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Abstract

Main conclusion The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding.
ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomor-
phogenesis in Arabidopsis thaliana.

Abstract ATAF2 (ANACO081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation
of disease resistance, stress tolerance and hormone metabolism in Arabidopsis thaliana. We previously reported that ATAF2
promotes Arabidopsis hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid
(BR)-inactivating cytochrome P450 genes BASI (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1I). Assays using low
light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated
photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF?2 is also regulated by the
circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCAL1) physically interacts with ATAF2
at the DNA—protein and protein—protein levels, and both differentially suppress BAS1- and SOB7-mediated BR catabolism.
In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-
suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCAI synergistically
suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and
double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRYI and
PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of
light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2
loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of
the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.
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CCAl1 CIRCADIAN CLOCK ASSOCIATED 1
CRY1 Cryptochrome 1

EMSA Electrophoretic mobility shift assay
NAC  NAM ATAF and CUC

PHYA Phytochrome A

PHYB Phytochrome B

TF Transcription factor

YIH Yeast one-hybrid

Introduction

A wide range of plant activities are regulated by kingdom-
specific transcription factors (TFs), such as the NAM, ATAF
and CUC (NAC) TF family (Mathew and Agarwal 2018).
Specifically, the four ATAF NAC TF homologs in the model
plant Arabidopsis thaliana (Kleinow et al. 2009; Christian-
son et al. 2010), including ATAF1 (ANAC002), ATAF2
(ANACO081), ANAC102 and ANACO032, have been demon-
strated to extensively regulate plant defense responses such
as abiotic stress tolerance (Lu et al. 2007; Christianson et al.
2009; Wu et al. 2009; D’Alessandro et al. 2018), disease
resistance (Delessert et al. 2005; Jensen et al. 2008; Wang
et al. 2009a, b; Wu et al. 2009; Allu et al. 2016), absci-
sic acid biosynthesis (Jensen et al. 2013), leaf senescence
(Garapati et al. 2015b; Takasaki et al. 2015; Mahmood et al.
2016a; Nagahage et al. 2020), and metabolism of defense-
related compounds (Garapati et al. 2015a; Zhao et al. 2018a;
Mahmood et al. 2016b; Sun et al. 2019a). Depending on
promoter context, downstream target genes, developmental
stages and growth conditions, ATAF TFs can act as either a
transcriptional activator or a repressor (Delessert et al. 2005;
Wang et al. 2009b; Peng et al. 2015; Mahmood et al. 2016a,
2016b; Nagahage et al. 2018).

In addition to their roles in defense responses, ATAF
TFs were also found to regulate plant development and
relevant hormonal metabolism. For example, ANAC032
modulates root cell elongation via the MYB30 transcrip-
tional cascade (Maki et al. 2019). ATAF2 can activate
the expression of the auxin biosynthetic gene NIT2 via
direct promoter binding (Huh et al. 2012). We previously
reported that ATAF2 promotes Arabidopsis hypocotyl
growth in a light-dependent manner (Peng et al. 2015) via
transcriptionally suppressing brassinosteroid (BR)-inacti-
vating cytochrome P450 genes BASI (CYP734A1, formerly
CYP72B1) (Neff et al. 1999; Turk et al. 2003; Thornton
et al. 2011) and SOB7 (CYP72C1) (Nakamura et al. 2005;
Takahashi et al. 2005; Turk et al. 2005; Thornton et al.
2010). ATAF2 is also subject to circadian regulation (Peng
and Neff 2020) of the core clock TF CIRCADIAN CLOCK
ASSOCIATED 1 (CCA1) (Wang and Tobin 1998). CCA1
and ATAF2 physically interacts at both DNA—protein and
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protein—protein levels to differentially suppress BAS/ and
SOBY7 expression (Peng and Neff 2020).

ATAF2 has extensive promoter motif-binding tar-
gets that share a common A/T-rich feature (Wang et al.
2009b, 2012; Huh et al. 2012; Peng et al. 2015). The
protein interaction partners of ATAF2 include two AT-
hook-motif containing nuclear-localized (AHL) proteins
that specifically bind A/T-rich DNA (Zhao et al. 2013).
The ATAF2-binding targets on the BASI and SOB7 pro-
moters are the A/T-rich Evening Element (EE; AAAATA
TCT) and CCA1-binding site (CBS; AAAAATCT), both
of which are well-known binding sites of CCA1 (Michael
and McClung 2002; Harmer and Kay 2005; Zhai et al.
2019). There is also a CBS on the promoter of ATAF2
itself, and CCA1 can bind this site and suppress ATAF2
expression in the light (Peng and Neff 2020). Since ATAF2
can also bind CBS, it is possible that ATAF2 binds its own
promoter to self-regulate transcript accumulation. In this
research, we demonstrated that ATAF2 is a self-transcrip-
tional repressor using a promoter-GUS fusion system. The
self-suppressing characteristic of ATAF2 is similar to that
of CCA1 (Wang and Tobin 1998), which is a common fea-
ture for multiple circadian-oscillated genes (Schaffer et al.
1998; Helfer et al. 2011; Adams et al. 2015). We further
showed that ATAF2 and CCA1 synergistically suppress
seedling photomorphogenesis.

The hypocotyl growth of Arabidopsis seedlings is sup-
pressed upon photomorphogenesis, which is regulated by
multiple light and hormonal signals (Neff et al. 2000).
The genetic interactions between the far-red light pho-
toreceptor phytochrome A (PHYA), the red-light recep-
tor phytochrome B (PHYB), and the blue light receptor
cryptochrome 1 (CRY1) play a central role in seedling
photomorphogenesis (Neff and Chory 1998). BAS1 and
SOB7 redundantly modulate photomorphogenesis via
inactivating BRs (Turk et al. 2003, 2005), and they have
complex genetic interactions with PHYA, PHYB and
CRY1 (Sandhu et al. 2012). Our preliminary hypocotyl
growth and ATAF2 transcript analyses in low-fluence
white light as well as monochromatic light conditions
(10 pmol m™ 2 s~ 1) suggest that PHYA may be the essen-
tial photoreceptor for ATAF2-regulated photomorphogen-
esis (Peng et al. 2015). Here, we investigated the genetic
interactions between ATAF2 and the three major photore-
ceptors via fluence-rate response assays and demonstrated
the necessary role of PHYA in ATAF2-mediated photo-
morphogenic suppression. Furthermore, PHYA is shown
to be essential for the reduced BR sensitivity phenotype
of an ATAF?2 loss-of-function mutant in the light, but not
in darkness. Collectively, our results provide a genetic
interaction synopsis of the circadian-clock-photomorpho-
genesis-BR integration node involving ATAF2, CCA1 and
PHYA.
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Materials and methods
Arabidopsis genotypes

The Arabidopsis Columbia (Col-0) ecotype was used as
the wild-type control. ataf2-1 (SALK_136355), ataf2-2
(SALK_015750) and ccal-1 (CS67781) T-DNA insertional
mutants were obtained from the Arabidopsis Biological
Resource Center (ABRC). The original ccal-1 mutant was
identified in the Ws genetic background (Green and Tobin
1999) and later introgressed into Col-0 via six rounds of
backcrossing (Yakir et al. 2009). Photoreceptor knock-out
mutants phyB-9 (Reed et al. 1993), cryl-103 (Liscum and
Hangarter 1991) and phyA-211 (Reed et al. 1994) are all in
the Col-0 background. All gene knock-out mutants, ccal-1
ataf2-2, phyB-9 ataf2-1, cryl-103 ataf2-1, and phyA-211
ataf2-1 double knock-out mutants, and the ATAF2 overex-
pression line ATAF2ox-1 have been previously described and
verified (Peng et al 2015; Peng and Neff 2020).

GUS assays

PATAF2::GUS is a transcriptional fusion of GUS with
2-kb ATAF2 promoter (Wang et al. 2009b). GUS histo-
chemical staining of six-day-old pATAF2::GUS/Col-0 and
PATAF2::GUS/ataf2-1 transgenic-segregation seedlings was
performed as previously described (Sandhu et al. 2012).
GUS-stained seedlings were photographed using the Leica
MZ10 F and DFC295 digital microscope/imaging worksta-
tion. GUS activity was quantified by measuring the amount
of fluorescent 4-methylumbelliferone (MU) produced by
GUS-mediated hydrolysis of 4-methylumbelliferyl p-D-
glucuronide (MUG) (Sheng et al. 2014). In brief, 10 mg
(20-25 seedlings) of plant tissue was ground in 600 pL of
GUS extraction buffer. 100 pL of supernatant was mixed
with 40 pL of 10 mM MUG and incubated at 37 °C for 1 h.
After adding 1 mL of sodium carbonate stop buffer, 200 pL
of mixture was added to a black microtiter plate for fluores-
cence measurement using a fluorometer (Molecular Devices
SpectraMax M2). Stop buffer, MUG + stop buffer, and
GUS + stop buffer mixtures were used as negative controls.
Serial MU dilutions were used to make a standard curve.
Five independent replicates were performed for each sample.

Seedling growth

Arabidopsis seedling growth conditions have been described
previously (Favero et al. 2016, 2017). Unless otherwise
stated, ethanol-sterilized seeds were plated on half-strength
Linsmaier-Skoog medium with 10 g/L. USA-made Phytagel
(Sigma-Aldrich) (Jacques et al. 2020) and 15 g/L sucrose.

For the exogenous brassinolide (BL) response assay, gra-
dient concentrations of BL were added to the media with
the same volume of ethanol applied to all plates. After
four-day stratification at 4 °C in the dark followed by red
light treatment to induce germination, seeds were grown
at 25 °C in designated dark, continuous white (red:far-red
light ratio 1:1; 0-80 pmol m~ 2 s~ !) or monochromatic light
intensities. Seeds used for each physiological or molecular
assay were harvested from the same batch of plants grown
in the greenhouse. For comparative fluence-rate response
assays, seedlings were grown on plates without sucrose. The
growth temperature was lowered to 20 °C in certain assays
as indicated.

Hypocotyl measurement

Depending on experimental purposes, hypocotyl lengths of
three- (for monochromatic fluence-rate response assays) or
four-day-old (for white-light fluence-rate response and BL
response assays) Arabidopsis seedlings were measured from
scanned seedling images using NIH ImagelJ (Schneider et al.
2012). We have previously used four-day-old seedlings for
fluence-rate and BR -response assays in white light (Peng
et al. 2015; Peng and Neff 2020). Compared to white light,
both red and blue light are less efficient in inhibiting hypoco-
tyl growth (Neff and Chory 1998), which leads to a relatively
long-hypocotyl phenotype. Thus, three-day-old seedlings
were used for monochromatic fluence-rate response assays
(Peng et al. 2015) to obtain hypocotyl measurement results
that are comparable to those from four-day-old seedlings
grown in white light. To minimize the potential impact
of non-simultaneous germination, only the measurement
result of the thirty tallest seedlings was included for each
data point (Fankhauser and Casal 2004). Each assay had
three independent replicates showing a similar trend of
differences.

Quantitative PCR

Total RNA samples were extracted from six-day-old
PATAF2::GUS/Col-0 and pATAF2::GUS/ataf2-1 seedlings
with on-column DNase I digestion to eliminate genomic
DNA contamination. First-strand cDNA reverse transcrip-
tion and quantitative PCR (RT-qPCR) were performed using
Bio-Rad iScript followed by SYBR Green Supermix. The
Bio-Rad CFX96 Real-Time System and CFX Manager Soft-
ware were used to generate and analyze qPCR data using
the AAC; method. UBQ10 (AT4G05320) was used as the
reference gene for normalization of GUS transcript levels.
gPCR primers for UBQ10 were described previously (Peng
et al. 2015). qPCR primers for GUS are 5'-CGTCCTGTA
GAAACCCCAACC-3" and 5'-GCTTTCCCACCAACGCTG
ATC-3'".
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Yeast one-hybrid

A Gateway-compatible yeast one-hybrid (Y1H) system
(Deplancke et al. 2006) was used to test the interaction
between ATAF2 and the CBS-containing DNA fragment
(pPATAF2-CBS) from its own promoter. pATAF2-CBS
sequence and the Y 1H procedure were described previously
(Peng et al. 2015; Peng and Neff 2020). Interaction between
the pATAF2-CBS bait and the ATAF2 prey was demon-
strated by increased yeast tolerance to the His3p enzyme
inhibitor 3-aminotriazole (3-AT). An empty prey vector was
used as the negative control.

Electrophoretic mobility shift assay

N- and C-terminal Hexa-histidine tagged ATAF2 (His-
ATAF2 and ATAF2-His) were expressed in the Escheri-
chia coli strain Rosetta, respectively. ATAF2 proteins were
purified using HisPur Ni-NTA resin followed by imida-
zole removal using the Slide-A-Lyzer mini dialysis device
(Thermo Fisher Scientific). Electrophoretic mobility shift
assay (EMSA) was carried out using the fluorescence-based
EMSA kit (Invitrogen). Non-denaturing polyacrylamide gel
electrophoresis (PAGE) was used to separate the DNA probe
(pATAF2-CBS) and DNA—protein complexes (pATAF2-
CBS + His-ATAF2 or pATAF2-CBS + ATAF2-His). The
Bio-Rad ChemiDoc Touch imaging system was used to scan
SYBR Green-stained DNA bands.

Statistical analysis

Two-tailed Student’s 7 test was used for two-group compari-
son. When comparing multiple groups, one-way ANOVA
with Tukey’s HSD test was applied with significant differ-
ences being labeled by different letters. The P value signifi-
cance level was set as 0.05.

Results
ATAF2 binds its own promoter

Since the CBS DNA motif is a binding target of ATAF2
(Peng et al. 2015) and a CBS (— 577 to— 570) can be found
on the ATAF2 promoter (Peng and Neff 2020), we tested
the binding of ATAF2 to its own 63-bp promoter frag-
ment pATAF2-CBS (— 598 to— 536; with CBS being the
only predicted TF binding site) in a targeted Y1H assay
(Fig. 1a). Both 20-mM and 40-mM 3-AT drastically inhib-
ited the growth of yeast harboring the pATAF2-CBS bait
and the empty prey vector in a concentration-dependent
manner (Fig. 1a). In contrast, the coexistence of pATAF2-
CBS bait and ATAF2 prey significantly increased yeast
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Bait: pATAF2-CBS
Prey: Empty Vector
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Prey: ATAF2
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Fig.1 ATAF2 binds its own promoter. a ATAF2 bind its own CBS-
containing promoter fragment pATAF2-CBS in a targeted Y1H assay.
Enhanced 3-AT tolerance in yeast harboring the ATAF2-CBS bait and
the ATAF2 prey represented the detection of bait-prey interaction.
Four independent clones were shown for each Y1H sample. b In an
EMSA assay, both His-ATAF2 and ATAF2-His tagged proteins phys-
ically bind the pATAF2-CBS DNA probe in a dose-dependent manner

tolerance to the same concentrations of 3-AT (Fig. 1a).
These results demonstrate that ATAF2 can bind its own
promoter (pATAF2-CBS). The interaction between ATAF2
and pATAF2-CBS was further confirmed in an EMSA assay,
demonstrating that both N- and C-terminal 6xHis-fusion
ATAF?2 proteins (His-ATAF2 and ATAF2-His) can physi-
cally bind the pATAF2-CBS DNA probe in a dose-dependent
manner (Fig. 1b).

ATAF2 is a self-transcriptional repressor

ATAF?2 can be either an activator (Wang et al. 2009b; Huh
et al. 2012) or a repressor (Delessert et al. 2005; Peng et al.
2015) of its downstream-regulated genes (Nagahage et al.
2018). To examine whether ATAF2 activates or represses
itself, the pATAF2::GUS/Col-0 transgenic line expressing
an ATAF2 promoter-GUS transcriptional fusion (Wang
et al. 2009b; Peng and Neff 2020) was crossed with the
ATAF?2 knock-out mutant ataf2-1 (Fig. 2a). Homozygous
PATAF2::GUS/Col-0 and pATAF2::GUS/ataf2-1 lines
were characterized from F3 segregants, with two lines
being selected from each genotype for GUS expression
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a PATAF2::GUS/Col-0 X ataf2-1

F1

F2 segregants
F3
homozygous

pATAF2::GUS
lataf2-1

pATAF2::GUS
/Col-0

Fig.2 ATAF2 is a self-transcriptional repressor. a The
pATAF2::GUS/Col-0 transgenic line expressing ATAF2 pro-
moter-GUS transcriptional fusion was crossed with the ATAF2
knock-out mutant ataf2-1. Homozygous pATAF2::GUS/Col-0 and
PATAF2::GUS/ataf2-1 lines were characterized from F3 segregants,
with two lines being selected from each genotype for GUS expres-
sion analysis. Six-day-old white-light-grown seedlings were used for
GUS staining and RT-qPCR assays. Both pATAF2::GUS/ataf2-1 lines
showed higher GUS protein accumulations than two pATAF2::GUS/
Col-0 lines, with no apparent change of spatial expression pattern.
Scale bars=2 mm. b RT-qPCR assay confirmed that ATAF2 expres-
sion was disrupted in both pATAF2::GUS/ataf2-1 lines. ¢ RT-qPCR

analysis (Fig. 2a). Six-day-old white-light-grown seedling
were used for GUS staining and RT-qPCR assays. Both
pATAF2::GUS/ataf2-1 lines showed higher GUS protein
accumulation than the two pATAF2::GUS/Col-0 lines,
with no apparent change of spatial expression pattern
(Fig. 2a). RT-qPCR assays confirmed that when compared
to pATAF2::GUS/Col-0 lines, both pATAF2::GUS/ataf2-1
lines exhibited disrupted ATAF?2 expression (Fig. 2b) and
significantly elevated GUS transcript accumulation (Fig. 2c).
Quantifications of GUS activity in pATAF2::GUS/Col-0
and pATAF2::GUS/ataf2-1 seedlings also showed consist-
ent results of higher GUS protein accumulation negatively
correlated to ATAF2 disruption (Fig. 2d). These results dem-
onstrate the transcriptional suppression activity of ATAF2
on its own promoter, which is a common feature of multiple
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assays confirmed that when compared to pATAF2::GUS/Col-0 lines,
both pATAF2::GUS/ataf2-1 lines exhibited significantly elevated
GUS transcript accumulation. d GUS activity was quantified by its
hydrolysis capacity of converting MUG to MU. When compared to
pATAF2::GUS/Col-0 lines, both pATAF2::GUS/ataf2-1 lines exhib-
ited significantly elevated GUS enzyme activity. Each RT-qPCR data
point represents the mean value of three biological replicates X three
technical replicates (n=9). Each MU concentration data point repre-
sents the mean value of five independent replicates. Error bars denote
the SE. The significance of differences was determined by one-way
ANOVA with Tukey’s HSD test. Groups with significant differences
(P <0.05) were labeled by different letters

circadian-regulated genes (Adams et al. 2015) including
CCA1 (Wang and Tobin 1998).

ATAF2 and CCA1 synergistically suppress seedling
photomorphogenesis

Arabidopsis seedlings have shorter hypocotyls when undergo-
ing photomorphogenesis. Both ATAF2 and CCA1 are repres-
sors of BR inactivation (Peng et al. 2015; Peng and Neff 2020)
and photomorphogenesis (Peng et al. 2015; Zhao et al. 2018b).
Therefore, we tested their genetic interaction in a white-light
fluence-rate-response assay using four-day-old seedling of
Col-0, ataf2-2, ccal-1 and the ccal-1 ataf2-2 double mutant
(Fig. 3a). In low fluence rates (10—40 pmol m~2 s~ !), the dis-
ruption of either ATAF2 (ataf2-2) or CCAI (ccal-1) resulted

@ Springer



48 Page6of14

Planta (2020) 252:48

Fig.3 ATAF2 and CCAl synergistically suppress seedling photo- »

morphogenesis. Four-day-old seedlings of Col-0, ataf2-2, ccal-1
and the ccal-1 ataf2-2 double mutant were used in a fluence-rate
response assay in continuous white light. a In low fluence rates (10—
40 pmol m~2 571, the disruption of either ATAF2 (ataf2-2) or CCAl
(ccal-1) resulted in a short-hypocotyl phenotype, with ccal-1 ataf2-
2 largely exhibiting further suppressed hypocotyl growth. b Similar
results were observed in the absence of sucrose in the growth media.
¢ Similar results were observed in the absence of sucrose and seed-
lings were grown at 20 °C instead of 25 °C. Each data point repre-
sents the average of measurements from 30 seedlings (n=30). Error
bars denote the SE. The significance of differences was determined
by one-way ANOVA with Tukey’s HSD test. Groups with significant
differences (P <0.05) at a given fluence rate were labeled by different
letters

in a short-hypocotyl phenotype, with ccal-I ataf2-2 largely
exhibiting further suppressed hypocotyl growth (Fig. 3a). Sim-
ilar results were observed when sucrose was removed from the
media (Fig. 3b) and the plant growth temperature was further
lowered to 20 °C (Fig. 3¢c). These results indicate a genetically
synergistic effect of ATAF2 and CCAL in suppressing seedling
photomorphogenesis.

ATAF2 loss- and gain-of-function seedlings
retain opposite photomorphogenic phenotypes
in monochromatic light conditions

We previously reported that ATAF2 loss- and gain-of-
function seedlings exhibit opposite photomorphogenic phe-
notypes in white light (Peng et al. 2015). In low fluence
rates, ATAF2 knock-out mutants have shorter hypocotyls
when compared to the wild type whereas ATAF2 overex-
pression lines show longer hypocotyl growth (Peng et al.
2015). ataf2-1 retains its short-hypocotyl phenotype in
10 pmol m~ 2 s~ ! of red, blue or far-red light (Peng et al.
2015). Here, we further showed that ATAF2 loss- (ataf2-
1) and gain-of-function (ATAF20x-1) seedlings retain their
opposite hypocotyl-growth phenotypes in multiple fluence
rates of monochromatic red (Fig. 4a), blue (Fig. 4b) or far-
red (Fig. 4c) light. These results confirmed that ATAF2-
regulated seedling photomorphogenesis is not subject to
any single monochromatic light. Fluence rates as low as
0.1 pmol m~2 s~! (Fig. 4a,c) were applied for both red and
far-red light, as they are primary signals for low fluence rate
responses (LFRs). Col-0 seedlings grown in low fluence
rates of red light were even slightly taller than dark-grown
seedlings (Fig. 4a). This phenotype disappeared with the
removal of sucrose from the media (Fig. S1).

PHYA is required for ATAF2-regulated seedling
photomorphogenesis

We previously showed that when compared to phyB-
9 and cryl-103, the phyB-9 ataf2-1 and cryl-103
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ataf2-1 double mutants retain their short-hypocotyl phe-
notype in 10 pmol m~2 s~ ! of red and blue light, respec-
tively (Peng et al. 2015). In contrast, the short-hypocotyl
phenotype is largely abolished in phyA-211 ataf2-1 in
10 pmol m~2 s~ ! of red, blue or far-red light (Peng et al.
2015). These preliminary results suggest that PHYA may
be the major photoreceptor for ATAF2-regulated seedling
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Fig.4 ATAF2 loss- and gain-of-function seedlings retain opposite
photomorphogenic phenotypes in monochromatic light conditions.
a ataf2-1 and ATAF2o0x-1 seedlings retain their opposite hypocotyl-
growth phenotypes in multiple fluence rates of monochromatic
red light. b ataf2-1 and ATAF2o0x-1 seedlings retain their opposite
hypocotyl-growth phenotypes in multiple fluence rates of blue light.
¢ ataf2-1 and ATAF2o0x-1 seedlings retain their opposite hypocotyl-
growth phenotypes in multiple fluence rates of monochromatic far-red

photomorphogenesis. To further test this hypothesis, flu-
ence-rate (0—80 pmol m~ 2 s~ !) response assays in white
light were performed for phyB-9 ataf2-1, cryl-103 ataf2-
1 and phyA-211 ataf2-1 with appropriate controls (Fig.
S2; Fig. 5a). phyB-9 ataf2-1 hypocotyls were shorter than
those of phyB-9 even in the dark, and this short-hypoco-
tyl phenotype was unchanged in low fluence rates (10 and
20 pmol m~2 s~ ) of white light (Fig. S2a), which suggests
that PHYB is not a major player in ATAF2-mediated pho-
tomorphogenesis regulation. Similar trends were observed
from hypocotyl growth comparisons between cryl-103
ataf2-1 and cryl-103 in the dark and most tested fluence
rates (1060 pmol m™ 25~ 1 of white light (Fig. S2b). There-
fore, CRY1, like PHYB, does not have significant genetic
interaction with ATAF2 in seedling photomorphogenesis.
Unlike PHYB or CRY1, PHYA exhibited strong genetic
interaction with ATAF2 in white light (Fig. 5a). Col-0,
ataf2-1, phyA-211 and phyA-211 ataf2-1 seedlings showed
similar hypocotyl growth in the dark (Fig. 5a). In low to
moderate fluence rates (1040 pmol m™ 2571 of white light,
ataf2-1 hypocotyls were shorter than those of the other three
genotypes, which still showed similar hypocotyl growth
(Fig. 5a). Similar results were observed when sucrose was
removed from the media (Fig. 5b) and the plant growth tem-
perature was further lowered to 20 °C (Fig. 5¢). Thus, dis-
ruption of PHYA can abolish the short-hypocotyl phenotype
caused by ATAF?2 disruption, demonstrating that PHYA is
required for ATAF2-regulated seedling photomorphogenesis
in white light. Since the disruption of ATAF2 confers a short
hypocotyl phenotype in far-red light (Fig. 4c) we examined

light. Three-day-old seedlings of Col-0, ataf2-1, and ATAF20x-1 were
used for all three monochromatic fluence-rate response assays. Each
data point represents the average of measurements from 30 seedlings
(n=30). Error bars denote the SE. The significance of differences
was determined by one-way ANOVA with Tukey’s HSD test. Groups
with significant differences (P<0.05) at a given fluence rate were
labeled by different letters

the disruption of ATAF2 in a phyA-211 null mutant in the
same conditions (Fig. 5d). phyA-211 ataf2-1 hypocotyls
were only slightly shorter than those of phyA-211 in multiple
far-red fluence rates (Fig. 5d), indicating that PHYA activity
is necessary for the role of ATAF2 in far-red light.

PHYA is essential for ATAF2-regulated BR
homeostasis in the light

ATAF2 suppresses photomorphogenesis at least partially
via repressing BR inactivation (Peng et al. 2015). There-
fore, we tested the genetic interaction between PHYA and
ATAF?2 in seedling responses to exogenous brassinolide
(BL) treatments (Fig. 6). BL promotes seedling hypocotyl
growth in the light but the effect switches to inhibition in the
dark (Turk et al. 2003). In 80 pmol m~2 s~ ! of white light,
ataf2-1 seedlings were less sensitive to BL treatments when
compared to the wild type (Col-0) (Fig. 6a), which has been
reported previously (Peng et al. 2015). This reduction of BL
sensitivity was attenuated (at 10 nM BL treatment) or even
abolished (at 100 and 1000 nM BL treatments) when PHYA
was disrupted (Fig. 6a). These results suggest that PHYA is
essential for ATAF2-regulated BR homeostasis in the light.
In contrast, the disruption of PHYB (Fig. S3a) or CRY1
(Fig. S3b, c) did not abolish the reduction of BL sensitivity
caused by ATAF?2 disruption. However, phyA-211 ataf2-1
seedlings showed a BR-response phenotype similar to that of
ataf2-1 in the dark (Fig. 6b), demonstrating that PHYA has
no significant impact on ATAF2-regulated BR homeostasis
in the absence of light.
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Fig.5 PHYA is required for ATAF2-regulated seedling photo-
morphogenesis. a A fluence-rate (0-80 pmol m™ s~!) response
assay in white light was performed for Col-0, ataf2-1, phyA-211
and phyA-211 ataf2-1 seedlings. All four genotypes showed simi-
lar hypocotyl growth in the dark. In low to moderate fluence rates
(1040 pmol m~2 s™") of white light, araf2-1 hypocotyls were shorter
than those of the other three genotypes, which still showed similar
hypocotyl growth. b Similar results were observed in the absence
of sucrose in the growth media. ¢ Similar results were observed in
the absence of sucrose and seedlings were grown at 20 °C instead of
25 °C. d phyA-211 ataf2-1 hypocotyls were only slightly shorter than

Discussion

Circadian oscillation of ATAF2 is modulated by its
self-transcriptional suppression and physical/
genetic interactions with CCA1

Multiple Arabidopsis core circadian regulators and their
targeting proteins, such as the central morning loop compo-
nents CCA1 (Wang and Tobin 1998; Adams et al. 2015) and
LATE ELONGATED HYPOCOTYL (LHY) (Schaffer et al.
1998; Adams et al. 2015), as well as an evening-expressed
TF LUX ARRHYTHMO (LUX)/PHYTOCLOCKI1 (PCL1)
(Hazen et al. 2005; Onai and Ishiura 2005; Chow et al.
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those of phyA-211 in multiple far-red fluence rates. The difference
was significant at 10 pmol m~2 s~!. Four- and three-day-old seedlings
were used for white and far-red light fluence-rate response assays,
respectively. Each data point represents the average of measurements
from 30 seedlings (n=30). Error bars denote the SE. In a—c, the sig-
nificance of the differences was determined by one-way ANOVA with
Tukey’s HSD test. Groups with significant differences (P <0.05) at a
given fluence rate were labeled by different letters. In d, two-tailed
Student’s #-test was used to determine the significance of differences.
*P<0.05

2012), share a common feature of self-binding to its own
promoter as a transcriptional repressor, which forms a nega-
tive auto-regulatory feedback loop and leads to a circadian
oscillation expression pattern (Helfer et al. 2011; Nagel et al.
2015). In this research ATAF2 is identified as a self-tran-
scriptional repressor (Figs. 1, 2), which is consistent with
its previously confirmed circadian oscillation expression
pattern (Peng and Neff 2020).

In addition to the observations that both CCA1 (Peng
and Neff 2020) and ATAF?2 itself (Figs. 1, 2) can bind
the ATAF2 promoter as repressors in the light, CCAl
and ATAF2 also physically interact at the protein level
(Peng and Neff 2020). It is possible that CCA1 and
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Fig.6 PHYA is essential for ATAF2-regulated BR homeostasis in
the light. a In 80 pmol m~2 s~! white light, ataf2-1 seedlings showed
reduced sensitivity to BL treatments when compared to Col-0. This
BL-reduced-sensitivity phenotype was attenuated (at 10 nM BL treat-
ment) or even abolished (at 100 and 1000 nM BL treatments) when
PHYA was disrupted. b phyA-211 ataf2-1 seedlings showed a BR-
reduced-sensitivity phenotype similar to that of ataf2-1 in the dark.
Four-day-old seedlings were used for both BL-response assays (light
and dark). Each data point represents the average of measurements
from 30 seedlings (n=30). Error bars denote the SE. The significance
of differences was determined by one-way ANOVA with Tukey’s
HSD test. Groups with significant differences (P <0.05) at a given BL
concentration were labeled by different letters

ATAF2 coordinately suppress ATAF2 transcription at
least partially as a hetero-complex, since the disruption
of CCAI (Peng and Neff 2020) and ATAF2 (Fig. 2) simi-
larly increase ATAF2 and pATAF2—driven GUS transcript
accumulation to about two-fold, respectively. CCAI and
ATAF?2 exhibit distinct circadian oscillation patterns
(Peng and Neff 2020). The CCA! expression peak appears
around dawn, whereas ATAF2 transcript accumulation
keeps increasing after dawn and peaks right before sunset
(Peng and Neff 2020). The continuous reduction of CCA 1

expression in the light period is consistent with the cor-
responding increase of ATAF?2 transcript accumulation, as
CCALl is a repressor of ATAF2 transcription. Additional
negative auto-regulatory feedback of ATAF2 itself may
help to constrain its oscillation range within two to three-
fold (Peng and Neff 2020). Unlike CCA1, ATAF2 does
not reciprocally regulate CCA I expression (Peng and Neff
2020), which is consistent with the wider oscillation range
of CCA1 (Peng and Neff 2020).

ATAF2/CCA1-regulated seedling
photomorphogenesis is sucrose-
and thermo-independent

The photomorphogenic phenotype caused by the disruption
of ATAF2 or CCAI does not depend on sucrose or relatively
warm (25 °C) temperature (Figs. 3, 5). We have previously
added 15 g/L sucrose to the medium and grow seedlings at
25 °C in our fluence-rate response assays (Peng et al. 2015;
Peng and Neff 2020). This approach integrates more signal-
ing pathways to the modulation of seedling growth but still
stays below the threshold temperature (~27 °C) for trigger-
ing thermomorphogenesis in Arabidopsis (Casal and Balasu-
bramanian 2019). Sucrose has complex effects on hypoco-
tyl growth depending on light condition, seedling age and
multiple photoreceptor and hormonal signaling pathways
(Zhang et al. 2010, 2015; Liu et al. 2011; Simon et al. 2018;
Zhao et al. 2020). In our experimental setting, sucrose sig-
nificantly promotes hypocotyl growth in relatively low flu-
ence rates (10-40 pmol m™ 2571y of white light (Figs. 3, 5).
Adding sucrose in the medium can make subtle hypocotyl-
growth phenotypes become more visible.

In our assay, low-fluence-rate red light makes Col-0
seedlings slightly taller than their dark-grown counterparts
(Fig. 4a). This phenotype is sucrose-dependent since it can
be suppressed by the removal of sucrose from the growth
media (Fig. S1). Similar to white light assays, sucrose
promotes hypocotyl growth in low-fluence-rate red light
(Fig. 4a; Fig. S1) in our experimental setting, which can
partially explain the observation in Fig. 4a. Additional fac-
tors may also contribute to the long-hypocotyl phenotype
observed in low-fluence-rate red light. Compared to white
and blue light, red light is most effective in stimulating seed
germination (Fankhauser and Casal 2004) and least efficient
in inhibiting hypocotyl elongation (Neff and Chory 1998).
Both low fluence rates and red light result in longer hypoco-
tyls as compared to high fluence rates and white/blue light,
respectively. In our experimental setting, dark-grown seeds
are pretreated with red light for 2—4 h to induce subsequent
germination in the dark. This treatment may cause a delay in
germination and hypocotyl growth when compared to seeds/
seedlings continuously exposed to red light.
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The synergistic suppression effect of ATAF2
and CCA1 on seedling photomorphogenesis may be
at least partially associated with BR homeostasis

Beyond circadian oscillation, both ATAF2 and CCAL1 are
repressors of seedling photomorphogenesis (Peng et al.
2015; Zhai et al. 2020). ATAF2 promotes seedling elonga-
tion in a fluence-rate dependent manner, with its loss- and
gain-of-function mutants exhibiting opposite hypocotyl
length phenotypes (Peng et al. 2015). Similarly, CCAI over-
expression lines confer a long-hypocotyl phenotype (Wang
and Tobin 1998), whereas gene knock-out mutants have
shorter hypocotyls when compared to the wild type (Zhao
et al. 2018b; Zheng et al. 2018; Peng and Neff 2020). In
our fluence-rate response assay, ccal-1 ataf2-2 seedlings
have shorter hypocotyls than either single mutant in low to
moderate fluence rates of white light (Fig. 3), which dem-
onstrates that ATAF2 and CCA1 synergistically suppress
seedling photomorphogenesis. We previously reported that
ATAF2 and CCA1 have additive effects in suppressing the
expression of the BR-inactivating gene SOB7 in the light
(Peng and Neff 2020). Therefore, BR homeostasis may at
least partially account for the synergistic suppression of
ATAF2 and CCA1 on seedling photomorphogenesis.

PHYA is required for ATAF2-regulated hypocotyl
growth and BR homeostasis in the light

Though ATAF?2 transcript accumulation keeps increasing
during the light period of a circadian light/dark cycle (Peng
and Neff 2020), ATAF2 expression is suppressed by con-
tinuous light or by the dark-to-light transition in seedling
photomorphogenesis (Peng et al. 2015). These observations
suggest that ATAF2 undergoes a different set of molecular
and genetic regulations during photomorphogenesis. Our
fluence-rate-response assays reveal that ATAF2 suppresses
photomorphogenesis in all three monochromatic (red, blue
and far-red) light conditions (Fig. 4), and the presence of
PHYA is essential for the short-hypocotyl phenotype caused
by ATAF2 disruption (Fig. 5). In addition to being a far-red
light photoreceptor, PHYA also responds to red (Tepperman
et al. 2006; Franklin et al. 2007) and blue (Chun et al. 2001)
light signals, which explains the observation that ATAF2 is
consistently functional in regulating photomorphogenesis in
red, blue and far-red light (Fig. 4).

Since ATAF2-regulated BR homeostasis accounts for
the seedling photomorphogenic phenotypes of ATAF2
mutants (Peng et al. 2015), we tested the genetic interac-
tion between ATAF2 and PHYA in modulating seedling
responses to exogenous BL treatments (Fig. 6). Disrup-
tion of PHYA attenuates the BR-insensitive phenotype of
ATAF?2 knockout seedlings in the light (Fig. 6a) but not in
the dark (Fig. 6b), indicating that ATAF2-regulated BR
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homeostasis only requires PHYA presence in the light.
It is reasonable that as a photoreceptor, PHYA does not
have genetic interaction with ATAF2 when there is no
light input. Down-regulated by light (Cantén and Quail
1999), PHYA accumulates in the dark and plays an impor-
tant role in the transition of seedlings from dark to light
growth (Casal et al. 2014), a process called de-etiolation.
The potential functions of PHYA in dark-grown seedlings
are still under-investigated (Carlson et al. 2019). However,
with regard to genetic interactions with ATAF2, PHYA is
no longer functional in the dark (Fig. 6b). ATAF2 knock-
out seedlings still show reduced BL sensitivity in the dark
(Peng et al. 2015; Peng and Neff 2020; Fig. 6b), which
may indicate ATAF2-mediated BR homeostasis is regu-
lated by PHYA-independent pathways in the dark, or the
increased accumulation of ATAF?2 in the dark (Peng et al.
2015) is sufficient to regulate BR homeostasis with no
need for PHYA or other partners. Similar to the oppo-
site observations that ATAF2 expression is suppressed by
continuous light but keeps increasing in the light period
of a circadian light/dark cycle, dark-grown seedlings have
higher ATAF?2 transcript accumulation whereas ATAF2
expression is in a continuously decreasing pattern during
the dark period of a circadian light/dark cycle (Peng et al.
2015; Peng and Neff 2020). The distinct circadian- and
photomorphogenic-regulation of ATAF2 expression cor-
responds to its complex genetic interactions with CCAI
and PHYA, respectively.

PHYA has long been associated with BR catabolism in pre-
vious research. basI-D, an activation tagging mutant of the
BR-inactivating gene BAS1, can suppress the long-hypocotyl
phenotype caused by the phyB-null allele, but not the phyA-
null-mutation-derived long-hypocotyl phenotype in far-red
light (Neff et al. 1999). In addition, the interaction between
photomorphogenesis and BAS1-mediated BR-inactivation is
found to mainly depend on far-red light, which is primarily
sensed by PHYA (Turk et al. 2003). The basI-2 null mutation
can also suppress the late-flowering phenotype of phyA-211
in both long day and short day growth conditions (Sandhu
et al. 2012). We previously described PHYA-ATAF?2 genetic
interactions in low fluence rates (10 pmol m™ 25~ 1 of mono-
chromatic light (Peng et al. 2015). Here we further investigated
the genetic interaction between PHYA and ATAF?2 in seedling
white-light photomorphogenesis (Fig. 5) in a wide range of flu-
ence rates (0—80 pmol m™ 2g” 1) as well as in BR homeostasis
regulation (Fig. 6). It is still not clear whether PHYA regulates
ATAF2 activities directly via physical interactions or indirectly
through its signaling pathway. PHYA has been reported to
directly target the promoters of numerous hormone- or stress-
responsive genes for subsequent transcriptional regulation,
including a NAC TF-encoding gene ANAC019 (Chen et al.
2014). Therefore, a future direction would be uncovering the
molecular mechanism of PHYA-ATAF?2 interaction.
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Fig.7 A model for the molecular and genetic regulations of ATAF2
involving CCA1, PHYA, light and BRs. ATAF2 bind the CBS motif
on its own promoter as a self-transcriptional repressor, which forms
a negative auto-regulatory feedback loop. CCA1 physically interacts
with ATAF2 and also transcriptionally suppresses ATAF2 expression
via promoter binding to CBS. CCA1 and ATAF2 synergistically sup-
press seedling photomorphogenesis. They also differentially suppress
the expression of BR-inactivating genes BAS/ and SOB7 via direct
binding to the EE/CBS motifs on their promoters. PHYA is require
for ATAF2-regulated photomorphogenesis and BR homeostasis in the
light. BRs suppress ATAF2 expression to form a negative feedback
regulation loop. ATAF2 expression increases during the light period
of the circadian light/dark cycle but is suppressed by continuous light
after the dark-to-light transition of photomorphogenesis

A model for the molecular and genetic regulations
of ATAF2 involving CCA1, PHYA, light and BRs

Base on this work and our previous reports (Peng et al. 2015;
Peng and Neff 2020), we propose a model to summarize our
current understanding on the circadian-clock-photomorpho-
genesis-BR integration node involving ATAF2, CCA1 and
PHYA (Fig. 7). ATAF2 bind the CBS motif on its own pro-
moter as a self-transcriptional repressor, which forms a nega-
tive auto-regulatory feedback loop. CCA1 physically interacts
with ATAF2 and also transcriptionally suppresses ATAF?2
expression via promoter binding to the CBS motif. CCA1l
and ATAF2 synergistically suppress seedling photomorpho-
genesis. They also differentially suppress the expression of
BR-inactivating genes BASI and SOB7 via direct binding to
the EE/CBS motifs on their promoters. PHYA is require for
ATAF2-regulated photomorphogenesis and BR homeostasis
in the light. BRs suppress ATAF?2 expression to form a nega-
tive feedback regulation loop. ATAF2 expression increases
during the light period of a circadian light/dark cycle but is

suppressed by continuous light after the dark to light transition
of photomorphogenesis. It is worth noting that both ATAF2
(Wang et al. 2009b; Zhao et al. 2013) and CCA1 (Andronis
et al. 2008; Lu et al. 2009; Lau et al. 2011; Sun et al. 2019b)
have multiple physical interacting partners. This simplified
model only focuses on the molecular and genetic regulations
of ATAF2 involving CCA1 and PHYA.
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