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Abstract

Significant progress in many classes of materials could be made with the availability of experimentally-
derived large datasets composed of atomic identities and three-dimensional coordinates. Methods for
visualizing the local atomic structure, such as atom probe tomography (APT), which routinely generate
datasets comprised of millions of atoms, are an important step in realizing this goal. However, state-of-
the-art APT instruments generate noisy and sparse datasets that provide information about elemental type,
but obscure atomic structures, thus limiting their subsequent value for materials discovery. The application
of a materials fingerprinting process, a machine learning algorithm coupled with topological data analysis,
provides an avenue by which here-to-fore unprecedented structural information can be extracted from an
APT dataset. As a proof of concept, the material fingerprint is applied to high-entropy alloy APT datasets
containing body-centered cubic (BCC) and face-centered cubic (FCC) crystal structures. A local atomic
configuration centered on an arbitrary atom is assigned a topological descriptor, with which it can be
characterized as a BCC or FCC lattice with near perfect accuracy, despite the inherent noise in the dataset.
This successful identification of a fingerprint is a crucial first step in the development of algorithms which can
extract more nuanced information, such as chemical ordering, from existing datasets of complex materials.

Keywords: Atom Probe Tomography, High Entropy Alloy, Machine Learning, Topological Data Analysis,
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1. Introduction

Recent advancements in computing and contemporary machine-learning technologies have yielded new
paradigms in computational materials science that are accelerating the pace of materials research and dis-
covery [} 2} 13} 14, 15]. For example, researchers have used a neural network to predict materials properties,
clustering them into groups consistent with those found on the periodic table [4] and data-driven materials
design is an area now available to researchers due to advances in machine-learning algorithms and com-
putational materials science databases [3l 16} [7]. These developments in computational materials science
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have led researchers to begin exploring structure-property relationships for disordered materials, such as
entropy-stabilized oxides and high-entropy alloys (HEAs) [8, 9]]. Considering the number of atomic config-
urations in a disordered crystal structure, such as those found in HEAs [10], the number of possible atomic
combinations of even a single unit cell, the smallest collection and ordering of atoms from which an entire
material can be built, quickly becomes computationally intractable for existing algorithms [1]]. In the present
work, we propose an automated machine learning methodology for determining the lattice structure of a
noisy and sparse materials dataset, e.g., the type retrieved from atom probe tomography (APT) experiments,
for materials with disordered lattice structures, such as HEAs.

One of the fundamental properties of a crystalline material is the structure of its unit cell. Indeed,
knowledge of the chemical ordering and geometric arrangement of the atoms of any material is essential for
developing predictive structure-property relationships. As materials become more complex and the ordering
of atoms amongst lattice sites becomes increasingly disordered, such as is the case with HEAs [[11], these
structure-property relationships have yet to be developed. Indeed, the high-configurational entropy of HEAs
yields a distribution of lattice parameters and cell compositions, as opposed to a single unit cell and lattice
constant found in more traditional materials.

For many classes of materials, the lattice structure is either well-known, e.g., sodium chloride (salt) is
body-centered cubic, or it can be discovered via X-ray diffraction (XRD) or neutron scattering techniques [[12].
XRD is aroutine technique for the determination of crystal structures of metals, ceramics, and other crystalline
materials. These techniques do not yield atomic level elemental distinctions or resolve local lattice distortions
on a scale of less than 10A [12]], which are crucial to researchers working with highly-disordered materials,
such as HEAs. Moreover, XRD cannot provide the correlation between atom identity and position in a
material. This chemical ordering of atoms is essential to developing predictive relationships between the
composition of an HEA and its properties.

High entropy alloys are a relatively new class of metallic alloys, first synthesized in the mid 2000’s by [[L1]].
As defined by [13]], HEAs are composed of at least five atomic elements, each with an atomic concentration
between 5% and 35%. These novel alloys have remarkable properties, such as: corrosion resistance [9} [14],
increased strength at extreme temperatures, ductility [15} (16} [17], increased levels of elasticity [18]], strong
fatigue and fracture resistance [[15//19}120], and enhanced electrical conductivity [21,122]. HEAs are amenable
to the APT analysis as the process is able to recover elemental type in addition to approximate the lattice
sites in a material where the atoms sit.

An experimental process that unambiguously determines the position, identity of each atom, and structure
of a material is currently nonexistent [[1,123]]. Indeed, quantification of different lattice parameters and unit-cell
compositions have not previously been reported due to data quality issues inherent to APT [24} 25]]. While
these experiments are able to discern elemental types at a high resolution, the process has two drawbacks, (i)
sparsity: empirically, approximately 65% of the atoms from a sample are not registered by the detector [12];
and (ii) noise: the atoms that are observed have their spatial coordinates corrupted by experimental noise [25].
As noted by [23], the spatial resolution of the APT process is up to 3A (0.3 nm) in the xy-horizontal plane,
which is approximately the length of an unit cell. This experimental noise has a two-fold impact on the data
retrieved by a typical experiment. First, the noise prevents materials science researchers from extracting
elemental atomic distributions, which are essential for developing the necessary interaction potentials for
molecular dynamics simulations. Secondly, the experimental noise is significant enough to make atoms that
are first neighbors in an atomic neighborhood, i.e., those atoms which occupy adjacent lattice sites, appear
as second or third neighbors and vice versa [25]]. Furthermore, the experimental noise is only one source of
distortion to the lattice structure. HEAs exhibit local lattice deformations due to the random distribution of
atoms throughout the material and atoms of differing size sitting at adjacent lattice points [10]].

This deformation of the local crystal structure makes any determination of the lattice a challenging
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Figure 1: Examples of the lattice structures that we consider viewed with the visualization software Ovito which uses empirical
atomic radii in its visualizations. We consider three different crystals: (a) body-centered cubic (BCC), (b) face-centered cubic (FCC),
and (c) hexagonal close packed (HCP) lattices showing their similarities and differences with complete, noiseless data. The FCC and
HCP structures have only a subtle difference in their geometry. The HCP structure forms an identifying parallelogram (c), whereas the
FCC forms a square (b) when all atoms within a radius of the center atom are collected. (d) Example of an FCC structure retrieved from
an APT analysis of the HEA Al 3CoCrFeNi demonstrating the sparsity and atomic displacements due to the resolution of APT
process. The noise and sparsity from the APT process obscures this difference between the FCC and HCP structures.

problem for any symmetry-based algorithm, such as [26] 28]]. The field of atom probe crystallography
has emerged in recent years and existing methodologies in this area seek to discover local structures
when the global structure is known a priori. In the case of HEAs, the global lattice structure is unknown and
must be discovered. Indeed, drawing correct conclusions about the material’s crystal structure is virtually
impossible from the APT analysis using current techniques [25].

A recent method relying on a convolutional neural network [3]] classified synthetic crystal structures that
are either noisy or sparse by creating a diffraction image from a lattice structure and using this image as
input data for the neural network. The authors of [3] claim that their methodology could be applied to data
with both experimental noise and significant levels of sparsity, as is typically retrieved by APT experiments,
but without showcasing any such instances. Briefly, diffraction images are diffraction patterns generated by
simulating the results of an X-ray diffraction experiment. In particular, they create the interference pattern
that is generated when a series of waves encounter a crystal lattice and either pass through unobstructed or
encounter an atom and bend around the atom.

Here we propose a machine-learning approach, a materials fingerprint, to classify the crystal structure
of a material by looking at local atomic neighborhoods through the lens of topological data analysis (TDA).
TDA is a field that uses topological features within data for machine learning tasks [32,33[34]. It has found
other applications in materials science, such as the characterization of amorphous solids [33]], equilibrium
phase transitions [36], and similarity of pore-geometry in nanomaterials [37]. Our motivation is to encode the
geometric peculiarities of HEAs by considering atomic positions within a neighborhood and looking at the
neighborhood’s topology. Key differences between atomic neighborhoods are encoded in the empty space,
e.g., holes and voids, between atoms, as well as clusters of atoms in the neighborhood. These identifying
topological features of an atomic neighborhood can be calculated through the concept of homology, which
is the mathematical study of ‘holes’ in different dimensions and differentiate the shape and structure of the
neighborhoods. Extracting this homological information from each atomic neighborhood, we can distinguish
between the different lattice structures that we consider; figure [T] shows idealized versions of these crystal
structures. A typical lattice retrieved from an APT experiment is in figure[T(d).

Using these topologically-derived features, we are able to classify the crystal structure of HEAs from the
APT data with accuracy approaching 100%. To test the robustness of our proposed method, we combine
levels of sparsity and noise on synthetic data and find our method accurately classifies the crystal structure.
Our novel methodology couples the power of topological data analysis to extract the intrinsic topology of



these crystal lattices with a machine learning classification scheme to differentiate between lattice structures
and classify them with a high degree of precision.

The outline of this paper is as follows. In Section 2] we describe the APT experimental process and the
details related to the analysis of the HEAs that we consider. Section [3| provides details of the classification
model for recognizing crystal structures. Numerical results are presented in section[dand we conclude with
discussion in section

2. Atom Probe Tomography

In this section we discuss the APT experimental process and the postprocessing employed to create the
data. Furthermore, we discuss the resulting data and its characteristics.

2.1. APT Process

APT was conducted using a Local Electrode Atom Probe (LEAP) 4000 XHR instrument at the Center for
Nanophase Materials Sciences of the Oak Ridge National Laboratory [31, 38]]. The process systematically
evaporates ions from a specimen’s hemispherical surface using voltage or laser pulses. A position sensitive
detector collects the ions, and the timing between the pulse and detection events gives the time-of-flight,
which identifies each species based on unique mass-to-charge ratios. A reconstruction algorithm is used to
create a tomographic dataset from the x, y detector data and the sequence of detection gives the z-dimension
in the reconstruction. Sample specimens for APT experiments are typically sharp, conical tips with a
maximum diameter of less than 100 nm and a length of several hundred nanometers typically. Thus all APT
experiments investigate nanoscale structures and samples that contain nanoparticles embedded in a matrix
can be examined as well as layered heterostructures.

2.2. APT Data

For our problem, the data consists of spatial coordinates of approximately 10% atoms with elemental
type [25]], constituting a highly-disordered metallic alloy that is composed of BCC or FCC lattice structures.
The sample [12] was chosen because it has been previously well-characterized. This alloy consists of
three phases, a Cu-rich FCC phase, an Fe-Cr rich BCC phase, and a remaining phase that incorporates
all six elements, though the proportions of Cu, Fe, and Cr are depleted due to accumulation in the other
phases. Importantly all three phases are present in the APT sample. When viewing the entire data set with
atoms identified by color, some nanoscale information is immediately evident. The eye perceives elemental
segregation of the Cu-rich and Fe-Cr rich phases into nanoscale domains. The orange copper-rich area is
especially evident, as seen in figure 2(a). However, one cannot infer any meaningful structure at a finer scale
when viewing the entire dataset from a typical APT experiment and further analysis requires that individual
atomic neighborhoods be extracted from the larger sample. Viewing each neighborhood individually, figure
2(b), we can see that they contain a wealth of information about the shape of the material under investigation,
despite the noise and sparsity present in a typical APT experiment.

3. Methods

In this section we give the mathematical background necessary for our method, detailed introductions
can be found in [39,40].
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Figure 2: Flowchart of the materials fingerprinting methodology. (a) The APT data is processed as outlined in section (b) Individual
atomic neighborhoods are extracted from an APT dataset as described in section@ (c) We create a collection of persistence diagrams,
each diagram associated with an atomic neighborhood, as explained in section@ (d) Similarity metrics between these persistence
diagmras are computed via the dy,-distance as defined in equation . (e) We create a feature matrix composed of the summary
statistics of these distances, which is used as input in algorithmmto classify the persistence diagrams. (f) Output from algorithmm
classifying the structures under investigation, sectionEl

3.1. Topological Data Analysis

To extract the salient topological information from the atomic neighborhoods, we turn to topological
data analysis, particularly persistent homology. Persistent homology describes connectedness and void space
present within an object and allows one to infer global properties of space from local information [41]]. Instead
of considering only clusters of atoms, homology also incorporates information about the regions enclosed by
the atoms. This approach yields topological features of the data in different homological dimensions. In the
case of these atomic neighborhoods created by APT experiments, 0—dim homological features are connected
components, 1 —dim homological features are holes, and 2—dim homological features are voids, 2-dim holes,
i.e., the space enclosed by a sphere.

To study the persistent homology of atomic structures extracted by HEAs, such as the atomic neighbor-
hoods in figure [2b), we create spheres of increasing radii around each atom in a neighborhood, detect when
homological features emerge and disappear, and record these radii in a persistence diagram, see figures [2[c)
and[3[(e).Taking the atoms’ spatial positions in the xyz-coordinate system recovered by the APT experimental
process, we begin by considering a sphere of radius € centered at each atom, see figure [3(a). The algorithm
starts at radius € = 0 and this is the reason why all points start at 0 in the persistence diagram associated with
clusters and connected components (grey circles in figures 2(c) and 3(e)). Indeed, all atoms within a structure
are initially treated as different clusters. Increasing the radii, the algorithm starts clustering atoms together
by examining if their spheres intersect at a certain radius. If they do, the these atoms form a cluster and
that signifies the ‘death’ of the members of clusters as being considered separately. Meanwhile, as spheres
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Figure 3: Atomic neighborhood from an APT experiment [12] with the alloy Al 3CoCrCuFeNi. The atomic type is illustrated by the
color, and is visualized with [30]. (a) Shows each atom in a neighborhood as a point cloud in R3. We begin by drawing a radius centered
at each atom. As the radius of these spheres increases in (b), a 1—dim hole forms in the atomic structure. Increasing the radii further, in
(c) the formation of a 2—dim hole, a void, is evident. Continuing to increase the radii, in (d) the radii have increased such that all atoms
form one cluster. The persistence diagram for this structure is shown in (e). In the persistence diagram, the birth and death axes denote
the emergence or disappearance of topological features as the radii of the spheres centered on each atom increase and start to intersect.

grow holes and voids (2-dim holes) are created, see figures 3(b) and 3(c). By the same token, these holes
and voids get filled in due to increasing the radii, and are represented in a persistence diagram by their death
time (radius-wise). Indeed, such topological features are recorded in a persistence diagram using a different
label (color). Eventually, at some radius, all spheres will intersect, which means that all atoms belong to
the same cluster and any hole or void has been covered. This yields the end of the algorithm for creating a
persistence diagram. These homological features summarized in a persistence diagram capture information
about the shape of the neighborhood itself. This type of multiscale analysis is key to bypassing the noise and
sparsity present in the data and to extract meaningful details about the configuration of each neighborhood.
For example, the corresponding diagram for the atomic neighborhood in figure 3(a) is shown in figure Bfe).
The persistence diagram encodes information about the structure of each neighborhood by providing insight
about the number of atoms, the size and distance among atoms, possible configuration of the faces, and
3—dimensional structure. The persistence diagram then functions as a proxy for the APT data by reducing
an atomic neighborhood to its most pertinent qualities.

As the extracted persistence diagrams generated by APT experiments summarize the shape peculiarities
of each atomic neighborhood, different types of lattice structures yield persistence diagrams with various
identifying features [42]]. Indeed, examining the homological features, we see the essential structural
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Figure 4: Sample persistence diagrams of a material from the APT analysis of the alloys Al; 3CoCrCuFeNi and Al 3CoCrFeNi for
two of the lattice types considered here: BCC (a) and FCC (b), respectively [[12|31]. Notice the distinguishing 2—dim feature, the
blue square, in the diagram derived from an FCC lattice. Additionally, the diagram generated from the BCC structure has fewer
0—dim features. (c) The d¢, metric computes the distance between two persistence diagrams generated by atomic neighborhoods, both
containing 1-dim features, denoted by the red triangles. The dy, metric measures the distance between the diagrams by first finding the
best matching between points, given by the lines between the triangles. Any unmatched points, e.g., the remaining triangle, are then
penalized by the constant term c. The birth and death axes denote the emergence or disappearance of topological features, as a function
of distance between atoms in a neighborhood.

differences between crystal lattices in different dimensions. Consider figure @ which displays the difference
between persistence diagrams for BCC and FCC structures. From the viewpoint of topology, the inside of
an FCC cell contains a void, whereas the BCC cell does not, thus yielding an important contrast. In the case
of noiseless and complete data, the presence of a void separates the BCC and FCC cells when juxtaposing
their crystal structures, as we see in the insets of figure[d](a,b). The persistence diagrams capture differences
in (i) the number of neighbors (8 for BCC and 12 for FCC), (ii) the spacing between neighbors, i.e., density,
and (iii) the arrangement of neighbors.

3.2. Persistence Diagram Similarity Metric

Different crystal structures produce different size point clouds [42]. To properly account for differences
in the number of points when comparing two persistence diagrams, we employ the d;, distance, introduced
in [32]]. For a given configuration, the persistence diagram can be compared to a reference persistence
diagram via a similarity metric, for BCC and FCC structures as an example. Suppose D; = {d!,...,dl}
and Dy = {d?,...,d2} are two persistence diagrams associated with two local atomic neighborhoods such
thatn < m. Let ¢ > 0 and 1 < p < oo be fixed parameters. Then the dlc, distance between D and D, is

1
P

1 n
c — ; ; I_ 42 2 Plm —
d,(D1, D7) = o | min ~_§1 min(c, [|d; = d;,; lle)” +cPm = n] 3.1

where IT,, is the set of permutations of (1,...,m). If n > m, define d;(Dl, D) = dlc,(Dz, D).

This distance matches points between the persistence diagrams being compared, and those that are
unmatched are penalized by a regularization term c¢. Figure dfc) shows an example of how the distance
between two persistence diagrams is computed. We first find the optimal matching, denoted by the red lines
between triangles. This matching between points corresponds to the summation term in the distance. If the
matched distance is greater than ¢, then we add ¢ to the matching distance, otherwise, we add the distance



between matched points. The unmatched 1-dim feature, denoted by the red triangle, is penalized by the
regularization term c in the second part of the definition. In developing the materials fingerprint, we compare
persistence diagrams with respect to 0, 1, and 2—dim homological features, i.e., connected components,
holes, and voids, employing this distance. We then compute summary statistics (mean, variance) from these
distances to create features for the classification algorithm.

3.3. Classification Model

We write D; as the persistence diagram generated by atom positions in an atomic neighborhood retrieved
by the APT experiment as seen in figure[2} Note that the number of atoms in a neighborhood is not constant,
but varies between atomic neighborhoods in a sample. For the multiclass classification problem, we are
interested in modeling the conditional probability 7(Y = ¢ | X) for a given input X, which encapsulates
features of persistence diagrams and a class label Y = £. We write the classification model as a generalized
additive regression model [43| 44]. Choosing this type of model gives us the flexibility to let our data
determine the correct functional form, as opposed to imposing a linear model as in traditional logistic
regression. Accordingly, an L-class model is written

2 =11X)\

g (20 =1 1) =+ Ao,
nY=21X)\ _

g (2= 1) =+ 00,

| (ﬂ(Y:L—1|X)

AV =L]X) ) =ar-1 + Fr1(X),

where F;(X) = Zf_l @ f;(X) is a linear combination of smooth functions f;. Here X € RN*P and

N =Yk, N;issuch that for I <i < N an arbitrary row of X is

_ (R0 1 2 0 1 2 0 1 2 0 1 2
X; = (Ei’/l],Ei’/ll,Ei’/h,Varl.,/h,Vari’/ll,Vari’/ll, o ,Ei,AL,Ei’/lL,Ei’AL,Vari’ﬂL,Vari’AL,Vari’/,L), (3.2)
kK _ 1 vNe geipk pk k _ _1 _sNe (geipk pky _mk )2
where El., = & ijl dp(Di,Dj) and Var;, = N ijl (dy, (D ,Dj) Ei,/b}) are the mean and

variance respectively of the dj, distance, equation li between any diagram Df and the collection of all
persistence diagrams in the class 1, € A, 1 < £ < L and homological dimension k = 0, 1,2. The pseudocode
for our algorithm is presented in algorithm[T]and is visually represented in figure 2}

3.4. Computational and Storage Considerations

Computing entries of the feature matrix X, equation (3.2), requires computing the mean and variance of
dj, distances with k—dim persistence homology, k = 0, 1,2. For example, in the case of binary classification
between BCC and FCC lattice types, with N and N, neighborhoods respectively, for each BCC persistence
diagram, each Ef‘ 2 computation requires Nj steps and for FCC, it is N, steps. Similarly, computing
the variance accurately in a numerically stable fashion, e.g., when the size of the dataset is large and
the variance is small, each BCC diagram takes 2 X N; steps for the two pass algorithm [45]. In total,
each row of X has complexity O;(Ny, N2) = 9 X (Ny+ N;) and the entire feature matrix ends up with
quadratic complexity: O(N;, N2) = 9 x (N} + N2)%. With the atomic counts on the order of hundreds of
thousands: Ni, N ~ O(10%), the quadratic component clearly dominates with 10'° computational steps.



Algorithm 1 Materials Fingerprinting

Training Step

: Read in labeled data (training set) with L classes and compute persistence diagrams in the training set

Dirain, Which has N, diagrams from the £th class, and set N = Zf;:l Ne.
Read in response vector Y = (1-1,...,¢-1,...,L- l)T where 1 is a vector of 1’s in R¢,

3: fori=1,...,Ndo

Compute feature matrix X according to equation (3.2))
_(m @l w2 0 1 2 0 1 2 0 1 2
Xi = (BB 4, Ei . Var; . Var; , ,Var; ... B JE; 5 B, Var; ), Var; ), Var; ;)

i i, i,

where

Ny N¢
1 1
k k k k k k k 2
Ej,, = _Ng E d;(Di ,Dj), Var; , = —N() — E (d‘f,(Dl- ,Dj) —Ei’/l() ,
j=1 j=1

for A, € A, k € {0,1,2}.

end for

C(X) = ADABOOST(X,Y) » Obtain a classification rule C from the AdaBoost ensemble classification
algorithm

Testing Step

Read in unlabeled APT point cloud data and compute persistence diagrams D;,5; = {5 j }jJ.:] .

g: for j=1,...,Jdo

10:

11:

Compute
S _m0 B om0 =1 =2 ~ =1 2 o= ol o2
Xj = (Ej 0 Bj o, Bja,, Varg o, Var; o, Varg g, B LB g B) g, Varg o, L Varg g, Var o, )
where

Ne Ne
—~ 1 —~ —k 1 e .
k _ c k k _ k k k 2
E > d5 (D%, DY), Var) ,, = N > (d5 (D%, DE) - B ) )%,
n=1 ’ n=1

for A, € A,k € {0,1,2}.

end for

Classifx unlabeled APT data

Y = C(X) > Yields class labels for Dyes as ¥ € {1,...,¢,...,L}’.




Each of these steps requires the dj, distance computation given by equation @, which is computationally
non-trivial for the majority of the diagrams due to the identification of the optimal permutation between
the diagrams being compared. In order to reduce the total elapsed time of the computation, we used
over 1000 x86 cores that ranged from Intel Westmere to Intel Skylake, ranging in cores per socket from
8 to 36 with up to 72 cores per node. Additional speedup of about 20% came from porting the code
for computing the feature matrix from Python to C. The python code is publicly available at https:
//github.com/maroulaslab/Materials—-Fingerprintingl

4. Numerical Experiments

We present here the outcome of algorithm [I] in both synthetic and real experimental data as well as
provide a sensitivity analysis. We first present results of our fingerprinting process in different scenarios with
synthetic data to test the robustness of our method. We consider synthetic APT data with various levels of
sparsity and additive Gaussian noise, (0, 02), as in real APT experimental data. In each of the experiments
presented, we perform 10-fold cross validation on the entire dataset to control for overfitting of the model,
randomly splitting the dataset into 10 partitions. For each partition, we create a classification rule from the
other 9 partitions, and use the remaining one as a test set. Our accuracy, defined here as (1 - Misclassification
rate), is recorded for each partition as it is used as the test set. The reported accuracy rate is the mean
accuracy over all 10 partitions. The hyperparameters c, p were set to the same values across all experiments,
¢ = (1,0.05,1.05) and p = 2, to provide a fair basis for comparison, and were selected by a grid search to
provide the highest accuracy score in the binary classification problem with 67% missing data and N (0, 1)
additive noise. A previous work [42], discusses the role of ¢ and choosing this parameter.

4.1. Synthetic APT Data

We first present results of our fingerprinting process in different scenarios with synthetic data to test the
robustness of our method. First, we test with combinations of noise and sparsity that we expect to see in
real APT data. Next, we examine the effect of class imbalances on the accuracy of our methodology in the
binary classification case of BCC and FCC materials. As a final experiment with synthetic data, we repeat
the scenario of varying the concentration between BCC and FCC structures, but augment the data set with
a constant number of HCP lattice types. We observe the methodology is robust against different levels of
noise and sparsity in the case of the binary classification problem. When the HCP structures are introduced
into the dataset, the accuracy decreases, due to the similarity of the FCC and HCP structures, especially in
the presence of additive noise and sparsity that we consider. These results are presented in tables[I|to[3]

4.2. Sensitivity Analysis

To understand the effect of different levels of noise and sparsity in the data, the materials fingerprint was
applied to synthetic data having different levels of sparsity and noise, similar to those values found in real
APT data. For each combination presented, we the dataset was composed of 400 structures, split evenly
between BCC and FCC types. We observe perfect accuracy in the case of complete, noiseless data, as these
lattice types differ in both their geometry and atomic density. As the data becomes increasingly degraded, the
accuracy correspondingly decreases, but does not fall below 90% in this analysis. Table[I]summarizes these
results. We do observe a relative decrease in accuracy with 50% sparsity and A(0,0.75%) added noise. We
attribute this decrease to the choice of ¢ and p for the distance computations. Indeed, for all the experiments
presented herein, we used the same values of ¢ and p. We may further optimize these parameters to produce
higher accuracy for each combination of noise and missing data considered, at the risk of over-fitting for a
specific dataset.
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Table 1: Mean 10-fold cross validation accuracy, for synthetic APT data with different percentages of atoms removed and N (0, o2)
added noise.

Std.
Dev. o=0 oc=025 0=075 o=1

Sparsity

0% 100% 99.67%  98% 97.67%
33% 100% 99.32%  96.67%  94.67%
50% 97.33% 100% 92.67%  94%
67% 98.67%  100% 99.33%  92%

Table 2: Mean 10-fold cross validation accuracy, for synthetic APT data with N (0, o2) added noise and 50% missing, the dataset is
comprised of 5,000 configurations in each experiment. The proportion of BCC structures are given, and varied between experiments.
The proportion of FCC configurations is 1-BCC%.

BCC proportion  10% 25% 40% 60% 75% 90%

Std. Dev Accuracy

o =025 96.72% 92.32% 88.56% 88.48% 90.24% 94.24%
c=05 99.96% 99.84%  100% 100% 100% 100%
o =0.75 95.76% 89.86% 82.88% 82.24% 85.84% 95.04%
o=1 94.72% 85.76% 81.44% 83.2%  84.08% 94%

4.2.1. Imbalanced Classification

Continuing our study of the binary classification problem, we investigated the effect of varying the
proportion of BCC vs. FCC lattice structures had on the resulting classification accuracy. We considered
the same combinations of sparsity and additive noise as in section[4.2] but we varied the proportion of BCC
structures in the entire dataset between 10% and 90%. The remaining percentage was composed of FCC
structures so that the total number of structures was 5,000. We observe a level of accuracy in this setting
similar to those observed in the previous experiment; these accuracy scores are presented in table 2] We
observe that the classification scheme is robust against not only the perturbations and missing data expected
from an APT experiment, but class imbalance as well.

4.2.2. Multi-class Classification

As a final experiment, to the previous setting of varying the proportion of BCC vs. FCC structures, we
add a constant number of HCP structures to the data set. All lattice structures in this experiment are perturbed
by Gaussian noise with a standard deviation of 0.25, as the noise was found in a previous study to follow a
narrowly peaked distribution, as opposed to a wide Gaussian distribution [29]. From each of these datasets,
we removed y% of the atoms. The results of this experiment are in table[3] In this scenario, the primary
challenge is to correctly identify the FCC and HCP lattices. While these two structures are distinct, they
have the same density, i.e., the same number of atoms per unit volume, and only have a subtle variation in
their identifying geometry. Indeed, there is a non-trivial decrease in accuracy when the HCP lattices are
introduced into the dataset. Specifically, the accuracy declines as the proportion of FCC structures increases
relative to the number of HCP lattice types and is the dominant class represented in the dataset. When the
BCC proportion comprises 10% of the dataset, the proportion of FCC to HCP lattices is approximately 2:1,
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Table 3: Mean 10-fold cross validation accuracy, classifying synthetic APT data with A/(0, 0.252) added noise and proportion y € (0, 1)
missing. We consider three classes, BCC, FCC, and HCP structures, in this synthetic APT dataset. We varied the proportion of 5,000
configurations between BCC and FCC lattices. The BCC proportion of these structures are given and the fraction of FCC configurations
is 1-BCC%. To these 5,000 structures we added a constant 2,500 HCP lattice structures in each instance.

BCC proportion 10% 25% 40% 60% 75% 90%

Proportion Missing Accuracy
v=0.33 60.67% 69.84% 84.84% 86.51% 78.88%  88.39%
v =0.50 68.33% 74.76%  85.16% 88.13% 82.40%  89.45%

and the classifier’s accuracy is decreased as compared to settings with less class imbalance in the dataset.

4.3. APT Experimental Data

We now turn to our original problem of determining the local lattice structure of an HEA from the
experimental APT data. We apply our materials fingerprinting method to the APT experimental data from
two HEAs, Al 3CoCrCuFeNi and Aly 3CoCrFeNi (FCC). Recalling section the former has both BCC
and FCC phases, while the was determined to be FCC through XRD experiments [31]. The challenge is to
uncover the true atomic-level structure amid the noise and missing data. Using our materials fingerprinting
methodology, we are able to classify the lattice structure of 200,000 atomic neighborhoods, split evenly
between BCC and FCC lattice types, from these APT datasets at 99.97% accuracy with 10-fold cross
validation.

5. Discussion

We have described materials fingerprinting, a topologically-based methodology for classifying the crystal
structure of the HEA APT data with near-perfect accuracy especially in the binary case. Starting from a
collection of atomic neighborhoods generated by an APT experiment, we extract the fundamental topology
of the structure and record the information in a persistence diagram. These diagrams succinctly encode the
essential topology of an atomic neighborhood over different length scales in various dimensions. It is by
computing the persistent homology of the data that we are able to see through the noise and fill in the sparsity
to see where these lattice structures are connected and where they are not. Our materials fingerprinting
methodology uses the mean and variance of the d;, distance between persistence diagrams to create input for
a machine learning algorithm. This distance not only measures differences in the diagrams but accounts for
different numbers of points between diagrams being compared. This latter point is salient, as BCC and FCC
unit cells each contain a different number of atoms, and this distinction must be taken into account. Basing our
materials fingerprint on topological features in conjunction with the number of atoms in each neighborhood,
we represent the necessary topological and numeric information required to differentiate between the lattice
structures considered here, with the appropriate choice of metric. Indeed, by adopting this point of view,
we are able to qualitatively retain the essential geometric information of these crystal structures and use this
information to predict with greater than 99% accuracy the crystal structure of real APT data.

The impact of the present work is two-fold. First, the input data to our algorithm is point clouds
generated by HEAs resulting from APT experiments. The process can be generalized to other lattice
types by incorporating additional crystal structures into the materials fingerprint training set. Indeed, the
methodology described herein does not depend on the labels of the data. It takes in the materials data
and creates the information-rich persistence diagrams, from which we examine homological differences
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between the diagrams in various dimensions. The data analysis can be performed on multiphase samples,
although the characterization of individual configurations may need be to be first preceded by classification
of domains based on compositional differences, for example. An alternative for comparisons between a
multitude of structures is outlined in [46], in which different topological descriptors are invoked that consider
the electronegativity of the atoms as a feature when creating the persistence diagrams. Such a methodology
may be used in conjunction with a previous work [47] that identifies a mapping between the APT data and
a known crystal structure, to aid researchers in understanding the local structure of materials characterized
through the APT process.
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