© o N o g » W

10
11
12
13
14
15
16
17

Manuscript submitted to doi:10.3934 /XX.XXXXXXX
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X—XX

TOFU: TOPOLOGY FUNCTIONAL UNITS FOR DEEP
LEARNING

CHRISTOPHER OBALLE*

University of Notre Dame

DAVE BOOTHE
CCDC Army Research Lab

PiroTr J. FRANASZCZUK
CCDC Army Research Lab and Johns Hopkins University

VASILEIOS MAROULAS*

University of Tennessee, Knoxville

ABSTRACT. We propose ToFU, a new trainable neural network unit with a
persistence diagram dissimilarity function as its activation. Since persistence
diagrams are topological summaries of structures, this new activation measures
and learns the topology of data to leverage it in machine learning tasks. We
showcase the utility of ToFU in two experiments: one involving the classifica-
tion of discrete-time autoregressive signals, and another involving a variational
autoencoder. In the former, ToFU yields competitive results with networks
that use spectral features while outperforming CNN architectures. In the lat-
ter, ToFU produces topologically-interpretable latent space representations of
inputs without sacrificing reconstruction fidelity.

1. Introduction. Topological data analysis (TDA) encompasses a set of methods
that measure the shape of data with tools from algebraic topology (9). Persistent
homology (I8} 23), the workhorse behind many popular TDA techniques, takes
data and converts it to a multiscale topological summary known as a persistence
diagram (PD), which can be used for shape-based inference. Since the space of
PDs lack a Hilbert space structure, they are not directly amenable to commonly-
used statistical learning methods. A large body of work sought to remedy this
shortcoming by inventing well-behaved Hilbert space representations of PDs (7
Tt [IT5 B 45 B0). Other works, notably (47) and (37), derive PD representations
that serve as sufficient statistics, thereby ensuring that PD summaries retain all
statistically-pertinent information for an inference task. Some authors avoid Hilbert
space representations altogether, choosing instead to work directly in PD space.
This is achieved, for example, by leveraging stability results to push statistical
distributions from data space forward to PD space (20), or by adopting tools from
point process theory (12 2} 33} [34).

Date: November 24, 2021.

2020 Mathematics Subject Classification. Primary: 55N31, 68T07.

Key words and phrases. Topological data analysis, deep learning, neural networks, machine
learning, activation functions, variational autoencoders.

© o N o g B~ w N R

WoOWw W RNNNNRNNNNNN B E R e e e e e
N RSV ® N6 g R ® N R O © O N OO A W N =B O

33
34
35
36
37
38
39

40
41
22
43
44
45
46
a7

2 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

In addition to studying PDs and their properties to create tools for inference,
the use of persistent homology to design and understand artificial neural networks
(ANNs) is another area of research that lies at the intersection of machine learning
and TDA.

The work (3) shows that persistent-homology-derived features can effectively
classify ANN dynamics; (26) establishes empirical links between the homology of
ANNs and their capacities; similarly, (22 uncovers topological patterns in the
weights of trained CNNs, and shows that the topological structure of the weights
correlates with the CNN’s ability to generalize. Persistent homology has also been
used in ANNs to regularize topology in the output at certain layers. Two works
that leverage ideas from persistent homology in autoencoders are (45) and (38)); the
former uses the Wasserstein distance between distributions to introduce a novel
regularization term for latent space distributions, while the latter introduces a
persistent-homology-loss term that promotes similar topology in the input and la-
tent spaces. A general framework for controlling the topology of layer outputs in
ANNs with PD loss functions is introduced in (6]).

Our work proposes a new trainable ANN unit that uses a PD dissimilarity func-
tion as its activation. Since persistence diagrams are topological summaries of
structures, this new activation measures and learns the topology of data to leverage
it in machine learning tasks. Unlike previous works, which exploit PD-inverse maps
to promote desired topological characteristics in output features, our method learns
parameters that live in PD space, which are used to topologically distinguish inputs.
We refer to our proposed ANN unit as the Topological Functional Unit (ToFU)
since its activation is a functional on the space of PDs. ToFU is parameterized by
a PD and learns pertinent topology in the data itself. In particular, ToFU learns
a PD that aids an ANN in its intended task. For example, if ToFU is used in an
ANN designed for binary classification, ToFU may learn a PD that is more similar
to PDs of one class versus those of the other, thereby distinguishing the two classes
by their topologies. Moreover, since ToFU solely considers the persistent homology
of data, the parameters it learns are robust to all rigid transformations of input
data such as rotations and translations. To summarize, the main contributions of
our are work are:

1. a new trainable ANN unit that uses a PD dissimilarity function as its activa-
tion,

2. a signal classification example where ToFU learns features that outperform
traditional topological vectorizations and remain competitive with those de-
rived from Fourier analysis, and

3. a variational autoencoder architecture that demonstrates how ToFU learns
pertinent topology present in the data itself.

The paper is organized as follows. Section [2| covers the necessary background
to formulate and understand our method. In particular, Section summarizes
artificial neural networks and the mathematical formulation we use to describe
them. Section [2.2] reviews computational topology, specifically persistent homology
with cubical filtrations. In Section [3] we present ToFU along with accompanying
examples. Section[3.1]describes a novel encoder architecture that uses ToFU to learn
latent space representations. Section [4] contains two experiments that showcase
ToFu’s utility. Finally, we end with discussions in Section

1

N~ o a &~ W 0N

<)

10
11
12
13
14
15

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
4
42
43

TOFU 3

2. Preliminaries. We begin by briefly reviewing the ideas from artificial neural
networks and computational topology pertinent to our work.

2.1. Deep Learning. In this section, we define artificial neural networks (ANNSs)
and introduce accompanying terminology that we use throughout the paper. ANNs
are function approximators that are widely used in machine learning for their ex-
pressive capabilities. For thorough expositions on ANNs and their role in machine
learning, see (25)), (42), and references therein.

Units and layers. The building blocks of ANNs are units and layers. Units are
defined by transformations and activations. A transformation 7' : R? — X is a
function from an input Euclidean space R? to a Polish space X, and an activation
a: X — Ris a real-valued function. A unit ¢ : R — R is given by the composition
¢ = aoT. In practice, T usually has learnable parameters while a does not, but this
may not be required. In fact, our unit ToFU uses a nonlearnable transformation
that computes the PD of the input; see Section and [3| for details. A common
choice for T is the affine transformation, L, given by

L(x) :=xwT + b, (1)

where x € R¢ is a row vector and w € R? and b € R are learnable parameters known
as the weights and bias, respectively. Two common choices for a are the rectified
linear unit and sigmoid activations given, respectively, by ReLU(z) = max(0, z) and
o(x) = (1+e7*)"L. Alayer & : R%n — R%ut is a function that is comprised of units,
D(x) = [p1(x), P2(X), ..., ¢a,,, (X)]. We call ;1 dense if each of its units contains
an affine transformation (see Equation (1)) of the form L(x) = ®;(x)wT + b.

Artificial neural networks. An artificial neural network (ANN) is a function A :
R%n — Rout given by A(x) = & o0®p_j0---0®Py0®;(x) where ®; are layers such
that the input dimension of ®;,; is the same as the output dimension of ®; for all
l€{1,2,...,L —1}. Notice that there is no constraint on the output dimension
of the final layer ¢;. ANNs are explicitly parameterized by the collection of all
learnable parameters in each of their layers, 8, which we signify by writing Ag.

Supervised training of an ANN requires a set of labelled examples T := {(x,,,y»)}
where x,, and y,,, respectively, denote an input and an output, and a pertinent loss
function ¢(y,, Ae(x,)), which measures the discrepancy between the true output
and the output of the ANN. Common choices of ¢ include cross-entropy (for clas-
sification) and squared error (for regression). With 7 and ¢ in hand, an ANN is
trained by searching for a solution to

- 1
0 := argmin — Uyn, Ag(x,)), 2
iy 3t Aot) @)
Xn,¥n)ET

by means of some version of (stochastic) gradient descent. The gradient for each
set of parameters 0, at layer ®; is obtained through backpropagation (49), an algo-
rithm that iteratively applies the chain rule to compute gT)Ll' Hence, to be trainable
via backpropagation, any layer in an ANN should be differentiable with respect to
its learnable parameters. In most cases, gradient updates of parameters in Ag are
not performed using the entire training set 7, but rather by randomly partitioning
T into subsets of equal size, known as minibatches, then performing a separate
gradient update with each minibatch substituted in place of 7 in Equation .
Moreover, the gradients used to update parameters are typically multiplied by a
tunable scaling factor, which stabilizes parameter values and speeds up learning.

[N

© © ~N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27

28
29
30

4 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

Usually, the minibatching procedure is repeated in order to iterate through the en-
tirety of 7 multiple times. In the language of deep learning, the size of minibatches,
the number of times one iterates through 7, and the scaling factor used for gradient
descent are known as the batch size, the number of epochs, and the learning rate,
respectively.

Variational autoencoders. Here, we give a high level summary of variational autoen-
coders (VAEs). For a thorough introduction to VAEs, please see (28)) and references
therein. The goal of a VAE is to create a probabilistic generative model for data
by learning a joint distribution, pg(x,z), over data x € R? and a latent variable
z € R, where h < d. Here, 0 denotes learnable parameters of an ANN. The distri-
bution pg(x,z) implies a probabilistic encoding-decoding scheme based on drawing
from its posteriors: given data x, create an encoding z by drawing from pg(z|x),
then perform decoding by drawing from pe(x|z). A naive loss function for training
the generative model is

L(©) = Dk (pe(%)|[ptruc(x)) (3)
= _Ep@(x) (Ingtrue (X)) + IEp@(x) (IOgPG (X))7 (4)

where pyue(x) denotes the true probability density of the data, Dy denotes
Kullback-Leibler divergence, and E,, x) denotes expectation with respect to pe(x).
However, Equation is rarely implemented as a loss function because of sev-
eral practical limitations. First, perye(x) is seldom known and must be estimated.
Second, the density pe(x) = [pe(x|z)pe(z)dz generally has no closed form and
hence must also be estimated, for instance by using a Monte Carlo approxima-
tion. Employing these estimators introduces a level of noise into training that
greatly hinders learning. Moreover, since pg(x|z) o pe(X)pe(z|x), the integral
for po(x) must be estimated each time one samples the posterior (a similar situa-
tion occurs when sampling from the posterior pg(z|x)), which is computationally
expensive and introduces a high level of variance in network predictions. There-
fore, most VAE implementations avoid the use of Equation in training, and
instead typically use the following design choices. First, one assumes a simple
prior, with no dependence on network parameters, over the latent variable , e.g.
po(z) = p(z) = N(z;0,), the standard normal density in R”. Next, the posteriors
po(x|z) and gy (z|x) are implemented as separate neural networks with respective
parameters 0 and 9. By Bayes’ rule, p(z) and pg(x|z) imply the posterior distri-
bution, pe(z|x) = p(z)pe(x|z)/ [p(z)pe(x|z) dz. Therefore, a sensible loss function
to train the VAE is,

L(6,9) = Drcr(gs(2[x)[[pe(2[x)), (5)

however since the posterior pg(z|x) involves the same problematic integral in the
rightmost term of Equation , a loss function based on the evidence lower bound
(ELBO), which is related to Equation , is used instead:

L(8,9) = Eqy(up) 1oz po(x|2)) = Dics (a0(z])|p(2)) (6)

It can be shown that maximizing Equation @ simultaneously maximizes the evi-

dence of the model, pg(x), and minimizes the Kullback-Leibler divergence D1, (g9 (z|x)||pe(z]%)));

see (28) or Appendix

© o N o g B~ w N R

R S T <
S © ® N o O M W N R O

21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40

a1
42
43
44
45

TOFU 5

2.2. Computational Topology. In this section, we provide a succinct overview
of the ideas from computational topology that underpin our method. For a thor-
ough treatment of computational topology, see (I'7; 51} @), and references therein.
One notable difference in our exposition from that in other computational topology
papers is that we focus our discussion on cubical complexes (48)) in lieu of simplicial
complexes. We make this choice purely for the sake of simplicity, because the data
in our experiments (Sections and are naturally modelled by functions over
grids, which are efficiently represented as filtered cubical complexes. Our method
works for persistence diagrams computed by any homology theory, including sim-
plicial.

Intuitively, cubical complexes are built by gluing cubes together at faces. For-
mally, an elementary interval I C R is a subset of the form {i} or [/, + 1] for any
l € Z; we refer to the former as a degenerate interval. An elementary cube is a
product Q := I} x I x --- x I;, C RF of elementary intervals, and its dimension
(denoted dim Q) is the number of nondegenerate intervals in the product. If @’
and @ are elementary cubes with Q' C Q, we say @’ is a face of Q. Moreover, if
dim Q' = dimQ — 1, we call Q' a facet of . A cubical complex K is any subset
that can be written as a union of elementary cubes, and any subset of I that forms
a cubical complex is referred to as a subcomplex of K. We denote the collection of
k-dimensional cubes in K by K.

Cubical homology. After building a cubical complex from data, our next step is
to compute homology to obtain a quantitative descriptor of topology. Homology
provides a mathematically rigorous framework to measure connectivity and detect
the presence of holes in topological structures. Homology computations are done
with tools from abstract linear algebra (see (16])), which studies linear operators
between general vector spaces defined over arbitrary fields. In all of our examples,
we choose the field as Zy, which is defined as the set {0,1} with addition and
multiplication modulo 2, the vector spaces of interest are the so-called k—chains of a
cubical complex K, the set of formal sums Cj, := {>°, @;Q; : Qi € Ky, o3 € Zs}. The
linear operators we are concerned with are the k—th boundary maps 0 : K — Kx_1,
given by
0, k=0
Ok = 7
@ {ZQ’EF(Q) @, k>0 v

where F(Q) are the facets of). The boundary map extends to Oy : Cx, — Ci—1
through linear extension of Equation . Elements of ker 0, and Imdy, are called
k-cycles and k-boundaries, respectively. The k-th homology group, Hy, is defined as
the quotient space (see Appendix, Hj, :=ker Oy /Tmdk11. Generators of Hy, are
referred to as homological features. Informally, these are k—dimensional holes in a
cubical complex. In Appendix we provide an example of a full cubical homology
computation over Zs. Homology computation over arbitrary fields is addressed in
(51) and a general form of the boundary operator for cubical complexes is given in
27).

Filtrations and persistent homology. Rather than compute the homology for a fixed
cubical complex built atop data, the more common approach in TDA is to compute
the homology for a nested family of complexes while tracking the appearances and
disappearances of homological features. This method, called persistent homology, is
well-suited for quantifying large-scale topological structure in data since it is robust

o N o 0 &~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38

6 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

to minor perturbations in samples; see (18)). Persistent homology is defined through
filtrations.

Definition 2.1. Let I be a cubical complex, and suppose f : Qx — R, where Qx
denotes the set of elementary cubes in I, satisfies (i) f(Q') < f(Q) whenever @’
is a face of). Define K(a) := f~!(—o0,a] and notice that (i) implies K(a) is a
subcomplex of K for every a € R. Taking a1 < as < --- < a, to be the values of f
for every simplex in X and denoting K(a;) := K;, we obtain an increasing sequence
of subcomplexes) = Ko C K1 C --- C K,, = K, which we call the filtration of f.

A commonly-used filtration, and the one we adopt in all of our examples, is
the lower-star filtration, which is defined by K(a) := {Q € K : max,eq f(v) < a}
where v denotes a O-cube (i.e., a vertex of the cube @). An example of a lower star
filtration is shown in Figure

Formally, persistent homology is defined in terms of persistence modules (14)), but
for our purposes, an intuitive description of persistent homology suffices. Therefore,
we proceed here with an intuitive description, deferring a rigorous treatment to
Appendix[5.2] A filtration can be visualized mentally as building K by the addition
of cells, and with the addition of cubes during a filtration, homological features
are created or destroyed. Those whose addition spawns a homological feature are
called positive, while their counterparts that kill features are called negative. It
has been shown in (I9) that, assuming at most one simplex arises during every
nonzero filtration index (which can be assured with data by adding jitter when
necessary), each homological feature which occurs during a filtration maps to a
pair, (Qp, @Q4), where @, and @ are the positive and negative cubes that create
and destroy the feature, respectively. The collection {(f(Qs), f(Qa)}(Qs,@u)er UA,
where P is the set of all positive-to-negative cube pairs for the filtration of f, and
A = {(byd € R? : b = d)}, is known as a persistence diagram (PD), which we
henceforth denote by D. The inclusion of the diagonal, A, in the definition of a PD
is to ensure that bijections between distinct PDs can always be defined, which is
important for constructing distances between PDs. The first and second coordinates
of points in D are called birth and death, respectively—so named because they
provide the appearance and disappearance “times” of homological features during
a filtration. A PD serves as a topological summary of data. Each point in a PD
corresponds to a homological feature, and the persistence of the point (i.e., its death
coordinate minus its birth coordinate) is related to feature’s scale.

PD dissimilarity functions and differentiation. Consider two PDs, D and D’. It has
been shown in (36) that the space of PDs equipped with either the p-Wasserstein
or bottleneck metric, defined, respectively, by

1/p
VAN :
Wo(D, D)= it | Sl —n(o)l} (8)
peD
B(D,D'):= inf_ max|p—n(p)e)

n:D—D’ peD

is a Polish space, where p := (b,d) is a point in a PD, ||-||, and ||-||ec denote the
Minkowski distance and supremum norm, respectively, and n denotes a bijection
between two PDs, D and D’. The inclusion of the diagonal, A := {(b,d € R? : b =
d)}, in D and D’ ensures such a bijection exists. Equations (8) and @ are examples

o U A~ W N

TOFU 7

FIGURE 1. Here, we show a lower star filtration of image data.
We model the image as a function f on a cubical complex K whose
constituent elementary cubes correspond to pixels. The value f(Q)
of a pixel @ is its intensity. At the beginning of the filtration, Ko,
there are no cubes present. The four cubes with the lowest intensity
appear in ;. During this time in the filtration, there is also a 1-
cycle directly in the center of the image. Since this 1-cycle is not
the boundary of any 2-chains, it corresponds to a 1-dimensional
homological feature. More cubes are added in Ky and 3. Finally,
the last cube is added at K4 and the 1-dimensional feature that
appeared at K; is annihilated.

of PD dissimilarity functions, which enable one to quantify topological differences
between diagrams in a dataset.

For our applications, we omit the diagonal from PDs for computational reasons
(see Section , and adopt a PD dissimilarity function reminiscent of Equation
and other well-studied Wasserstein-like distances (31} B2 43; [35), namely the
minimal-cost matching function (see Figure ,

m(D'; D) :=min > [p-(p)II3 (10)
pED

© O N o a »~ W N

=
o

8 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

PD

40

35

30 #

25 0

Death
2

20 e

n @ 4
#
P

10 ’

10 15 20 25 30 35 40

Birth

FIGURE 2. The minimal cost matching (Equation (I0])) for two
PDs, D and D'.

with [D’| > |D|, where | - | denotes cardinality and II is the set of injections from
D to D'. The minimizer, v* in Equation (10) may be computed via the Hungarian
algorithm (29). Fixing D in Equation ields a functional mp : D' — R from
the space of PDs to the real numbers, and it was shown in (4T]) that one can define a
derivative of mp with respect to D that holds almost surely. We summarize the con-
struction of this derivative here as it is important in our framework, but encourage
the reader to refer to (41) for a full rigorous treatment. We also include a detailed

derivative computation in Appendix Let D = {pn}l,?zl1 = {(by, dn)}lnD:‘l, fix D',
and by a slight abuse of notation, denote the first and second components of v(p)
by v(b) and «(d), respectively, so in particular v(p) = [y(b),(d)]. For almost all
D, the minimal-cost matching, v*, does not change in a neighborhood of D, where
a neighborhood is defined by one of the PD metrics, Equations and @D To
be precise, there exists € > 0 such that if we perturb each point in D to create a
new diagram D satisfying W,(D, f)) < €, then v*(p,) = v*(pPy) for all p,, € D and

Pn € D. Therefore, gﬁ is locally well-defined by

om [8m am} (11)

op, Lob,’ ad,
= 2[by = 7" (bn), dn =7 (dn)] (12)
= 2(pn - 7*(pn))v (13)

since v*(p,) € D’ is constant in Wasserstein/bottleneck neighborhoods of D.

3. ToFU: Topological Functional Units. For the remainder of this paper, x
denotes a data point modelled as a function f : G — R, where G C Z¢ is an integer
grid. We identify x with a filtered cubical complex by (i) identifying each element
g € G with an elementary cube of dimension d, say @, (ii) imposing topological
structure on the resulting collection of cubes, and (iii) taking the filtration value of
Qg to be f(g). Step (ii) is informed by pre-exisiting topological structure in G on
a case-by-case basis. For one-dimensional signals (Section , x = {z,}N_) CR,
we define the set of cubes as U)_[n,n + 1] and take x,, as the filtration value for
[n,n + 1]. For image data (Section , where d = 2, we use a construction as in

N o g B W N R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44

TOFU 9

Figure [Il D = {p,}_, denotes a persistence diagram with an arbitrary ordering
of its points, and [p1; pe;...;Pn] is the N x 2 matrix defined by stacking elements
of D row-wise. We refer to the latter as a matrix version of D. Moreover, Dy is the
persistence diagram corresponding to a filtration of some data x.

Recall by fixing D in Equation , we obtain a functional mp : D' — R from
the space of PDs to the real numbers. Consider an ANN unit, ¢p : R? — R, with
transformation T'(x) := Dy, and whose activation is given by

1(Dy) = 5m(Dyi D) (19

where D is a persistence diagram that parameterizes ¢p. Using Equation (13]), we
define the gradient of ¢p with respect to D, evaluated at D = {p, }_,, by

a%fbplp:p = [P1;P2;-- s PN] = [V (P1); Y (P2); - -39 (Pwv)] (15)

where v* is a minimal—cost matching from D to Dy, in accordance with Equation
. Since v* respects shuffling of indices of the points in D, Equation is well-
defined for any ordering of D up to permutation of rows, and a gradient update of D
may be performed with any ordering of D. Through backpropagation, Equation
allows for optimization of loss functions with respect to the topological parameter D.
We henceforth refer to the ANN unit ¢p as Topological Functional Unit (ToFU).
The number of learnable points in ToFU, N in Equation is a hyperparameter.
This design decision explains our choice to omit the diagonal from PDs and the
cardinality assumption in Equation . In particular, excluding the diagonal
prevents new points from arising in D as a result of matches to the diagonal, which
fixes the cardinality of D and thereby limits the number of learnable parameters in
the model. Limiting the number of learnable parameters prevents overfitting and
expedites training. Moreover, the assumption |D| < |Dx| allows N to be much
smaller than the cardinality of the input diagram Dy, which has the advantage
of boosting computational speed at the potential expense of neglecting pertinent
topological information.

Example. Here, we investigate ToFU in a classification problem with synthetic data.
We generate two classes of PDs; all PDs in both classes have five points. Class 1 PDs
are drawn from two distributions. Namely, the two types of PDs in Class 1 are gen-
erated by making 5 independent draws from N*((0,0.3),01) and N*((0.3,0.6),01),
respectively, with o = 0.1 and A* denoting the bivariate normal distribution trun-
cated to {(b,d) € R? : b < d}, chosen so that points in the sampled PDs do not
live below the diagonal. Class 2 PDs are sampled by making 5 independent draws
from N*((0.6,0.9),01). Figure [3| shows samples of the Class 1 and Class 2 PDs in
blue and orange, respectively. In particular, examples from both types of Class 1
PDs are shown independently as upright and inverted blue triangles. We sample
300 PDs in total; 100 for each type of Class 1 PD, respectively, and 100 Class 2
PDs. Note that this leads to class imbalance, which makes the correct classification
of class 2 PDs a more difficult task. The ANN architecture we consider in this
problem is summarized in Table

We choose to use only 1 ToFU with 1 learnable point to facilitate visualization
of the learned diagram D over multiple independent training loops. The learnable
point is initialized by drawing from a uniform distribution on {(b,d) € [0,1] : d > b}.
During training, we use a binary cross-entropy loss function, a learning rate of 0.1,
a batch size of 32, and train our ANN for 20 epochs; see Section The learned

10 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

TABLE 1. The ANN architecture we used for classification of sim-

ulated PDs.
Layer Description
1 ToFU. 1 unit. 1 learnable point.
2 Dense. 32 units. ReLLU activations.
3 Dense. 16 units. ReLU activations.
4 Dense. 8 units. ReLU activations.
) Dense. 1 unit. Sigmoid activation.

1 1-point diagrams D for 20 different independent training loops are shown in Figure
2 as x’s, and their colors denote test accuracies on an 80/20 training test split.

Topological Decision Boundaries Looo

150 4 *
%'(II}Q?S
125 A
F0aso
100 4 e
L F 0925 a
= 075 -~ o
§ vy o F0ann 5
-
0501 4 v . g
. e - 0.875 <F
0.25 4 Aa L J,-’" A Class 1--Type 1 L 0,850
J,’ ¥ Class 1--Type 2
0.00 1 ’*‘ L Class 2 0.825
® ® Leamned Points
-0.25 1 0.800
-0.25% 000 025 050 075 100 135
Birth

FIGURE 3. One-point PDs learned by ToFU for classification. The
learned diagrams are color coded by accuracy. Example PDs from
both classes in the classification task are also shown. Class 1 con-
sisted of two types of PDs, depicted as upright and inverted trian-
gles, respectively. Learned PDs corresponding to high classification
accuracy fell into two groups— those with birth times earlier and
later than points in Class 1 and Class 2, respectively.

All learned PDs D were able to perfectly separate the test sets. The learned
diagrams fell into one of two categories, characterized, respectively, by earlier and
later birth times.

Since Equation depends on a minimal cost matching, the initialization
method of the learnable points can greatly influence the learned parameter D.
We illustrate the role of point initialization with three examples. In each example,
we use Equation ([15) to minimize

© © N o o b~ W

L(D) := é > m(D;D) (16)

De2

N o g B W N R

8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

TOFU 11

via gradient descent, where 2 denotes a fixed set of PDs. Equation is reminis-
cent of mean-squared error, and we may loosely interpret our approximate minimum
to Equation as a “PD of best fit” to the set 2.

Figure [4] shows an example where point initialization determines the solution; we
consider a PD with two points (shown respectively as a blue triangle and orange
dot) and a learnable diagram D with one point. Two separate initializations and
their corresponding gradient updates are shown in green and blue, respectively).

1a
"
/’
08 f e
e
06 e
-
=
8 04 A
,
rd
a x v
02 W
/' A PD Point 1
00 'r' PD Point 2
s -#- Init. 1 Grad. Steps
/’ -#- Init. 2 Grad. Steps
-0.2 ¥ T T T T T
-0.2 0.0 02 04 0.6 0.8 140
Birth

FI1GURE 4. Gradient descent with ToFU layer using Equation .
Because the gradient depends on a minimal—cost matching, ini-
tialization of weights determines the solution when there are fewer
learnable points than those in data.

Another extreme, one in which a unique solution for D exists and hence point
initialization has no effect, is depicted in Figure (5]). Here, we once again consider a
PD with two points, but now the learnable diagram D also has two points (shown
in green). Two optimizations with different initialization for D are shown in Figure
[f(a) and (b), respectively. Notice in Figure[5|(b) that although both learnable points
are initialized closer to the blue point than to the orange point, the minimal-cost
matching ensures that only a single learnable point is paired to the blue point during
gradient updates. In this case, the learnable points always move toward the PD
point to which they are initially matched.

Finally, we consider an example with multiple PDs (shown as upright and in-
verted triangles, respectively) in Figure @ Each PD in Figure @, as well as the
learnable PD D, has three points. Notice in Figure [6{a) and (b) that the learnable
points in D move to the region between both PDs. In general, one expects D to
converge to a barycenter of PDs in the training data.

In all three examples, ToFU learns a sensible value for D, but Figures [4 and [0]
demonstrate that the value for D is not necessarily unique. The nonuniqueness does
not preclude the use of ToFU in ANNs, which can learn useful relationships in data
despite the use of nonconvex loss functions (with respect to network parameters).
For a detailed discussion of nonconvex loss functions and ANNs, see (13]).

3.1. Topologically—Based Encodings. In this section, we present an architec-
ture for a variational autoencoder utilizing ToFU to create latent representations

12

C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

10 . 10 ~
A PDPoint1 S~ A PDFoint1 S
. PD Point 2 = 08 PD Point 2 % L
) -3- Grad. Steps X ',' : -3¢~ Grad. Steps W /’
k S 7 A
06 v 06 S
- i - A
= I = ;L Vd
M o4 s © 04 s
a 5 7 a L
e
02 i 02 X
X 5
ra rd
f’, f”
0.0 o 0.0 S
I’ I’
f’ l’
-0.2 ¥ T T T T T -02 + T r : : :
02 00 02 04 06 08 10 -0z 00 02 04 06 08 10
Birth Birth
(4) (B)

FIGURE 5. Gradient descent with ToFU layer that has two learn-
able points. Different initializations are shown in (a) and (b).

1a 10
X\ ," ’f'
v # ’
08 i X 08
)) 'I _}é’
Y9 . ; v
b ¥ Ve v R

06 v - 0.6 A SV
— -~ - }Qx e
v} o] o
M 04 = M 04 % E
] R] AR
D rX /’ D |,' xf’

02 * 02 % A

,'rf' e
00 ,x A PDTypel 00 /' A PDType 1
) ~ ¥ FPD-Type 2 : ” ¥ PD-Type 2
,/ -~ Gradient Steps /' -#- Gradient Steps
-0.2 ¥ v v v T T -02 + T r r r r
—0.2 0.0 0z 0.4 06 0.8 10 -0.2 0.0 0z 04 06 08 1a
Birth Birth
(a) (B)

©® N o g B~ W N

FIGURE 6. Gradient descent to minimize the average of Equation
for two PDs using a ToFU layer that has three learnable points.
Different initializations are shown in (a) and (b).

that encode topological information about data. The novel part of our architecture
is the encoder, which we now describe in detail.

The first step performed in our encoder sends the input data x € R through a
layer comprised of ToFUs whose activations are denoted, respectively, by ¢, , ¢D,, ..., dD¢ :
RY — R, where C is the user-selected number of units. We define ¢(x) := (¢p,(x)), €
RC, and two pairs of multi-layer ANNS, gy, 0x : RY — R and pg, 04 : RC — RI7.
The next step in our encoder passes x to jix and oy, as well as ¢ to ug and oy, then
both pairs are used to parameterize the latent distribution ¢(z|x). In particular,

a(zx) = N (7 1,%) (17)

10

11

12

13
14
15
16
17
18
19
20
21

22

23
24
25

TOFU 13

Sample
ToFU f_’ N 2)
!
e
.

FIGURE 7. A schematic of the encoder in our topological VAE
architecture. Here, we choose C = 1 in ¢ for simplicity.

where p = (ux, ptg) € R 7 is the vector whose first h elements and last hr
elements are /i, and f14, respectively, ¥ := diag(ox, o) € RUFAT)X(MHh1) g the di-
agonal matrix whose first h and last hp diagonal entires are ox and o, respectively,

and N (z; 1L, E) denotes the (h + hy)—dimensional Gaussian density with mean p

and covariance matrix X. Our topological encoder is summarized in Figure[7] The
discussion around Equation (|17) is summarized in the following proposition.

Proposition 1. Let x € R?, consider a persistence diagram D, computed from
a filtration constructed with x, and define ¢(x) := (¢p,(x))%, € RY, where each
ép, : R — R is given by Equation . Suppose further we have two pairs
of multilayer ANNs, u(x),0(x) : RY = R" and pr(¢),or(¢) : RY — R and

consider the distribution ¢(z|x) = N(z; (u, pr), diag(o, JT)). Then, the last C
dimensions of z ~ ¢(z|x) only depend on Dx.

Proposition (1| follows by noticing ¢(z|x) in Equation is an uncorrelated
multivariate Gaussian density then inspecting its marginal distributions. Using our
encoder, one can incorporate topological information about the input data into
latent space representations in an interpretable manner.

With our encoder in hand, we are free to select any architecture suitable for
the data to build a decoder. When x € R? is grey-scale image data, given by
ad = H x W array of pixels, the architecture we adopt for the decoder is as
follows. The output of the encoder, z, is passed through to a multi-layer ANN
Do : R 5 RY. which parameterizes the data likelihood,

p(X‘Z) = B(q)dec)a (18)
where B(®gcc) is the d-dimensional Bernoulli distribution with independent marginals.
4. Experiments. In this section, we investigate ToFU in two experimental set-

tings. First, we consider ToFU in a classifcation problem, then explore its use in a
variational autoencoder.

A W R

© o N o o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49

14 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

PDs have varying cardinalities so to ensure fixed input sizes to our ANNs, we
pad PDs with zeros when necessary. ToFU is implemented in TensorFlow 2.0, and
we intend to make the code publically available. All of our demos and experiments
were performed on a CPU.

4.1. Signal Classification Using ToFU. We consider a classification problem
with discrete time autoregressive (AR) signals, which have been widely studied in
signal processing (40). It was shown in (2I)) the power spectral densities (PSDs) of
AR signals can be explictly computed from AR simulation parameters, and we use
this fact to create distinct collections of signals A; for j = 1,2, 3,4, each character-
ized by nonzero peaks in their PSDs at 6 Hz, 10 Hz, 14 Hz, and 21 Hz, respectively.
These specific frequency choices are motivated by their interest amongst neuroscien-
tists and neurologists who study human brain activity using electroencephalography
(EEG) signals (8)), and the capabilities of AR models to simulate EEG signals (24).
For each j, |A;| = 800, and signals in A; have the same non-zero peak in their
PSDs, with varying damping factors sampled uniformly from {4,5,...,32}. Hence,
the A; are comprised of signals that oscillate at the same frequency, but with dif-
ferent strengths. Every signal also has a fixed-width PSD peak at zero to simulate
the monotonically decreasing PSDs that occur in a wide variety of natural signals
(this phenomenon is known as 1/f behavior in literature).

We use our method to distinguish the different A; based on the sublevel set
topologies of their constituent signals. PDs are computed for the signals in each
Aj, which we denote by Z;. With Z; in hand, we built a 4-layer ANN (3 hidden,
1 output) to classify each PD. The first layer of our ANN consists of a ToFU
layer. To measure the accuracy of our classifier, we used an 80 — 20 split with
each Z; to build training and test sets. For the sake of comparison, we consider
three other ANNs whose architecture has the same last three layers, but the ToFU
layer replaced. The first of these has an untrainable layer that computes PSDs
with Welch’s method (44]), which approximates PSDs by averaging periodograms
from overlapping windows of the signals. The second network, which we refer to as
Convl, has a single convolutional layer with 8 channels and filter sizes of 3, followed
by average pooling with the same filter size, which downsamples an image through
windowed averaging. The third network, which we call Conv2, has 64 channels with
filter sizes of 128, followed by average pooling; the rationale behind this network
was that it could theoretically learn to compute periodograms in a single layer.
The difference at the beginning of each of these networks largely has to do with
the type of data it accepts as input. The Welch, Convl, and Conv2 networks
all take 1-dimensional signals as input, and hence 1-dimensional convolutions were
chosen to learn feature maps in the initial layer since 1-dimensional convolutions (i)
require 1-dimensional signals as input and (ii) have been well-studied as a method
to compute machine learning features of signals. Each of these networks also used
a non-learnable average pooling layer to downsample, which is a standard practice,
as downsampling is well-known to improve performance in convolutional networks.
Conversely, the ToFU network takes persistence diagrams as input, so we used a
ToFU layer, as opposed to convolution, to learn a vectorization. In each of these
networks, the final 3 layers after the initial vectorization layer were fixed. Indeed,
we used this high level design precisely to control for the structure of each network.

To compare our method to other topological approaches, we consider two more
networks that are trained on persistence diagram vectorizations. The first of these
networks employs a convolutional architecture with persistence images (PIs) ().

[N

© © N o

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

TOFU 15

AR Signals
Class Signal Avg. Class PSD Signal PD
Alpha | I/ | e
’ 00 02 04 06 08 10 0 10 20 30 40 50 60 3 2 1 0 1 2 3
High Beta @ ;j ~ANANANA AN A, ‘ ﬂ —— . ‘ :j T e B ‘
% i) 02 0)) 10 ¢ 1 2 % & s 6 '3 2 K] 5 1 3 3
> N -
o
T A k=t = ®- ———
LowBeta | 8 ;i Ap-ni—ny ‘5~3 — g |
v-g 0o 02 04 05 08 == I R T T] o s 2 1 0 1 2 3
ks
Th ST~] | 1=]
Time (s) Frequency (Hz) Birth

FI1GURE 8. Examples from the AR signals dataset. Here, we show
signals with damping factor f=4. The average log PSD for each
class, estimated by averaging periodograms, is shown in the second
column.

This network requires 2-dimensional signal inputs, i.e. pixelated images, which
precludes the use of one-dimensional convolutions. Consequently, we employ a 2-
dimensional convolutional architecture based on the ubiquitous LeNet-5 CNN (30)
using PIs with a resolution of 20 x 20 as input. This architecture is specified by
sequential layers:

1. Convolutional layer with 6 channels, a filter size of 5 X 5 and a stride of 1.
Average pooling.

Convolutional layer with 16 channels, a filter size of 5 x 5 and a stride of 1.
Average pooling.

Dense layer with 120 units and ReLU activations.

Dense layer with 84 units and ReL.U activations.

Dense layer with 4 units and softmax activation.

NSOt

The second topological vectorization network is trained on persistence landscapes
(PLs) (7). Since PLs can be represented as one-dimensional signals, we once again
use the Convl architecture when training on PLs. Both PIs and PLs have hyper-
parameters that require tuning. For Pls, we train with three different bandwidths
over different scales, 0.1, 1, and 10. Similarly, for PLs, we train with three different
landscape numbers, 1, 5 and 10. For both vectorizations, we use the hyperparame-
ters with the highest training accuracy. Each network is trained for 100 epochs with
a learning rate of 0.001, and the highest test accuracies achieved by each during
training are reported in Table

We observe that the ToFU network is competitive with the one that used hand-
designed features, and that it outperforms both convolutional and PD vectorization
networks. We acknowledge that deeper CNNs would likely have competitive per-
formance with the ToFU network, but at the expense of more complicated network
architectures.

4.2. Variational Autoencoder. In this section, we present an example demon-
strating how ToFU can learn latent space encodings in variational autoencoders that

N o o B~ W N R

[«

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

16 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

TABLE 2. Test accuracies for each ANN trained for AR signal clas-
sification. Conv1l and Conv2 refer to the 8 and 64 channel networks,
respectively, while PLs and PIs refer to the networks trained on
persistence landscapes and persistence images.

Model Test Accuracy

Welch 98.91
ToFU 98.12
PLs 96.41
PIs 95.94
Convl 92.66
Conv?2 88.12

richly incorporate topological information about the input data. Please see Section
for overview of variational autoencoders, and (28) for a thorough introduction.

For this experiment, we create a synthetic categorical dataset of images whose
classes are topologically distinguishable; see Figure [0] Our dataset mimics obser-
vations of die rolls on a flat surface. The Die dataset consists of 6 classes Ci, each
characterized by a fixed number k of nonzero pixels. Elements of Cj, are generated
by the following procedure:

1. Make k independent draws from ¢[0.85, 2].
2. Arrange the k samples in a fixed pattern at the center of a 21-by-21 grid.
3. Apply random vertical and horizontal translations to the grid.

Each nonzero pixel in elements of Cy, corresponds to a homological feature of degree
1 in the cubical filtration. Hence, 1-dimensional homology readily distinguishes the
classes. Moreover, since the 1-dimensional PDs are invariant under translations of
the grid, they serve as natural descriptors for Cy.

We generate 1000 examples for each class and compute their 1-dimensional PDs,
Cr = {Ci}199° and Dy, = {D}}199°. The Cj and Dy, are used to train a variational
autoencoder (VAE) that uses ToFU to learn a latent space representation; see Sec-
tion B.1l We henceforth refer to this VAE as the ToFU variational autoencoder
(ToFU-VAE). The encoder for ToFU-VAE follows the architecture laid out in Sec-
tion with: i) C' = 1 in the ToFU layer, where the number of learnable points
equals 6, ii) px, ox, ftg, and oy specified by two-layer ANNs, with dense layers com-
prised of 64 units that have ReLU activations, and 3) the dimensions that define the
latent space given by h = hy = 1. We select a 2-dimensional latent space for ease
of visualization. The decoder for ToFU-VAE also follows the architecture described
in Section with ®ge. specified by an ANN with two dense layers, the first of
which has 64 units with ReLU activations, and the second has 21 x 21 = 441 units
with sigmoid activations.

For the sake of comparison, we also train a typical VAE without ToFU. The
encoder-decoder architecture for the typical VAE is the same as that of ToFU-VAE
except that: i) the ToFU layer, p14, and o, are omitted, ii) ¢(z|x) = N (z; pix, Xx);
in particular, the latent space distribution only depends on x through sy : R — R”
as well as another two-layer ANN with the same architecture as u, that outputs a
diagonal covariance matrix, ¥y : R? — R"*" and iii) the output dimension of s, is

© o N o g B~ w N R

e =
w N = o

TOFU 17

Noisy Dice Dataset

{Pixel Intensity) ™6

FIGURE 9. Shown above is a single example from each of the six
classes in our synthetic dataset. We apply a nonlinear transforma-
tion to pixel values for visual clarity.

increased to 2 so that the latent space dimension of the typical VAE matches that
of ToFU-VAE.

Both ToFU-VAE and the typical VAE are trained for 2 epochs with a batch size
of 32 and a learning rate of 0.001. The resulting latent space representations are
shown in Figure where we have explicitly labeled the topological dimension in
(b), which depicts the latent space of ToFU-VAE.

Figure shows a marked difference in the latent space representation of the
typical VAE and ToFU-VAE. As expected, the topological dimension of ToFU-VAE
(22 in Figure [L0[b)) completely encodes the topology of each class. This leads to
a more interpretable latent space representation than that produced by the typical
VAE. Namely, ToFU-VAE produced a joint distribution whose marginals describe
input data with similar global topology. Moreover, Table[3|shows that this increased
interpretability incurs no cost in reconstruction error.

TABLE 3. Test reconstruction errors for both VAEs.

ANN Test Recon. Err.

Typical VAE 0.0847
ToFU-VAE 0.0806

© o N o o B~ w N R

NN N RN N N B R R R R R e
S O & O N R O © ® N O O & ® N = O

18 C. OBALLE AND D. BOOTHE AND P. J. FRANASZCZUK AND V. MAROULAS

—T6
— 6
g ks
T —
s 3
et =]
1 b L4
o r4
[V &
™ T
k] .]
= ”, =
g |~ £
]
a » 3§ M3
o = £
= 3 =
=) Lo o
o 4 N
» "2 '
T T T T T T —1 T T T T T T L1
P4l 21

FIGURE 10. Latent space representations of the (a) typical VAE
and (b) ToFU-VAE. The ToFU-VAE latent space shows clear sep-
aration based on the topology of each class.

5. Discussion and Future Directions. We have introduced a new ANN unit,
ToFU, that is parameterized by a learnable PD and employs a PD dissimilarity
function as its activation. Our examples demonstrated that ToFU learns pertinent
topology in data, which may be leveraged for data science applications that bear
topology in mind.

Our classification example in Section[3|depicted how ToFU differentiates topologically-

distinct classes in the space of PDs. In particular, ToFU learns a PD whose topo-
logical distance to PDs in the data differs across classes. Section [4.1] considered a
signal classification problem inspired by neuroscience. In this experiment, ToFU
achieved competitive performance with spectral features without relying on deep
networks, a feat that was unmatched by CNNs. The signal classification problem
exemplifies that ToFU learns high-level descriptors of data useful by their inher-
ent nature. Finally, we used ToFU to create a novel variational autoencoder (VAE)
whose latent space marginal distrbutions are solely dictated by the topology of data.
We showed how our new VAE produces interpretable latent space representations
without sacrificing reconstruction accuracy on a synthetic dataset.

The features learned by ToFU are invariant to a set of transformations that
preserve the large-scale topological structure in inputs, for example rotations and
translations. Such transformations are commonly encountered in data science prob-
lems, wherein something like an image may be rotated or translated, but its class
label remains unaffected (we considered examples of this nature in Sections [4.1] and
[£2] where, respectively, phase shifts of signals and image translations did not alter
class labels). To help ANNs recognize these transformations with limited training
data at their disposal, practitioners often rely on data augmentation to generate
synthetic training examples. ToFU reduces the need for data augmentation since
roto-translational invariant features are learned by design. As a future direction,

© o N o o B~ w N R

NORNNNNNN NN R R H R e e
® N 6 R W N B O © ® N o oA ® N = O

29
30
31
32
33
34
35
36
37
38
39

40

REFERENCES 19

we will investigate more sophisticated methods for using ToFU in data augmenta-
tion, for example by using ToFU-VAE as a generative model to create training data
with desired topological characteristics. Additionally, it will be beneficial to com-
pare ToFU to a larger collection of TDA methods, for example sliced Wasserstein
kernels (10) or persistence codebooks (50), on a larger repository of datasets.

In isolation, gradient-based optimization of Equation is closely-related to
finding the Fréchet mean of PDs with respect to the Wasserstein metric; this is a
well-studied problem (36]), and a Fréchet mean for a finite collection of PDs is known
to exist, although not necessarily a unique one. A later work (46) introduced a
gradient-descent algorithm to find Fréchet means, and established its convergence to
a local minimum under mild conditions. The issue of nonuniqueness is considered in
(B9) wherein the authors propose the Probabilistic Fréchet Mean (PFM). The PFM
is interpreted as a probabilistic mixture of PDs and, unlike the typical Fréchet mean,
is unique. While our work does not use the gradient-descent algorithm from (46)) or
PFMs from (39)), incorporating them into our framework constitute an interesting
areas for further research. From a computational standpoint, (I5) introduces an
algorithm for the fast computation of Wasserstein barycenters that is amenable to
GPU computations, and leveraging this work in the implementation of ToFU can
reap computational benefits potentially executable within a quantum framework.
While the examples considered in this paper employ ToFU directly on the input
data, there is nothing in principle that prevents ToFU’s use in deeper layers of
an ANN. In the future, we will investigate the use ToFU to discover informative
topological structure in hidden representations of ANNs.

Deep learning benefits from sound inductive biases. Therefore, the use of topolog-
ical descriptors in ANNs can augment performance whenever topology is a defining
characteristic in data. In this fashion, ToFU is a step toward harmonizing the
expressive capabilities of deep learning with high-level mathematical intuitions of
data.

Acknowledgments. All authors would like to thank an anonymous reviewer for
their comments, which substangtially improved this manuscript. CO’s research was
sponsored by the Army Research Laboratory (ARL) and was accomplished under
Cooperative Agreement Number W911NF-19-2-0302. VM’s work was partially sup-
ported by the ARO W911NF-21-1-0094, NSF DMS-1821241, DMS-2012609, and
ARL and was accomplished under Cooperative Agreement Number W911NF-19-
2-0328. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

REFERENCES.

[1] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Che-
pushtanova, E. Hanson, F. Motta and L. Ziegelmeier, Persistence images: A
stable vector representation of persistent homology, The Journal of Machine
Learning Research, 18 (2017), 218-252.

[2] R. J. Adler and S. Agami, Modelling persistence diagrams with planar point
processes, and revealing topology with bagplots, Journal of Applied and Com-
putational Topology, 3 (2019), 139-183.

© o N o o A W N R

A OB B A A B A A D OB W OW W W W W W W WWNNRNNNNRNNNDN B B s e e s
© ® N o O 2 & 8N B O © ® N &6 O r O RN R O Y ®» N oG R N R OS LV ©® N o0 g s ® N = O

3]
[4]

[5]

REFERENCES

J.-B. Bardin, G. Spreemann and K. Hess, Topological exploration of artificial
neuronal network dynamics, Network Neuroscience, 3 (2019), 725-743.

E. Berry, Y.-C. Chen, J. Cisewski-Kehe and B. T. Fasy, Functional summaries
of persistence diagrams., J. Appl. Comput. Topol., 4 (2020), 211-262.

C. A. Biscio and J. Mgller, The accumulated persistence function, a new useful
functional summary statistic for topological data analysis, with a view to brain
artery trees and spatial point process applications, Journal of Computational
and Graphical Statistics, 28 (2019), 671-681.

R. Briiel-Gabrielsson, B. J. Nelson, A. Dwaraknath, P. Skraba, L. J. Guibas
and G. Carlsson, A topology layer for machine learning, arXiv preprint
arXiv:1905.12200.

P. Bubenik, Statistical topological data analysis using persistence landscapes,
The Journal of Machine Learning Research, 16 (2015), 77-102.

G. Buzsaki, Rhythms of the Brain, Oxford University Press, 2006.

G. Carlsson, Topology and data, Bulletin of the American Mathematical
Society, 46 (2009), 255-308.

M. Carriere, M. Cuturi and S. Oudot, Sliced wasserstein kernel for persistence
diagrams, in International Conference on Machine Learning, PMLR, 2017,
664-673.

F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo and L. Wasserman, Stochastic
convergence of persistence landscapes and silhouettes, in Proceedings of the
thirtieth annual symposium on Computational geometry, 2014, 474-483.

F. Chazal and V. Divol, The density of expected persistence diagrams and its
kernel based estimation, 2019.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous and Y. LeCun, The loss
surfaces of multilayer networks, in Artificial intelligence and statistics, 2015,
192-204.

W. Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence
modules, Journal of Algebra and its Applications, 14 (2015), 1550066.

M. Cuturi and A. Doucet, Fast computation of wasserstein barycenters, vol. 32
of Proceedings of Machine Learning Research, PMLR, Bejing, China, 2014,
685-693, URL http://proceedings.mlr.press/v32/cuturil4.html.

D. S. Dummit and R. M. Foote, Abstract algebra, vol. 3, Wiley Hoboken, 2004.
H. Edelsbrunner and J. Harer, Computational Topology: An Introduction,
American Mathematical Society, Providence, RI, 2010.

H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence
and simplification, in Proceedings 41st annual symposium on foundations of
computer science, IEEE, 2000, 454-463.

H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and
simplification, in Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on, IEEE, 2000, 454—-463.

B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan, A. Singh
et al., Confidence sets for persistence diagrams, The Annals of Statistics, 42
(2014), 2301-2339.

P. J. Franaszczuk and K. J. Blinowska, Linear model of brain electrical activ-
ity—eeg as a superposition of damped oscillatory modes, Biological cybernetics,
53 (1985), 19-25.

R. B. Gabrielsson and G. Carlsson, Exposition and interpretation of the
topology of neural networks, in 2019 18th IEEE International Conference On

http://proceedings.mlr.press/v32/cuturi14.html

© o N o o A w N R

A A A B A A B A AW OWOWOW W W W W WWNNNNRNNNRNNDNR B BB R s R e s e
© N o O 2 W N B O © ®©® N 0 0 2 ® 0 R O ©V O N o6 A& WN =R O © N o rA W N R O

REFERENCES 21

Machine Learning And Applications (ICMLA), IEEE, 2019, 1069-1076.

R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the American
Mathematical Society, 45 (2008), 61-75.

S. Gordon, P. Franaszczuk, W. Hairston, M. Vindiola and K. McDowell, Com-
paring parametric and nonparametric methods for detecting phase synchro-
nization in eeg, Journal of Neuroscience Methods, 212 (2013), 247-258.

K. Gurney, An introduction to neural networks, CRC press, 1997.

W. H. Guss and R. Salakhutdinov, On characterizing the capacity of neural
networks using algebraic topology, arXiv preprint arXiv:1802.04443.

T. Kaczynski, K. Mischaikow and M. Mrozek, Computational homology, vol.
157, Springer Science & Business Media, 2006.

D. P. Kingma and M. Welling, An introduction to variational autoencoders,
arXi preprint arXiv:1906.02691.

H. W. Kuhn, The hungarian method for the assignment problem, Naval
research logistics quarterly, 2 (1955), 83-97.

Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied
to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324.

A. Marchese and V. Maroulas, Signal classification with a point process dis-
tance on the space of persistence diagrams, Advances in Data Analysis and
Classification, 12 (2018), 657-682.

V. Maroulas, C. P. Micucci and A. Spannaus, A stable cardinality distance
for topological classification, Advances in Data Analysis and Classification, 14
(2020), 611-628.

V. Maroulas, J. L. Mike and C. Oballe, Nonparametric estimation of proba-
bility density functions of random persistence diagrams., Journal of Machine
Learning Research, 20 (2019), 1-49.

V. Maroulas, F. Nasrin and C. Oballe, A bayesian framework for persistent
homology, SIAM Journal on Mathematics of Data Science, 2 (2020), 48-74.
F. Mémoli, The gromov—wasserstein distance: A brief overview, Azxioms, 3
(2014), 335-341.

Y. Mileyko, S. Mukherjee and J. Harer, Probability measures on the space of
persistence diagrams, Inverse Problems, 27 (2011), 124007.

A. Monod, S. Kalisnik, J. A. Patino-Galindo and L. Crawford, Tropical
sufficient statistics for persistent homology, SIAM Journal on Applied Al-
gebra and Geometry, 3 (2019), 337-371, URL http://dx.doi.org/10.1137/
17M1148037.

M. Moor, M. Horn, B. Rieck and K. Borgwardt, Topological autoencoders,
arXiv preprint arXiw:1906.00722.

E. Munch, K. Turner, P. Bendich, S. Mukherjee, J. Mattingly and J. Harer,
Probabilistic fréchet means for time varying persistence diagrams, FElectronic
Journal of Statistics, 9 (2015), 1173-1204.

A. V. Oppenheim, J. R. Buck and R. W. Schafer, Discrete-time signal pro-
cessing. Vol. 2, Upper Saddle River, NJ: Prentice Hall, 2001.

A. Poulenard, P. Skraba and M. Ovsjanikov, Topological function optimization
for continuous shape matching, in Computer Graphics Forum, vol. 37, Wiley
Online Library, 2018, 13-25.

S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From
theory to algorithms, Cambridge university press, 2014.

http://dx.doi.org/10.1137/17M1148037
http://dx.doi.org/10.1137/17M1148037
http://dx.doi.org/10.1137/17M1148037

© o N o g B~ w N R

[T N T N Y o T Y
N B & © ©® N o O &~ W N = o

N
w

24

25
26

22 REFERENCES

[43] P. Skraba and K. Turner, Wasserstein stability for persistence diagrams, arXiv
preprint arXiw:2006.16824.

[44] O. Solomon Jr, Psd computations using welch’s method, STIN, 92 (1991),
23584.

[45] 1. Tolstikhin, O. Bousquet, S. Gelly and B. Schoelkopf, Wasserstein auto-
encoders, arXiv preprint arXiv:1711.01558.

[46] K. Turner, Y. Mileyko, S. Mukherjee and J. Harer, Fréchet means for distribu-
tions of persistence diagrams, Discrete & Computational Geometry, 52 (2014),
44-70.

[47) K. Turner, S. Mukherjee and D. M. Boyer, Persistent homology transform for
modeling shapes and surfaces, Information and Inference: A Journal of the
IMA, 3 (2014), 310-344.

[48] H. Wagner, C. Chen and E. Vugini, Efficient computation of persistent homol-
ogy for cubical data, in Topological methods in data analysis and visualization
II, Springer, 2012, 91-106.

[49] P.J. Werbos, The roots of backpropagation: from ordered derivatives to neural
networks and political forecasting, vol. 1, John Wiley & Sons, 1994.

[50] B. Zieliiski, M. Lipiniski, M. Juda, M. Zeppelzauer and P. Dlotko, Persis-
tence codebooks for topological data analysis, Artificial Intelligence Review,
54 (2021), 1969-2009.

[51] A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete &
Computational Geometry, 33 (2005), 249-274.

Received xxxx 20xx; revised xxxx 20xx.

Appendix.

5.1. Variational autoencoders. In this section, we derive the relationship be-
tween the Kullback-Leibler divergence and evidence lower bound (ELBO) given in
Equations and Equation @, respectively. To this end, notice

Dic1(t0(x) [ro(a1x) =~y (10 22275 (19)
= —Egp(zx) (logpg(z|x) — log qg(z\x)> (20)
= —FEqgp (%) (logp(Z) + log pe(x|2) (21)

— log pe(x) — log Qﬁ(z\x))

= log pe(x) —]Eqﬂ(z|x)(10gpe (X\Z)) + Dk r(qs(z[x)||p(2)),

—ELBO(8,9)
(22)

where Equation follows from Bayes’ rule and Equation follows by linearity
of the expectation and the fact that pg(x) does not depend on the density gg(z|x).
From Equation , we deduce

ELBO(8,9) = logpe(x) — Dxr(qs(2|x)|pe(2|x)) (23)
< log pe(x). (24)

The inequality in follows since Kullback-Leibler divergence is always non-
negative, and the quantity pg(x) is known as the evidence of the model pg given

g oA W N e

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

25
26
27
28
29
30
31

REFERENCES 23

data x. Equations (23) and (24) establish the ELBO as a lower bound for the
log likelihood of the model py(x) given data x, and show that the bound becomes
tight whenever Dk, (g9 (z|x)||pe(z|x)) = 0. Consequently, maximizing the ELBO
increases the evidence of the model while reducing Kullback-Leibler divergence,

Dk 1.(q9(2[x)]|pe(z[x)).
5.2. Computational topology.

5.2.1. Quotient spaces. Let V be a vector space over a field F' and suppose N is a
subspace of V. Given v € V, we define an equivalence class, [v], by [v] := {v+n :
n € N}. The quotient space V/N is defined as the collection of equivalence classes
{[v] : v € V'} along with the addition and scalar multiplication operations:

[v] + [w] := v+ w], vyweV (25)
Alv] :==[\v], A€ F. (26)

It can be shown that Equations and are well-defined (I6]), and moreover
that V/N is a vector space. Informally, V/N represents the vector space that one
obtains from V by “zeroing out” the elements in N. As a simple example, we can
consider V= R? and N = {(2,0) : * € R} (the z-axis) over R with standard
addition and multiplication. Then, for (z,y) € R?, we have [(x,y)] := {(z + r,y) :
r € R} = {(z,y) € R? : x € R}. We observe that our equivalence classes are the
lines parallel to the z-axis, which are entirely parameterized by their y-coordinate.
In a sense, we have “zeroed out” the z-coordinate to obtain a new one-dimensional
vector space that has the same structure as R. Formally, we say R? /R is isomorphic
to R and write R?/R ~ R.

5.2.2. Homology example. We explicitly compute the homology group H; := ker 91 /Imds

over Zs for a simple cubical complex to illustrate that homological computations
boil down to abstract linear algebra.

Consider a cubical complex, I, comprised of 0-,1-, and 2-dimensional cubes that
we denote by {v1,vs,v3,v4, V5,06 }, {€1, €2, €3, €4, €5, €6, €7}, and {f1}, respectively;
see Figure To compute Hi, we need to construct its associated boundary oper-
ators, 0 and Jo, which can be represented as matrices since the boundary operator
is linear. In particular,

€1 €2 €3 €4 €5 € €7 el flll
vy /1 0 0 1 0 0 0 o
w1l 1 0 0 1 0 0 ej .

gy vs| 0 1 100 0 1 g P (27)
wl0 0 1 1 0 0 0 0
vs{0 0 0 0 1 1 0 € 0
w6\NO 0O 0 0 0 1 1 Zi 0

by computing each boundary operator using {vy, va, v3, v4, Vs, V6 }, {€1, €2, €3, €4, €5, €6, €7 },

and { f1} as respective bases for the 0-, 1-, and 2-chains. Next, we compute ker 9; by
constructing a basis for the null space of 0y, which, bearing in mind that 1+1 = 0 in
Zs, can be done by the standard method of augmented matrix row reduction. The
basis we obtain from this procedure is {[1,1,1,1,0,0,0]7,[0,1,0,0,1,1,1]T}, which
corresponds to the set of 1-chains {e; 4+ es + €3 + €4, €3 + €5+ eg + e7}. Since Cs is
spanned by f, the image of 95 is spanned by [1,1,1,1,0,0,0]T, which corresponds

[S

10
11

12
13
14
15
16

24 REFERENCES

3] [
L L] vy
; 2
ey h L]
Y4 vy g
€3 €7

FIGURE 11. A cubical complex, K that we use to demonstrate
homological computations. The 0-,1-, and 2-dimensional cubes in
K are labelled as {vy1,va, v3, v4, V5, 06}, {€1, €2, €3, €4, €5, €6, €7 }, and
{f1}, respectively.

to the 1-chain e; + e + e3 + e4. Finally, Hy := ker 9y /Im0s ~ {\(e2 +e5+es+e7) :
A € Zs} (the vector space spanned by es + e5 + e + e7) is obtained by “zeroing
out” the elements in ker 9; that appear in Imdy. We conclude that H; is generated
by one element. Intuitively, this element represents the hole enclosed by the edges
€2, €5, €6, and e7.

5.2.3. Persistence modules. A filtration, Definition (2.1), implies an inclusion of
chain complexes

Cr(Ko) C Cr(Ky) C -+ C Cr(Ky),

where Cj(K) denotes the k-chains of K, which in turn induce linear maps 4} ;
between homology groups, Hy(K;) and Hy(K;41) of K; and /C;j11, respectively,

s

Hy,(Ko) 5 Hyy (K1) 22 . 22 Hy(K,), (28)

by tracking where elements of ker J; and Im0j; are sent under inclusions. The
family of homology groups along with the sequence of maps in Equation is
known as a (finite) persistence module, which we denote by M. Given two persis-
tence modules, My = {Hg(K;), i} ;11 ;Lz_& and My = {H}(K}), L;?)jﬂ}?:_ol, we deﬁnle
their direct sum, M; ® My, by My @ Mo = {Hy(K;) © H(K}), 45 ;11 D] j41tj—0-
A natural question to ask is if persistence modules can be decomposed into a di-
rect sum of persistent modules. By the Structure Theorem for Persistence Modules
(14), the answer to this question is in the affirmative. In particular, if we define the
interval module I(b,d) by
Ibd)=02%0% S0%viavd v%0%0% .. %0, (29

b—1 times d—b times n—(d—1) times

© N o o »

10
11
12

13
14

15

16
17
18
19

REFERENCES 25

where 0,v,0, and id denote the zero vector space, an arbitrary one-dimensional
vector space, the zero map, and the identity map, respectively, then any finite
persistence module decomposes into a direct sum of B interval modules,

B
M= I(bm, dm). (30)
m=1

Under mild conditions, the coordinates (b,,d,,) of M’s interval decomposition
map uniquely to a pair of cubes, (Qs,, ,Qq,,), Wwhere @, and Qg are positive
and negative cubes that create and destroy a homological feature, respectively. As
was discussed in Section the collection {(f(Qs,,), f(Qa,,)}2_,, along with the
diagonal {(z,y) € R? : 2 = y} defines a persistence diagram.

5.2.4. Differentiability with respect to persistence diagrams. To provide more detail
for Equations - , we compute the derivative of Equation with respect
to points in the diagram D using the limit definition. To this end, fix D’ and suppose
D = {p,})_; = {(by,d,)}_,. By definition of the derivative,
Oom _ rOm Om
Opn [@’ @}’
and hence to compute the left hand side of Equation , it suffices to compute
ng:; and 37”2. We only compute gT’Z as the computation of 37"2 is analogous. To
this end, notice

67’)1 T 1 . 2 2 2
g = lim <[(min DZ\ [P (P)IE + (bu + € = 7(bu + €)? + (dn — 7(dn))?)
o Pn

(min 3 [p-A®)3 + (b — (B + (e — (d))?)].

y
PED\pn

(31)

(32)

where II is the set of injections from D to D', and by a slight abuse of notation,
we denote the first and second components of the mapping v(p) by v(b) and ~(d),
respectively, so in particular v(p) = [y(b),v(d)]. Since D’ is fixed, it has been
shown that the minimal cost matching in Equation , ~v*, does not change in
a neighborhood of D, where a neighborhood is defined by one of the PD metrics,
Equations and @ To be precise, there exists § > 0 such that if we perturb
each point in D to create a new diagram D satisfying W,,(D, D) < J, then v*(p,,) =
v*(pyn) for all p,, € D and p,, € D. Thus, for e sufficiently small, we can drop the
minimums in Equation and replace v with the minimizer v* to obtain
om (b + € =7 (bn))* = (b = 7*(bn))?

o, — m c

= 2(by — 7 (b)),
E-mail address: lcoballe@nd.edu
E-mail address: david.l.boothe7.civOmail .mil

E-mail address: piotr.j.franaszczuk.civ@mail.mil
E-mail address: vmaroula@utk.edu

mailto:coballe@nd.edu
mailto:david.l.boothe7.civ@mail.mil
mailto:piotr.j.franaszczuk.civ@mail.mil
mailto:vmaroula@utk.edu

	1. Introduction
	2. Preliminaries
	2.1. Deep Learning
	2.2. Computational Topology

	3. ToFU: Topological Functional Units
	3.1. Topologically-Based Encodings

	4. Experiments
	4.1. Signal Classification Using ToFU
	4.2. Variational Autoencoder

	5. Discussion and Future Directions
	Acknowledgments
	REFERENCES
	Appendix
	5.1. Variational autoencoders
	5.2. Computational topology

