

Self-transcriptional repression of the *Arabidopsis* NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis

Hao Peng¹ · Jessica Phung¹ · Ying Zhai² · Michael M. Neff¹

Received: 8 May 2020 / Accepted: 27 August 2020 / Published online: 5 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Main conclusion The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding. ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomorphogenesis in *Arabidopsis thaliana*.

Abstract ATAF2 (ANAC081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation of disease resistance, stress tolerance and hormone metabolism in *Arabidopsis thaliana*. We previously reported that ATAF2 promotes *Arabidopsis* hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid (BR)-inactivating cytochrome P450 genes *BAS1* (*CYP734A1*, formerly *CYP72B1*) and *SOB7* (*CYP72C1*). Assays using low light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF2 is also regulated by the circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) physically interacts with ATAF2 at the DNA–protein and protein–protein levels, and both differentially suppress *BAS1*- and *SOB7*-mediated BR catabolism. In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRY1 and PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2 loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.

Keywords ATAF2 · Brassinosteroid · CCA1 · Hypocotyl growth · Photomorphogenesis · Phytochrome A

Abbreviations

Communicated by Dorothea Bartels.

Electronic supplementary material The online version of this article (<https://doi.org/10.1007/s00425-020-03456-5>) contains supplementary material, which is available to authorized users.

✉ Michael M. Neff
mmneff@wsu.edu

Hao Peng
hao_peng@wsu.edu

Jessica Phung
jessica.phung@wsu.edu

Ying Zhai
ying.zhai@wsu.edu

¹ Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA

² Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA

CCA1	CIRCADIAN CLOCK ASSOCIATED 1
CRY1	Cryptochrome 1
EMSA	Electrophoretic mobility shift assay
NAC	NAM ATAF and CUC
PHYA	Phytochrome A
PHYB	Phytochrome B
TF	Transcription factor
Y1H	Yeast one-hybrid

Introduction

A wide range of plant activities are regulated by kingdom-specific transcription factors (TFs), such as the NAM, ATAF and CUC (NAC) TF family (Mathew and Agarwal 2018). Specifically, the four ATAF NAC TF homologs in the model plant *Arabidopsis thaliana* (Kleinow et al. 2009; Christianson et al. 2010), including ATAF1 (ANAC002), ATAF2 (ANAC081), ANAC102 and ANAC032, have been demonstrated to extensively regulate plant defense responses such as abiotic stress tolerance (Lu et al. 2007; Christianson et al. 2009; Wu et al. 2009; D'Alessandro et al. 2018), disease resistance (Delessert et al. 2005; Jensen et al. 2008; Wang et al. 2009a, b; Wu et al. 2009; Allu et al. 2016), abscisic acid biosynthesis (Jensen et al. 2013), leaf senescence (Garapati et al. 2015b; Takasaki et al. 2015; Mahmood et al. 2016a; Nagahage et al. 2020), and metabolism of defense-related compounds (Garapati et al. 2015a; Zhao et al. 2018a; Mahmood et al. 2016b; Sun et al. 2019a). Depending on promoter context, downstream target genes, developmental stages and growth conditions, ATAF TFs can act as either a transcriptional activator or a repressor (Delessert et al. 2005; Wang et al. 2009b; Peng et al. 2015; Mahmood et al. 2016a, 2016b; Nagahage et al. 2018).

In addition to their roles in defense responses, ATAF TFs were also found to regulate plant development and relevant hormonal metabolism. For example, ANAC032 modulates root cell elongation via the MYB30 transcriptional cascade (Maki et al. 2019). ATAF2 can activate the expression of the auxin biosynthetic gene *NIT2* via direct promoter binding (Huh et al. 2012). We previously reported that ATAF2 promotes *Arabidopsis* hypocotyl growth in a light-dependent manner (Peng et al. 2015) via transcriptionally suppressing brassinosteroid (BR)-inactivating cytochrome P450 genes *BAS1* (*CYP734A1*, formerly *CYP72B1*) (Neff et al. 1999; Turk et al. 2003; Thornton et al. 2011) and *SOB7* (*CYP72C1*) (Nakamura et al. 2005; Takahashi et al. 2005; Turk et al. 2005; Thornton et al. 2010). ATAF2 is also subject to circadian regulation (Peng and Neff 2020) of the core clock TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) (Wang and Tobin 1998). CCA1 and ATAF2 physically interacts at both DNA–protein and

protein–protein levels to differentially suppress *BAS1* and *SOB7* expression (Peng and Neff 2020).

ATAF2 has extensive promoter motif-binding targets that share a common A/T-rich feature (Wang et al. 2009b, 2012; Huh et al. 2012; Peng et al. 2015). The protein interaction partners of ATAF2 include two AT-hook-motif containing nuclear-localized (AHL) proteins that specifically bind A/T-rich DNA (Zhao et al. 2013). The ATAF2-binding targets on the *BAS1* and *SOB7* promoters are the A/T-rich Evening Element (EE; AAAATA TCT) and CCA1-binding site (CBS; AAAAATCT), both of which are well-known binding sites of CCA1 (Michael and McClung 2002; Harmer and Kay 2005; Zhai et al. 2019). There is also a CBS on the promoter of ATAF2 itself, and CCA1 can bind this site and suppress ATAF2 expression in the light (Peng and Neff 2020). Since ATAF2 can also bind CBS, it is possible that ATAF2 binds its own promoter to self-regulate transcript accumulation. In this research, we demonstrated that ATAF2 is a self-transcriptional repressor using a promoter-GUS fusion system. The self-suppressing characteristic of ATAF2 is similar to that of CCA1 (Wang and Tobin 1998), which is a common feature for multiple circadian-oscillated genes (Schaffer et al. 1998; Helfer et al. 2011; Adams et al. 2015). We further showed that ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis.

The hypocotyl growth of *Arabidopsis* seedlings is suppressed upon photomorphogenesis, which is regulated by multiple light and hormonal signals (Neff et al. 2000). The genetic interactions between the far-red light photoreceptor phytochrome A (PHYA), the red-light receptor phytochrome B (PHYB), and the blue light receptor cryptochrome 1 (CRY1) play a central role in seedling photomorphogenesis (Neff and Chory 1998). *BAS1* and *SOB7* redundantly modulate photomorphogenesis via inactivating BRs (Turk et al. 2003, 2005), and they have complex genetic interactions with PHYA, PHYB and CRY1 (Sandhu et al. 2012). Our preliminary hypocotyl growth and ATAF2 transcript analyses in low-fluence white light as well as monochromatic light conditions ($10 \mu\text{mol m}^{-2} \text{s}^{-1}$) suggest that PHYA may be the essential photoreceptor for ATAF2-regulated photomorphogenesis (Peng et al. 2015). Here, we investigated the genetic interactions between ATAF2 and the three major photoreceptors via fluence-rate response assays and demonstrated the necessary role of PHYA in ATAF2-mediated photomorphogenic suppression. Furthermore, PHYA is shown to be essential for the reduced BR sensitivity phenotype of an ATAF2 loss-of-function mutant in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.

Materials and methods

Arabidopsis genotypes

The *Arabidopsis* Columbia (Col-0) ecotype was used as the wild-type control. *ataf2-1* (SALK_136355), *ataf2-2* (SALK_015750) and *ccal-1* (CS67781) T-DNA insertional mutants were obtained from the *Arabidopsis* Biological Resource Center (ABRC). The original *ccal-1* mutant was identified in the Ws genetic background (Green and Tobin 1999) and later introgressed into Col-0 via six rounds of backcrossing (Yakir et al. 2009). Photoreceptor knock-out mutants *phyB-9* (Reed et al. 1993), *cry1-103* (Liscum and Hangarter 1991) and *phyA-211* (Reed et al. 1994) are all in the Col-0 background. All gene knock-out mutants, *ccal-1* *ataf2-2*, *phyB-9* *ataf2-1*, *cry1-103* *ataf2-1*, and *phyA-211* *ataf2-1* double knock-out mutants, and the *ATAF2* overexpression line *ATAF2ox-1* have been previously described and verified (Peng et al 2015; Peng and Neff 2020).

GUS assays

pATAF2::GUS is a transcriptional fusion of GUS with 2-kb *ATAF2* promoter (Wang et al. 2009b). GUS histochemical staining of six-day-old pATAF2::GUS/Col-0 and pATAF2::GUS/*ataf2-1* transgenic-segregation seedlings was performed as previously described (Sandhu et al. 2012). GUS-stained seedlings were photographed using the Leica MZ10 F and DFC295 digital microscope/imaging workstation. GUS activity was quantified by measuring the amount of fluorescent 4-methylumbelliferyl (MU) produced by GUS-mediated hydrolysis of 4-methylumbelliferyl β-D-glucuronide (MUG) (Sheng et al. 2014). In brief, 10 mg (20–25 seedlings) of plant tissue was ground in 600 μL of GUS extraction buffer. 100 μL of supernatant was mixed with 40 μL of 10 mM MUG and incubated at 37 °C for 1 h. After adding 1 mL of sodium carbonate stop buffer, 200 μL of mixture was added to a black microtiter plate for fluorescence measurement using a fluorometer (Molecular Devices SpectraMax M2). Stop buffer, MUG + stop buffer, and GUS + stop buffer mixtures were used as negative controls. Serial MU dilutions were used to make a standard curve. Five independent replicates were performed for each sample.

Seedling growth

Arabidopsis seedling growth conditions have been described previously (Favero et al. 2016, 2017). Unless otherwise stated, ethanol-sterilized seeds were plated on half-strength Linsmaier-Skoog medium with 10 g/L USA-made Phytagel (Sigma-Aldrich) (Jacques et al. 2020) and 15 g/L sucrose.

For the exogenous brassinolide (BL) response assay, gradient concentrations of BL were added to the media with the same volume of ethanol applied to all plates. After four-day stratification at 4 °C in the dark followed by red light treatment to induce germination, seeds were grown at 25 °C in designated dark, continuous white (red:far-red light ratio 1:1; 0–80 μmol m⁻² s⁻¹) or monochromatic light intensities. Seeds used for each physiological or molecular assay were harvested from the same batch of plants grown in the greenhouse. For comparative fluence-rate response assays, seedlings were grown on plates without sucrose. The growth temperature was lowered to 20 °C in certain assays as indicated.

Hypocotyl measurement

Depending on experimental purposes, hypocotyl lengths of three- (for monochromatic fluence-rate response assays) or four-day-old (for white-light fluence-rate response and BL response assays) *Arabidopsis* seedlings were measured from scanned seedling images using NIH ImageJ (Schneider et al. 2012). We have previously used four-day-old seedlings for fluence-rate and BR -response assays in white light (Peng et al. 2015; Peng and Neff 2020). Compared to white light, both red and blue light are less efficient in inhibiting hypocotyl growth (Neff and Chory 1998), which leads to a relatively long-hypocotyl phenotype. Thus, three-day-old seedlings were used for monochromatic fluence-rate response assays (Peng et al. 2015) to obtain hypocotyl measurement results that are comparable to those from four-day-old seedlings grown in white light. To minimize the potential impact of non-simultaneous germination, only the measurement result of the thirty tallest seedlings was included for each data point (Fankhauser and Casal 2004). Each assay had three independent replicates showing a similar trend of differences.

Quantitative PCR

Total RNA samples were extracted from six-day-old pATAF2::GUS/Col-0 and pATAF2::GUS/*ataf2-1* seedlings with on-column DNase I digestion to eliminate genomic DNA contamination. First-strand cDNA reverse transcription and quantitative PCR (RT-qPCR) were performed using Bio-Rad iScript followed by SYBR Green Supermix. The Bio-Rad CFX96 Real-Time System and CFX Manager Software were used to generate and analyze qPCR data using the $\Delta\Delta C_T$ method. *UBQ10* (AT4G05320) was used as the reference gene for normalization of *GUS* transcript levels. qPCR primers for *UBQ10* were described previously (Peng et al. 2015). qPCR primers for *GUS* are 5'-CGTCCTGTA GAAACCCCAACC-3' and 5'-GCTTTCCACCAACGCTG ATC-3'.

Yeast one-hybrid

A Gateway-compatible yeast one-hybrid (Y1H) system (Deplancke et al. 2006) was used to test the interaction between ATAF2 and the CBS-containing DNA fragment (pATAF2-CBS) from its own promoter. pATAF2-CBS sequence and the Y1H procedure were described previously (Peng et al. 2015; Peng and Neff 2020). Interaction between the pATAF2-CBS bait and the ATAF2 prey was demonstrated by increased yeast tolerance to the His3p enzyme inhibitor 3-aminotriazole (3-AT). An empty prey vector was used as the negative control.

Electrophoretic mobility shift assay

N- and C-terminal Hexa-histidine tagged ATAF2 (His-ATAF2 and ATAF2-His) were expressed in the *Escherichia coli* strain Rosetta, respectively. ATAF2 proteins were purified using HisPur Ni-NTA resin followed by imidazole removal using the Slide-A-Lyzer mini dialysis device (Thermo Fisher Scientific). Electrophoretic mobility shift assay (EMSA) was carried out using the fluorescence-based EMSA kit (Invitrogen). Non-denaturing polyacrylamide gel electrophoresis (PAGE) was used to separate the DNA probe (pATAF2-CBS) and DNA-protein complexes (pATAF2-CBS + His-ATAF2 or pATAF2-CBS + ATAF2-His). The Bio-Rad ChemiDoc Touch imaging system was used to scan SYBR Green-stained DNA bands.

Statistical analysis

Two-tailed Student's *t* test was used for two-group comparison. When comparing multiple groups, one-way ANOVA with Tukey's HSD test was applied with significant differences being labeled by different letters. The *P* value significance level was set as 0.05.

Results

ATAF2 binds its own promoter

Since the CBS DNA motif is a binding target of ATAF2 (Peng et al. 2015) and a CBS (−577 to −570) can be found on the ATAF2 promoter (Peng and Neff 2020), we tested the binding of ATAF2 to its own 63-bp promoter fragment pATAF2-CBS (−598 to −536; with CBS being the only predicted TF binding site) in a targeted Y1H assay (Fig. 1a). Both 20-mM and 40-mM 3-AT drastically inhibited the growth of yeast harboring the pATAF2-CBS bait and the empty prey vector in a concentration-dependent manner (Fig. 1a). In contrast, the coexistence of pATAF2-CBS bait and ATAF2 prey significantly increased yeast



Fig. 1 ATAF2 binds its own promoter. **a** ATAF2 bind its own CBS-containing promoter fragment pATAF2-CBS in a targeted Y1H assay. Enhanced 3-AT tolerance in yeast harboring the ATAF2-CBS bait and the ATAF2 prey represented the detection of bait-prey interaction. Four independent clones were shown for each Y1H sample. **b** In an EMSA assay, both His-ATAF2 and ATAF2-His tagged proteins physically bind the pATAF2-CBS DNA probe in a dose-dependent manner

tolerance to the same concentrations of 3-AT (Fig. 1a). These results demonstrate that ATAF2 can bind its own promoter (pATAF2-CBS). The interaction between ATAF2 and pATAF2-CBS was further confirmed in an EMSA assay, demonstrating that both N- and C-terminal 6xHis-fusion ATAF2 proteins (His-ATAF2 and ATAF2-His) can physically bind the pATAF2-CBS DNA probe in a dose-dependent manner (Fig. 1b).

ATAF2 is a self-transcriptional repressor

ATAF2 can be either an activator (Wang et al. 2009b; Huh et al. 2012) or a repressor (Delessert et al. 2005; Peng et al. 2015) of its downstream-regulated genes (Nagahage et al. 2018). To examine whether ATAF2 activates or represses itself, the pATAF2::GUS/Col-0 transgenic line expressing an ATAF2 promoter-GUS transcriptional fusion (Wang et al. 2009b; Peng and Neff 2020) was crossed with the ATAF2 knock-out mutant *ataf2-1* (Fig. 2a). Homozygous pATAF2::GUS/Col-0 and pATAF2::GUS/*ataf2-1* lines were characterized from F3 segregants, with two lines being selected from each genotype for GUS expression

Fig. 2 ATAF2 is a self-transcriptional repressor. **a** The pATAF2::GUS/Col-0 transgenic line expressing ATAF2 promoter-GUS transcriptional fusion was crossed with the ATAF2 knock-out mutant *ataf2-1*. Homozygous pATAF2::GUS/Col-0 and pATAF2::GUS/ataf2-1 lines were characterized from F3 segregants, with two lines being selected from each genotype for GUS expression analysis. Six-day-old white-light-grown seedlings were used for GUS staining and RT-qPCR assays. Both pATAF2::GUS/ataf2-1 lines showed higher GUS protein accumulations than two pATAF2::GUS/Col-0 lines, with no apparent change of spatial expression pattern. Scale bars = 2 mm. **b** RT-qPCR assay confirmed that ATAF2 expression was disrupted in both pATAF2::GUS/ataf2-1 lines. **c** RT-qPCR

analysis (Fig. 2a). Six-day-old white-light-grown seedling were used for GUS staining and RT-qPCR assays. Both pATAF2::GUS/ataf2-1 lines showed higher GUS protein accumulation than the two pATAF2::GUS/Col-0 lines, with no apparent change of spatial expression pattern (Fig. 2a). RT-qPCR assays confirmed that when compared to pATAF2::GUS/Col-0 lines, both pATAF2::GUS/ataf2-1 lines exhibited disrupted ATAF2 expression (Fig. 2b) and significantly elevated GUS transcript accumulation (Fig. 2c). Quantifications of GUS activity in pATAF2::GUS/Col-0 and pATAF2::GUS/ataf2-1 seedlings also showed consistent results of higher GUS protein accumulation negatively correlated to ATAF2 disruption (Fig. 2d). These results demonstrate the transcriptional suppression activity of ATAF2 on its own promoter, which is a common feature of multiple

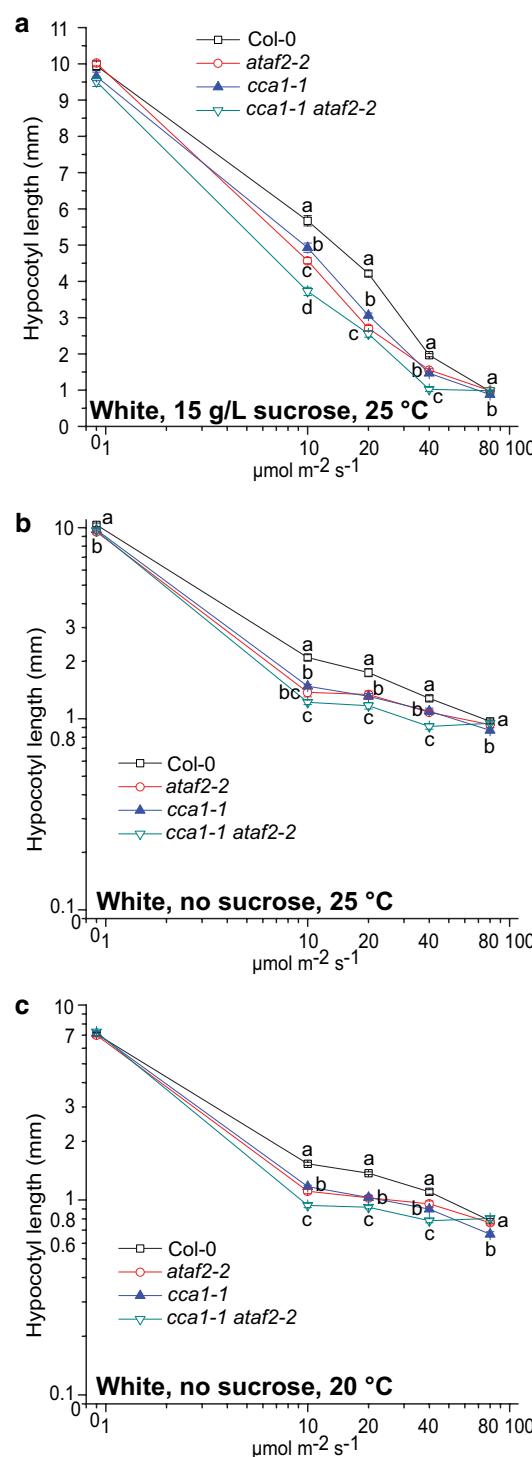
assays confirmed that when compared to pATAF2::GUS/Col-0 lines, both pATAF2::GUS/ataf2-1 lines exhibited significantly elevated GUS transcript accumulation. **d** GUS activity was quantified by its hydrolysis capacity of converting MUG to MU. When compared to pATAF2::GUS/Col-0 lines, both pATAF2::GUS/ataf2-1 lines exhibited significantly elevated GUS enzyme activity. Each RT-qPCR data point represents the mean value of three biological replicates \times three technical replicates ($n=9$). Each MU concentration data point represents the mean value of five independent replicates. Error bars denote the SE. The significance of differences was determined by one-way ANOVA with Tukey's HSD test. Groups with significant differences ($P < 0.05$) were labeled by different letters

circadian-regulated genes (Adams et al. 2015) including CCA1 (Wang and Tobin 1998).

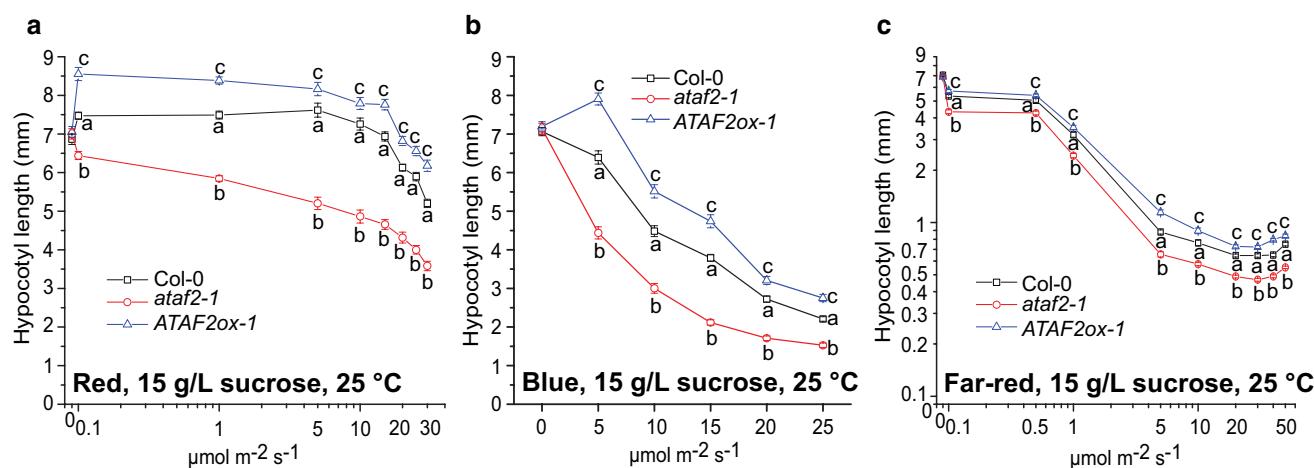
ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis

Arabidopsis seedlings have shorter hypocotyls when undergoing photomorphogenesis. Both ATAF2 and CCA1 are repressors of BR inactivation (Peng et al. 2015; Peng and Neff 2020) and photomorphogenesis (Peng et al. 2015; Zhao et al. 2018b). Therefore, we tested their genetic interaction in a white-light fluence-rate-response assay using four-day-old seedling of Col-0, *ataf2-2*, *cca1-1* and the *cca1-1 ataf2-2* double mutant (Fig. 3a). In low fluence rates ($10\text{--}40 \mu\text{mol m}^{-2} \text{s}^{-1}$), the disruption of either ATAF2 (*ataf2-2*) or CCA1 (*cca1-1*) resulted

Fig. 3 ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis. Four-day-old seedlings of Col-0, *ataf2-2*, *cca1-1* and the *cca1-1 ataf2-2* double mutant were used in a fluence-rate response assay in continuous white light. **a** In low fluence rates ($10-40 \mu\text{mol m}^{-2} \text{s}^{-1}$), the disruption of either ATAF2 (*ataf2-2*) or CCA1 (*cca1-1*) resulted in a short-hypocotyl phenotype, with *cca1-1 ataf2-2* largely exhibiting further suppressed hypocotyl growth. **b** Similar results were observed in the absence of sucrose in the growth media. **c** Similar results were observed in the absence of sucrose and seedlings were grown at 20°C instead of 25°C . Each data point represents the average of measurements from 30 seedlings ($n=30$). Error bars denote the SE. The significance of differences was determined by one-way ANOVA with Tukey's HSD test. Groups with significant differences ($P<0.05$) at a given fluence rate were labeled by different letters


in a short-hypocotyl phenotype, with *cca1-1 ataf2-2* largely exhibiting further suppressed hypocotyl growth (Fig. 3a). Similar results were observed when sucrose was removed from the media (Fig. 3b) and the plant growth temperature was further lowered to 20°C (Fig. 3c). These results indicate a genetically synergistic effect of ATAF2 and CCA1 in suppressing seedling photomorphogenesis.

ATAF2 loss- and gain-of-function seedlings retain opposite photomorphogenic phenotypes in monochromatic light conditions

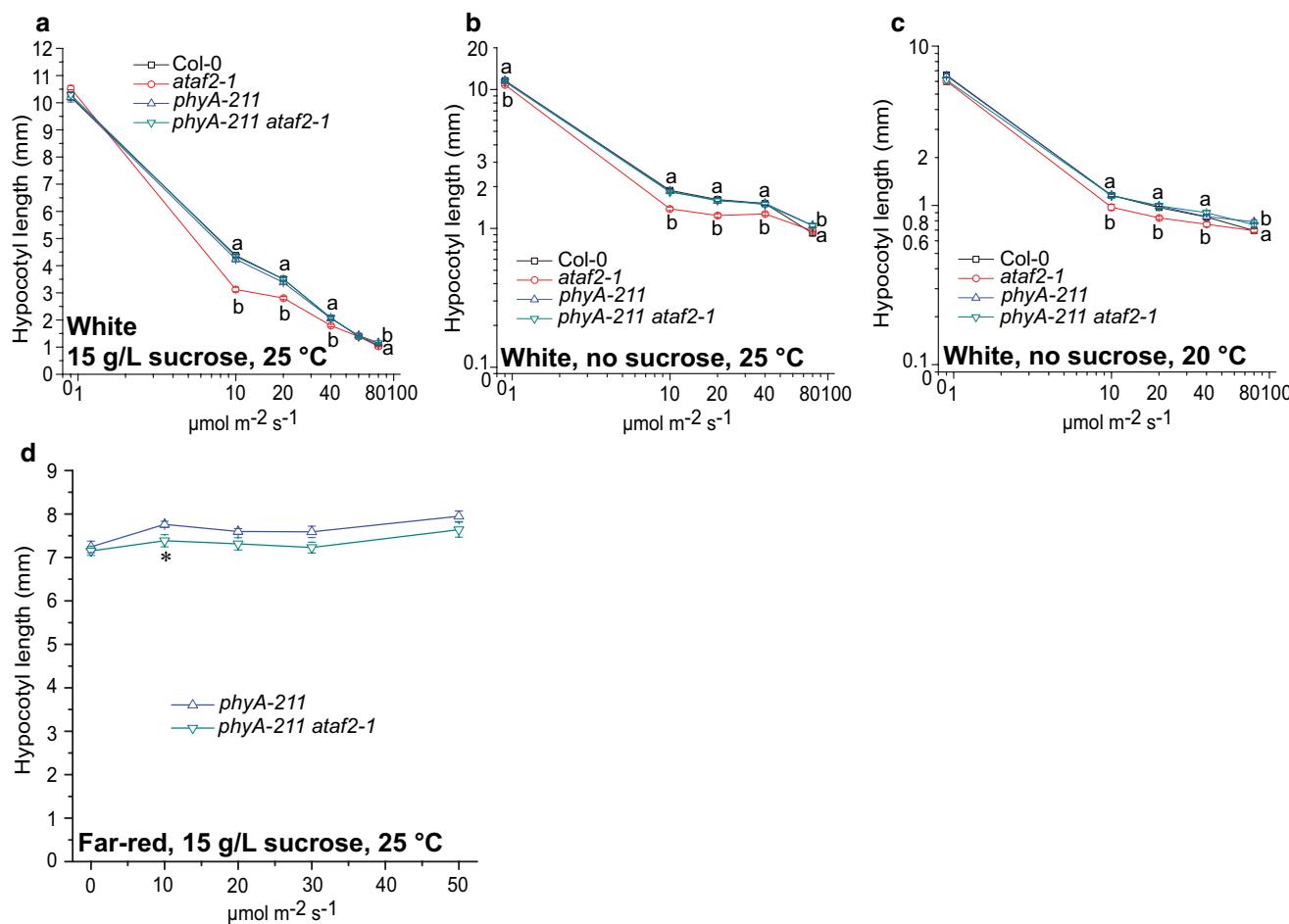

We previously reported that ATAF2 loss- and gain-of-function seedlings exhibit opposite photomorphogenic phenotypes in white light (Peng et al. 2015). In low fluence rates, ATAF2 knock-out mutants have shorter hypocotyls when compared to the wild type whereas ATAF2 overexpression lines show longer hypocotyl growth (Peng et al. 2015). *ataf2-1* retains its short-hypocotyl phenotype in $10 \mu\text{mol m}^{-2} \text{s}^{-1}$ of red, blue or far-red light (Peng et al. 2015). Here, we further showed that ATAF2 loss- (*ataf2-1*) and gain-of-function (*ATAF2ox-1*) seedlings retain their opposite hypocotyl-growth phenotypes in multiple fluence rates of monochromatic red (Fig. 4a), blue (Fig. 4b) or far-red (Fig. 4c) light. These results confirmed that ATAF2-regulated seedling photomorphogenesis is not subject to any single monochromatic light. Fluence rates as low as $0.1 \mu\text{mol m}^{-2} \text{s}^{-1}$ (Fig. 4a,c) were applied for both red and far-red light, as they are primary signals for low fluence rate responses (LFRs). Col-0 seedlings grown in low fluence rates of red light were even slightly taller than dark-grown seedlings (Fig. 4a). This phenotype disappeared with the removal of sucrose from the media (Fig. S1).

PHYA is required for ATAF2-regulated seedling photomorphogenesis

We previously showed that when compared to *phyB-9* and *cry1-103*, the *phyB-9 ataf2-1* and *cry1-103*

ataf2-1 double mutants retain their short-hypocotyl phenotype in $10 \mu\text{mol m}^{-2} \text{s}^{-1}$ of red and blue light, respectively (Peng et al. 2015). In contrast, the short-hypocotyl phenotype is largely abolished in *phyA-211 ataf2-1* in $10 \mu\text{mol m}^{-2} \text{s}^{-1}$ of red, blue or far-red light (Peng et al. 2015). These preliminary results suggest that PHYA may be the major photoreceptor for ATAF2-regulated seedling

Fig. 4 ATAF2 loss- and gain-of-function seedlings retain opposite photomorphogenic phenotypes in monochromatic light conditions. **a** *ataf2-1* and *ATAF2ox-1* seedlings retain their opposite hypocotyl-growth phenotypes in multiple fluence rates of monochromatic red light. **b** *ataf2-1* and *ATAF2ox-1* seedlings retain their opposite hypocotyl-growth phenotypes in multiple fluence rates of blue light. **c** *ataf2-1* and *ATAF2ox-1* seedlings retain their opposite hypocotyl-growth phenotypes in multiple fluence rates of monochromatic far-red


light. Three-day-old seedlings of *Col-0*, *ataf2-1*, and *ATAF2ox-1* were used for all three monochromatic fluence-rate response assays. Each data point represents the average of measurements from 30 seedlings ($n=30$). Error bars denote the SE. The significance of differences was determined by one-way ANOVA with Tukey's HSD test. Groups with significant differences ($P<0.05$) at a given fluence rate were labeled by different letters

photomorphogenesis. To further test this hypothesis, fluence-rate ($0-80 \mu\text{mol m}^{-2} \text{s}^{-1}$) response assays in white light were performed for *phyB-9 ataf2-1*, *cry1-103 ataf2-1* and *phyA-211 ataf2-1* with appropriate controls (Fig. S2; Fig. 5a). *phyB-9 ataf2-1* hypocotyls were shorter than those of *phyB-9* even in the dark, and this short-hypocotyl phenotype was unchanged in low fluence rates (10 and $20 \mu\text{mol m}^{-2} \text{s}^{-1}$) of white light (Fig. S2a), which suggests that *PHYB* is not a major player in ATAF2-mediated photomorphogenesis regulation. Similar trends were observed from hypocotyl growth comparisons between *cry1-103 ataf2-1* and *cry1-103* in the dark and most tested fluence rates ($10-60 \mu\text{mol m}^{-2} \text{s}^{-1}$) of white light (Fig. S2b). Therefore, *CRY1*, like *PHYB*, does not have significant genetic interaction with ATAF2 in seedling photomorphogenesis. Unlike *PHYB* or *CRY1*, *PHYA* exhibited strong genetic interaction with ATAF2 in white light (Fig. 5a). *Col-0*, *ataf2-1*, *phyA-211* and *phyA-211 ataf2-1* seedlings showed similar hypocotyl growth in the dark (Fig. 5a). In low to moderate fluence rates ($10-40 \mu\text{mol m}^{-2} \text{s}^{-1}$) of white light, *ataf2-1* hypocotyls were shorter than those of the other three genotypes, which still showed similar hypocotyl growth (Fig. 5a). Similar results were observed when sucrose was removed from the media (Fig. 5b) and the plant growth temperature was further lowered to 20°C (Fig. 5c). Thus, disruption of *PHYA* can abolish the short-hypocotyl phenotype caused by ATAF2 disruption, demonstrating that *PHYA* is required for ATAF2-regulated seedling photomorphogenesis in white light. Since the disruption of ATAF2 confers a short hypocotyl phenotype in far-red light (Fig. 4c) we examined

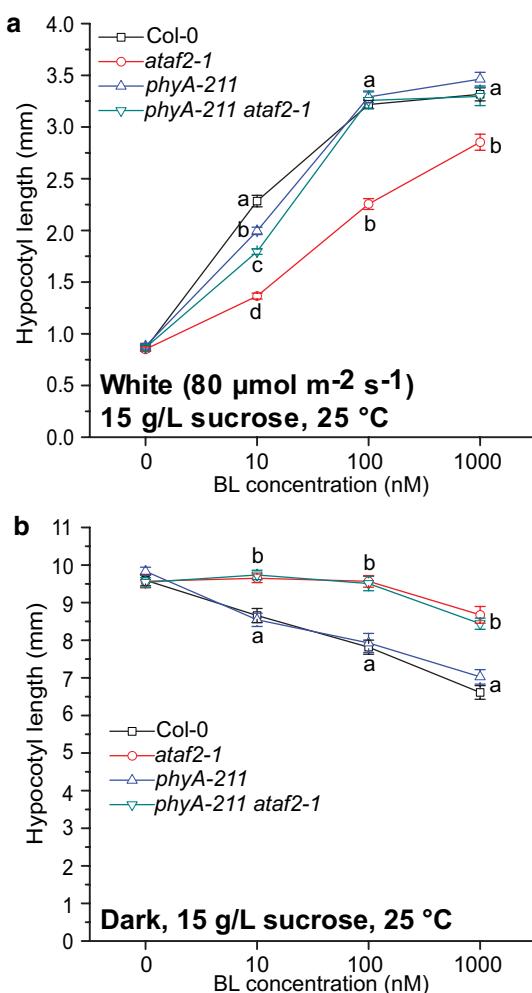
the disruption of ATAF2 in a *phyA-211* null mutant in the same conditions (Fig. 5d). *phyA-211 ataf2-1* hypocotyls were only slightly shorter than those of *phyA-211* in multiple far-red fluence rates (Fig. 5d), indicating that *PHYA* activity is necessary for the role of ATAF2 in far-red light.

PHYA is essential for ATAF2-regulated BR homeostasis in the light

ATAF2 suppresses photomorphogenesis at least partially via repressing BR inactivation (Peng et al. 2015). Therefore, we tested the genetic interaction between *PHYA* and ATAF2 in seedling responses to exogenous brassinolide (BL) treatments (Fig. 6). BL promotes seedling hypocotyl growth in the light but the effect switches to inhibition in the dark (Turk et al. 2003). In $80 \mu\text{mol m}^{-2} \text{s}^{-1}$ of white light, *ataf2-1* seedlings were less sensitive to BL treatments when compared to the wild type (*Col-0*) (Fig. 6a), which has been reported previously (Peng et al. 2015). This reduction of BL sensitivity was attenuated (at 10nM BL treatment) or even abolished (at 100 and 1000nM BL treatments) when *PHYA* was disrupted (Fig. 6a). These results suggest that *PHYA* is essential for ATAF2-regulated BR homeostasis in the light. In contrast, the disruption of *PHYB* (Fig. S3a) or *CRY1* (Fig. S3b, c) did not abolish the reduction of BL sensitivity caused by ATAF2 disruption. However, *phyA-211 ataf2-1* seedlings showed a BR-response phenotype similar to that of *ataf2-1* in the dark (Fig. 6b), demonstrating that *PHYA* has no significant impact on ATAF2-regulated BR homeostasis in the absence of light.

Fig. 5 PHYA is required for ATAF2-regulated seedling photomorphogenesis. **a** A fluence-rate ($0\text{--}80 \mu\text{mol m}^{-2} \text{s}^{-1}$) response assay in white light was performed for Col-0, *ataf2-1*, *phyA-211* and *phyA-211 ataf2-1* seedlings. All four genotypes showed similar hypocotyl growth in the dark. In low to moderate fluence rates ($10\text{--}40 \mu\text{mol m}^{-2} \text{s}^{-1}$) of white light, *ataf2-1* hypocotyls were shorter than those of the other three genotypes, which still showed similar hypocotyl growth. **b** Similar results were observed in the absence of sucrose in the growth media. **c** Similar results were observed in the absence of sucrose and seedlings were grown at 20°C instead of 25°C . **d** *phyA-211 ataf2-1* hypocotyls were only slightly shorter than

those of *phyA-211* in multiple far-red fluence rates. The difference was significant at $10 \mu\text{mol m}^{-2} \text{s}^{-1}$. Four- and three-day-old seedlings were used for white and far-red light fluence-rate response assays, respectively. Each data point represents the average of measurements from 30 seedlings ($n=30$). Error bars denote the SE. In **a-c**, the significance of the differences was determined by one-way ANOVA with Tukey's HSD test. Groups with significant differences ($P<0.05$) at a given fluence rate were labeled by different letters. In **d**, two-tailed Student's *t*-test was used to determine the significance of differences. $*P<0.05$


Discussion

Circadian oscillation of ATAF2 is modulated by its self-transcriptional suppression and physical/genetic interactions with CCA1

Multiple *Arabidopsis* core circadian regulators and their targeting proteins, such as the central morning loop components CCA1 (Wang and Tobin 1998; Adams et al. 2015) and LATE ELONGATED HYPOCOTYL (LHY) (Schaffer et al. 1998; Adams et al. 2015), as well as an evening-expressed TF LUX ARRHYTHMO (LUX)/PHYTOCLOCK1 (PCL1) (Hazen et al. 2005; Onai and Ishiura 2005; Chow et al.

2012), share a common feature of self-binding to its own promoter as a transcriptional repressor, which forms a negative auto-regulatory feedback loop and leads to a circadian oscillation expression pattern (Helfer et al. 2011; Nagel et al. 2015). In this research ATAF2 is identified as a self-transcriptional repressor (Figs. 1, 2), which is consistent with its previously confirmed circadian oscillation expression pattern (Peng and Neff 2020).

In addition to the observations that both CCA1 (Peng and Neff 2020) and ATAF2 itself (Figs. 1, 2) can bind the ATAF2 promoter as repressors in the light, CCA1 and ATAF2 also physically interact at the protein level (Peng and Neff 2020). It is possible that CCA1 and

Fig. 6 PHYA is essential for ATAF2-regulated BR homeostasis in the light. **a** In 80 $\mu\text{mol m}^{-2} \text{s}^{-1}$ white light, *ataf2-1* seedlings showed reduced sensitivity to BL treatments when compared to Col-0. This BL-reduced-sensitivity phenotype was attenuated (at 10 nM BL treatment) or even abolished (at 100 and 1000 nM BL treatments) when PHYA was disrupted. **b** *phyA-211 ataf2-1* seedlings showed a BR-reduced-sensitivity phenotype similar to that of *ataf2-1* in the dark. Four-day-old seedlings were used for both BL-response assays (light and dark). Each data point represents the average of measurements from 30 seedlings ($n=30$). Error bars denote the SE. The significance of differences was determined by one-way ANOVA with Tukey's HSD test. Groups with significant differences ($P<0.05$) at a given BL concentration were labeled by different letters

ATAF2 coordinately suppress ATAF2 transcription at least partially as a hetero-complex, since the disruption of *CCA1* (Peng and Neff 2020) and ATAF2 (Fig. 2) similarly increase ATAF2 and pATAF2-driven *GUS* transcript accumulation to about two-fold, respectively. *CCA1* and ATAF2 exhibit distinct circadian oscillation patterns (Peng and Neff 2020). The *CCA1* expression peak appears around dawn, whereas ATAF2 transcript accumulation keeps increasing after dawn and peaks right before sunset (Peng and Neff 2020). The continuous reduction of *CCA1*

expression in the light period is consistent with the corresponding increase of ATAF2 transcript accumulation, as CCA1 is a repressor of ATAF2 transcription. Additional negative auto-regulatory feedback of ATAF2 itself may help to constrain its oscillation range within two to three-fold (Peng and Neff 2020). Unlike CCA1, ATAF2 does not reciprocally regulate *CCA1* expression (Peng and Neff 2020), which is consistent with the wider oscillation range of *CCA1* (Peng and Neff 2020).

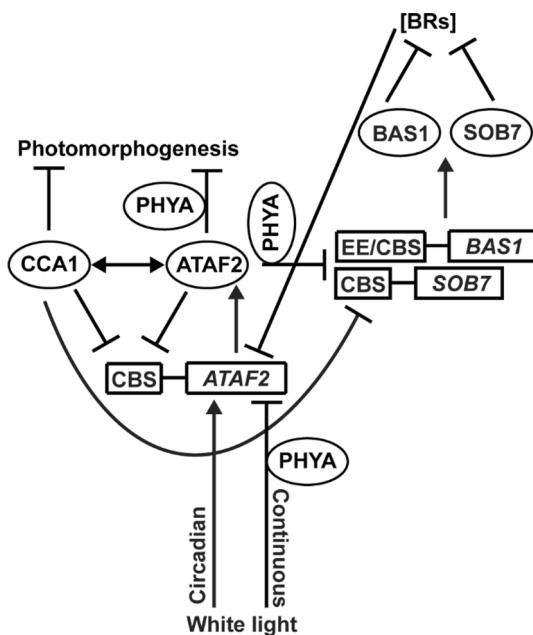
ATAF2/CCA1-regulated seedling photomorphogenesis is sucrose- and thermo-independent

The photomorphogenic phenotype caused by the disruption of ATAF2 or *CCA1* does not depend on sucrose or relatively warm (25 °C) temperature (Figs. 3, 5). We have previously added 15 g/L sucrose to the medium and grow seedlings at 25 °C in our fluence-rate response assays (Peng et al. 2015; Peng and Neff 2020). This approach integrates more signaling pathways to the modulation of seedling growth but still stays below the threshold temperature (~27 °C) for triggering thermomorphogenesis in *Arabidopsis* (Casal and Balasubramanian 2019). Sucrose has complex effects on hypocotyl growth depending on light condition, seedling age and multiple photoreceptor and hormonal signaling pathways (Zhang et al. 2010, 2015; Liu et al. 2011; Simon et al. 2018; Zhao et al. 2020). In our experimental setting, sucrose significantly promotes hypocotyl growth in relatively low fluence rates (10–40 $\mu\text{mol m}^{-2} \text{s}^{-1}$) of white light (Figs. 3, 5). Adding sucrose in the medium can make subtle hypocotyl-growth phenotypes become more visible.

In our assay, low-fluence-rate red light makes Col-0 seedlings slightly taller than their dark-grown counterparts (Fig. 4a). This phenotype is sucrose-dependent since it can be suppressed by the removal of sucrose from the growth media (Fig. S1). Similar to white light assays, sucrose promotes hypocotyl growth in low-fluence-rate red light (Fig. 4a; Fig. S1) in our experimental setting, which can partially explain the observation in Fig. 4a. Additional factors may also contribute to the long-hypocotyl phenotype observed in low-fluence-rate red light. Compared to white and blue light, red light is most effective in stimulating seed germination (Fankhauser and Casal 2004) and least efficient in inhibiting hypocotyl elongation (Neff and Chory 1998). Both low fluence rates and red light result in longer hypocotyls as compared to high fluence rates and white/blue light, respectively. In our experimental setting, dark-grown seeds are pretreated with red light for 2–4 h to induce subsequent germination in the dark. This treatment may cause a delay in germination and hypocotyl growth when compared to seeds/seedlings continuously exposed to red light.

The synergistic suppression effect of ATAF2 and CCA1 on seedling photomorphogenesis may be at least partially associated with BR homeostasis

Beyond circadian oscillation, both ATAF2 and CCA1 are repressors of seedling photomorphogenesis (Peng et al. 2015; Zhai et al. 2020). ATAF2 promotes seedling elongation in a fluence-rate dependent manner, with its loss- and gain-of-function mutants exhibiting opposite hypocotyl length phenotypes (Peng et al. 2015). Similarly, *CCA1* over-expression lines confer a long-hypocotyl phenotype (Wang and Tobin 1998), whereas gene knock-out mutants have shorter hypocotyls when compared to the wild type (Zhao et al. 2018b; Zheng et al. 2018; Peng and Neff 2020). In our fluence-rate response assay, *cca1-1 ataf2-2* seedlings have shorter hypocotyls than either single mutant in low to moderate fluence rates of white light (Fig. 3), which demonstrates that ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis. We previously reported that ATAF2 and CCA1 have additive effects in suppressing the expression of the BR-inactivating gene *SOB7* in the light (Peng and Neff 2020). Therefore, BR homeostasis may at least partially account for the synergistic suppression of ATAF2 and CCA1 on seedling photomorphogenesis.


PHYA is required for ATAF2-regulated hypocotyl growth and BR homeostasis in the light

Though ATAF2 transcript accumulation keeps increasing during the light period of a circadian light/dark cycle (Peng and Neff 2020), ATAF2 expression is suppressed by continuous light or by the dark-to-light transition in seedling photomorphogenesis (Peng et al. 2015). These observations suggest that ATAF2 undergoes a different set of molecular and genetic regulations during photomorphogenesis. Our fluence-rate-response assays reveal that ATAF2 suppresses photomorphogenesis in all three monochromatic (red, blue and far-red) light conditions (Fig. 4), and the presence of PHYA is essential for the short-hypocotyl phenotype caused by ATAF2 disruption (Fig. 5). In addition to being a far-red light photoreceptor, PHYA also responds to red (Tepperman et al. 2006; Franklin et al. 2007) and blue (Chun et al. 2001) light signals, which explains the observation that ATAF2 is consistently functional in regulating photomorphogenesis in red, blue and far-red light (Fig. 4).

Since ATAF2-regulated BR homeostasis accounts for the seedling photomorphogenic phenotypes of ATAF2 mutants (Peng et al. 2015), we tested the genetic interaction between ATAF2 and PHYA in modulating seedling responses to exogenous BL treatments (Fig. 6). Disruption of PHYA attenuates the BR-insensitive phenotype of ATAF2 knockout seedlings in the light (Fig. 6a) but not in the dark (Fig. 6b), indicating that ATAF2-regulated BR

homeostasis only requires PHYA presence in the light. It is reasonable that as a photoreceptor, PHYA does not have genetic interaction with ATAF2 when there is no light input. Down-regulated by light (Cantón and Quail 1999), PHYA accumulates in the dark and plays an important role in the transition of seedlings from dark to light growth (Casal et al. 2014), a process called de-etiolation. The potential functions of PHYA in dark-grown seedlings are still under-investigated (Carlson et al. 2019). However, with regard to genetic interactions with ATAF2, PHYA is no longer functional in the dark (Fig. 6b). ATAF2 knock-out seedlings still show reduced BL sensitivity in the dark (Peng et al. 2015; Peng and Neff 2020; Fig. 6b), which may indicate ATAF2-mediated BR homeostasis is regulated by PHYA-independent pathways in the dark, or the increased accumulation of ATAF2 in the dark (Peng et al. 2015) is sufficient to regulate BR homeostasis with no need for PHYA or other partners. Similar to the opposite observations that ATAF2 expression is suppressed by continuous light but keeps increasing in the light period of a circadian light/dark cycle, dark-grown seedlings have higher ATAF2 transcript accumulation whereas ATAF2 expression is in a continuously decreasing pattern during the dark period of a circadian light/dark cycle (Peng et al. 2015; Peng and Neff 2020). The distinct circadian- and photomorphogenic-regulation of ATAF2 expression corresponds to its complex genetic interactions with *CCA1* and *PHYA*, respectively.

PHYA has long been associated with BR catabolism in previous research. *bas1-D*, an activation tagging mutant of the BR-inactivating gene *BAS1*, can suppress the long-hypocotyl phenotype caused by the *phyB*-null allele, but not the *phyA*-null-mutation-derived long-hypocotyl phenotype in far-red light (Neff et al. 1999). In addition, the interaction between photomorphogenesis and *BAS1*-mediated BR-inactivation is found to mainly depend on far-red light, which is primarily sensed by PHYA (Turk et al. 2003). The *bas1-2* null mutation can also suppress the late-flowering phenotype of *phyA-211* in both long day and short day growth conditions (Sandhu et al. 2012). We previously described *PHYA-ATAF2* genetic interactions in low fluence rates ($10 \mu\text{mol m}^{-2} \text{s}^{-1}$) of monochromatic light (Peng et al. 2015). Here we further investigated the genetic interaction between PHYA and ATAF2 in seedling white-light photomorphogenesis (Fig. 5) in a wide range of fluence rates ($0-80 \mu\text{mol m}^{-2} \text{s}^{-1}$) as well as in BR homeostasis regulation (Fig. 6). It is still not clear whether PHYA regulates ATAF2 activities directly via physical interactions or indirectly through its signaling pathway. PHYA has been reported to directly target the promoters of numerous hormone- or stress-responsive genes for subsequent transcriptional regulation, including a NAC TF-encoding gene *ANAC019* (Chen et al. 2014). Therefore, a future direction would be uncovering the molecular mechanism of PHYA-ATAF2 interaction.

Fig. 7 A model for the molecular and genetic regulations of ATAF2 involving CCA1, PHYA, light and BRs. ATAF2 bind the CBS motif on its own promoter as a self-transcriptional repressor, which forms a negative auto-regulatory feedback loop. CCA1 physically interacts with ATAF2 and also transcriptionally suppresses ATAF2 expression via promoter binding to CBS. CCA1 and ATAF2 synergistically suppress seedling photomorphogenesis. They also differentially suppress the expression of BR-inactivating genes *BAS1* and *SOB7* via direct binding to the EE/CBS motifs on their promoters. PHYA is required for ATAF2-regulated photomorphogenesis and BR homeostasis in the light. BRs suppress ATAF2 expression to form a negative feedback regulation loop. ATAF2 expression increases during the light period of the circadian light/dark cycle but is suppressed by continuous light after the dark-to-light transition of photomorphogenesis

A model for the molecular and genetic regulations of ATAF2 involving CCA1, PHYA, light and BRs

Based on this work and our previous reports (Peng et al. 2015; Peng and Neff 2020), we propose a model to summarize our current understanding on the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA (Fig. 7). ATAF2 bind the CBS motif on its own promoter as a self-transcriptional repressor, which forms a negative auto-regulatory feedback loop. CCA1 physically interacts with ATAF2 and also transcriptionally suppresses ATAF2 expression via promoter binding to the CBS motif. CCA1 and ATAF2 synergistically suppress seedling photomorphogenesis. They also differentially suppress the expression of BR-inactivating genes *BAS1* and *SOB7* via direct binding to the EE/CBS motifs on their promoters. PHYA is required for ATAF2-regulated photomorphogenesis and BR homeostasis in the light. BRs suppress ATAF2 expression to form a negative feedback regulation loop. ATAF2 expression increases during the light period of a circadian light/dark cycle but is

suppressed by continuous light after the dark to light transition of photomorphogenesis. It is worth noting that both ATAF2 (Wang et al. 2009b; Zhao et al. 2013) and CCA1 (Andronis et al. 2008; Lu et al. 2009; Lau et al. 2011; Sun et al. 2019b) have multiple physical interacting partners. This simplified model only focuses on the molecular and genetic regulations of ATAF2 involving CCA1 and PHYA.

Author contribution statement HP and MMN proposed the project and designed the experiments. HP performed most experiments and analyzed the data. JP assisted in isolating and genotyping segregation plants from the cross. YZ performed the GUS quantification experiments. HP and MMN discussed the results and wrote the manuscript.

Acknowledgements We thank Dr. James N. Culver (University of Maryland) for the pATAF2::GUS construct. This research was supported by the United States National Science Foundation project #1656265 (to MMN) and the USDA National Institute of Food and Agriculture, Hatch Umbrella Project #1015621 (to MMN).

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

References

- Adams S, Manfield I, Stockley P, Carré IA (2015) Revised morning loops of the *Arabidopsis* circadian clock based on analyses of direct regulatory interactions. PLoS ONE 10:e0143943. <https://doi.org/10.1371/journal.pone.0143943>
- Allu AD, Brotman Y, Xue GP, Balazadeh S (2016) Transcription factor ANAC032 modulates JA/SA signalling in response to *Pseudomonas syringae* infection. EMBO Rep 17:1578–1589. <https://doi.org/10.15252/embr.201642197>
- Andronis C, Barak S, Knowles SM, Sugano S, Tobin EM (2008) The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in *Arabidopsis*. Mol Plant 1:58–67. <https://doi.org/10.1093/mp/ssm005>
- Cantón FR, Quail PH (1999) Both phyA and phyB mediate light-imposed repression of *PHYA* gene expression in *Arabidopsis*. Plant Physiol 121:1207–1216. <https://doi.org/10.1104/pp.121.4.1207>
- Carlson KD, Bhogale S, Anderson D, Tomanek L, Madlung A (2019) Phytochrome A regulates carbon flux in dark grown tomato seedlings. Front Plant Sci 10:152. <https://doi.org/10.3389/fpls.2019.00152>
- Casal JJ, Candia AN, Sellaro R (2014) Light perception and signalling by phytochrome A. J Exp Bot 65:2835–2845. <https://doi.org/10.1093/jxb/ert379>
- Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70:321–346. <https://doi.org/10.1146/annurev-arplant-050718-095919>
- Chen F, Li B, Li G, Charron JB, Dai M, Shi X, Deng XW (2014) *Arabidopsis* phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways. Plant Cell 26:1949–1966. <https://doi.org/10.1105/tpc.114.123950>

Chow BY, Helfer A, Nusinow DA, Kay SA (2012) ELF3 recruitment to the *PRR9* promoter requires other evening complex members in the *Arabidopsis* circadian clock. *Plant Signal Behav* 7:170–173. <https://doi.org/10.4161/psb.18766>

Christianson JA, Dennis ES, Llewellyn DJ, Wilson IW (2010) ATAF NAC transcription factors: regulators of plant stress signaling. *Plant Signal Behav* 5:428–432. <https://doi.org/10.4161/psb.5.4.10847>

Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES (2009) The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of *Arabidopsis* seeds following low-oxygen treatment. *Plant Physiol* 149:1724–1738. <https://doi.org/10.1104/pp.108.131912>

Chun L, Kawakami A, Christopher DA (2001) Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves. *Plant Physiol* 125:1957–1966. <https://doi.org/10.1104/pp.125.4.1957>

Deplancke B, Vermeirssen V, Arda HE, Martinez NJ, Walhout AJM (2006) Gateway-Compatible yeast one-hybrid screens. *Cold Spring Harbor Protocols* 2006(28)

D'Alessandro S, Ksas B, Havaux M (2018) Decoding β -cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. *Plant Cell* 30:2495–2511. <https://doi.org/10.1105/tpc.18.00578>

Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in *Arabidopsis*. *Plant J* 43:745–757. <https://doi.org/10.1111/j.1365-313X.2005.02488.x>

Fankhauser C, Casal JJ (2004) Phenotypic characterization of a photomorphogenic mutant. *Plant J* 39:747–760. <https://doi.org/10.1111/j.1365-313X.2004.02148.x>

Favero DS, Jacques CN, Iwase A, Le KN, Zhao J, Sugimoto K, Neff MM (2016) SUPPRESSOR OF PHYTOCHROME B4-#3 represses genes associated with auxin signaling to modulate hypocotyl growth. *Plant Physiol* 171:2701–2716. <https://doi.org/10.1104/pp.16.00405>

Favero DS, Le KN, Neff MM (2017) Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 to influence the expression of *SMALL AUXIN UP RNA* genes and hypocotyl growth. *Plant J* 89:1133–1145. <https://doi.org/10.1111/tpj.13451>

Franklin KA, Allen T, Whitelam GC (2007) Phytochrome A is an irradiance-dependent red light sensor. *Plant J* 50:108–117. <https://doi.org/10.1111/j.1365-313X.2007.03036.x>

Garapati P, Feil R, Lunn JE, Van Dijck P, Balazadeh S, Mueller-Roeber B (2015a) Transcription factor Arabidopsis Activating Factor1 integrates carbon starvation responses with trehalose metabolism. *Plant Physiol* 169:379–390. <https://doi.org/10.1104/pp.15.00917>

Garapati P, Xue GP, Munné-Bosch S, Balazadeh S (2015b) Transcription factor ATAF1 in *Arabidopsis* promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. *Plant Physiol* 168:1122–1139. <https://doi.org/10.1104/pp.15.00567>

Green RM, Tobin EM (1999) Loss of the circadian clock-associated protein 1 in *Arabidopsis* results in altered clock-regulated gene expression. *Proc Natl Acad Sci USA* 96:4176–4179. <https://doi.org/10.1073/pnas.96.7.4176>

Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in *Arabidopsis*. *Plant Cell* 17:1926–1940. <https://doi.org/10.1105/tpc.105.033035>

Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) *LUX ARRHYTHMO* encodes a Myb domain protein essential for circadian rhythms. *Proc Natl Acad Sci USA* 102:10387–10392. <https://doi.org/10.1073/pnas.0503029102>

Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA (2011) *LUX ARRHYTHMO* encodes a nighttime repressor of circadian gene expression in the *Arabidopsis* core clock. *Curr Biol* 21:126–133. <https://doi.org/10.1016/j.cub.2010.12.021>

Huh SU, Lee SB, Kim HH, Paek KH (2012) ATAF2, a NAC transcription factor, binds to the promoter and regulates *NIT2* gene expression involved in auxin biosynthesis. *Mol Cells* 34:305–313. <https://doi.org/10.1007/s10059-012-0122-2>

Jacques CN, Hulbert AK, Westenskow S, Neff MM (2020) Production location of the gelling agent Phytigel has a significant impact on *Arabidopsis thaliana* seedling phenotypic analysis. *PLoS ONE* 15:e0228515. <https://doi.org/10.1371/journal.pone.0228515>

Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards *Blumeria graminis* f. sp. *hordei* in *Arabidopsis*. *Plant J* 56:867–880. <https://doi.org/10.1111/j.1365-313X.2008.03646.x>

Jensen MK, Lindemose S, de Masi F, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J, Petersen M, Skriver K (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene *NCED3* in *Arabidopsis thaliana*. *FEBS Open Bio* 3:321–327. <https://doi.org/10.1016/j.fob.2013.07.006>

Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C (2009) NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in *Arabidopsis*. *Plant Sci* 177:360–370. <https://doi.org/10.1016/j.plantsci.2009.06.011>

Lau OS, Huang X, Charron JB, Lee JH, Li G, Deng XW (2011) Interaction of *Arabidopsis* DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. *Mol Cell* 43:703–712. <https://doi.org/10.1016/j.molcel.2011.07.013>

Liscum E, Hangarter RP (1991) *Arabidopsis* mutants lacking blue light-dependent inhibition of hypocotyl elongation. *Plant Cell* 3:685–694. <https://doi.org/10.1105/tpc.3.7.685>

Liu Z, Zhang Y, Liu R, Hao H, Wang Z, Bi Y (2011) Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in *Arabidopsis*. *J Plant Physiol* 168:1771–1779. <https://doi.org/10.1016/j.jplph.2011.04.009>

Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, *ATAF1*, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in *Arabidopsis*. *Plant Mol Biol* 63:289–305. <https://doi.org/10.1007/s11103-006-9089-8>

Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of *Arabidopsis*. *Plant Physiol* 150:834–843. <https://doi.org/10.1104/pp.108.133272>

Mahmood K, El-Kereamy A, Kim SH, Nambara E, Rothstein SJ (2016a) ANAC032 positively regulates age-dependent and stress-induced senescence in *Arabidopsis thaliana*. *Plant Cell Physiol* 57:2029–2046. <https://doi.org/10.1093/pcp/pcw120>

Mahmood K, Xu Z, El-Kereamy A, Casaretto JA, Rothstein SJ (2016b) The *Arabidopsis* transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses. *Front Plant Sci* 7:1548. <https://doi.org/10.3389/fpls.2016.01548>

Maki H, Sakaoka S, Itaya T, Suzuki T, Mabuchi K, Amabe T, Suzuki N, Higashiyama T, Tada Y, Nakagawa T, Morikami A, Tsukagoshi H (2019) ANAC032 regulates root growth through the MYB30 gene regulatory network. *Sci Rep* 9:11358. <https://doi.org/10.1038/s41598-019-47822-0>

Mathew IE, Agarwal P (2018) May the fittest protein evolve: favoring the plant-specific origin and expansion of NAC transcription

factors. *BioEssays* 40:e1800018. <https://doi.org/10.1002/bies.201800018>

Michael TP, McClung CR (2002) Phase-specific circadian clock regulatory elements in *Arabidopsis*. *Plant Physiol* 130:627–638. <https://doi.org/10.1104/pp.004929>

Nagahage ISP, Sakamoto S, Nagano M, Ishikawa T, Kawai-Yamada M, Mitsuda N, Yamaguchi M (2018) An NAC domain transcription factor ATAF2 acts as transcriptional activator or repressor dependent on promoter context. *Plant Biotechnol* 35:285–289. <https://doi.org/10.5511/planbiotechnology.18.0507a>

Nagahage ISP, Sakamoto S, Nagano M, Ishikawa T, Mitsuda N, Kawai-Yamada M, Yamaguchi M (2020) An *Arabidopsis* NAC domain transcription factor, ATAF2, promotes age-dependent and dark-induced leaf senescence. *Physiol Plant*. <https://doi.org/10.1111/ppl.13156>

Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA (2015) Genome-wide identification of CCA1 targets uncovers an expanded clock network in *Arabidopsis*. *Proc Natl Acad Sci USA* 112:E4802–E4810. <https://doi.org/10.1073/pnas.1513609112>

Nakamura M, Satoh T, Tanaka S, Mochizuki N, Yokota T, Nagatani A (2005) Activation of the cytochrome P450 gene, *CYP72C1*, reduces the levels of active brassinosteroids *in vivo*. *J Exp Bot* 56:833–840. <https://doi.org/10.1093/jxb/eri073>

Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during *Arabidopsis* development. *Plant Physiol* 118:27–35. <https://doi.org/10.1104/pp.118.1.27>

Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. *Genes Dev* 14:257–271. <https://doi.org/10.1101/gad.14.3.257>

Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) *BAS1*: a gene regulating brassinosteroid levels and light responsiveness in *Arabidopsis*. *Proc Natl Acad Sci USA* 96:15316–15323. <https://doi.org/10.1073/pnas.96.26.15316>

Onai K, Ishiura M (2005) *PHYTOCLOCK 1* encoding a novel GARP protein essential for the *Arabidopsis* circadian clock. *Genes Cells* 10:963–972. <https://doi.org/10.1111/j.1365-2443.2005.00892.x>

Peng H, Neff MM (2020) CIRCADIAN CLOCK ASSOCIATED 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation. *J Exp Bot* 71:970–985. <https://doi.org/10.1093/jxb/erz468>

Peng H, Zhao J, Neff MM (2015) ATAF2 integrates *Arabidopsis* brassinosteroid inactivation and seedling photomorphogenesis. *Development* 142:4129–4138. <https://doi.org/10.1242/dev.124347>

Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in *Arabidopsis* development. *Plant Physiol* 104:1139–1149. <https://doi.org/10.1104/pp.104.4.1139>

Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout *Arabidopsis* development. *Plant Cell* 5:147–157. <https://doi.org/10.1105/tpc.5.2.147>

Sandhu KS, Hagely K, Neff MM (2012) Genetic interactions between brassinosteroid-inactivating P450s and photomorphogenic photo-receptors in *Arabidopsis thaliana*. *G3* 2:1585–1593. <https://doi.org/10.1534/g3.112.004580>

Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The *late elongated hypocotyl* mutation of *Arabidopsis* disrupts circadian rhythms and the photoperiodic control of flowering. *Cell* 93:1219–1229. [https://doi.org/10.1016/S0092-8674\(00\)81465-8](https://doi.org/10.1016/S0092-8674(00)81465-8)

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* 9:671–675. <https://doi.org/10.1038/nmeth.2089>

Sheng H, See DR, Murray TD (2014) Mapping resistance genes for *Oculimacula acuformis* in *Aegilops longissima*. *Theor Appl Genet* 127:2085–2093. <https://doi.org/10.1007/s00122-014-2361-4>

Simon NML, Kusakina J, Fernández-López Á, Chembath A, Belbin FE, Dodd AN (2018) The energy-signaling hub SnRK1 is important for sucrose-induced hypocotyl elongation. *Plant Physiol* 176:1299–1310. <https://doi.org/10.1104/pp.17.01395>

Sun L, Zhang P, Wang R, Wan J, Ju Q, Rothstein SJ, Xu J (2019a) The SNAC-A transcription factor *ANAC032* reprograms metabolism in *Arabidopsis*. *Plant Cell Physiol* 60:999–1010. <https://doi.org/10.1093/pcp/pcz015>

Sun Q, Wang S, Xu G, Kang X, Zhang M, Ni M (2019b) SHB1 and CCA1 interaction desensitizes light responses and enhances thermomorphogenesis. *Nat Commun* 10:3110. <https://doi.org/10.1038/s41467-019-11071-6>

Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K, Kawashima M, Ichikawa T, Shimada H, Matsui M (2005) *shk1-D*, a dwarf *Arabidopsis* mutant caused by activation of the *CYP72C1* gene, has altered brassinosteroid levels. *Plant J* 42:13–22. <https://doi.org/10.1111/j.1365-313X.2005.02357.x>

Takasaki H, Maruyama K, Takahashi F, Fujita M, Yoshida T, Nakashima K, Myouga F, Toyooka K, Yamaguchi-Shinozaki K, Shinozaki K (2015) SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. *Plant J* 84:1114–1123. <https://doi.org/10.1111/tpj.13067>

Tepperman JM, Hwang YS, Quail PH (2006) phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of *Arabidopsis* seedling de-etiolation. *Plant J* 48:728–742. <https://doi.org/10.1111/j.1365-313X.2006.02914.x>

Thornton LE, Peng H, Neff MM (2011) Rice CYP734A cytochrome P450s inactivate brassinosteroids in *Arabidopsis*. *Planta* 234:1151–1162. <https://doi.org/10.1007/s00425-011-1464-2>

Thornton LE, Rupasinghe SG, Peng H, Schuler MA, Neff MM (2010) *Arabidopsis CYP72C1* is an atypical cytochrome P450 that inactivates brassinosteroids. *Plant Mol Biol* 74:167–181. <https://doi.org/10.1007/s11103-010-9633-y>

Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. *Plant Physiol* 133:1643–1653. <https://doi.org/10.1104/pp.103.030882>

Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) *BAS1* and *SOB7* act redundantly to modulate *Arabidopsis* photomorphogenesis via unique brassinosteroid inactivation mechanisms. *Plant J* 42:23–34. <https://doi.org/10.1111/j.1365-313X.2005.02358.x>

Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F (2009a) The *Arabidopsis* ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. *Mol Plant Microbe Interact* 22:1227–1238. <https://doi.org/10.1094/MPMI-22-10-1227>

Wang X, Goregaoker SP, Culver JN (2009b) Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. *J Virol* 83:9720–9730. <https://doi.org/10.1128/JVI.00941-09>

Wang X, Culver JN (2012) DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by Tobacco mosaic virus. *BMC Plant Biol* 12:157. <https://doi.org/10.1186/1471-2229-12-157>

Wang ZY, Tobin EM (1998) Constitutive expression of the *CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)* gene disrupts circadian rhythms and suppresses its own expression. *Cell* 93:1207–1217. [https://doi.org/10.1016/S0092-8674\(00\)81464-6](https://doi.org/10.1016/S0092-8674(00)81464-6)

Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of *Arabidopsis ATAF1* in abiotic and biotic stress responses. *Cell Res* 19:1279–1290. <https://doi.org/10.1038/cr.2009.108>

Yakir E, Hilman D, Kron I, Hassidim M, Melamed-Book N, Green RM (2009) Posttranslational regulation of CIRCADIAN CLOCK ASSOCIATED1 in the circadian oscillator of *Arabidopsis*. *Plant Physiol* 150:844–857. <https://doi.org/10.1104/pp.109.137414>

Zhai Y, Peng H, Neff MM, Pappu HR (2019) Putative auxin and light responsive promoter elements from the *Tomato spotted wilt tospovirus* genome, when expressed as cDNA, are functional in *Arabidopsis*. *Front Plant Sci* 10:804. <https://doi.org/10.3389/fpls.2019.00804>

Zhai Y, Peng H, Neff MM, Pappu HR (2020) Emerging molecular links between plant photomorphogenesis and virus resistance. *Front Plant Sci* 11:920. <https://doi.org/10.3389/fpls.2020.00920>

Zhang Y, Liu Z, Wang J, Chen Y, Bi Y, He J (2015) Brassinosteroid is required for sugar promotion of hypocotyl elongation in *Arabidopsis* in darkness. *Planta* 242:881–893. <https://doi.org/10.1007/s00425-015-2328-y>

Zhang Y, Liu Z, Wang L, Zheng S, Xie J, Bi Y (2010) Sucrose-induced hypocotyl elongation of *Arabidopsis* seedlings in darkness depends on the presence of gibberellins. *J Plant Physiol* 167:1130–1136. <https://doi.org/10.1016/j.jplph.2010.03.007>

Zhao J, Favero DS, Peng H, Neff MM (2013) *Arabidopsis thaliana* AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. *Proc Natl Acad Sci USA* 110:E4688–E4697. <https://doi.org/10.1073/pnas.1219277110>

Zhao J, Missihoun TD, Bartels D (2018a) The ATAF1 transcription factor is a key regulator of *aldehyde dehydrogenase 7B4 (ALDH7B4)* gene expression in *Arabidopsis thaliana*. *Planta* 248:1017–1027. <https://doi.org/10.1007/s00425-018-2955-1>

Zhao X, Jiang Y, Li J, Huq E, Chen ZJ, Xu D, Deng XW (2018b) COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing *CCA1* and *PIF4* expression in *Arabidopsis*. *Proc Natl Acad Sci USA* 115:11631–11636. <https://doi.org/10.1073/pnas.1813171115>

Zhao QP, Zhu JD, Li NN, Wang XN, Zhao X, Zhang X (2020) Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in *Arabidopsis*. *J Integr Plant Biol* 62:614–630. <https://doi.org/10.1111/jipb.12813>

Zheng H, Zhang F, Wang S, Su Y, Ji X, Jiang P, Chen R, Hou S, Ding Y (2018) MLK1 and MLK2 coordinate RGA and CCA1 activity to regulate hypocotyl elongation in *Arabidopsis thaliana*. *Plant Cell* 30:67–82. <https://doi.org/10.1105/tpc.17.00830>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.