical potential in the trapping region 

[15]. Importantly, this technique is accessible for all atoms, including non-magnetic atoms such 

as ytterbium. Using a time-averaging technique discussed below, we implemented an 

appropriately shaped optical potential US to weaken the confinement along the vertical direction 

and thus the vertical kinetic energy during expansion after release from ODT. Assuming a 

Gaussian shape of the trapping beam (waist w0), we can write the total potential seen by the 

atoms as  

2 −2y
2

/w 
U(y)= U0e0 − mgy + US(y) (1) 2y

2
1  

� U0(1 − )+(α − mg)y = U0 + mω
y

2
y

2 
+(α − mg)y (2)  

w
2

0 
2  

where U0(< 0) is the peak ODT Stark shift, w0 is the ODT beam waist, US(y) is the additional 

gravity compensation potential with α = ∂US/∂y|y=0, and we have kept lowest order terms 

around y = 0 for Equation (2). US is tuned such that α � mg at the location of the atoms.  

The shaped beam used the same 532 nm light used for optical trapping. It was aligned to 
co-propagate with the horizontal ODT beam and—by means of an AOM—could be spatially 
modulated along the vertical axis (see Figure 2). We designed the input waveform  



of the AOM such that the resultant time-averaged optical potential at the atoms would be  
ωp linear over a region h, slightly larger than the trapping region. The function ξ(t)= ht 
π  

represents one half-period of this waveform and is therefore defined over 0 ≤ t < π with a full 

oscillation frequency, ωp. For this work, ωp = 2π × 4 kHz, chosen to be much greater than the trap 

frequencies and less than the bandwidth of our electronics.  
The gradient of this optical potential was adjusted by changing the total power in the beam while 
maintaining a constant time-averaged beam intensity profile. This would alter the gradient of the 
net background potential in the trapping region (see Figure 2a), resulting in a displacement to 
the local minimum of the ODT. When this shift is zero, the linear optical potential is assumed to 
be properly compensating gravity. Thus, we first determined the “zero point” location by 
measuring the position of the atom cloud as a function of ODT depth in the absence of the new 
shaped optical beam. The best-fit curve for the data shown in Figure 3a is a simple reciprocal 
function (∝ 1/ODT power), derived from a harmonic approximation valid near the center of the 
Gaussian ODT intensity profile (see Equation (2)). The convergent location observed at large ODT 
powers, corresponding to trap depths much higher than the gravitational potential variation 
across the trap, provided a benchmark value against which we could discern the effectiveness of 
the linear optical potential. The value is also marked in Figure 3b by the dashed line.  

 

Figure 2. Implementation of a shaped optical beam for gravity compensation. (a) model for total optical potential along the vertical 

axis, through the center of the optical trapping region; (b) illustration of the ODT geometry along with the shaped optical beam. This 

beam is used to compensate the linear gravitational potential through use of an acousto-optic modulator supplied with the 

waveform, ξ(t), as shown.  

With the ODT returned to low depth (i.e., standard evaporation endpoint), we increased the total 

power in the shaped beam potential until the shift in the atoms’ location was consistent with 

zero. This can be seen in Figure 3b where the two lines cross. The best-fit curve for the data in 

this figure is a line, again as a result of approximating a harmonic trapping potential near the 

center of the ODT (see Equation (2)). The optimal beam power from this procedure is then 

determined to be about 300 mW. Following this optimization, we used time-of-flight absorption 

imaging to measure the kinetic energy in the vertical direction to be kB × (17 ± 2) nK, a 42/17 � 

2.5-fold improvement compared to without the gravity compensation beam. In terms of velocity 

spread, the  
√ reduction factor is 2.5 � 1.6.  



 

Figure 3. Optimization procedure for gravity compensation with a shaped optical beam. (a) measured BEC position with absorption 

imaging, as the ODT depth is increased. The converging locations at higher depths indicate a reduction of the displacement due to 

the gravitational potential. The blue curve is a best-fit reciprocal function; (b) introduction of the linear optical potential at low ODT 

depth. The BEC position has a nearly linear dependence on the shaped beam power as the net background potential gradient 

changes. The dashed line marks the asymptotic value of the reciprocal function shown in (a). The solid blue curve is a best-fit line to 

this data.  

4. Double Mach–Zehnder Interferometer  

We next report a demonstration of the first vertical Yb BEC interferometer. The geometry we use 

for this is a double Mach–Zehnder configuration, a design which is beneficial for precision 

measurement and sensing, since it suppresses vibration noise. In particular, the vertical double 

Mach–Zehnder interferometer is well-suited for gravity gradiometry applications [16].  

Our implementation consists of four atom-optic elements: two splitting pulses, a mirror pulse, 

and a readout pulse. Each was implemented as a third-order Bragg pulse [9,17] with Gaussian 

1/e full-width 54 µs in our vertical optical lattice with single-photon detuning, Δ =+3500Γ. The 

typical peak lattice depth for a mirror pulse was 26h¯ωrec to satisfy the Bragg π–pulse condition, 

while the splitting and readout pulses had a peak depth of 14h¯ωrec and operated as π/2–pulses. 
Here, ωrec = ¯

g
/2m is the recoil frequency. The hk

2 
relative detuning of the lattice beams was chirped at the rate δ

˙ 
= 2gkg for all 

pulses to account for the continuous Doppler shift of the falling atoms. The double 

Mach–Zehnder interferometer geometry is depicted in Figure 4a in the accelerating frame of a 

falling atom cloud. To improve the efficiency of the momentum transfer within the 

interferometer, we apply an initial third-order Bragg π–pulse (not shown) to further narrow the 

width of the vertical velocity distribution. The two splitting pulses at the beginning of the 

interferometer are separated by a time Δt, which establishes the baseline between the two 

Mach–Zehnder interferometers. We chose Δt = 3 ms, which also made the interferometer paths 

visually distinguishable in our absorption images. From these images, we determine the relative 

populations in the output ports and observe interference fringes for each sub-interferometer, A 

and B (see Figure 4b). For long interferometer duration, however, physical vibrations affect an 

unknowable shift to the lattice phase, resulting in a reduction of fringe visibility for each 

sub-interferometer. Nonetheless, the differential interferometer phase for a double 

Mach–Zehnder, ΔΦ = ΔφB − ΔφA, is insensitive to vibration effects, which cancel out as a common 

mode phase shift. On the other hand, a finite differential phase can be generated from external 

forces such as a gravity gradient. This phase ΔΦ can be observed by analyzing the correlation of 

sub-interferometer populations. As shown in Figure 4b, the fractional population in an output 

port of one sub-interferometer when plotted against that in an output port of the other 

sub-interferometer traces out an ellipse whose eccentricity determines ΔΦ [18–21].  



 

Figure 4. Double Mach–Zehnder interferometry. (a) Upper: Space-time diagram for a typical interferometer sequence shown in the 

accelerating frame of the free-falling BEC source such that the action of gravity is removed. The horizontal lines and the lines with 

finite slope correspond to interferometer paths separated in momentum by 6¯ hkg. Lower: Corresponding lattice pulse 

sequence; (b) representative ellipse signal for a double Mach–Zehnder interferometer with Δt = 3 ms and T = 0.25 ms. The 

oscillating populations in the output ports are plotted versus the phase of the readout lattice for the two sub-interferometers, from 

which an ellipse can be observed in the correlation of the populations in the top right parametric plot. All black curves are best fit 

sinusoids or ellipses.  

To demonstrate robustness against vibrations, we extended the free evolution time within the 

interferometer, T, to values above the timescale of vibrations, which exist in our system at a 

bandwidth below 1 kHz. In this set of experiments, T = 0.25 ms, 1.25 ms, and 2.25 ms, covering 

nearly one whole order of magnitude. The visibility at short times is as high as 80% (see for T = 

0.25 ms in Figure 4b), but drops with increasing T, and is consistent with zero by T = 2.25 ms. 

However, the ellipse traced out by the correlated populations is only marginally disturbed as 

shown in Figure 5. The fits (black curves in Figure 5) are obtained by first converting the data into 

polar coordinates, then performing a least-squares regression analysis using the function  

a(1 − e
2
) 

r = (3) 
1 + e cos(θ − θ0)  

for an ellipse with one focus at the origin. In addition to the origin location, the given fit 

parameters describe the eccentricity of the ellipse, e, the length of the semi-major axis, a, and 

the rotation angle, θ0. The differential interferometer phase can be determined from the 

eccentricity by the relation [18]  

2 e 
ΔΦ = cos

−1 
(4) 

2 − e2 which is defined over a one-quarter 

period.  
The values of eccentricity returned by the fits are very close to 1, implying a differential phase 
close to zero. Indeed, the gravitational gradient for these parameters is expected to be negligibly 

small. The ΔΦ corresponding to the measured e � 0.99 is a few hundred mrad and may be due 
to atomic interactions. The calculated interaction energy for 3 ms expansion time and 
immediately before the first splitting π/2 pulse is 1.2 kHz. For a 10% level difference in arm 
splitting this gives rise to a few hundred mrad phase shift over the few millisecond timescale of 
the interferometer. This hypothesis is also consistent with the location of the center position of 
the ellipse deviating from the symmetric (0.5, 0.5) location at the 10% level. This deviation is a 
manifestation of deviations at the same level from  



the π/2 condition for splitting pulses, and was independently verified by observing the 
correlation of the output port populations in the absence of the readout pulse. Further tuning of 
the π/2 pulses and longer expansion time to reduce the interaction strength, as is needed to 
scale-up the interferometer to larger times and enclosed areas, will make this differential phase 
contribution negligible. The deviation at the 10% level from π/2 pulses is also an important 
reason for the visibility of the sub-interferometers being less than 100% even at the shortest 
time T (see Figure 4b). We expect that unit visibility is approached (for T approaching zero) with 
better tuned π/2 and π pulses, as can be done by observing single-pulse Rabi oscillations (see, for 
e.g., [9]).  

Figure 5. Ellipse signals at various values of T for a double Mach–Zehnder interferometer. Black curves are best fit ellipses for each 

data set. These are characterized by e, the eccentricity of the ellipse, and, a, the length of the semi-major axis.  

Further development of our double Mach–Zehnder interferometer will involve methods to 

accurately calibrate the differential phase extraction procedure by applying large 

independently-known differential phases. While the use of magnetic pulses with associated 

Zeeman shifts works well for this purpose with alkali atoms [18], their use in spin-singlet atoms 

like 
174

Yb is precluded by the lack of magnetic sensitivity. Instead, appropriately timed optical 

pulses with the associated AC Stark shifts can be used for this purpose.  

5. Delta-Kick Collimation of Yb for Vertical AI  

5.1. Delta-Kick Collimation  

We now report on another technique to reduce the vertical velocity spread for Yb—delta-kick 

collimation (DKC)—which shows even better performance than the gravity compensation beam 

technique described earlier. This technique, also known as matter– wave lensing [22–24], has 

previously been demonstrated in alkali atoms, but not in spin-singlet atoms to the best of our 

knowledge. The process involves pulsing a parabolic attractive potential which may slow—or 

even halt—the expansion of the atom cloud in the corresponding dimension. In our system, this 

is applied as a pulsed optical potential at a time to after the BEC had been released from the ODT. 

The potential is derived from our 556 nm laser with a detuning, ΔDKC = −4600Γ, red-shifted from 

the 
1
S0 → 

3
P1 resonance. The DKC beam has a power of � 22 mW and is oriented horizontally, 

close to the horizontal ODT axis. It is focused with a waist size of � 150 µm at the location of the 

atoms. The DKC beam creates a transverse attractive potential for the atoms proportional to the 

Gaussian shape of the beam, which is parabolic to lowest order near the beam center with 

effective harmonic angular frequency ωDKC.  

To minimize the variance of the BEC position over the duration of the DKC pulse, δt, the pulse 
was applied at the apex of the atoms’ trajectory following a vertical fountain launch. To facilitate 
beam alignment, the launch was designed to place the apex at the location of the trapped BEC 
(see Figure 6a). The optical lattice had a depth of about 30h¯ωrec during the launch and a 
single-photon detuning Δ = −3500Γ. For a typical experiment, the launch consisted of 30 Bloch 
oscillations affected by chirping the relative lattice detuning at a rate of 500 kHz/ms. With these 
launch parameters, the time for the atoms to reach the  



apex occurs to = 25.4 ms after release from the ODT. For an optimal delta-kick, we must 

simultaneously satisfy a thin lens criterion, δt � to, as well as the collimation condition, δt � 

1/(ω
2 

 DKC
t
o

). 
 

 

Figure 6. Delta-kick collimation and characterization sequences. (a) space-time diagram depicting the trajectory of the expanding 

atom cloud. The DKC pulse of duration δt is applied at time to after release from the ODT to achieve collimation;  

(b) DKC characterization by measuring the size of a refocused atom cloud at time ti after the delta-kick. The black curve is a best-fit 

hyperbola, (Δy)
2
/(Δymin)

2 
− (δt − δtmin)

2
/C

2 
= 1, returning a minimum observable size Δymin = 30.6 ± 2.0 µm with a corresponding δtmin 

of 48.6 ± 1.9 µs. The DKC beam power here is approximately 22 mW.  

We determined the capability of this collimation technique in our system from a characterization 

of our delta-kick lens and its effect on our atom source [23]. For this experimental sequence, we 

applied the delta-kick at time to, tuned to refocus the atom cloud at time ti after the pulse, 

producing an image of the original object (BEC). By varying the pulse duration, we ascertained a 

minimum observable spot size, Δymin = 30.6 ± 2.0 µm, in the vertical dimension. Under 

collimation conditions, our system should have an upper bound on the minimum spread in the 
velocity distribution according to Δv

bound 
= Δymin/ti, where Δv is the RMS velocity of the atoms after 

application of the lens. We can recast this as an upper bound on the minimum attainable spread 

of kinetic energy m(Δvbound)
2
/2 in the vertical direction. From our measurement (see Figure 6b) 

and within the given experimental parameters, we determined the upper bound for this value to 

be kB × (2.0 ± 0.25) nK for our system.  

5.2. Ramsey Interferometry and Coherence Time Measurements  

As a secondary characterization of our DKC lens, we analyzed the coherence length of the 

condensate before and after the DKC pulse. We incorporated a momentum-space Ramsey 

interferometer [25] into the sequence, which consisted of two low-amplitude 4 µs square 

Kapitza–Dirac pulses separated by a time, TRamsey, as depicted in Figure 7a. The population of 

each momentum state was measured at long time of flight (i.e., enough time to spatially resolve 

the states) and oscillations were observed in the average fraction in the higher-momentum 

states, (N+1 + N−1)/2N. Here, N is the total atom number and N±1 is the atom number in the 

momentum state ±2¯ hk. Only at short times will there be observable fringes while the various wavefunction 
components retain sufficient spatial overlap. Thus, the envelope on these oscillations gives a 
Ramsey coherence time which is a measure of the coherence length of the atom source, with the 
two related through the velocity separation between the interfering states. Fitting the data to a 
sinusoid with the expected angular frequency 4ωrec and an exponential envelope, we measure 
coherence times of 129 ± 18 µs and 23 ± 3 µs for sequences with and without delta-kick 
collimation, respectively. Since the coherence time scales with the inverse of the velocity spread, 

this indicates a reduction factor of (129/23) � 5.6 in the vertical velocity spread. The reduction 

factor for kinetic energy in the vertical direction is then (129/23)
2 
� 31 below the previously 

mentioned  



kB × 42 nK value, i.e., kB × 1.3 nK. This is consistent with the upper bound on the kinetic energy kB 

× 2 nK, discussed in Section 5.1.  

 

Figure 7. Characterization of DKC by coherence length measurements using Ramsey interferometry. (a) space-time diagram of a 

momentum-space Ramsey interferometer composed of two Kapitza-Dirac pulses. Decaying oscillations of population amplitude, 

with (b) and without (c) delta-kick collimation. The fit function, f (t)= Ae
−t/τ 

sin(4ωrect + φ)+ f0, returns Ramsey coherence times of τ = 

129 ± 18 µs and 23 ± 3 µs, respectively.  

6. Conclusions  

In summary, we have investigated two methods to reduce the vertical velocity spread of a Yb BEC 

and applied them towards atom interferometry in vertical fountain geometries. We developed a 

gravity compensation optical potential which reduced the vertical velocity spread by a factor of 

1.6, and employed this gain towards demonstrating a vertical double Mach–Zehnder 

interferometer. The implementation of delta-kick collimation reduced the vertical velocity spread 

by a factor of 5.6, which we measured using a Ramsey interferometer technique in an atomic 

fountain setup. These first demonstrations of vertical AI with Yb BECs reported here are 

performed with fountain times in the tens of milliseconds, and we expect that the reduction of 

vertical velocity spread achieved here should greatly benefit extensions to longer fountain times 

of hundreds of milliseconds.  

Taken together, our results provide useful manipulation tools for ultracold Yb, an important 

atom for applications in fundamental physics and next generation time standards [26,27], 

precision atom interferometry and sensing [6,8,28–30], quantum simulation [31–35], and 

quantum information science [36–38]. In particular, we expect the DKC methods to fruitfully 

impact future applications of Yb atom interferometers for precision sensing such as gravity 

gradiometry and tests of fundamental physics [5,30,39,40].  
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