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Abstract
Main conclusion  The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding. 
ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomor-
phogenesis in Arabidopsis thaliana.

Abstract  ATAF2 (ANAC081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation 
of disease resistance, stress tolerance and hormone metabolism in Arabidopsis thaliana. We previously reported that ATAF2 
promotes Arabidopsis hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid 
(BR)-inactivating cytochrome P450 genes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Assays using low 
light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated 
photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF2 is also regulated by the 
circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) physically interacts with ATAF2 
at the DNA–protein and protein–protein levels, and both differentially suppress BAS1- and SOB7-mediated BR catabolism. 
In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-
suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCA1 synergistically 
suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and 
double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRY1 and 
PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of 
light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2 
loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of 
the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.
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CCA1	� CIRCADIAN CLOCK ASSOCIATED 1
CRY1	� Cryptochrome 1
EMSA	� Electrophoretic mobility shift assay
NAC	� NAM ATAF and CUC​
PHYA	� Phytochrome A
PHYB	� Phytochrome B
TF	� Transcription factor
Y1H	� Yeast one-hybrid

Introduction

A wide range of plant activities are regulated by kingdom-
specific transcription factors (TFs), such as the NAM, ATAF 
and CUC (NAC) TF family (Mathew and Agarwal 2018). 
Specifically, the four ATAF NAC TF homologs in the model 
plant Arabidopsis thaliana (Kleinow et al. 2009; Christian-
son et al. 2010), including ATAF1 (ANAC002), ATAF2 
(ANAC081), ANAC102 and ANAC032, have been demon-
strated to extensively regulate plant defense responses such 
as abiotic stress tolerance (Lu et al. 2007; Christianson et al. 
2009; Wu et al. 2009; D’Alessandro et al. 2018), disease 
resistance (Delessert et al. 2005; Jensen et al. 2008; Wang 
et al. 2009a, b; Wu et al. 2009; Allu et al. 2016), absci-
sic acid biosynthesis (Jensen et al. 2013), leaf senescence 
(Garapati et al. 2015b; Takasaki et al. 2015; Mahmood et al. 
2016a; Nagahage et al. 2020), and metabolism of defense-
related compounds (Garapati et al. 2015a; Zhao et al. 2018a; 
Mahmood et al. 2016b; Sun et al. 2019a). Depending on 
promoter context, downstream target genes, developmental 
stages and growth conditions, ATAF TFs can act as either a 
transcriptional activator or a repressor (Delessert et al. 2005; 
Wang et al. 2009b; Peng et al. 2015; Mahmood et al. 2016a, 
2016b; Nagahage et al. 2018).

In addition to their roles in defense responses, ATAF 
TFs were also found to regulate plant development and 
relevant hormonal metabolism. For example, ANAC032 
modulates root cell elongation via the MYB30 transcrip-
tional cascade (Maki et al. 2019). ATAF2 can activate 
the expression of the auxin biosynthetic gene NIT2 via 
direct promoter binding (Huh et al. 2012). We previously 
reported that ATAF2 promotes Arabidopsis hypocotyl 
growth in a light-dependent manner (Peng et al. 2015) via 
transcriptionally suppressing brassinosteroid (BR)-inacti-
vating cytochrome P450 genes BAS1 (CYP734A1, formerly 
CYP72B1) (Neff et al. 1999; Turk et al. 2003; Thornton 
et al. 2011) and SOB7 (CYP72C1) (Nakamura et al. 2005; 
Takahashi et al. 2005; Turk et al. 2005; Thornton et al. 
2010). ATAF2 is also subject to circadian regulation (Peng 
and Neff 2020) of the core clock TF CIRCADIAN CLOCK 
ASSOCIATED 1 (CCA1) (Wang and Tobin 1998). CCA1 
and ATAF2 physically interacts at both DNA–protein and 

protein–protein levels to differentially suppress BAS1 and 
SOB7 expression (Peng and Neff 2020).

ATAF2 has extensive promoter motif-binding tar-
gets that share a common A/T-rich feature (Wang et al. 
2009b, 2012; Huh et  al. 2012; Peng et  al. 2015). The 
protein interaction partners of ATAF2 include two AT-
hook-motif containing nuclear-localized (AHL) proteins 
that specifically bind A/T-rich DNA (Zhao et al. 2013). 
The ATAF2-binding targets on the BAS1 and SOB7 pro-
moters are the A/T-rich Evening Element (EE; AAA​ATA​
TCT) and CCA1-binding site (CBS; AAA​AAT​CT), both 
of which are well-known binding sites of CCA1 (Michael 
and McClung 2002; Harmer and Kay 2005; Zhai et al. 
2019). There is also a CBS on the promoter of ATAF2 
itself, and CCA1 can bind this site and suppress ATAF2 
expression in the light (Peng and Neff 2020). Since ATAF2 
can also bind CBS, it is possible that ATAF2 binds its own 
promoter to self-regulate transcript accumulation. In this 
research, we demonstrated that ATAF2 is a self-transcrip-
tional repressor using a promoter-GUS fusion system. The 
self-suppressing characteristic of ATAF2 is similar to that 
of CCA1 (Wang and Tobin 1998), which is a common fea-
ture for multiple circadian-oscillated genes (Schaffer et al. 
1998; Helfer et al. 2011; Adams et al. 2015). We further 
showed that ATAF2 and CCA1 synergistically suppress 
seedling photomorphogenesis.

The hypocotyl growth of Arabidopsis seedlings is sup-
pressed upon photomorphogenesis, which is regulated by 
multiple light and hormonal signals (Neff et al. 2000). 
The genetic interactions between the far-red light pho-
toreceptor phytochrome A (PHYA), the red-light recep-
tor phytochrome B (PHYB), and the blue light receptor 
cryptochrome 1 (CRY1) play a central role in seedling 
photomorphogenesis (Neff and Chory 1998). BAS1 and 
SOB7 redundantly modulate photomorphogenesis via 
inactivating BRs (Turk et al. 2003, 2005), and they have 
complex genetic interactions with PHYA, PHYB and 
CRY1 (Sandhu et al. 2012). Our preliminary hypocotyl 
growth and ATAF2 transcript analyses in low-fluence 
white light as well as monochromatic light conditions 
(10 μmol m− 2 s− 1) suggest that PHYA may be the essen-
tial photoreceptor for ATAF2-regulated photomorphogen-
esis (Peng et al. 2015). Here, we investigated the genetic 
interactions between ATAF2 and the three major photore-
ceptors via fluence-rate response assays and demonstrated 
the necessary role of PHYA in ATAF2-mediated photo-
morphogenic suppression. Furthermore, PHYA is shown 
to be essential for the reduced BR sensitivity phenotype 
of an ATAF2 loss-of-function mutant in the light, but not 
in darkness. Collectively, our results provide a genetic 
interaction synopsis of the circadian-clock-photomorpho-
genesis-BR integration node involving ATAF2, CCA1 and 
PHYA.
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Materials and methods

Arabidopsis genotypes

The Arabidopsis Columbia (Col-0) ecotype was used as 
the wild-type control. ataf2-1 (SALK_136355), ataf2-2 
(SALK_015750) and cca1-1 (CS67781) T-DNA insertional 
mutants were obtained from the Arabidopsis Biological 
Resource Center (ABRC). The original cca1-1 mutant was 
identified in the Ws genetic background (Green and Tobin 
1999) and later introgressed into Col-0 via six rounds of 
backcrossing (Yakir et al. 2009). Photoreceptor knock-out 
mutants phyB-9 (Reed et al. 1993), cry1-103 (Liscum and 
Hangarter 1991) and phyA-211 (Reed et al. 1994) are all in 
the Col-0 background. All gene knock-out mutants, cca1-1 
ataf2-2, phyB-9 ataf2-1, cry1-103 ataf2-1, and phyA-211 
ataf2-1 double knock-out mutants, and the ATAF2 overex-
pression line ATAF2ox-1 have been previously described and 
verified (Peng et al 2015; Peng and Neff 2020).

GUS assays

pATAF2::GUS is a transcriptional fusion of GUS with 
2-kb ATAF2 promoter (Wang et al. 2009b). GUS histo-
chemical staining of six-day-old pATAF2::GUS/Col-0 and 
pATAF2::GUS/ataf2-1 transgenic-segregation seedlings was 
performed as previously described (Sandhu et al. 2012). 
GUS-stained seedlings were photographed using the Leica 
MZ10 F and DFC295 digital microscope/imaging worksta-
tion. GUS activity was quantified by measuring the amount 
of fluorescent 4-methylumbelliferone (MU) produced by 
GUS-mediated hydrolysis of 4-methylumbelliferyl β-D-
glucuronide (MUG) (Sheng et al. 2014). In brief, 10 mg 
(20–25 seedlings) of plant tissue was ground in 600 µL of 
GUS extraction buffer. 100 μL of supernatant was mixed 
with 40 μL of 10 mM MUG and incubated at 37 °C for 1 h. 
After adding 1 mL of sodium carbonate stop buffer, 200 μL 
of mixture was added to a black microtiter plate for fluores-
cence measurement using a fluorometer (Molecular Devices 
SpectraMax M2). Stop buffer, MUG + stop buffer, and 
GUS + stop buffer mixtures were used as negative controls. 
Serial MU dilutions were used to make a standard curve. 
Five independent replicates were performed for each sample.

Seedling growth

Arabidopsis seedling growth conditions have been described 
previously (Favero et al. 2016, 2017). Unless otherwise 
stated, ethanol-sterilized seeds were plated on half-strength 
Linsmaier-Skoog medium with 10 g/L USA-made Phytagel 
(Sigma-Aldrich) (Jacques et al. 2020) and 15 g/L sucrose. 

For the exogenous brassinolide (BL) response assay, gra-
dient concentrations of BL were added to the media with 
the same volume of ethanol applied to all plates. After 
four-day stratification at 4 °C in the dark followed by red 
light treatment to induce germination, seeds were grown 
at 25 °C in designated dark, continuous white (red:far-red 
light ratio 1:1; 0–80 μmol m− 2 s− 1) or monochromatic light 
intensities. Seeds used for each physiological or molecular 
assay were harvested from the same batch of plants grown 
in the greenhouse. For comparative fluence-rate response 
assays, seedlings were grown on plates without sucrose. The 
growth temperature was lowered to 20 °C in certain assays 
as indicated.

Hypocotyl measurement

Depending on experimental purposes, hypocotyl lengths of 
three- (for monochromatic fluence-rate response assays) or 
four-day-old (for white-light fluence-rate response and BL 
response assays) Arabidopsis seedlings were measured from 
scanned seedling images using NIH ImageJ (Schneider et al. 
2012). We have previously used four-day-old seedlings for 
fluence-rate and BR -response assays in white light (Peng 
et al. 2015; Peng and Neff 2020). Compared to white light, 
both red and blue light are less efficient in inhibiting hypoco-
tyl growth (Neff and Chory 1998), which leads to a relatively 
long-hypocotyl phenotype. Thus, three-day-old seedlings 
were used for monochromatic fluence-rate response assays 
(Peng et al. 2015) to obtain hypocotyl measurement results 
that are comparable to those from four-day-old seedlings 
grown in white light. To minimize the potential impact 
of non-simultaneous germination, only the measurement 
result of the thirty tallest seedlings was included for each 
data point (Fankhauser and Casal 2004). Each assay had 
three independent replicates showing a similar trend of 
differences.

Quantitative PCR

Total RNA samples were extracted from six-day-old 
pATAF2::GUS/Col-0 and pATAF2::GUS/ataf2-1 seedlings 
with on-column DNase I digestion to eliminate genomic 
DNA contamination. First-strand cDNA reverse transcrip-
tion and quantitative PCR (RT-qPCR) were performed using 
Bio-Rad iScript followed by SYBR Green Supermix. The 
Bio-Rad CFX96 Real-Time System and CFX Manager Soft-
ware were used to generate and analyze qPCR data using 
the ΔΔCT method. UBQ10 (AT4G05320) was used as the 
reference gene for normalization of GUS transcript levels. 
qPCR primers for UBQ10 were described previously (Peng 
et al. 2015). qPCR primers for GUS are 5′-CGT​CCT​GTA​
GAA​ACC​CCA​ACC-3′ and 5′-GCT​TTC​CCA​CCA​ACG​CTG​
ATC-3′.
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Yeast one‑hybrid

A Gateway-compatible yeast one-hybrid (Y1H) system 
(Deplancke et al. 2006) was used to test the interaction 
between ATAF2 and the CBS-containing DNA fragment 
(pATAF2-CBS) from its own promoter. pATAF2-CBS 
sequence and the Y1H procedure were described previously 
(Peng et al. 2015; Peng and Neff 2020). Interaction between 
the pATAF2-CBS bait and the ATAF2 prey was demon-
strated by increased yeast tolerance to the His3p enzyme 
inhibitor 3-aminotriazole (3-AT). An empty prey vector was 
used as the negative control.

Electrophoretic mobility shift assay

N- and C-terminal Hexa-histidine tagged ATAF2 (His-
ATAF2 and ATAF2-His) were expressed in the Escheri-
chia coli strain Rosetta, respectively. ATAF2 proteins were 
purified using HisPur Ni–NTA resin followed by imida-
zole removal using the Slide-A-Lyzer mini dialysis device 
(Thermo Fisher Scientific). Electrophoretic mobility shift 
assay (EMSA) was carried out using the fluorescence-based 
EMSA kit (Invitrogen). Non-denaturing polyacrylamide gel 
electrophoresis (PAGE) was used to separate the DNA probe 
(pATAF2-CBS) and DNA–protein complexes (pATAF2-
CBS + His-ATAF2 or pATAF2-CBS + ATAF2-His). The 
Bio-Rad ChemiDoc Touch imaging system was used to scan 
SYBR Green-stained DNA bands.

Statistical analysis

Two-tailed Student’s t test was used for two-group compari-
son. When comparing multiple groups, one-way ANOVA 
with Tukey’s HSD test was applied with significant differ-
ences being labeled by different letters. The P value signifi-
cance level was set as 0.05.

Results

ATAF2 binds its own promoter

Since the CBS DNA motif is a binding target of ATAF2 
(Peng et al. 2015) and a CBS (− 577 to − 570) can be found 
on the ATAF2 promoter (Peng and Neff 2020), we tested 
the binding of ATAF2 to its own 63-bp promoter frag-
ment pATAF2-CBS (−  598 to − 536; with CBS being the 
only predicted TF binding site) in a targeted Y1H assay 
(Fig. 1a). Both 20-mM and 40-mM 3-AT drastically inhib-
ited the growth of yeast harboring the pATAF2-CBS bait 
and the empty prey vector in a concentration-dependent 
manner (Fig. 1a). In contrast, the coexistence of pATAF2-
CBS bait and ATAF2 prey significantly increased yeast 

tolerance to the same concentrations of 3-AT (Fig. 1a). 
These results demonstrate that ATAF2 can bind its own 
promoter (pATAF2-CBS). The interaction between ATAF2 
and pATAF2-CBS was further confirmed in an EMSA assay, 
demonstrating that both N- and C-terminal 6xHis-fusion 
ATAF2 proteins (His-ATAF2 and ATAF2-His) can physi-
cally bind the pATAF2-CBS DNA probe in a dose-dependent 
manner (Fig. 1b).

ATAF2 is a self‑transcriptional repressor

ATAF2 can be either an activator (Wang et al. 2009b; Huh 
et al. 2012) or a repressor (Delessert et al. 2005; Peng et al. 
2015) of its downstream-regulated genes (Nagahage et al. 
2018). To examine whether ATAF2 activates or represses 
itself, the pATAF2::GUS/Col-0 transgenic line expressing 
an ATAF2 promoter-GUS transcriptional fusion (Wang 
et al. 2009b; Peng and Neff 2020) was crossed with the 
ATAF2 knock-out mutant ataf2-1 (Fig. 2a). Homozygous 
pATAF2::GUS/Col-0 and pATAF2::GUS/ataf2-1 lines 
were characterized from F3 segregants, with two lines 
being selected from each genotype for GUS expression 

Bait: pATAF2-CBS
Prey: ATAF2

Bait: pATAF2-CBS
Prey: Empty Vector

No 3-AT

40 mM 3-AT

20 mM 3-AT

Bait: pATAF2-CBS
Prey: ATAF2

Bait: pATAF2-CBS
Prey: Empty Vector

Bait: pATAF2-CBS
Prey: ATAF2

Bait: pATAF2-CBS
Prey: Empty Vector

a

pATAF2-CBS
ATAF2-His  

  

b

+       +          +         +        +
+      ++         -          -         -

His-ATAF2  
  

-        -          +        ++        -

ATAF2 + pATAF2-CBS
interaction complex

Free pATAF2-CBS

Fig. 1   ATAF2 binds its own promoter. a ATAF2 bind its own CBS-
containing promoter fragment pATAF2-CBS in a targeted Y1H assay. 
Enhanced 3-AT tolerance in yeast harboring the ATAF2-CBS bait and 
the ATAF2 prey represented the detection of bait-prey interaction. 
Four independent clones were shown for each Y1H sample. b In an 
EMSA assay, both His-ATAF2 and ATAF2-His tagged proteins phys-
ically bind the pATAF2-CBS DNA probe in a dose-dependent manner
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analysis (Fig. 2a). Six-day-old white-light-grown seedling 
were used for GUS staining and RT-qPCR assays. Both 
pATAF2::GUS/ataf2-1 lines showed higher GUS protein 
accumulation than the two pATAF2::GUS/Col-0 lines, 
with no apparent change of spatial expression pattern 
(Fig. 2a). RT-qPCR assays confirmed that when compared 
to pATAF2::GUS/Col-0 lines, both pATAF2::GUS/ataf2-1 
lines exhibited disrupted ATAF2 expression (Fig. 2b) and 
significantly elevated GUS transcript accumulation (Fig. 2c). 
Quantifications of GUS activity in pATAF2::GUS/Col-0 
and pATAF2::GUS/ataf2-1 seedlings also showed consist-
ent results of higher GUS protein accumulation negatively 
correlated to ATAF2 disruption (Fig. 2d). These results dem-
onstrate the transcriptional suppression activity of ATAF2 
on its own promoter, which is a common feature of multiple 

circadian-regulated genes (Adams et al. 2015) including 
CCA1 (Wang and Tobin 1998).

ATAF2 and CCA1 synergistically suppress seedling 
photomorphogenesis

Arabidopsis seedlings have shorter hypocotyls when undergo-
ing photomorphogenesis. Both ATAF2 and CCA1 are repres-
sors of BR inactivation (Peng et al. 2015; Peng and Neff 2020) 
and photomorphogenesis (Peng et al. 2015; Zhao et al. 2018b). 
Therefore, we tested their genetic interaction in a white-light 
fluence-rate-response assay using four-day-old seedling of 
Col-0, ataf2-2, cca1-1 and the cca1-1 ataf2-2 double mutant 
(Fig. 3a). In low fluence rates (10–40 μmol m− 2 s− 1), the dis-
ruption of either ATAF2 (ataf2-2) or CCA1 (cca1-1) resulted 
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Fig. 2   ATAF2 is a self-transcriptional repressor. a The 
pATAF2::GUS/Col-0 transgenic line expressing ATAF2 pro-
moter-GUS transcriptional fusion was crossed with the ATAF2 
knock-out mutant ataf2-1. Homozygous pATAF2::GUS/Col-0 and 
pATAF2::GUS/ataf2-1 lines were characterized from F3 segregants, 
with two lines being selected from each genotype for GUS expres-
sion analysis. Six-day-old white-light-grown seedlings were used for 
GUS staining and RT-qPCR assays. Both pATAF2::GUS/ataf2-1 lines 
showed higher GUS protein accumulations than two pATAF2::GUS/
Col-0 lines, with no apparent change of spatial expression pattern. 
Scale bars = 2 mm. b RT-qPCR assay confirmed that ATAF2 expres-
sion was disrupted in both pATAF2::GUS/ataf2-1 lines. c RT-qPCR 

assays confirmed that when compared to pATAF2::GUS/Col-0 lines, 
both pATAF2::GUS/ataf2-1 lines exhibited significantly elevated 
GUS transcript accumulation. d GUS activity was quantified by its 
hydrolysis capacity of converting MUG to MU. When compared to 
pATAF2::GUS/Col-0 lines, both pATAF2::GUS/ataf2-1 lines exhib-
ited significantly elevated GUS enzyme activity. Each RT-qPCR data 
point represents the mean value of three biological replicates × three 
technical replicates (n = 9). Each MU concentration data point repre-
sents the mean value of five independent replicates. Error bars denote 
the SE. The significance of differences was determined by one-way 
ANOVA with Tukey’s HSD test. Groups with significant differences 
(P < 0.05) were labeled by different letters
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in a short-hypocotyl phenotype, with cca1-1 ataf2-2 largely 
exhibiting further suppressed hypocotyl growth (Fig. 3a). Sim-
ilar results were observed when sucrose was removed from the 
media (Fig. 3b) and the plant growth temperature was further 
lowered to 20 °C (Fig. 3c). These results indicate a genetically 
synergistic effect of ATAF2 and CCA1 in suppressing seedling 
photomorphogenesis.

ATAF2 loss‑ and gain‑of‑function seedlings 
retain opposite photomorphogenic phenotypes 
in monochromatic light conditions

We previously reported that ATAF2 loss- and gain-of-
function seedlings exhibit opposite photomorphogenic phe-
notypes in white light (Peng et al. 2015). In low fluence 
rates, ATAF2 knock-out mutants have shorter hypocotyls 
when compared to the wild type whereas ATAF2 overex-
pression lines show longer hypocotyl growth (Peng et al. 
2015). ataf2-1 retains its short-hypocotyl phenotype in 
10 μmol m− 2 s− 1 of red, blue or far-red light (Peng et al. 
2015). Here, we further showed that ATAF2 loss- (ataf2-
1) and gain-of-function (ATAF2ox-1) seedlings retain their 
opposite hypocotyl-growth phenotypes in multiple fluence 
rates of monochromatic red (Fig. 4a), blue (Fig. 4b) or far-
red (Fig. 4c) light. These results confirmed that ATAF2-
regulated seedling photomorphogenesis is not subject to 
any single monochromatic light. Fluence rates as low as 
0.1 μmol m−2 s−1 (Fig. 4a,c) were applied for both red and 
far-red light, as they are primary signals for low fluence rate 
responses (LFRs). Col-0 seedlings grown in low fluence 
rates of red light were even slightly taller than dark-grown 
seedlings (Fig. 4a). This phenotype disappeared with the 
removal of sucrose from the media (Fig. S1).

PHYA is required for ATAF2‑regulated seedling 
photomorphogenesis

We previously showed that when compared to phyB-
9 and cry1-103, the phyB-9 ataf2-1 and cry1-103 

ataf2-1 double mutants retain their short-hypocotyl phe-
notype in 10 μmol m− 2 s− 1 of red and blue light, respec-
tively (Peng et al. 2015). In contrast, the short-hypocotyl 
phenotype is largely abolished in phyA-211 ataf2-1 in 
10 μmol m− 2 s− 1 of red, blue or far-red light (Peng et al. 
2015). These preliminary results suggest that PHYA may 
be the major photoreceptor for ATAF2-regulated seedling 
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photomorphogenesis. To further test this hypothesis, flu-
ence-rate (0–80 μmol m− 2 s− 1) response assays in white 
light were performed for phyB-9 ataf2-1, cry1-103 ataf2-
1 and phyA-211 ataf2-1 with appropriate controls (Fig. 
S2; Fig. 5a). phyB-9 ataf2-1 hypocotyls were shorter than 
those of phyB-9 even in the dark, and this short-hypoco-
tyl phenotype was unchanged in low fluence rates (10 and 
20 μmol m− 2 s− 1) of white light (Fig. S2a), which suggests 
that PHYB is not a major player in ATAF2-mediated pho-
tomorphogenesis regulation. Similar trends were observed 
from hypocotyl growth comparisons between cry1-103 
ataf2-1 and cry1-103 in the dark and most tested fluence 
rates (10–60 μmol m− 2 s− 1) of white light (Fig. S2b). There-
fore, CRY1, like PHYB, does not have significant genetic 
interaction with ATAF2 in seedling photomorphogenesis. 
Unlike PHYB or CRY1, PHYA exhibited strong genetic 
interaction with ATAF2 in white light (Fig. 5a). Col-0, 
ataf2-1, phyA-211 and phyA-211 ataf2-1 seedlings showed 
similar hypocotyl growth in the dark (Fig. 5a). In low to 
moderate fluence rates (10–40 μmol m− 2 s− 1) of white light, 
ataf2-1 hypocotyls were shorter than those of the other three 
genotypes, which still showed similar hypocotyl growth 
(Fig. 5a). Similar results were observed when sucrose was 
removed from the media (Fig. 5b) and the plant growth tem-
perature was further lowered to 20 °C (Fig. 5c). Thus, dis-
ruption of PHYA can abolish the short-hypocotyl phenotype 
caused by ATAF2 disruption, demonstrating that PHYA is 
required for ATAF2-regulated seedling photomorphogenesis 
in white light. Since the disruption of ATAF2 confers a short 
hypocotyl phenotype in far-red light (Fig. 4c) we examined 

the disruption of ATAF2 in a phyA-211 null mutant in the 
same conditions (Fig. 5d). phyA-211 ataf2-1 hypocotyls 
were only slightly shorter than those of phyA-211 in multiple 
far-red fluence rates (Fig. 5d), indicating that PHYA activity 
is necessary for the role of ATAF2 in far-red light.

PHYA is essential for ATAF2‑regulated BR 
homeostasis in the light

ATAF2 suppresses photomorphogenesis at least partially 
via repressing BR inactivation (Peng et al. 2015). There-
fore, we tested the genetic interaction between PHYA and 
ATAF2 in seedling responses to exogenous brassinolide 
(BL) treatments (Fig. 6). BL promotes seedling hypocotyl 
growth in the light but the effect switches to inhibition in the 
dark (Turk et al. 2003). In 80 μmol m− 2 s− 1 of white light, 
ataf2-1 seedlings were less sensitive to BL treatments when 
compared to the wild type (Col-0) (Fig. 6a), which has been 
reported previously (Peng et al. 2015). This reduction of BL 
sensitivity was attenuated (at 10 nM BL treatment) or even 
abolished (at 100 and 1000 nM BL treatments) when PHYA 
was disrupted (Fig. 6a). These results suggest that PHYA is 
essential for ATAF2-regulated BR homeostasis in the light. 
In contrast, the disruption of PHYB (Fig. S3a) or CRY1 
(Fig. S3b, c) did not abolish the reduction of BL sensitivity 
caused by ATAF2 disruption. However, phyA-211 ataf2-1 
seedlings showed a BR-response phenotype similar to that of 
ataf2-1 in the dark (Fig. 6b), demonstrating that PHYA has 
no significant impact on ATAF2-regulated BR homeostasis 
in the absence of light.
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Discussion

Circadian oscillation of ATAF2 is modulated by its 
self‑transcriptional suppression and physical/
genetic interactions with CCA1

Multiple Arabidopsis core circadian regulators and their 
targeting proteins, such as the central morning loop compo-
nents CCA1 (Wang and Tobin 1998; Adams et al. 2015) and 
LATE ELONGATED HYPOCOTYL (LHY) (Schaffer et al. 
1998; Adams et al. 2015), as well as an evening-expressed 
TF LUX ARRHYTHMO (LUX)/PHYTOCLOCK1 (PCL1) 
(Hazen et al. 2005; Onai and Ishiura 2005; Chow et al. 

2012), share a common feature of self-binding to its own 
promoter as a transcriptional repressor, which forms a nega-
tive auto-regulatory feedback loop and leads to a circadian 
oscillation expression pattern (Helfer et al. 2011; Nagel et al. 
2015). In this research ATAF2 is identified as a self-tran-
scriptional repressor (Figs. 1, 2), which is consistent with 
its previously confirmed circadian oscillation expression 
pattern (Peng and Neff 2020).

In addition to the observations that both CCA1 (Peng 
and Neff 2020) and ATAF2 itself (Figs. 1, 2) can bind 
the ATAF2 promoter as repressors in the light, CCA1 
and ATAF2 also physically interact at the protein level 
(Peng and Neff 2020). It is possible that CCA1 and 
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ATAF2 coordinately suppress ATAF2 transcription at 
least partially as a hetero-complex, since the disruption 
of CCA1 (Peng and Neff 2020) and ATAF2 (Fig. 2) simi-
larly increase ATAF2 and pATAF2–driven GUS transcript 
accumulation to about two-fold, respectively. CCA1 and 
ATAF2 exhibit distinct circadian oscillation patterns 
(Peng and Neff 2020). The CCA1 expression peak appears 
around dawn, whereas ATAF2 transcript accumulation 
keeps increasing after dawn and peaks right before sunset 
(Peng and Neff 2020). The continuous reduction of CCA1 

expression in the light period is consistent with the cor-
responding increase of ATAF2 transcript accumulation, as 
CCA1 is a repressor of ATAF2 transcription. Additional 
negative auto-regulatory feedback of ATAF2 itself may 
help to constrain its oscillation range within two to three-
fold (Peng and Neff 2020). Unlike CCA1, ATAF2 does 
not reciprocally regulate CCA1 expression (Peng and Neff 
2020), which is consistent with the wider oscillation range 
of CCA1 (Peng and Neff 2020).

ATAF2/CCA1‑regulated seedling 
photomorphogenesis is sucrose‑ 
and thermo‑independent

The photomorphogenic phenotype caused by the disruption 
of ATAF2 or CCA1 does not depend on sucrose or relatively 
warm (25 °C) temperature (Figs. 3, 5). We have previously 
added 15 g/L sucrose to the medium and grow seedlings at 
25 °C in our fluence-rate response assays (Peng et al. 2015; 
Peng and Neff 2020). This approach integrates more signal-
ing pathways to the modulation of seedling growth but still 
stays below the threshold temperature (~ 27 °C) for trigger-
ing thermomorphogenesis in Arabidopsis (Casal and Balasu-
bramanian 2019). Sucrose has complex effects on hypoco-
tyl growth depending on light condition, seedling age and 
multiple photoreceptor and hormonal signaling pathways 
(Zhang et al. 2010, 2015; Liu et al. 2011; Simon et al. 2018; 
Zhao et al. 2020). In our experimental setting, sucrose sig-
nificantly promotes hypocotyl growth in relatively low flu-
ence rates (10–40 μmol m− 2 s− 1) of white light (Figs. 3, 5). 
Adding sucrose in the medium can make subtle hypocotyl-
growth phenotypes become more visible.

In our assay, low-fluence-rate red light makes Col-0 
seedlings slightly taller than their dark-grown counterparts 
(Fig. 4a). This phenotype is sucrose-dependent since it can 
be suppressed by the removal of sucrose from the growth 
media (Fig. S1). Similar to white light assays, sucrose 
promotes hypocotyl growth in low-fluence-rate red light 
(Fig. 4a; Fig. S1) in our experimental setting, which can 
partially explain the observation in Fig. 4a. Additional fac-
tors may also contribute to the long-hypocotyl phenotype 
observed in low-fluence-rate red light. Compared to white 
and blue light, red light is most effective in stimulating seed 
germination (Fankhauser and Casal 2004) and least efficient 
in inhibiting hypocotyl elongation (Neff and Chory 1998). 
Both low fluence rates and red light result in longer hypoco-
tyls as compared to high fluence rates and white/blue light, 
respectively. In our experimental setting, dark-grown seeds 
are pretreated with red light for 2–4 h to induce subsequent 
germination in the dark. This treatment may cause a delay in 
germination and hypocotyl growth when compared to seeds/
seedlings continuously exposed to red light.
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Fig. 6   PHYA is essential for ATAF2-regulated BR homeostasis in 
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BL-reduced-sensitivity phenotype was attenuated (at 10 nM BL treat-
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concentration were labeled by different letters



	 Planta (2020) 252:48

1 3

48  Page 10 of 14

The synergistic suppression effect of ATAF2 
and CCA1 on seedling photomorphogenesis may be 
at least partially associated with BR homeostasis

Beyond circadian oscillation, both ATAF2 and CCA1 are 
repressors of seedling photomorphogenesis (Peng et al. 
2015; Zhai et al. 2020). ATAF2 promotes seedling elonga-
tion in a fluence-rate dependent manner, with its loss- and 
gain-of-function mutants exhibiting opposite hypocotyl 
length phenotypes (Peng et al. 2015). Similarly, CCA1 over-
expression lines confer a long-hypocotyl phenotype (Wang 
and Tobin 1998), whereas gene knock-out mutants have 
shorter hypocotyls when compared to the wild type (Zhao 
et al. 2018b; Zheng et al. 2018; Peng and Neff 2020). In 
our fluence-rate response assay, cca1-1 ataf2-2 seedlings 
have shorter hypocotyls than either single mutant in low to 
moderate fluence rates of white light (Fig. 3), which dem-
onstrates that ATAF2 and CCA1 synergistically suppress 
seedling photomorphogenesis. We previously reported that 
ATAF2 and CCA1 have additive effects in suppressing the 
expression of the BR-inactivating gene SOB7 in the light 
(Peng and Neff 2020). Therefore, BR homeostasis may at 
least partially account for the synergistic suppression of 
ATAF2 and CCA1 on seedling photomorphogenesis.

PHYA is required for ATAF2‑regulated hypocotyl 
growth and BR homeostasis in the light

Though ATAF2 transcript accumulation keeps increasing 
during the light period of a circadian light/dark cycle (Peng 
and Neff 2020), ATAF2 expression is suppressed by con-
tinuous light or by the dark-to-light transition in seedling 
photomorphogenesis (Peng et al. 2015). These observations 
suggest that ATAF2 undergoes a different set of molecular 
and genetic regulations during photomorphogenesis. Our 
fluence-rate-response assays reveal that ATAF2 suppresses 
photomorphogenesis in all three monochromatic (red, blue 
and far-red) light conditions (Fig. 4), and the presence of 
PHYA is essential for the short-hypocotyl phenotype caused 
by ATAF2 disruption (Fig. 5). In addition to being a far-red 
light photoreceptor, PHYA also responds to red (Tepperman 
et al. 2006; Franklin et al. 2007) and blue (Chun et al. 2001) 
light signals, which explains the observation that ATAF2 is 
consistently functional in regulating photomorphogenesis in 
red, blue and far-red light (Fig. 4).

Since ATAF2-regulated BR homeostasis accounts for 
the seedling photomorphogenic phenotypes of ATAF2 
mutants (Peng et al. 2015), we tested the genetic interac-
tion between ATAF2 and PHYA in modulating seedling 
responses to exogenous BL treatments (Fig. 6). Disrup-
tion of PHYA attenuates the BR-insensitive phenotype of 
ATAF2 knockout seedlings in the light (Fig. 6a) but not in 
the dark (Fig. 6b), indicating that ATAF2-regulated BR 

homeostasis only requires PHYA presence in the light. 
It is reasonable that as a photoreceptor, PHYA does not 
have genetic interaction with ATAF2 when there is no 
light input. Down-regulated by light (Cantón and Quail 
1999), PHYA accumulates in the dark and plays an impor-
tant role in the transition of seedlings from dark to light 
growth (Casal et al. 2014), a process called de-etiolation. 
The potential functions of PHYA in dark-grown seedlings 
are still under-investigated (Carlson et al. 2019). However, 
with regard to genetic interactions with ATAF2, PHYA is 
no longer functional in the dark (Fig. 6b). ATAF2 knock-
out seedlings still show reduced BL sensitivity in the dark 
(Peng et al. 2015; Peng and Neff 2020; Fig. 6b), which 
may indicate ATAF2-mediated BR homeostasis is regu-
lated by PHYA-independent pathways in the dark, or the 
increased accumulation of ATAF2 in the dark (Peng et al. 
2015) is sufficient to regulate BR homeostasis with no 
need for PHYA or other partners. Similar to the oppo-
site observations that ATAF2 expression is suppressed by 
continuous light but keeps increasing in the light period 
of a circadian light/dark cycle, dark-grown seedlings have 
higher ATAF2 transcript accumulation whereas ATAF2 
expression is in a continuously decreasing pattern during 
the dark period of a circadian light/dark cycle (Peng et al. 
2015; Peng and Neff 2020). The distinct circadian- and 
photomorphogenic-regulation of ATAF2 expression cor-
responds to its complex genetic interactions with CCA1 
and PHYA, respectively.

PHYA has long been associated with BR catabolism in pre-
vious research. bas1-D, an activation tagging mutant of the 
BR-inactivating gene BAS1, can suppress the long-hypocotyl 
phenotype caused by the phyB-null allele, but not the phyA-
null-mutation-derived long-hypocotyl phenotype in far-red 
light (Neff et al. 1999). In addition, the interaction between 
photomorphogenesis and BAS1-mediated BR-inactivation is 
found to mainly depend on far-red light, which is primarily 
sensed by PHYA (Turk et al. 2003). The bas1-2 null mutation 
can also suppress the late-flowering phenotype of phyA-211 
in both long day and short day growth conditions (Sandhu 
et al. 2012). We previously described PHYA-ATAF2 genetic 
interactions in low fluence rates (10 μmol m− 2 s− 1) of mono-
chromatic light (Peng et al. 2015). Here we further investigated 
the genetic interaction between PHYA and ATAF2 in seedling 
white-light photomorphogenesis (Fig. 5) in a wide range of flu-
ence rates (0–80 μmol m− 2 s− 1) as well as in BR homeostasis 
regulation (Fig. 6). It is still not clear whether PHYA regulates 
ATAF2 activities directly via physical interactions or indirectly 
through its signaling pathway. PHYA has been reported to 
directly target the promoters of numerous hormone- or stress-
responsive genes for subsequent transcriptional regulation, 
including a NAC TF-encoding gene ANAC019 (Chen et al. 
2014). Therefore, a future direction would be uncovering the 
molecular mechanism of PHYA-ATAF2 interaction.
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A model for the molecular and genetic regulations 
of ATAF2 involving CCA1, PHYA, light and BRs

Base on this work and our previous reports (Peng et al. 2015; 
Peng and Neff 2020), we propose a model to summarize our 
current understanding on the circadian-clock-photomorpho-
genesis-BR integration node involving ATAF2, CCA1 and 
PHYA (Fig. 7). ATAF2 bind the CBS motif on its own pro-
moter as a self-transcriptional repressor, which forms a nega-
tive auto-regulatory feedback loop. CCA1 physically interacts 
with ATAF2 and also transcriptionally suppresses ATAF2 
expression via promoter binding to the CBS motif. CCA1 
and ATAF2 synergistically suppress seedling photomorpho-
genesis. They also differentially suppress the expression of 
BR-inactivating genes BAS1 and SOB7 via direct binding to 
the EE/CBS motifs on their promoters. PHYA is require for 
ATAF2-regulated photomorphogenesis and BR homeostasis 
in the light. BRs suppress ATAF2 expression to form a nega-
tive feedback regulation loop. ATAF2 expression increases 
during the light period of a circadian light/dark cycle but is 

suppressed by continuous light after the dark to light transition 
of photomorphogenesis. It is worth noting that both ATAF2 
(Wang et al. 2009b; Zhao et al. 2013) and CCA1 (Andronis 
et al. 2008; Lu et al. 2009; Lau et al. 2011; Sun et al. 2019b) 
have multiple physical interacting partners. This simplified 
model only focuses on the molecular and genetic regulations 
of ATAF2 involving CCA1 and PHYA.
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