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Abstract. We propose ToFU, a new trainable neural network unit with a

persistence diagram dissimilarity function as its activation. Since persistence
diagrams are topological summaries of structures, this new activation measures

and learns the topology of data to leverage it in machine learning tasks. We

showcase the utility of ToFU in two experiments: one involving the classifica-
tion of discrete-time autoregressive signals, and another involving a variational

autoencoder. In the former, ToFU yields competitive results with networks

that use spectral features while outperforming CNN architectures. In the lat-
ter, ToFU produces topologically-interpretable latent space representations of

inputs without sacrificing reconstruction fidelity.

1. Introduction. Topological data analysis (TDA) encompasses a set of methods3

that measure the shape of data with tools from algebraic topology (9). Persistent4

homology (18; 23), the workhorse behind many popular TDA techniques, takes5

data and converts it to a multiscale topological summary known as a persistence6

diagram (PD), which can be used for shape-based inference. Since the space of7

PDs lack a Hilbert space structure, they are not directly amenable to commonly-8

used statistical learning methods. A large body of work sought to remedy this9

shortcoming by inventing well-behaved Hilbert space representations of PDs (7;10

1; 11; 5; 4; 50). Other works, notably (47) and (37), derive PD representations11

that serve as sufficient statistics, thereby ensuring that PD summaries retain all12

statistically-pertinent information for an inference task. Some authors avoid Hilbert13

space representations altogether, choosing instead to work directly in PD space.14

This is achieved, for example, by leveraging stability results to push statistical15

distributions from data space forward to PD space (20), or by adopting tools from16

point process theory (12; 2; 33; 34).17
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In addition to studying PDs and their properties to create tools for inference,1

the use of persistent homology to design and understand artificial neural networks2

(ANNs) is another area of research that lies at the intersection of machine learning3

and TDA.4

The work (3) shows that persistent-homology-derived features can effectively5

classify ANN dynamics; (26) establishes empirical links between the homology of6

ANNs and their capacities; similarly, (22) uncovers topological patterns in the7

weights of trained CNNs, and shows that the topological structure of the weights8

correlates with the CNN’s ability to generalize. Persistent homology has also been9

used in ANNs to regularize topology in the output at certain layers. Two works10

that leverage ideas from persistent homology in autoencoders are (45) and (38); the11

former uses the Wasserstein distance between distributions to introduce a novel12

regularization term for latent space distributions, while the latter introduces a13

persistent-homology-loss term that promotes similar topology in the input and la-14

tent spaces. A general framework for controlling the topology of layer outputs in15

ANNs with PD loss functions is introduced in (6).16

Our work proposes a new trainable ANN unit that uses a PD dissimilarity func-17

tion as its activation. Since persistence diagrams are topological summaries of18

structures, this new activation measures and learns the topology of data to leverage19

it in machine learning tasks. Unlike previous works, which exploit PD-inverse maps20

to promote desired topological characteristics in output features, our method learns21

parameters that live in PD space, which are used to topologically distinguish inputs.22

We refer to our proposed ANN unit as the Topological Functional Unit (ToFU)23

since its activation is a functional on the space of PDs. ToFU is parameterized by24

a PD and learns pertinent topology in the data itself. In particular, ToFU learns25

a PD that aids an ANN in its intended task. For example, if ToFU is used in an26

ANN designed for binary classification, ToFU may learn a PD that is more similar27

to PDs of one class versus those of the other, thereby distinguishing the two classes28

by their topologies. Moreover, since ToFU solely considers the persistent homology29

of data, the parameters it learns are robust to all rigid transformations of input30

data such as rotations and translations. To summarize, the main contributions of31

our are work are:32

1. a new trainable ANN unit that uses a PD dissimilarity function as its activa-33

tion,34

2. a signal classification example where ToFU learns features that outperform35

traditional topological vectorizations and remain competitive with those de-36

rived from Fourier analysis, and37

3. a variational autoencoder architecture that demonstrates how ToFU learns38

pertinent topology present in the data itself.39

The paper is organized as follows. Section 2 covers the necessary background40

to formulate and understand our method. In particular, Section 2.1 summarizes41

artificial neural networks and the mathematical formulation we use to describe42

them. Section 2.2 reviews computational topology, specifically persistent homology43

with cubical filtrations. In Section 3, we present ToFU along with accompanying44

examples. Section 3.1 describes a novel encoder architecture that uses ToFU to learn45

latent space representations. Section 4 contains two experiments that showcase46

ToFu’s utility. Finally, we end with discussions in Section 5.47
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2. Preliminaries. We begin by briefly reviewing the ideas from artificial neural1

networks and computational topology pertinent to our work.2

2.1. Deep Learning. In this section, we define artificial neural networks (ANNs)3

and introduce accompanying terminology that we use throughout the paper. ANNs4

are function approximators that are widely used in machine learning for their ex-5

pressive capabilities. For thorough expositions on ANNs and their role in machine6

learning, see (25), (42), and references therein.7

Units and layers. The building blocks of ANNs are units and layers. Units are8

defined by transformations and activations. A transformation T : Rd → X is a9

function from an input Euclidean space Rd to a Polish space X , and an activation10

a : X → R is a real-valued function. A unit ϕ : Rd → R is given by the composition11

ϕ = a◦T . In practice, T usually has learnable parameters while a does not, but this12

may not be required. In fact, our unit ToFU uses a nonlearnable transformation13

that computes the PD of the input; see Section 2.2 and 3 for details. A common14

choice for T is the affine transformation, L, given by15

L(x) := xw⊺ + b, (1)

where x ∈ Rd is a row vector and w ∈ Rd and b ∈ R are learnable parameters known16

as the weights and bias, respectively. Two common choices for a are the rectified17

linear unit and sigmoid activations given, respectively, by ReLU(x) = max(0, x) and18

σ(x) = (1+e−x)−1. A layer Φ : Rdin → Rdout is a function that is comprised of units,19

Φ(x) = [ϕ1(x), ϕ2(x), . . . , ϕdout(x)]. We call Φl+1 dense if each of its units contains20

an affine transformation (see Equation (1)) of the form L(x) = Φl(x)w⊺ + b.21

Artificial neural networks. An artificial neural network (ANN) is a function A :22

Rdin → Rdout given by A(x) = ΦL ◦ΦL−1 ◦ · · · ◦Φ2 ◦Φ1(x) where Φl are layers such23

that the input dimension of Φl+1 is the same as the output dimension of Φl for all24

l ∈ {1, 2, . . . , L − 1}. Notice that there is no constraint on the output dimension25

of the final layer ϕL. ANNs are explicitly parameterized by the collection of all26

learnable parameters in each of their layers, θ, which we signify by writing Aθ.27

Supervised training of an ANN requires a set of labelled examples T := {(xn,yn)}|T |
i=n,28

where xn and yn, respectively, denote an input and an output, and a pertinent loss29

function ℓ(yn, Aθ(xn)), which measures the discrepancy between the true output30

and the output of the ANN. Common choices of ℓ include cross-entropy (for clas-31

sification) and squared error (for regression). With T and ℓ in hand, an ANN is32

trained by searching for a solution to33

θ̂ := argmin
θ

1

|T |
∑︂

(xn,yn)∈T

ℓ(yn, Aθ(xn)), (2)

by means of some version of (stochastic) gradient descent. The gradient for each34

set of parameters θl at layer Φl is obtained through backpropagation (49), an algo-35

rithm that iteratively applies the chain rule to compute ∂L
∂θl

. Hence, to be trainable36

via backpropagation, any layer in an ANN should be differentiable with respect to37

its learnable parameters. In most cases, gradient updates of parameters in Aθ are38

not performed using the entire training set T , but rather by randomly partitioning39

T into subsets of equal size, known as minibatches, then performing a separate40

gradient update with each minibatch substituted in place of T in Equation (2).41

Moreover, the gradients used to update parameters are typically multiplied by a42

tunable scaling factor, which stabilizes parameter values and speeds up learning.43
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Usually, the minibatching procedure is repeated in order to iterate through the en-1

tirety of T multiple times. In the language of deep learning, the size of minibatches,2

the number of times one iterates through T , and the scaling factor used for gradient3

descent are known as the batch size, the number of epochs, and the learning rate,4

respectively.5

Variational autoencoders. Here, we give a high level summary of variational autoen-
coders (VAEs). For a thorough introduction to VAEs, please see (28) and references
therein. The goal of a VAE is to create a probabilistic generative model for data
by learning a joint distribution, pθ(x, z), over data x ∈ Rd and a latent variable
z ∈ Rh, where h < d. Here, θ denotes learnable parameters of an ANN. The distri-
bution pθ(x, z) implies a probabilistic encoding-decoding scheme based on drawing
from its posteriors: given data x, create an encoding z by drawing from pθ(z|x),
then perform decoding by drawing from pθ(x|z). A naive loss function for training
the generative model is

L(Θ) = DKL(pΘ(x)||ptrue(x)) (3)

= −EpΘ(x)(log ptrue(x)) + EpΘ(x)(log pΘ(x)), (4)

where ptrue(x) denotes the true probability density of the data, DKL denotes6

Kullback-Leibler divergence, and EpΘ(x) denotes expectation with respect to pΘ(x).7

However, Equation (4) is rarely implemented as a loss function because of sev-8

eral practical limitations. First, ptrue(x) is seldom known and must be estimated.9

Second, the density pΘ(x) =
∫︁
pΘ(x|z)pΘ(z) dz generally has no closed form and10

hence must also be estimated, for instance by using a Monte Carlo approxima-11

tion. Employing these estimators introduces a level of noise into training that12

greatly hinders learning. Moreover, since pΘ(x|z) ∝ pΘ(x)pΘ(z|x), the integral13

for pΘ(x) must be estimated each time one samples the posterior (a similar situa-14

tion occurs when sampling from the posterior pΘ(z|x)), which is computationally15

expensive and introduces a high level of variance in network predictions. There-16

fore, most VAE implementations avoid the use of Equation (4) in training, and17

instead typically use the following design choices. First, one assumes a simple18

prior, with no dependence on network parameters, over the latent variable , e.g.19

pΘ(z) = p(z) = N (z; 0, I), the standard normal density in Rh. Next, the posteriors20

pθ(x|z) and qϑ(z|x) are implemented as separate neural networks with respective21

parameters θ and ϑ. By Bayes’ rule, p(z) and pθ(x|z) imply the posterior distri-22

bution, pθ(z|x) = p(z)pθ(x|z)/
∫︁
p(z)pθ(x|z) dz. Therefore, a sensible loss function23

to train the VAE is,24

L(θ,ϑ) = DKL(qϑ(z|x)||pθ(z|x)), (5)

however since the posterior pθ(z|x) involves the same problematic integral in the25

rightmost term of Equation (4), a loss function based on the evidence lower bound26

(ELBO), which is related to Equation (5), is used instead:27

L(θ,ϑ) = Eqϑ(z|x)

(︂
log pθ(x|z)

)︂
−DKL

(︂
qϑ(z|x)||p(z)

)︂
. (6)

It can be shown that maximizing Equation (6) simultaneously maximizes the evi-28

dence of the model, pθ(x), and minimizes the Kullback-Leibler divergence DKL(qϑ(z|x)||pθ(z|x)));29

see (28) or Appendix 5.1.30
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2.2. Computational Topology. In this section, we provide a succinct overview1

of the ideas from computational topology that underpin our method. For a thor-2

ough treatment of computational topology, see (17; 51; 9), and references therein.3

One notable difference in our exposition from that in other computational topology4

papers is that we focus our discussion on cubical complexes (48) in lieu of simplicial5

complexes. We make this choice purely for the sake of simplicity, because the data6

in our experiments (Sections 4.1 and 4.2) are naturally modelled by functions over7

grids, which are efficiently represented as filtered cubical complexes. Our method8

works for persistence diagrams computed by any homology theory, including sim-9

plicial.10

Intuitively, cubical complexes are built by gluing cubes together at faces. For-11

mally, an elementary interval I ⊂ R is a subset of the form {l} or [l, l + 1] for any12

l ∈ Z; we refer to the former as a degenerate interval. An elementary cube is a13

product Q := I1 × I2 × · · · × Ik ⊂ Rk of elementary intervals, and its dimension14

(denoted dimQ) is the number of nondegenerate intervals in the product. If Q′
15

and Q are elementary cubes with Q′ ⊂ Q, we say Q′ is a face of Q. Moreover, if16

dimQ′ = dimQ − 1, we call Q′ a facet of Q. A cubical complex K is any subset17

that can be written as a union of elementary cubes, and any subset of K that forms18

a cubical complex is referred to as a subcomplex of K. We denote the collection of19

k-dimensional cubes in K by Kk.20

Cubical homology. After building a cubical complex from data, our next step is21

to compute homology to obtain a quantitative descriptor of topology. Homology22

provides a mathematically rigorous framework to measure connectivity and detect23

the presence of holes in topological structures. Homology computations are done24

with tools from abstract linear algebra (see (16)), which studies linear operators25

between general vector spaces defined over arbitrary fields. In all of our examples,26

we choose the field as Z2, which is defined as the set {0, 1} with addition and27

multiplication modulo 2, the vector spaces of interest are the so-called k−chains of a28

cubical complex K, the set of formal sums Ck := {
∑︁

i αiQi : Qi ∈ Kk, αi ∈ Z2}. The29

linear operators we are concerned with are the k−th boundary maps ∂ : Kk → Kk−1,30

given by31

∂k(Q) =

{︄
0, k = 0∑︁

Q′∈F(Q) Q
′, k > 0

(7)

where F(Q) are the facets of Q. The boundary map extends to ∂k : Ck → Ck−132

through linear extension of Equation (7). Elements of ker ∂k and Im∂k are called33

k-cycles and k-boundaries, respectively. The k-th homology group, Hk, is defined as34

the quotient space (see Appendix 5.2), Hk := ker ∂k/Im∂k+1. Generators of Hk are35

referred to as homological features. Informally, these are k−dimensional holes in a36

cubical complex. In Appendix 5.2, we provide an example of a full cubical homology37

computation over Z2. Homology computation over arbitrary fields is addressed in38

(51) and a general form of the boundary operator for cubical complexes is given in39

(27).40

Filtrations and persistent homology. Rather than compute the homology for a fixed41

cubical complex built atop data, the more common approach in TDA is to compute42

the homology for a nested family of complexes while tracking the appearances and43

disappearances of homological features. This method, called persistent homology, is44

well-suited for quantifying large-scale topological structure in data since it is robust45
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to minor perturbations in samples; see (18). Persistent homology is defined through1

filtrations.2

Definition 2.1. Let K be a cubical complex, and suppose f : QK → R, where QK3

denotes the set of elementary cubes in K, satisfies (i) f(Q′) ≤ f(Q) whenever Q′
4

is a face of Q. Define K(a) := f−1(−∞, a] and notice that (i) implies K(a) is a5

subcomplex of K for every a ∈ R. Taking a1 < a2 < · · · < an to be the values of f6

for every simplex in K and denoting K(ai) := Ki, we obtain an increasing sequence7

of subcomplexes ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K, which we call the filtration of f .8

A commonly-used filtration, and the one we adopt in all of our examples, is9

the lower-star filtration, which is defined by K(a) := {Q ∈ K : maxv∈Qf(v) ≤ a}10

where v denotes a 0-cube (i.e., a vertex of the cube Q). An example of a lower star11

filtration is shown in Figure 1.12

Formally, persistent homology is defined in terms of persistence modules (14), but13

for our purposes, an intuitive description of persistent homology suffices. Therefore,14

we proceed here with an intuitive description, deferring a rigorous treatment to15

Appendix 5.2. A filtration can be visualized mentally as building K by the addition16

of cells, and with the addition of cubes during a filtration, homological features17

are created or destroyed. Those whose addition spawns a homological feature are18

called positive, while their counterparts that kill features are called negative. It19

has been shown in (19) that, assuming at most one simplex arises during every20

nonzero filtration index (which can be assured with data by adding jitter when21

necessary), each homological feature which occurs during a filtration maps to a22

pair, (Qb, Qd), where Qb and Qd are the positive and negative cubes that create23

and destroy the feature, respectively. The collection {(f(Qb), f(Qd)}(Qb,Qd)∈P ∪∆,24

where P is the set of all positive-to-negative cube pairs for the filtration of f , and25

∆ := {(b, d ∈ R2 : b = d)}, is known as a persistence diagram (PD), which we26

henceforth denote by D. The inclusion of the diagonal, ∆, in the definition of a PD27

is to ensure that bijections between distinct PDs can always be defined, which is28

important for constructing distances between PDs. The first and second coordinates29

of points in D are called birth and death, respectively–so named because they30

provide the appearance and disappearance “times” of homological features during31

a filtration. A PD serves as a topological summary of data. Each point in a PD32

corresponds to a homological feature, and the persistence of the point (i.e., its death33

coordinate minus its birth coordinate) is related to feature’s scale.34

PD dissimilarity functions and differentiation. Consider two PDs, D and D′. It has
been shown in (36) that the space of PDs equipped with either the p-Wasserstein
or bottleneck metric, defined, respectively, by

Wp(D,D′) := inf
η:D→D′

⎛⎝∑︂
p∈D

∥p− η(p)∥pp

⎞⎠1/p

(8)

B(D,D′) := inf
η:D→D′

max
p∈D

∥p− η(p)∥∞ (9)

is a Polish space, where p := (b, d) is a point in a PD, ∥·∥p and ∥·∥∞ denote the35

Minkowski distance and supremum norm, respectively, and η denotes a bijection36

between two PDs, D and D′. The inclusion of the diagonal, ∆ := {(b, d ∈ R2 : b =37

d)}, in D and D′ ensures such a bijection exists. Equations (8) and (9) are examples38
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Figure 1. Here, we show a lower star filtration of image data.
We model the image as a function f on a cubical complex K whose
constituent elementary cubes correspond to pixels. The value f(Q)
of a pixel Q is its intensity. At the beginning of the filtration, K0,
there are no cubes present. The four cubes with the lowest intensity
appear in K1. During this time in the filtration, there is also a 1-
cycle directly in the center of the image. Since this 1-cycle is not
the boundary of any 2-chains, it corresponds to a 1-dimensional
homological feature. More cubes are added in K2 and K3. Finally,
the last cube is added at K4 and the 1-dimensional feature that
appeared at K1 is annihilated.

of PD dissimilarity functions, which enable one to quantify topological differences1

between diagrams in a dataset.2

For our applications, we omit the diagonal from PDs for computational reasons3

(see Section 3), and adopt a PD dissimilarity function reminiscent of Equation4

(8) and other well-studied Wasserstein-like distances (31; 32; 43; 35), namely the5

minimal-cost matching function (see Figure 2),6

m(D′;D) := min
γ∈Π

∑︂
p∈D

∥p−γ(p)∥22, (10)
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Figure 2. The minimal cost matching (Equation (10)) for two
PDs, D and D′.

with |D′| ≥ |D|, where | · | denotes cardinality and Π is the set of injections from
D to D′. The minimizer, γ∗ in Equation (10) may be computed via the Hungarian
algorithm (29). Fixing D in Equation (10) yields a functional mD : D′ → R from
the space of PDs to the real numbers, and it was shown in (41) that one can define a
derivative of mD with respect to D that holds almost surely. We summarize the con-
struction of this derivative here as it is important in our framework, but encourage
the reader to refer to (41) for a full rigorous treatment. We also include a detailed

derivative computation in Appendix 5.2. Let D = {pn}|D|
n=1 = {(bn, dn)}|D|

n=1, fix D′,
and by a slight abuse of notation, denote the first and second components of γ(p)
by γ(b) and γ(d), respectively, so in particular γ(p) = [γ(b), γ(d)]. For almost all
D, the minimal-cost matching, γ∗, does not change in a neighborhood of D, where
a neighborhood is defined by one of the PD metrics, Equations (8) and (9). To
be precise, there exists ϵ > 0 such that if we perturb each point in D to create a
new diagram D̃ satisfying Wp(D, D̃) < ϵ, then γ∗(pn) = γ∗(pñ) for all pn ∈ D and

pñ ∈ D̃. Therefore, ∂m
∂pn

is locally well-defined by

∂m

∂pn
=

[︂ ∂m
∂bn

,
∂m

∂dn

]︂
(11)

= 2
[︂
bn − γ∗(bn), dn − γ∗(dn)

]︂
(12)

= 2
(︁
pn − γ∗(pn)

)︁
, (13)

since γ∗(pn) ∈ D′ is constant in Wasserstein/bottleneck neighborhoods of D.1

3. ToFU: Topological Functional Units. For the remainder of this paper, x2

denotes a data point modelled as a function f : G → R, where G ⊂ Zd is an integer3

grid. We identify x with a filtered cubical complex by (i) identifying each element4

g ∈ G with an elementary cube of dimension d, say Qg, (ii) imposing topological5

structure on the resulting collection of cubes, and (iii) taking the filtration value of6

Qg to be f(g). Step (ii) is informed by pre-exisiting topological structure in G on7

a case-by-case basis. For one-dimensional signals (Section 4.1), x = {xn}Nn=0 ⊂ R,8

we define the set of cubes as ∪N
n=0[n, n + 1] and take xn as the filtration value for9

[n, n + 1]. For image data (Section 4.2), where d = 2, we use a construction as in10
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Figure 1. D = {pn}Nn=1 denotes a persistence diagram with an arbitrary ordering1

of its points, and [p1;p2; . . . ;pN ] is the N × 2 matrix defined by stacking elements2

of D row-wise. We refer to the latter as a matrix version of D. Moreover, Dx is the3

persistence diagram corresponding to a filtration of some data x.4

Recall by fixing D in Equation (10), we obtain a functional mD : D′ → R from5

the space of PDs to the real numbers. Consider an ANN unit, ϕD : Rd → R, with6

transformation T (x) := Dx, and whose activation is given by7

aD(Dx) =
1

2
m(Dx;D), (14)

where D is a persistence diagram that parameterizes ϕD. Using Equation (13), we8

define the gradient of ϕD with respect to D, evaluated at D = {pn}Nn=1, by9

∂

∂DϕD|D=D = [p1;p2; . . . ;pN ] − [γ∗(p1); γ∗(p2); . . . ; γ∗(pN )], (15)

where γ∗ is a minimal−cost matching from D to Dx, in accordance with Equation10

(10). Since γ∗ respects shuffling of indices of the points in D, Equation (15) is well-11

defined for any ordering of D up to permutation of rows, and a gradient update of D12

may be performed with any ordering of D. Through backpropagation, Equation (15)13

allows for optimization of loss functions with respect to the topological parameter D.14

We henceforth refer to the ANN unit ϕD as Topological Functional Unit (ToFU).15

The number of learnable points in ToFU, N in Equation (15) is a hyperparameter.16

This design decision explains our choice to omit the diagonal from PDs and the17

cardinality assumption in Equation (10). In particular, excluding the diagonal18

prevents new points from arising in D as a result of matches to the diagonal, which19

fixes the cardinality of D and thereby limits the number of learnable parameters in20

the model. Limiting the number of learnable parameters prevents overfitting and21

expedites training. Moreover, the assumption |D| ≤ |Dx| allows N to be much22

smaller than the cardinality of the input diagram Dx, which has the advantage23

of boosting computational speed at the potential expense of neglecting pertinent24

topological information.25

Example. Here, we investigate ToFU in a classification problem with synthetic data.26

We generate two classes of PDs; all PDs in both classes have five points. Class 1 PDs27

are drawn from two distributions. Namely, the two types of PDs in Class 1 are gen-28

erated by making 5 independent draws from N ∗((0, 0.3), σI) and N ∗((0.3, 0.6), σI),29

respectively, with σ = 0.1 and N ∗ denoting the bivariate normal distribution trun-30

cated to {(b, d) ∈ R2 : b < d}, chosen so that points in the sampled PDs do not31

live below the diagonal. Class 2 PDs are sampled by making 5 independent draws32

from N ∗((0.6, 0.9), σI). Figure 3 shows samples of the Class 1 and Class 2 PDs in33

blue and orange, respectively. In particular, examples from both types of Class 134

PDs are shown independently as upright and inverted blue triangles. We sample35

300 PDs in total; 100 for each type of Class 1 PD, respectively, and 100 Class 236

PDs. Note that this leads to class imbalance, which makes the correct classification37

of class 2 PDs a more difficult task. The ANN architecture we consider in this38

problem is summarized in Table 1.39

We choose to use only 1 ToFU with 1 learnable point to facilitate visualization40

of the learned diagram D over multiple independent training loops. The learnable41

point is initialized by drawing from a uniform distribution on {(b, d) ∈ [0, 1] : d > b}.42

During training, we use a binary cross-entropy loss function, a learning rate of 0.1,43

a batch size of 32, and train our ANN for 20 epochs; see Section 2.1. The learned44
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Table 1. The ANN architecture we used for classification of sim-
ulated PDs.

Layer Description
1 ToFU. 1 unit. 1 learnable point.
2 Dense. 32 units. ReLU activations.
3 Dense. 16 units. ReLU activations.
4 Dense. 8 units. ReLU activations.
5 Dense. 1 unit. Sigmoid activation.

1-point diagrams D for 20 different independent training loops are shown in Figure1

3 as x’s, and their colors denote test accuracies on an 80/20 training test split.2

Figure 3. One-point PDs learned by ToFU for classification. The
learned diagrams are color coded by accuracy. Example PDs from
both classes in the classification task are also shown. Class 1 con-
sisted of two types of PDs, depicted as upright and inverted trian-
gles, respectively. Learned PDs corresponding to high classification
accuracy fell into two groups– those with birth times earlier and
later than points in Class 1 and Class 2, respectively.

All learned PDs D were able to perfectly separate the test sets. The learned3

diagrams fell into one of two categories, characterized, respectively, by earlier and4

later birth times.5

Since Equation (14) depends on a minimal cost matching, the initialization6

method of the learnable points can greatly influence the learned parameter D.7

We illustrate the role of point initialization with three examples. In each example,8

we use Equation (15) to minimize9

L(D) :=
1

|D |
∑︂
D∈D

m(D;D) (16)
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via gradient descent, where D denotes a fixed set of PDs. Equation (16) is reminis-1

cent of mean-squared error, and we may loosely interpret our approximate minimum2

to Equation (16) as a “PD of best fit” to the set D .3

Figure 4 shows an example where point initialization determines the solution; we4

consider a PD with two points (shown respectively as a blue triangle and orange5

dot) and a learnable diagram D with one point. Two separate initializations and6

their corresponding gradient updates are shown in green and blue, respectively).7

Figure 4. Gradient descent with ToFU layer using Equation (15).
Because the gradient depends on a minimal−cost matching, ini-
tialization of weights determines the solution when there are fewer
learnable points than those in data.

Another extreme, one in which a unique solution for D exists and hence point8

initialization has no effect, is depicted in Figure (5). Here, we once again consider a9

PD with two points, but now the learnable diagram D also has two points (shown10

in green). Two optimizations with different initialization for D are shown in Figure11

5(a) and (b), respectively. Notice in Figure 5(b) that although both learnable points12

are initialized closer to the blue point than to the orange point, the minimal-cost13

matching ensures that only a single learnable point is paired to the blue point during14

gradient updates. In this case, the learnable points always move toward the PD15

point to which they are initially matched.16

Finally, we consider an example with multiple PDs (shown as upright and in-17

verted triangles, respectively) in Figure (6). Each PD in Figure 6, as well as the18

learnable PD D, has three points. Notice in Figure 6(a) and (b) that the learnable19

points in D move to the region between both PDs. In general, one expects D to20

converge to a barycenter of PDs in the training data.21

In all three examples, ToFU learns a sensible value for D, but Figures 4 and 622

demonstrate that the value for D is not necessarily unique. The nonuniqueness does23

not preclude the use of ToFU in ANNs, which can learn useful relationships in data24

despite the use of nonconvex loss functions (with respect to network parameters).25

For a detailed discussion of nonconvex loss functions and ANNs, see (13).26

3.1. Topologically−Based Encodings. In this section, we present an architec-27

ture for a variational autoencoder utilizing ToFU to create latent representations28
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(a) (b)

Figure 5. Gradient descent with ToFU layer that has two learn-
able points. Different initializations are shown in (a) and (b).

(a) (b)

Figure 6. Gradient descent to minimize the average of Equation
(10) for two PDs using a ToFU layer that has three learnable points.
Different initializations are shown in (a) and (b).

that encode topological information about data. The novel part of our architecture1

is the encoder, which we now describe in detail.2

The first step performed in our encoder sends the input data x ∈ Rd through a3

layer comprised of ToFUs whose activations are denoted, respectively, by ϕD1 , ϕD2 , . . . , ϕDC
:4

Rd → R, where C is the user-selected number of units. We define ϕ(x) := (ϕDi(x))Ci=1 ∈5

RC , and two pairs of multi-layer ANNs, µx, σx : Rd → Rh and µϕ, σϕ : RC → RhT .6

The next step in our encoder passes x to µx and σx, as well as ϕ to µϕ and σϕ, then7

both pairs are used to parameterize the latent distribution q(z|x). In particular,8

q(z|x) = N
(︂
z;µ,Σ

)︂
(17)
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Figure 7. A schematic of the encoder in our topological VAE
architecture. Here, we choose C = 1 in ϕ for simplicity.

where µ := (µx, µϕ) ∈ Rh+hT is the vector whose first h elements and last hT1

elements are µx and µϕ, respectively, Σ := diag(σx, σϕ) ∈ R(h+hT )×(h+hT ) is the di-2

agonal matrix whose first h and last hT diagonal entires are σx and σϕ, respectively,3

and N
(︂
z;µ,Σ

)︂
denotes the (h + hT )−dimensional Gaussian density with mean µ4

and covariance matrix Σ. Our topological encoder is summarized in Figure 7. The5

discussion around Equation (17) is summarized in the following proposition.6

Proposition 1. Let x ∈ Rd, consider a persistence diagram Dx computed from7

a filtration constructed with x, and define ϕ(x) := (ϕDi(x))Ci=1 ∈ RC , where each8

ϕDi
: Rd → R is given by Equation (14). Suppose further we have two pairs9

of multilayer ANNs, µ(x), σ(x) : Rd → Rh and µT (ϕ), σT (ϕ) : RC → RhT , and10

consider the distribution q(z|x) = N
(︂
z; (µ, µT ),diag(σ, σT )

)︂
. Then, the last C11

dimensions of z ∼ q(z|x) only depend on Dx.12

Proposition 1 follows by noticing q(z|x) in Equation (17) is an uncorrelated13

multivariate Gaussian density then inspecting its marginal distributions. Using our14

encoder, one can incorporate topological information about the input data into15

latent space representations in an interpretable manner.16

With our encoder in hand, we are free to select any architecture suitable for17

the data to build a decoder. When x ∈ Rd is grey-scale image data, given by18

a d = H × W array of pixels, the architecture we adopt for the decoder is as19

follows. The output of the encoder, z, is passed through to a multi-layer ANN20

Φdec : Rh+hT → Rd, which parameterizes the data likelihood,21

p(x|z) = B(Φdec), (18)

where B(Φdec) is the d-dimensional Bernoulli distribution with independent marginals.22

4. Experiments. In this section, we investigate ToFU in two experimental set-23

tings. First, we consider ToFU in a classifcation problem, then explore its use in a24

variational autoencoder.25
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PDs have varying cardinalities so to ensure fixed input sizes to our ANNs, we1

pad PDs with zeros when necessary. ToFU is implemented in TensorFlow 2.0, and2

we intend to make the code publically available. All of our demos and experiments3

were performed on a CPU.4

4.1. Signal Classification Using ToFU. We consider a classification problem5

with discrete time autoregressive (AR) signals, which have been widely studied in6

signal processing (40). It was shown in (21) the power spectral densities (PSDs) of7

AR signals can be explictly computed from AR simulation parameters, and we use8

this fact to create distinct collections of signals Aj for j = 1, 2, 3, 4, each character-9

ized by nonzero peaks in their PSDs at 6 Hz, 10 Hz, 14 Hz, and 21 Hz, respectively.10

These specific frequency choices are motivated by their interest amongst neuroscien-11

tists and neurologists who study human brain activity using electroencephalography12

(EEG) signals (8), and the capabilities of AR models to simulate EEG signals (24).13

For each j, |Aj | = 800, and signals in Aj have the same non-zero peak in their14

PSDs, with varying damping factors sampled uniformly from {4, 5, . . . , 32}. Hence,15

the Aj are comprised of signals that oscillate at the same frequency, but with dif-16

ferent strengths. Every signal also has a fixed-width PSD peak at zero to simulate17

the monotonically decreasing PSDs that occur in a wide variety of natural signals18

(this phenomenon is known as 1/f behavior in literature).19

We use our method to distinguish the different Aj based on the sublevel set20

topologies of their constituent signals. PDs are computed for the signals in each21

Aj , which we denote by Dj . With Dj in hand, we built a 4-layer ANN (3 hidden,22

1 output) to classify each PD. The first layer of our ANN consists of a ToFU23

layer. To measure the accuracy of our classifier, we used an 80 − 20 split with24

each Dj to build training and test sets. For the sake of comparison, we consider25

three other ANNs whose architecture has the same last three layers, but the ToFU26

layer replaced. The first of these has an untrainable layer that computes PSDs27

with Welch’s method (44), which approximates PSDs by averaging periodograms28

from overlapping windows of the signals. The second network, which we refer to as29

Conv1, has a single convolutional layer with 8 channels and filter sizes of 3, followed30

by average pooling with the same filter size, which downsamples an image through31

windowed averaging. The third network, which we call Conv2, has 64 channels with32

filter sizes of 128, followed by average pooling; the rationale behind this network33

was that it could theoretically learn to compute periodograms in a single layer.34

The difference at the beginning of each of these networks largely has to do with35

the type of data it accepts as input. The Welch, Conv1, and Conv2 networks36

all take 1-dimensional signals as input, and hence 1-dimensional convolutions were37

chosen to learn feature maps in the initial layer since 1-dimensional convolutions (i)38

require 1-dimensional signals as input and (ii) have been well-studied as a method39

to compute machine learning features of signals. Each of these networks also used40

a non-learnable average pooling layer to downsample, which is a standard practice,41

as downsampling is well-known to improve performance in convolutional networks.42

Conversely, the ToFU network takes persistence diagrams as input, so we used a43

ToFU layer, as opposed to convolution, to learn a vectorization. In each of these44

networks, the final 3 layers after the initial vectorization layer were fixed. Indeed,45

we used this high level design precisely to control for the structure of each network.46

To compare our method to other topological approaches, we consider two more47

networks that are trained on persistence diagram vectorizations. The first of these48

networks employs a convolutional architecture with persistence images (PIs) (1).49
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Figure 8. Examples from the AR signals dataset. Here, we show
signals with damping factor β=4. The average log PSD for each
class, estimated by averaging periodograms, is shown in the second
column.

This network requires 2-dimensional signal inputs, i.e. pixelated images, which1

precludes the use of one-dimensional convolutions. Consequently, we employ a 2-2

dimensional convolutional architecture based on the ubiquitous LeNet-5 CNN (30)3

using PIs with a resolution of 20 × 20 as input. This architecture is specified by4

sequential layers:5

1. Convolutional layer with 6 channels, a filter size of 5 × 5 and a stride of 1.6

2. Average pooling.7

3. Convolutional layer with 16 channels, a filter size of 5 × 5 and a stride of 1.8

4. Average pooling.9

5. Dense layer with 120 units and ReLU activations.10

6. Dense layer with 84 units and ReLU activations.11

7. Dense layer with 4 units and softmax activation.12

The second topological vectorization network is trained on persistence landscapes13

(PLs) (7). Since PLs can be represented as one-dimensional signals, we once again14

use the Conv1 architecture when training on PLs. Both PIs and PLs have hyper-15

parameters that require tuning. For PIs, we train with three different bandwidths16

over different scales, 0.1, 1, and 10. Similarly, for PLs, we train with three different17

landscape numbers, 1, 5 and 10. For both vectorizations, we use the hyperparame-18

ters with the highest training accuracy. Each network is trained for 100 epochs with19

a learning rate of 0.001, and the highest test accuracies achieved by each during20

training are reported in Table 2.21

We observe that the ToFU network is competitive with the one that used hand-22

designed features, and that it outperforms both convolutional and PD vectorization23

networks. We acknowledge that deeper CNNs would likely have competitive per-24

formance with the ToFU network, but at the expense of more complicated network25

architectures.26

4.2. Variational Autoencoder. In this section, we present an example demon-27

strating how ToFU can learn latent space encodings in variational autoencoders that28
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Table 2. Test accuracies for each ANN trained for AR signal clas-
sification. Conv1 and Conv2 refer to the 8 and 64 channel networks,
respectively, while PLs and PIs refer to the networks trained on
persistence landscapes and persistence images.

Model Test Accuracy

Welch 98.91
ToFU 98.12
PLs 96.41
PIs 95.94

Conv1 92.66
Conv2 88.12

richly incorporate topological information about the input data. Please see Section1

2.1 for overview of variational autoencoders, and (28) for a thorough introduction.2

For this experiment, we create a synthetic categorical dataset of images whose3

classes are topologically distinguishable; see Figure 9. Our dataset mimics obser-4

vations of die rolls on a flat surface. The Die dataset consists of 6 classes Ck, each5

characterized by a fixed number k of nonzero pixels. Elements of Ck are generated6

by the following procedure:7

1. Make k independent draws from U [0.85, 2].8

2. Arrange the k samples in a fixed pattern at the center of a 21-by-21 grid.9

3. Apply random vertical and horizontal translations to the grid.10

Each nonzero pixel in elements of Ck corresponds to a homological feature of degree11

1 in the cubical filtration. Hence, 1-dimensional homology readily distinguishes the12

classes. Moreover, since the 1-dimensional PDs are invariant under translations of13

the grid, they serve as natural descriptors for Ck.14

We generate 1000 examples for each class and compute their 1-dimensional PDs,15

Ck = {Ci
k}1000i=1 and Dk = {Di

k}1000i=1 . The Ck and Dk are used to train a variational16

autoencoder (VAE) that uses ToFU to learn a latent space representation; see Sec-17

tion 3.1. We henceforth refer to this VAE as the ToFU variational autoencoder18

(ToFU-VAE). The encoder for ToFU-VAE follows the architecture laid out in Sec-19

tion 3.1 with: i) C = 1 in the ToFU layer, where the number of learnable points20

equals 6, ii) µx, σx, µϕ, and σϕ specified by two-layer ANNs, with dense layers com-21

prised of 64 units that have ReLU activations, and 3) the dimensions that define the22

latent space given by h = hT = 1. We select a 2-dimensional latent space for ease23

of visualization. The decoder for ToFU-VAE also follows the architecture described24

in Section 3.1, with Φdec specified by an ANN with two dense layers, the first of25

which has 64 units with ReLU activations, and the second has 21 × 21 = 441 units26

with sigmoid activations.27

For the sake of comparison, we also train a typical VAE without ToFU. The28

encoder-decoder architecture for the typical VAE is the same as that of ToFU-VAE29

except that: i) the ToFU layer, µϕ, and σϕ are omitted, ii) q(z|x) = N (z;µx,Σx);30

in particular, the latent space distribution only depends on x through µx : Rd → Rh
31

as well as another two-layer ANN with the same architecture as µx that outputs a32

diagonal covariance matrix, Σx : Rd → Rh×h, and iii) the output dimension of µx is33
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Figure 9. Shown above is a single example from each of the six
classes in our synthetic dataset. We apply a nonlinear transforma-
tion to pixel values for visual clarity.

increased to 2 so that the latent space dimension of the typical VAE matches that1

of ToFU-VAE.2

Both ToFU-VAE and the typical VAE are trained for 2 epochs with a batch size3

of 32 and a learning rate of 0.001. The resulting latent space representations are4

shown in Figure 10, where we have explicitly labeled the topological dimension in5

(b), which depicts the latent space of ToFU-VAE.6

Figure 10 shows a marked difference in the latent space representation of the7

typical VAE and ToFU-VAE. As expected, the topological dimension of ToFU-VAE8

(z2 in Figure 10(b)) completely encodes the topology of each class. This leads to9

a more interpretable latent space representation than that produced by the typical10

VAE. Namely, ToFU-VAE produced a joint distribution whose marginals describe11

input data with similar global topology. Moreover, Table 3 shows that this increased12

interpretability incurs no cost in reconstruction error.13

Table 3. Test reconstruction errors for both VAEs.

ANN Test Recon. Err.

Typical VAE 0.0847
ToFU-VAE 0.0806
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(a) (b)

Figure 10. Latent space representations of the (a) typical VAE
and (b) ToFU-VAE. The ToFU-VAE latent space shows clear sep-
aration based on the topology of each class.

5. Discussion and Future Directions. We have introduced a new ANN unit,1

ToFU, that is parameterized by a learnable PD and employs a PD dissimilarity2

function as its activation. Our examples demonstrated that ToFU learns pertinent3

topology in data, which may be leveraged for data science applications that bear4

topology in mind.5

Our classification example in Section 3 depicted how ToFU differentiates topologically-6

distinct classes in the space of PDs. In particular, ToFU learns a PD whose topo-7

logical distance to PDs in the data differs across classes. Section 4.1 considered a8

signal classification problem inspired by neuroscience. In this experiment, ToFU9

achieved competitive performance with spectral features without relying on deep10

networks, a feat that was unmatched by CNNs. The signal classification problem11

exemplifies that ToFU learns high-level descriptors of data useful by their inher-12

ent nature. Finally, we used ToFU to create a novel variational autoencoder (VAE)13

whose latent space marginal distrbutions are solely dictated by the topology of data.14

We showed how our new VAE produces interpretable latent space representations15

without sacrificing reconstruction accuracy on a synthetic dataset.16

The features learned by ToFU are invariant to a set of transformations that17

preserve the large-scale topological structure in inputs, for example rotations and18

translations. Such transformations are commonly encountered in data science prob-19

lems, wherein something like an image may be rotated or translated, but its class20

label remains unaffected (we considered examples of this nature in Sections 4.1 and21

4.2, where, respectively, phase shifts of signals and image translations did not alter22

class labels). To help ANNs recognize these transformations with limited training23

data at their disposal, practitioners often rely on data augmentation to generate24

synthetic training examples. ToFU reduces the need for data augmentation since25

roto-translational invariant features are learned by design. As a future direction,26
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we will investigate more sophisticated methods for using ToFU in data augmenta-1

tion, for example by using ToFU-VAE as a generative model to create training data2

with desired topological characteristics. Additionally, it will be beneficial to com-3

pare ToFU to a larger collection of TDA methods, for example sliced Wasserstein4

kernels (10) or persistence codebooks (50), on a larger repository of datasets.5

In isolation, gradient-based optimization of Equation (14) is closely-related to6

finding the Fréchet mean of PDs with respect to the Wasserstein metric; this is a7

well-studied problem (36), and a Fréchet mean for a finite collection of PDs is known8

to exist, although not necessarily a unique one. A later work (46) introduced a9

gradient-descent algorithm to find Fréchet means, and established its convergence to10

a local minimum under mild conditions. The issue of nonuniqueness is considered in11

(39) wherein the authors propose the Probabilistic Fréchet Mean (PFM). The PFM12

is interpreted as a probabilistic mixture of PDs and, unlike the typical Fréchet mean,13

is unique. While our work does not use the gradient-descent algorithm from (46) or14

PFMs from (39), incorporating them into our framework constitute an interesting15

areas for further research. From a computational standpoint, (15) introduces an16

algorithm for the fast computation of Wasserstein barycenters that is amenable to17

GPU computations, and leveraging this work in the implementation of ToFU can18

reap computational benefits potentially executable within a quantum framework.19

While the examples considered in this paper employ ToFU directly on the input20

data, there is nothing in principle that prevents ToFU’s use in deeper layers of21

an ANN. In the future, we will investigate the use ToFU to discover informative22

topological structure in hidden representations of ANNs.23

Deep learning benefits from sound inductive biases. Therefore, the use of topolog-24

ical descriptors in ANNs can augment performance whenever topology is a defining25

characteristic in data. In this fashion, ToFU is a step toward harmonizing the26

expressive capabilities of deep learning with high-level mathematical intuitions of27

data.28
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tions of persistence diagrams, Discrete & Computational Geometry, 52 (2014),8

44–70.9

[47] K. Turner, S. Mukherjee and D. M. Boyer, Persistent homology transform for10

modeling shapes and surfaces, Information and Inference: A Journal of the11

IMA, 3 (2014), 310–344.12
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Appendix.24

5.1. Variational autoencoders. In this section, we derive the relationship be-
tween the Kullback-Leibler divergence and evidence lower bound (ELBO) given in
Equations (5) and Equation (6), respectively. To this end, notice

DKL(qϑ(z|x)||pθ(z|x)) = −Eqϑ(z|x)

(︂
log

pθ(z|x)

qϑ(z|x)

)︂
(19)

= −Eqϑ(z|x)

(︂
log pθ(z|x) − log qϑ(z|x)

)︂
(20)

= −Eqϑ(z|x)

(︂
log p(z) + log pθ(x|z) (21)

− log pθ(x) − log qϑ(z|x)
)︂

= log pθ(x)−Eqϑ(z|x)

(︂
log pθ(x|z)

)︂
+ DKL(qϑ(z|x)||p(z))⏞ ⏟⏟ ⏞

−ELBO(θ,ϑ)

,

(22)

where Equation (21) follows from Bayes’ rule and Equation (22) follows by linearity
of the expectation and the fact that pθ(x) does not depend on the density qϑ(z|x).
From Equation (22), we deduce

ELBO(θ,ϑ) = log pθ(x) −DKL(qϑ(z|x)||pθ(z|x)) (23)

≤ log pθ(x). (24)

The inequality in (24) follows since Kullback-Leibler divergence is always non-25

negative, and the quantity pθ(x) is known as the evidence of the model pθ given26
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data x. Equations (23) and (24) establish the ELBO as a lower bound for the1

log likelihood of the model pθ(x) given data x, and show that the bound becomes2

tight whenever DKL(qϑ(z|x)||pθ(z|x)) = 0. Consequently, maximizing the ELBO3

increases the evidence of the model while reducing Kullback-Leibler divergence,4

DKL(qϑ(z|x)||pθ(z|x)).5

5.2. Computational topology.6

5.2.1. Quotient spaces. Let V be a vector space over a field F and suppose N is a
subspace of V . Given v ∈ V , we define an equivalence class, [v], by [v] := {v + n :
n ∈ N}. The quotient space V/N is defined as the collection of equivalence classes
{[v] : v ∈ V } along with the addition and scalar multiplication operations:

[v] + [w] := [v + w], v, w ∈ V (25)

λ[v] := [λv], λ ∈ F. (26)

It can be shown that Equations (25) and (26) are well-defined (16), and moreover7

that V/N is a vector space. Informally, V/N represents the vector space that one8

obtains from V by “zeroing out” the elements in N . As a simple example, we can9

consider V = R2 and N = {(x, 0) : x ∈ R} (the x-axis) over R with standard10

addition and multiplication. Then, for (x, y) ∈ R2, we have [(x, y)] := {(x + r, y) :11

r ∈ R} = {(x, y) ∈ R2 : x ∈ R}. We observe that our equivalence classes are the12

lines parallel to the x-axis, which are entirely parameterized by their y-coordinate.13

In a sense, we have “zeroed out” the x-coordinate to obtain a new one-dimensional14

vector space that has the same structure as R. Formally, we say R2/R is isomorphic15

to R and write R2/R ≃ R.16

5.2.2. Homology example. We explicitly compute the homology group H1 := ker ∂1/Im∂217

over Z2 for a simple cubical complex to illustrate that homological computations18

boil down to abstract linear algebra.19

Consider a cubical complex, K, comprised of 0-,1-, and 2-dimensional cubes that20

we denote by {v1, v2, v3, v4, v5, v6}, {e1, e2, e3, e4, e5, e6, e7}, and {f1}, respectively;21

see Figure 11. To compute H1, we need to construct its associated boundary oper-22

ators, ∂1 and ∂2, which can be represented as matrices since the boundary operator23

is linear. In particular,24

∂1 =

e1 e2 e3 e4 e5 e6 e7⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
v1 1 0 0 1 0 0 0
v2 1 1 0 0 1 0 0
v3 0 1 1 0 0 0 1
v4 0 0 1 1 0 0 0
v5 0 0 0 0 1 1 0
v6 0 0 0 0 0 1 1

, and ∂2 =

f1⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

e1 1
e2 1
e3 1
e4 1
e5 0
e6 0
e7 0

, (27)

by computing each boundary operator using {v1, v2, v3, v4, v5, v6}, {e1, e2, e3, e4, e5, e6, e7},25

and {f1} as respective bases for the 0-, 1-, and 2-chains. Next, we compute ker ∂1 by26

constructing a basis for the null space of ∂1, which, bearing in mind that 1+1 = 0 in27

Z2, can be done by the standard method of augmented matrix row reduction. The28

basis we obtain from this procedure is {[1, 1, 1, 1, 0, 0, 0]⊺,[0, 1, 0, 0, 1, 1, 1]⊺}, which29

corresponds to the set of 1-chains {e1 + e2 + e3 + e4, e2 + e5 + e6 + e7}. Since C2 is30

spanned by f1, the image of ∂2 is spanned by [1, 1, 1, 1, 0, 0, 0]⊺, which corresponds31
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Figure 11. A cubical complex, K that we use to demonstrate
homological computations. The 0-,1-, and 2-dimensional cubes in
K are labelled as {v1, v2, v3, v4, v5, v6}, {e1, e2, e3, e4, e5, e6, e7}, and
{f1}, respectively.

to the 1-chain e1 + e2 + e3 + e4. Finally, H1 := ker ∂1/Im∂2 ≃ {λ(e2 + e5 + e6 + e7) :1

λ ∈ Z2} (the vector space spanned by e2 + e5 + e6 + e7) is obtained by “zeroing2

out” the elements in ker ∂1 that appear in Im∂2. We conclude that H1 is generated3

by one element. Intuitively, this element represents the hole enclosed by the edges4

e2, e5, e6, and e7.5

5.2.3. Persistence modules. A filtration, Definition (2.1), implies an inclusion of
chain complexes

Ck(K0) ⊂ Ck(K1) ⊂ · · · ⊂ Ck(Kn),

where Ck(K) denotes the k-chains of K, which in turn induce linear maps i∗j,j+16

between homology groups, Hk(Kj) and Hk(Kj+1) of Kj and Kj+1, respectively,7

Hk(K0)
i∗0,1−−→ Hk(K1)

i∗1,2−−→ . . .
i∗n−1,n−−−−→ Hk(Kn), (28)

by tracking where elements of ker ∂k and Im∂k+1 are sent under inclusions. The8

family of homology groups along with the sequence of maps in Equation (28) is9

known as a (finite) persistence module, which we denote by M. Given two persis-10

tence modules, M1 = {Hk(Kj), i
∗
j,j+1}

n−1
j=0 and M2 = {Hk(K′

j), ι
∗
j,j+1}

n−1
j=0 , we define11

their direct sum, M1⊕M2, by M1⊕M2 = {Hk(Kj)⊕Hk(K′
j), i

∗
j,j+1⊕ ι∗j,j+1}

n−1
j=0 .12

A natural question to ask is if persistence modules can be decomposed into a di-13

rect sum of persistent modules. By the Structure Theorem for Persistence Modules14

(14), the answer to this question is in the affirmative. In particular, if we define the15

interval module I(b, d) by16

I(b, d) := 0
0−→ 0

0−→ . . .
0−→ 0⏞ ⏟⏟ ⏞

b−1 times

0−→ v
id−→ v

id−→ . . .v⏞ ⏟⏟ ⏞
d−b times

0−→ 0
0−→ 0

0−→ . . .
0−→ 0⏞ ⏟⏟ ⏞

n−(d−1) times

, (29)
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where 0,v, 0, and id denote the zero vector space, an arbitrary one-dimensional1

vector space, the zero map, and the identity map, respectively, then any finite2

persistence module decomposes into a direct sum of B interval modules,3

M =

B⨁︂
m=1

I(bm, dm). (30)

Under mild conditions, the coordinates (bm, dm) of M’s interval decomposition4

map uniquely to a pair of cubes, (Qbm , Qdm
), where Qbm and Qdm

are positive5

and negative cubes that create and destroy a homological feature, respectively. As6

was discussed in Section 2.2, the collection {(f(Qbm), f(Qdm
)}Bm=1, along with the7

diagonal {(x, y) ∈ R2 : x = y} defines a persistence diagram.8

5.2.4. Differentiability with respect to persistence diagrams. To provide more detail9

for Equations (11) - (13), we compute the derivative of Equation (10) with respect10

to points in the diagram D using the limit definition. To this end, fix D′ and suppose11

D = {pn}Nn=1 = {(bn, dn)}Nn=1. By definition of the derivative,12

∂m

∂pn
=

[︂ ∂m
∂bn

,
∂m

∂dn

]︂
, (31)

and hence to compute the left hand side of Equation (31), it suffices to compute13

∂m
∂bn

and ∂m
∂dn

. We only compute ∂m
∂bn

as the computation of ∂m
∂dn

is analogous. To14

this end, notice15

∂m

∂bn
= lim

ϵ→0

1

ϵ

[︂(︂
min
γ∈Π

∑︂
p∈D\pn

∥p−γ(p)∥22 + (bn + ϵ− γ(bn + ϵ))2 + (dn − γ(dn))2
)︂

−
(︂

min
γ∈Π

∑︂
p∈D\pn

∥p−γ(p)∥22 + (bn − γ(bn))2 + (dn − γ(dn))2
)︂]︂

,

(32)

where Π is the set of injections from D to D′, and by a slight abuse of notation,
we denote the first and second components of the mapping γ(p) by γ(b) and γ(d),
respectively, so in particular γ(p) = [γ(b), γ(d)]. Since D′ is fixed, it has been
shown that the minimal cost matching in Equation (32), γ∗, does not change in
a neighborhood of D, where a neighborhood is defined by one of the PD metrics,
Equations (8) and (9). To be precise, there exists δ > 0 such that if we perturb

each point in D to create a new diagram D̃ satisfying Wp(D, D̃) < δ, then γ∗(pn) =

γ∗(pñ) for all pn ∈ D and pñ ∈ D̃. Thus, for ϵ sufficiently small, we can drop the
minimums in Equation (32) and replace γ with the minimizer γ∗ to obtain

∂m

∂bn
= lim

ϵ→0

(bn + ϵ− γ∗(bn))2 − (bn − γ∗(bn))2

ϵ

= 2(bn − γ∗(bn)).
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