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A hybrid feedback control scheme is proposed for stabilization of rigid-body dynamics (position, orientation,

and velocities) using unit dual quaternions, in which the dual quaternions and velocities are used for feedback.

Specifically, both set-point stabilization and tracking control are addressed in this work. It is well known that rigid-

body attitude control is subject to topological constraints, which often result in discontinuous control to avoid the

unwinding phenomenon. In contrast, the hybrid scheme allows the controlled system to be robust in the presence of

uncertainties, which would otherwise cause chattering about the point of discontinuous control while also ensuring

acceptable closed-loop response characteristics. The stability of the closed-loop system is guaranteed through a

Lyapunov analysis and the use of an invariance principle for hybrid systems. Simulation results for a rigid-body

model are presented to illustrate the performance of the proposed hybrid dual-quaternion feedback control schemes.

Nomenclature

N = natural numbers, including 0 and which are equal to
f0; 1; : : : g

R = the set of real numbers
Rn = n-dimensional Euclidean space
R≥0 = nonnegative real numbers, which are equal to �0;∞�
Z = integers

I. Introduction

R IGID-BODY control is often separated into two individual
problems: attitude control (see [1–6]) and translational (point

mass) control (see [7] and the references therein). However, for many
practical applications that include robotics, computer graphics [8,9],
unmanned air vehicle control, and spacecraft proximity operations
[10–12] to name a few, these translational and rotational dynamics are
often coupled.Hence, some recent research on controlling rigid-body
dynamics uses the Lie group SE(3) for the configuration space (pose)
of the rigid body and its tangent bundle TSE(3) for the state space,
which includes velocities [13–15]. Tracking control of fully actuated
vehicles is discussed in detail in [16]. Nevertheless, most of this work
does not delve into the details of reconstructing the state of the system
out of sensor measurements. To bypass this problem, a feedback law
that directly uses vector measurements with the landmark-based
control solution is presented in [17]. However, such strategies rely
on continuous controllers, whereas it has been shown in [18] that
global asymptotic stabilization of a given set point is not possible by
means of continuous feedback. To solve this problem, continuous
controllers based on the Morse–Lyapunov approach have been
suggested in [2,19], which result in almost global asymptotic stabil-
ity, whereas discontinuous control laws have been proposed (see,

e.g., [20,21]) to achieve global asymptotic stability. However, the
latter are not robust to small measurement noise, as shown by [22].
Recent advances in hybrid control theory have shown thatwell-posed
hybrid systems, namely, those satisfying the so-called hybrid basic
conditions [23], are inherently robust to small measurement noise,
making hybrid control techniques suitable candidates for the problem
at hand. In fact, hybrid control strategies using both quaternion
feedback and rotation matrix feedback have been proposed in
[22,24–29], respectively. Specifically on the tangent bundle TSE(3)
associated with the special Euclidean group SE(3), Casau et al. [29]
present an application of hybrid control strategies to underactuated
vehicles, whereas Casau et al. [30] design hybrid control strategies
for fully actuated rigid bodieswith only landmark-based information.
Dual numbers introduced by Clifford [31] and later generalized by

Study [32] are often used to parameterize SE�3�. The advantage of
using dual quaternions is that the rigid-body pose (position and
orientation) can be represented in a compact formwithout separating
the problem formulation into translational and rotational parts. It
is a well-known fact that global asymptotic stabilization of rigid-
body attitude is subject to topological constraints [33,34]. Hence, a
rigid-body pose representation using unit dual quaternions (UDQs)
inherits the same topological difficulties as the rigid-body attitude
parameterization using unit quaternions (see [35,36] and the refer-
ences therein). Specifically, a UDQ provides a dual cover for the
elements in SE�3�, that is, for every element in SE�3�, there are
exactly two UDQs. Because such a representation of rigid-body pose
is nonunique, the control objective results in stabilizing a discon-
nected set of UDQs representing the same rigid-body position and
orientation. Similar to the problemof rigid-body attitude stabilization
in SO�3� [34], a continuous linear feedback law (as in [10,36,37])
results in the “unwinding” phenomenon, in which the feedback
unnecessarily rotates the rigid body up to a full rotation. A discon-
tinuous controller designed as in [38,39] would overcome such
undesired large rotation, but is not robust to small measurement
noise, and nonlinear controllers may suffer in terms of performance.
Hybrid feedback control [23] can overcome such topological
obstructions and provide robust global solutions for the rigid-body
attitude stabilization problem [34]. In the case of full-state measure-
ments (i.e., position, orientation, and linear and angular velocity
measurements), Filipe and Tsiotras [10] present a continuous con-
troller for rigid-body pose stabilization. Results associated with the
kinematic subproblem of rigid-body motion using hybrid hysteresis-
based UDQs are presented in [35], whereas an improved version
using a bimodal approach to reduce higher average settling time or
energy consumption is presented in [40]. In addition, model-predic-
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tive-control(MPC)-based dual-quaternion spacecraft pose control is
presented in [41,42]. In this paper, we adapt the hysteresis-based
switching strategy of rigid-body attitude presented in [33,34] to the
UDQ parameterization of rigid-body pose. This paper combines the
ideas of dual quaternions to represent rigid-body pose along with
hybrid system theory to design feedback controllers for set-point
stabilization and time-varying trajectory tracking problems. The
proposed hybrid control strategies address shortcomings in some of
the controllers previously proposed in the literature. Specifically, a
complete solution for rigid-body kinematic and kinetic control is
presented using a hybrid hysteresis-based switching strategy. Con-
sidering that the full-state (i.e., position, orientation, and linear and
angular velocities) measurements are available for feedback, the
following problems of interest are formalized in this paper:
1) A general hybrid feedback control solution with dual-quaternion

and dual-velocity feedback for a rigid-body constant set-point pose
stabilization is presented and its details are discussed in Sec. IV.A.
Unlike [35], in which only the attitude and translational kinematics
were treated, this paper treats hybrid control of both kinematics and
kinetics.
2) The problem of tracking a time-varying reference is discussed

in detail in Sec. IV.B. A hybrid control strategy to address a rigid-body
pose tracking a time-varying reference is formulated. As an improve-
ment to the results presented in [10,38,39], this paper establishes the
robust global asymptotic stability of rigid-body set-point stabilization
and time-varying reference tracking problems, respectively.
3) Robustness of the proposed algorithms to uncertainties is

discussed in Sec. IV.C.
4) Numerical examples for a rigid-body set-point stabilization and

time-varying reference tracking are given in Sec. V.

II. Preliminaries

A. Notation

The following notation and definitions are used throughout
the paper. Given a vector x ∈ Rn, jxj denotes the Euclidean vector
norm. B denotes the closed unit ball, of appropriate dimension,

in a Euclidean norm. Given a set S, S denotes its closure. Given
a point x ∈ Rn, jxjS ≔ infy∈Sjx − yj. The equivalent notation

� x⊤ y ⊤ �⊤, and �x; y� is used for vectors. Given a vector x ∈ Rn,

ν�x� ≔ � 0 x⊤ �⊤. Given a set S, S denotes its closure. Given a point

x ∈ Rn, jxjS ≔ infy∈Sjx − yj. An n × p zero vector/matrix is repre-

sented by 0n×p. The unit quaternion with scalar part equal to one and

the zero quaternion are given by 1 � �1; 03×1� and 0 � �0; 03×1�,
respectively.A functionα∶R� → R≥0 is said to belong to class-K if it

is continuous, zero at zero, and strictly increasing. A function
α∶R� → R≥0 is said to belong to class-K∞ if it belongs to class-K
and is unbounded. A function β∶R� × R� → R� is said to belong to
class-KL if it is nondecreasing in its first argument, nonincreasing in
its second argument, and lim s↘0β�s; t� � lim t→∞β�s; t� � 0.

B. Well-Posed Hybrid Systems

Hybrid systems are dynamic systems with both continuous and
discrete dynamics, in which a hybrid system H � �C; f;D; g� is
defined by the following objects: 1) a mapping f:Rn → Rn called
the flow map, 2) a mapping g:Rn → Rn called the jump map, 3) a set
C ⊂ Rn called the flow set, and 4) a set D ⊂ Rn called the jump set.
The flow map f defines the continuous dynamics on the flow set C,
whereas the jump map g defines the discrete dynamics on the jump
setD. These objects are referred to as the data of the hybrid systemH.
Given a state χ of the hybrid systemH, the notation χ� indicates the
values of the state after the jump. A solution ϕ to H is given on
extended time domain, called hybrid time domain, which is para-
meterized by the pairs �t; j�, where t is the ordinary time component
and j is a discrete parameter that keeps track of the number of jumps;
see [23]. Given a solution ϕ to H, the notation domϕ represents its
domain, which is a hybrid time domain. A solution toH is said to be
nontrivial if domϕ contains at least one point different from �0; 0�;
complete if domϕ is unbounded; and maximal if it cannot be

extended, that is, it is not a truncated version of another solution.
The set SH�ξ� denotes the set of all maximal solutions toH from ξ.

C. Rigid-Body Pose

The position and orientation of a rigid body with respect to a
generic reference frame are defined by its relative position p ∈ R3

and its relative orientation R ∈ SO�3�, which represents a rotation
from the body frame to the inertial frame. Namely, its position p and
orientationR form an element �p; R� of the three-dimensional special

Euclidean group SE�3� ≔ R3 × SO�3�. Given �p; R� ∈ SE�3�, a
UDQ associated with it is given by [43]

q̂ � qr � ϵqt (1)

where

qr �
�
ηr
μr

�
∈ S3:R � R�qr�;

qt �
�
ηt
μt

�
� 1

2
ν�p� ⊗ qr ∈ H;

ν�p� � � 0 p⊤ �⊤, andp ∈ R3 is the position of the center ofmass in

inertial frame. Notice that the position of the rigid body in the body
frame of reference is given by ν�pb� � q�r ⊗ ν�p� ⊗ qr ∈ Hv,

where pb ∈ R3. A list of basic UDQ operations is given in the
Appendix.

III. Problem Description

Given an orthonormal inertial frame fIg and an orthonormal body
frame fBg, fixed to the rigid-body, its dynamic equations ofmotion in
dual-quaternion representation [10,40] are given by (see Appendix
for details)

_̂qb � 1

2
q̂b ⊗ ν�ω̂b� M⋆ν� _̂ωs

b� � û − ν�ω̂b� × �M⋆ν�ω̂s
b�� (2)

where ν�ω̂b� � �0� ϵ0; ω̂b� ∈ Ĥv
, ν�ω̂s

b� � �0� ϵ0; ω̂s
b� ∈ Ĥv

,

ω̂s
b � vb � ϵωb, ω̂b � ωb � ϵvb, and ωb; vb ∈ R3 are the linear

and angular velocities of the rigid body with respect to the inertial
frame fIg represented in the body frame fBg, respectively; and
û � ν�F� � ϵν�τ� ∈ Ĥv

, where F ∈ R3 represents control forces

and τ ∈ R3 represents control torques applied to the rigid body in
its frame of reference. The dual inertia matrix (2) is given by

M �

2
66664

1 01×3 0 01×3

03×1 mI3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 J

3
77775 (3)

wherem ∈ R is themass of the rigid body, J � J⊤ > 0, and J ∈ R3×3

is themassmoment of inertia of thebodyabout its center ofmasswritten
in the body frame. Because themassm is positive and the inertia matrix
J is a real symmetric, positive-definite matrix, the dual inertia matrixM
in the aforementioned formulation is invertible.
With this dynamicmodel, themain goal of this paper was to design

a controller that asymptotically stabilizes the rigid-body pose to a

desired constant set point given by �q̂d; 0̂� ∈ Ŝ3 × Ĥv
or time-vary-

ing reference position, orientation, and velocities, t ↦ �q̂d�t�;
ν�ω̂d�t��� ∈ Ŝ3 × Ĥv

, where ω̂d�t� is the dual velocity of the desired
frame fDg with respect to the inertial frame fIg represented in the
body frame fBg.

To formally present the problem, let us define the dual-quaternion
and dual-velocity error variables of the body frame fBgwith respect
to the desired frame fDg resolved into fBg as

q ≔ q̂�d ⊗ q̂b ∈ Ŝ3
; ν�ω� ≔ ν�ω̂b� − ν�ω̂d� ∈ Ĥv

(4)
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Differentiating the aforementioned error variables and following
[36,44] yield the error dynamics:

_q � 1

2
q ⊗ ν�ω�

ν� _ωs� � M−1⋆�û − ν�ω̂b� × �M⋆ν�ω̂s
b��� − ν� _̂ωs

d� (5)

Then, in these error coordinates, convergence to the desired

constant set point �q̂d; 0̂� or to the time-varying reference

t ↦ �q̂d�t�; ν�ω̂d�t��� ∈ Ŝ3 × Ĥv
reduces to q converging to the

UDQ 	1̂ and ν�ω� converging to the dual quaternion 0̂. With this
reformulation, the problemwe solve in this paper is stated as follows.
For scenarios with full-state feedback, that is, the entire state �q̂b; ω̂b�
is available for feedback:
Problem 1: Given a constant set-point reference pose �q̂d; 0̂� ∈

Ŝ3 × Ĥv
or

Problem 2: Given a reference pose trajectory t ↦ �q̂d�t�;
ν�ω̂d�t��� ∈ Ŝ3 × Ĥv

Design a control law assigning û in Eq. (2), such that the resulting
closed-loop system satisfies the following properties:
1) Stability: trajectories to the closed-loop system in error coor-

dinates �q; ν�ω�� are such thatq stays close to either 1̂ or−1̂, and ν�ω�
stays close to zero when they start close to each respective point.
2) Attractivity: in the error coordinates �q; ν�ω��, the q component

converges to 1̂ or −1̂, with zero linear and angular velocities ν�ω�.
3) Robustness: for each compact set of initial conditions and level

of closeness to reference set point, there exists nonzero perturbation
to the closed-loop system, such that, for each initial position, ori-
entation, and linear and angular velocities of the rigid body in the said
compact set, the resulting trajectories converge to nearby the set
point, with a desired level of closeness.

IV. Hybrid Feedback Control and Stability

Given the rigid-body kinematics and dynamics in error coordinates
in Eq. (5), due to a desired constant or a time-varying structure of

the reference given by �q̂d; 0̂� ∈ Ŝ3 × Ĥv
, t ↦ �q̂d�t�; ν�ω̂d�t��� ∈

Ŝ3 × Ĥv
, respectively, in this section, we present the hybrid feedback

control design for each of these cases separately.

A. Problem 1: Rigid-Body Constant Set-Point Pose Stabilization

With the rigid-body kinematics and dynamics in error coordinates
in Eq. (5), as in the scenario of Problem 1, consider that a constant set-

point reference pose �q̂d; 0̂� ∈ Ŝ3 × Ĥv
is given and the output of

rigid-body dynamics [defined inEq. (2)] y � �q̂b; ω̂b� is available for
feedback.Hence, the error vector �q;ω� defined in Eq. (4) is available
for feedback. In addition, for the set-point stabilization problem,

because the desired dual velocity ν�ω̂d� � 0̂, the rigid-body kinemat-
ics and dynamics in error coordinates in Eq. (5) can be rewritten as
follows:

_q � 1

2
q ⊗ ν�ω�;

ν� _ωs� � M−1⋆�û − ν�ω� × �M⋆ν�ωs��� (6)

Adual-quaternion-based control law for such a system in Eq. (6) is
presented in [36] [theorem 1; Eq. (13)], which suffers from topologi-
cal obstructions. To overcome this limitation and solve Problem 1,
inspired by the formulation presented in [34], a dynamic feedback
that depends on the logic variable h ∈ f−1; 1g � :Q is proposed.
The proposed hybrid controller is given as follows:

_h � 0 �q; ν�ω�; h� ∈ C;

h� � −h �q; ν�ω�; h� ∈ D;

û � Iuκ�q; ν�ω�; h� (7)

where

Iu ≔

"
0 01×3

03×1 I3

#
;

κ�q; ν�ω�; h� ≔ −hkp�q� ⊗ �hqs − 1̂s�� − kdν�ωs�; (8)

kp; kd > 0,

C � f�q; ν�ω�; h� ∈ Ŝ3 × Ĥv ×Q: hηr ≥ −δg;
D � f�q; ν�ω�; h� ∈ Ŝ3 × Ĥv ×Q: hηr ≤ −δg (9)

with δ ∈ �0; 1�, and ηr is the scalar part of rotational error quaternion
qr ∈ S3, where q � qr � ϵqt. Hence, the hybrid closed-loop model

of the rigid-body error kinematics and dynamics includes system (6)

and the hybrid feedback controller (7–9). The closed-loop system

denoted by H � �C; f;D; g� has state ξ � �q; ν�ω�; h� ∈ Ŝ3×
Ĥv ×Q ≕ X and hybrid dynamics

_ξ � f�ξ� ξ ∈ C; ξ� � g�ξ� ξ ∈ D (10)

Remark: As in previous work using models in terms of UDQs

[10,36,37] and closed-loop systems with states using unit quaternions

and logic variables [24,34], we treat the state space of the closed-loop

system, namely, X , as a set embedded in a large-enough Euclidean

space [As in those references, this embedding allows us to employ

notions for closedness of sets and continuity of maps that are standard

in Euclidean spaces].
Details on hybrid system modeling are presented in Sec. II.B. The

flow and jump sets satisfy C ∪ D � X, and the maps f:X → X and

g:X → X are given by

f�ξ�≔
2
4

1
2
q⊗ ν�ω�

M−1⋆�Iuκ�ξ�− ν�ω� × �M⋆ν�ωs���
0

3
5; g�ξ�≔

2
4 q

ν�ωs�
−h

3
5

(11)

Because of the design of the hybrid feedback (7–9), this hybrid

system renders the compact set:

A � fξ ∈ X : q � h1̂; ν�ωs� � 0̂g (12)

globally asymptotically stable. (Details of this result are given in

Theorem V.2.) Note that, for a constant set-point stabilization prob-

lem, the linear and angular velocities of the fixed frame ν�vd� � 0,
ν�ωd� � 0. Hence, in other words, setA represents the desired rigid-

body pose error q � qr � ϵqt � h1̂ and dual-velocity error ν�ωs� �
ν�vb − vd� � ϵν�ωb − ωd� � 0̂ [i.e., the desired pose qr � 1,
qt � 0, angular velocity ν�ωb� � 0, and linear velocity ν�vb� � 0].
Remark V.1:Given the desired position, orientation, and velocities

�q̂d; ν�ω̂d�� ∈ Ŝ3 × Ĥv
, the first term in Eq. (8) can be written as

−hkp�q�⊗�hqs− 1̂s�� � −kp�hq�⊗�hqt�ϵ�hqr−1��� (13)

Using the quaternion multiplication rule, Eq. (13) can be rewritten as

follows:

−kph�q� ⊗ �hqs − 1̂s�� � −kp

"
ηrηt � μ⊤r μt

ηrμt − ηtμr − μr × μt

#

� ϵkp

"
1 − hηr � η2t � μ⊤t μt

−hμr

#
(14)

Therefore, the output of the dynamic feedback (7–9), using Eq. (4),

can be rewritten as follows:

MALLADI, BUTCHER, AND SANFELICE 1633

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

LI
FO

R
N

IA
 - 

SA
N

TA
 C

R
U

Z 
on

 N
ov

em
be

r 2
4,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
46

21
 



û �
�

0

−kp�ηrμt − ηtμr� � kp�μr × μt� − kd�vb − vd�

�

� ϵ

�
0

−hkpμr − kd�ωb − ωd�

�
(15)

Therefore, equating the input û � ν�F� � ν�τ� ∈ Ĥv
to Eq. (15)

results in the following expression for the force F ∈ R3 and torque

τ ∈ R3:

F � −kp�ηrμt − ηtμr� � kp�μr × μt� − kd�vb − vd�;
τ � −hkpμr − kd�ωb − ωd� (16)

Note that, for the set-point stabilization problem, namely,
Problem 1, the linear and angular velocities vd and ωd of the fixed

desired frame satisfy vd � 03×1, ωd � 03×1 in Eq. (16).
Next, the hybrid closed-loop system H satisfies the hybrid basic

conditions (see [23], proposition 6.10), and our main result is as
follows.
Theorem V.2: The set A in Eq. (12) is globally asymptotically

stable for the closed-loop system H.
Proof: For the hybrid closed-loop system (10), we first show that

every complete solution to it converges to A. For this purpose, we
use the invariance principle for hybrid systems in [23] for which H
has to satisfy the hybrid basic conditions, which is already the case
from the hybrid systemH formulation. After that, becauseH satisfies
the hybrid basic conditions, following Proposition 6.10 in [23],
we can conclude that every maximal solution to the hybrid system
is complete, in this way showing the asymptotic stability of A.
Now, to show convergence of complete solutions to A, consider

the Lyapunov function candidate V:X → R given by

V�ξ� � 1⊤V�ξ� ∀ ξ ∈ X (17)

where V:X → Hs is defined as

V�ξ� ≔ kp�hq − 1̂� ∘ �hq − 1̂� � 1

2
ν�ωs� ∘ �M⋆ν�ωs�� ∀ ξ ∈ X

The constant 1̂ � 1� ϵ0, 1 � �1; 03×1�, and ∘ operator
for the UDQs is defined in item 8.d in the Appendix. With

qr � �ηr; μr� ∈ S3, qt � �0; μt� ∈ Hv as defined in Eq. (1),
ν�ω� � �0;ωb� ∈ Hv, ν�v� � �0; vb� ∈ Hv, as defined in Eq. (4),

since qr ∈ S3, η2r � μ⊤r μr � 1 and with h2 � 1, Eq. (17) can be
simplified as

V�ξ� � 2kp�1 − hηr� � kp�μ⊤t μt� �
1

2
�mv⊤b vb � ω⊤

b Jωb� (18)

The Lyapunov function in Eq. (18) satisfies V�ξ� � 0 for all
ξ ∈ A; V�ξ� > 0 for all ξ ∈= A. In addition, for any c > 0, there
exists an r > 0, such that V�ξ� > c whenever jξj > r. Thus, the set
Ωc ≔ fξ ∈ X :V�ξ� ≤ cg is compact for every c > 0.
Next, the time derivative of the Lyapunov function candidate V in

Eq. (17) along the flows is given by

d

dt
V�ξ� � 1⊤

�
d

dt
V�ξ�

�

� 1⊤
�
kph�hq− 1̂� ∘ d

dt
�q�� kph

d

dt
�q� ∘ �hq− 1̂�

� 1

2
ν�ωs� ∘

�
M⋆

d

dt
�ν�ωs��

�
� 1

2

d

dt
�ν�ωs�� ∘ �M⋆ν��ωs���

�
(19)

[By �d∕dt��V�ξ��, we mean the inner product between the gradient of
V and the vector field f governing the continuous change of ξ given
in Eq. (10)].

Next, using the properties in items 10.c and 10.d of the Appendix,

respectively

d

dt
V�ξ��1⊤�2kph�hq− 1̂� ∘ d

dt
�q��ν�ωs� ∘

�
M⋆

d

dt
�ν�ωs���

�
(20)

With f in Eq. (10) and property 13 in the Appendix

d

dt
V�ξ� � 1⊤�2kph�hq − 1̂� ∘

�
1

2
q ⊗ ν�ω�

�

� ν�ωs� ∘ M⋆M−1�Iuκ�ξ� − ν�ω̂b� × �M⋆ν�ω̂s
b����

(21)

for each ξ ∈ C. Given q1; q2; q3 ∈ Ĥ, respectively, from the

Appendix, following the property in item 10.a, the first term in

Eq. (21) can be written as follows:

kph�hq − 1̂� ∘ �q ⊗ ν�ω�� � ν�ωs� ∘ �q� ⊗ kph�hqs − ϵ1�� (22)

Next, the second term in Eq. (21) with û � Iuκ�ξ� is given by

ν�ωs� ∘ �û − ν�ω� × �M⋆ν�ωs���
� ν�ωs� ∘ û − ν�ωs� ∘ �ν�ω� × �M⋆ν�ωs��� (23)

Using the operation in items 10.b and 10.f along with the

cross-product operation of the dual quaternion in item 10.g of the

Appendix, the second term in Eq. (23) results in the following:

ν�ωs� ∘ �ν�ω� × �M⋆ν�ωs��� � 0̂

Then, combining these steps, we have

ν�ωs� ∘ �û − ν�ω� × �M⋆ν�ωs���
� ν�ωs� ∘ Iuκ�ξ� − ν�ωs� ∘ �ν�ω� × �M⋆ν�ωs���;
� ν�ωs� ∘ Iuκ�ξ� (24)

Therefore, from Eqs. (22) and (23), since kp > 0 is a constant and

h ∈ Q

d

dt
V�ξ� � 1⊤�ν�ωs� ∘ �q� ⊗ kph�hqs − ϵ1�� � ν�ωs� ∘ Iuκ�ξ��;

� 1⊤�ν�ωs� ∘ �kphq� ⊗ �hqs − ϵ1� � Iuκ�ξ���

From Eq. (8), since Iuκ�ξ� � Iu�−kphq� ⊗ �hqs − 1̂s�−
kdν�ωs�� ∈ Ĥ, we get

d

dt
V�ξ��1⊤�ν�ωs�∘�kphq�⊗�hqs−ϵ1��Iu�−kphq�⊗�hqs−ϵ1����

−1⊤�kdν�ωs�∘ν�ωs�� (25)

where

Iu �
�

0 01×3

03×1 I3

�
; kp; kd > 0

With the ∘ operator defined in item 8.d in the Appendix, the

nonvelocity term in Eq. (25), using the definitions v � vb − vd,
ω � ωb − ωd (for notational simplicity), reduces to

d

dt
V�ξ� � −1⊤�kdν�ωs� ∘ ν�ωs�� � −kdω⊤ω − kdv

⊤v (26)

Therefore, from Eq. (26), defining, for each ξ ∈ C
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uC�ξ� ≔
�
−kdω⊤ω − kdv

⊤v if ξ ∈ C

−∞ otherwise
(27)

we can see that d
dt V�ξ� � uC�ξ� ≤ 0.

Next, at jumps, for each ξ ∈ D, the Lyapunov function candidateV
in Eq. (17) changes as follows:

V�g�ξ��−V�ξ��1⊤�kp��−hq−1̂�∘�−hq−1̂��−��hq−1̂�∘�hq−1̂���

Givenq≔ qr � ϵqt, whereqr � �ηr; μr� ∈ S3,qt � �0; μt� ∈ Hv

are defined in Eq. (1):

V�g�ξ��−V�ξ�
� 1⊤�kp��−h�qr � ϵqt�− 1̂� ∘ �−h�qr � ϵqt�− 1̂��
− ��h�qr � ϵqt�− 1̂� ∘ �h�qr � ϵqt�− 1̂���

� kp�μr ⋅ μr ��hηr � 1�2 − μr ⋅ μr − �hηr − 1�2� � 4kphηr (28)

Because, for each point ξ in D, hηr ≤ −δ

V�g�ξ�� − V�ξ� ≤ −4kpδ

Defining, for each ξ ∈ D

uD�ξ� ≔
�
−4kpδ if ξ ∈ D

−∞ otherwise
(29)

we have V�g�ξ�� − V�ξ� � uD�ξ� < 0 for all ξ ∈ D \ A.

1. Completeness of Maximal Solutions

We have that uC�ξ� and uD�ξ� are nonpositive for all ξ ∈ X . And
hence, every solution ϕ ∈ SH�ϕ�0; 0��, where ϕ�0; 0� ∈ X to the
hybrid system in Eq. (10) remains inX for all �t; j� ∈ dom�ϕ�. Also,
A is compact and theLyapunov functionV is positive definite relative
to A, the sublevel set Ωc ≔ fξ ∈ X :V�ξ� ≤ cg is compact for every
c > 0, andV is nonincreasing along the solutions ofH. These results
show that any solution ϕ to the hybrid systemH is bounded and does
not blow up in finite time. Also, g�D� ⊂ C ∪ D, which shows that
every solutionϕ to systemH does not jump out ofC ∪ D. Therefore,
from [23] (proposition 2.10), because conditions �b� and �c� therein
are not satisfied, we conclude that every maximal solution to the
closed-loop system H is complete.

2. Application of Invariance Principle for Hybrid Systems

The growth of V along the solutions toH is bounded by uC�ξ� and
uD�ξ� onX . BecauseH satisfies the hybrid basic conditions andV in
Eq. (17) is continuous, the invariance principle for hybrid systems
given in Theorem 8.2 of [23] implies that every precompact (com-
plete and bounded) solution to the hybrid system (10) converges to
the largest weakly invariant setW contained in

V−1�a� ∩ X ∩
�
u−1C �0� ∪ �u−1D �0� ∩ g�u−1D �0���

�
(30)

for some a ∈ R≥0. Note that, for every point in Ŝ
3
, μ � μr � ϵμt �

03×1 � ϵ03×1 implies η � ηr � ϵηt � 	1� ϵ0. By evaluating the
dynamics (10) along solutions that remain in Eq. (30), we have that

ν�ω� ≡ 0̂. Therefore, with f in Eq. (10) and the expression of input û

in Eq. (15), ν�ωs� ≡ 0̂ implies μ � μr � ϵμt � 03×1 � ϵ03×1, and

since hηr ≥ −δ with δ ∈ �1; 0�, then for all ξ ∈ X ∩ u−1C �0�,
q � h1̂. Hence

W ⊂ fξ ∈ X : hηr ≥ −δ; ηr � 	1; μr � 03×1; ηt � 0; μt

� 03×1; ν�ωs� � 0̂g ∩ V−1�a�
⊂ fξ ∈ X : q � h1̂; ν�ωs� � 0̂g ∩ V−1�a�

Then, because the only invariant set is fora � 0, Eq. (30)witha �
0 is contained in A, that is

W ⊂ fξ ∈ X : q � h1̂; ν�ωs� � 0̂g ∩ V−1�0� ⊂ A

Because every maximal solution to H is precompact, each maxi-

mal solution ϕ toH converges toA. We conclude thatA is globally

attractive for the hybrid systemH. Because the functionV in Eq. (17)

is positive definite relative toA and nonincreasing along the solutions

of H, A is stable for the closed-loop hybrid system. Hence, we

conclude that the set A is globally asymptotically stable for the

hybrid systemH. □

B. Problem 2: Rigid-Body Time-Varying Reference Pose Tracking

Let us consider the rigid-body dynamics between an orthonormal

inertial frame fIg and an orthonormal body frame fBg, as outlined in
Sec. III. Let t ↦ xd�t� ≔ �pd; qd; vd;ωd��t� denote a smooth trajec-

tory evolving on S3 × R9 for all t ≥ 0 satisfying the following

assumption:
Assumption V.3: Let π:S3 × R9 → S3 × R3 denote the canonical

projection of S3 × R9 on to S3 × R3. The reference trajectory t ↦
xd�t� ≔ �pd; qd; vd;ωd��t� is a complete and bounded solution to
_xd � ζ�xd� satisfying

d

dt
π�pd�t�; qd�t�; vd�t�;ωd�t��

� �vd�t� − S�ωd�t��pd�t�;
1

2
qd�t� ⊗ ωd�t�� (31)

for each t ≥ 0 and for some continuously differentiable vector field ζ
on S3 × R9.
To this trajectory t ↦ xd�t� satisfying Assumption V.3, for each

t ≥ 0, onemay associate a desired reference frame fDg. The origin of
such a desired reference frame is located at pd�0� ∈ R3 with orien-

tation given by qd�0� ∈ S3. In addition, a UDQ associated with this

desired reference frame is given by [43]

t ↦ q̂d�t� ≔ qd�t� � ϵqdt �t� (32)

where t ↦ qdt�t� � �1∕2�qd�t� ⊗ ν�pd�t�� ∈ Hv for all t ≥ 0. With

this desired frame reference trajectory, the main goal in this section is

as follows:
Problem 2: Given a reference trajectory t ↦ �q̂d�t�; ω̂d�t�� ∈

Ŝ3 × Ĥv
, design a control law as a function of the sensor outputs

and the reference trajectory t ↦ �q̂d�t�; ω̂d�t�� ∈ Ŝ3 × Ĥv
, such that

lim
t→∞

q�t� � 	1̂; lim
t→∞

ω�t� � 0̂

for all initial conditions, where

q � q̂�d ⊗ q̂b ∈ Ŝ3
; ν�ω� ≔ ν�ω̂b� − ν�ω̂d� ∈ Ĥv

(33)

�q̂b; ω̂b� ∈ Ŝ3 × Ĥv
is the state of the orthonormal body frame fBg, is

outlined in Sec. IV. Differentiating the error variables in Eq. (33),

following [36,44], the dynamics of the error variables are given as

follows:

_q � 1

2
q ⊗ ν�ω�

ν� _ωs� � M−1⋆�û − �ν�ω� � ν�ω̂d�� × �M⋆�ν�ωs� � ν�ω̂s
d���

−M⋆ν� _̂ωs
d�� (34)

where û ∈ Ĥv
is the total dual force resolved into the body frame.

Therefore, to solve Problem 2, let us consider a hybrid feedback,

similar to the hybrid controller in Eq. (7), which depends on the logic

variable h ∈ f−1; 1g � :Q, along with a feedforward term that
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depends on a reference input �ν�ω̂s
d�; ν� _̂ωs

d�� ∈ Ĥv × Ĥv
, given as

follows. [We consider that the reference input is generated on the

hybrid time domain �t; j� ↦ �ν�ω̂s
d�t; j��; ν� _̂ωs

d�t; j���.]

_h � 0 �q; ν�ω�; h� ∈ C;

h� � −h �q; ν�ω�; h� ∈ D;

û � Iu ~κ�q; ν�ω�; h; ν�ω̂s
d�; ν� _̂ωs

d�� (35)

where

Iu�
"

0 01×3

03×1 I3

#
;

~κ�q;ν�ω�;h;ν�ω̂s
d�;ν� _̂ωs

d��≔κfb�q;ν�ω�;h;ν�ω̂s
d���κff�ν�ω̂s

d�;ν� _̂ωs
d��
(36)

the terms

κfb�q; ν�ω�; h; ν�ω̂s
d�� � κ�q; ν�ω�; h� � ν�ω� × �M⋆ν�ω̂s

d��
� ν�ω̂d� × �M⋆ν�ωs��;

κff�ν�ω̂s
d�; ν� _̂ωs

d�� � ν�ω̂d� × �M⋆ν�ω̂s
d�� �M⋆ν� _̂ωs

d�

The constants kp; kd > 0, and the function κ�q; ν�ω�; h� is given in
Eq. (8)

C � f�q; ν�ω�; h� ∈ Ŝ3 × Ĥv ×Q: hηr ≥ −δg;
D � f�q; ν�ω�; h� ∈ Ŝ3 × Ĥv ×Q: hηr ≤ −δg (37)

with δ ∈ �0; 1�, and ηr is the scalar part of rotational error quatern-
ion qr ∈ S3.
The hybrid closed-loop model for the rigid-body tracking error

kinematics and dynamics includes system (34) and the hybrid con-
troller given in Eqs. (35–37). The closed-loop system denoted by

HT � �C; f;D; g� has state ξ � �q; ν�ω�; h� ∈ Ŝ3 × Ĥv ×Q � :X
and hybrid dynamics represented by Eq. (10). The flow and jump sets
satisfy C ∪ D � X, and due to the design of the controller (35–37),
the maps f:X → X and g:X → X are given by

f�ξ�≔

2
664

1
2
q⊗ ν�ω�

M−1⋆�Iuκ�ξ�− ν�ω�× �M⋆ν�ωs���
0

3
775; g�ξ�≔

2
4 q

ν�ωs�
−h

3
5

(38)

Therefore, the objective specified in Problem 2 is equivalent to the
global asymptotic stabilization of setA in Eq. (12). Next, this hybrid
closed-loop systemHT satisfies the hybrid basic conditions (see [23],
proposition 6.10). The next result states that the proposed hybrid
controller solves the rigid-body pose tracking problem in Problem 2.
Theorem V.4: Set A in Eq. (12) is globally asymptotically stable

for the closed-loop system HT .
Proof:With the choice of the hybrid feedback and the feedforward

terms in Eq. (36), the hybrid closed-loop model for the time-varying
reference pose tracking (38) reduces to the hybrid model for constant
set-point pose stabilization (11). Because the dynamics of the hybrid
closed-loop systemHT in Eq. (38) match the dynamics of the hybrid
systemH in Eq. (11), the proof of this theorem follows the proof of
Theorem V.2. □

C. Robustness of the Closed-Loop System

To be able to copewith perturbations arising in real-world settings,
let us consider that the plant (10) or (38) is affected by unmodeled
dynamics given by ê � �e1; 0� � ϵ�e2; 0� ∈ X, ei ∈ R8, i ∈ f1; 2g,
and measurement error m̂ � �m1; 0� � ϵ�m2; 0� ∈ X, mi ∈ R8,
i ∈ f1; 2g, respectively, resulting in a perturbed closed-loop system
with continuous dynamics and measurements:

_ξ � f�ξ� � ê y � �q;ω� � m̂ (39)

where the error parameters in the original coordinates

ξ � �q; ν�ω�; h� ∈ Ŝ3 × Ĥv ×Q � :X can also be defined as

ê��êq; êω;0�∈X , êq≔ �e1r �ϵe2t�∈ Ŝ3
, êω≔ �e1ω �ϵe2v�∈ Ĥv

,

m̂��m̂q;m̂ω;0�∈X , m̂q≔ �m1r
�ϵm2t

�∈ Ŝ3
, and m̂ω≔ �m1ω

�
ϵm2v

�∈ Ĥv
. In addition, let us define r ≔ �e1; e2; m1; m2� ∈ R16.

For simplicity, the robustness results are presented only for the hybrid
system (10). Note that the result in this section also holds for the
hybrid system with tracking model HT in Eq. (38).
Following the fact thatH is well-posed, and the global asymptotic

stability property of setA for the closed-loop systemH established in
TheoremV.2 ([23], lemma 7.20) automatically leads to the following
result about robustness of asymptotic stability:
Theorem V.5: Set A in Eq. (12) is semiglobally, practically

robustly KL asymptotically stable for the closed-loop system H;
namely, there exists class-KL function β, such that, for each ϵ > 0
and each compact setM ⊂ X , there exists ρ > 0, such that, for each
measurable r:R≥0 → ρB, every solution ϕ to the hybrid system H
with initial condition ϕ�0; 0� ∈ M and perturbation r satisfies

jϕ�t; j�jA ≤ β�jϕ�0; 0�jA; t� j� � ϵ ∀ �t; j� ∈ domϕ (40)

In Theorem V.5, “practical”means that the solutions to the hybrid
system H, in the presence of some small disturbances, converge
ϵ > 0 close to the desired set A in a semiglobal manner, namely,
when the solutions start from arbitrary compact sets of initial con-
ditions. A proof of this result is available in chapter 7 of [23].

V. Simulations

A. Simulation Parameters

To verify the ideas presented in this paper, we apply the hybrid
hysteresis-based switching strategy to a rigid-body model with mass
m � 1 kg and inertia

J �

2
664

1 0.1 0.15

0.1 0.63 0.05

0.15 0.05 0.85

3
775 kg ⋅m2

as in [36]. In the results presented as follows, each of the plots shows
simulations of hybrid, discontinuous, and continuous controllers. For
the simulations labeled hybrid, the hysteresis half-width δ ∈ �0; 1�
and h�t; j� ∈ f−1; 1g. When the hysteresis width δ � 0, the control-
ler reduces to discontinuous scheme, where

h ≔ sgn�ηr� �
�
−1 ηr < 0

1 ηr ≥ 0
(41)

When δ > 1, h � 1 and a continuous controller exhibiting
unwinding is implemented. To this end, simulations associated with
full-state feedback using hybrid feedback (7–9), where the output of
the system (6) is measured as y � �q̂b; ω̂b� [and hence, the error
vector �q;ω� is available for feedback], are presented in Sec. V.B.
And the simulation results associated with the hybrid tracking feed-
back controller (35–37) with measurement of dual quaternion qb
are presented in Sec. IV.B. Following the results in Sec. IV.C, for all
the simulation results as follows, the measured value of the pose
qm ≔ q� kmq∕jq� kmqj, where mq � e∕jej is the normalized

error. Each value of e is drawn from a zero-mean Gaussian distribu-
tion with unit variance; k was drawn from a uniform distribution on
the interval (0, 0.2) for set-point stabilization in Sec. V.B and the
interval (0, 0.02) for the tracking control presented in Sec. V.C. This
additional noise in the states results in chattering behavior for the
switching signal sgn�ηr� for the discontinuous controller, whereas the
hysteresis-based hybrid logic is impervious to such noise, as shown
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in Figs. 1, 2, and 6 (code at https://github.com/HybridSystemsLab/

DualQuaternionBasedHybridController).

B. Set-Point Pose Stabilization

The response of the closed-loop rigid-body dynamics with

hybrid feedback (7–9), when dual-quaternion error and velocity

errors �q;ω� are available for feedback, is presented in Fig. 1.

The simulations are performed with the initial condition set to

pb�0; 0� � �25; 25; 25 m� (position in the body frame), velocity

vb�0;0���0.1;0.2;0.3m∕s�, and orientation qbr�0;0���0;0.4243;
0.5657;0.7071�, which corresponds to the principal angle of

rotation, θ � 180 deg, where θ ≔ �trace�R� − 1�∕2, angular veloc-
ity ωb�0; 0� � �0.2; 0.4; 0.6 rad∕s�, and h � 1. The energy-based

controller has the gains kd � 0.5, kp � 0.5 and a hysteresis gap of

δ � 0.1. Figure 1 also shows a comparison between the linear

continuous controller with h � 1, a discontinuous controller where

the switching logic variable h ≔ sgn�ηr� as in Eq. (41), and the hybrid
controller with h ∈ f−1; 1g as in Sec. IV.A. Next, we consider a larger
hysteresiswidth of δ � 0.4, and repeat the simulationswith the same set

of initial conditionsanduncertaintiesas in theprecedinganalysis (Fig.1).

The hybrid controller now exhibits the same unwinding solution as the

linear continuous controller due to the larger hysteresis gap. As dis-

cussed previously in [34], there is a correlation between hysteresiswidth

δ and the sensitivity of the controller (7) to noise and the control effort, as
shown in Figs. 1 and 2.

C. Pose Tracking

To simulate the rigid-body pose tracking algorithm presented in

Sec. IV.B, let us consider that the desired reference position and

orientation satisfying Assumption V.3 are generated by the following

dynamics:

_qd � 1

2
qd ⊗ ν�ωd

d∕I�

_qdt �
1

2
qd ⊗ ν�vdd∕I� �

1

2
qdt ⊗ ν�ωd

d∕I�
_ωd
d∕I � 03×1

_vdd∕I � �0; 0;−0.0098� − ωd
d∕I × vdd∕I (42)

where ωd
d∕I; v

d
d∕I are the angular and linear velocities of the desired

frame with respect to the inertial frame expressed in the desired

frame, respectively. With these sets of equations in Eq. (42), the

reference pose to be tracked is generated using the following initial

conditions: qd�0; 0� � �1; 0; 0; 0�, qdt�0; 0� � �0; 0; 0; 0�, ωd
d∕I �

Fig. 1 Closed-loop response of the controllers subjected to noise with the switching logic h � 1 and δ � 0.1.

Fig. 2 Unwinding in rigid-body rotational and translational dynamics with the switching logic h � 1 and δ � 0.4.
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�−0.1; 0.65;−0.2� rad∕s, and vdd∕I � �−0.5; 0.1; 0.1� m∕s. The cor-
responding reference trajectory is presented in Fig. 3. Next, the rigid

body that tracks the reference pose in Fig. 3 has the dynamics as

given in Eq. (2), and its initial conditions are given as follows:

qbr�0; 0� � �0.1; 0.2659; 0.5318; 0.7978�, qbt�0; 0� � �−1.1966;
−0.4318; 0.7648;−0.2159�, pb � �2; 2; 1� m (position in the body

frame), ωb � �−0.6; 0.6; 1� rad∕s, and vb � �1; 0.5; 0.5� m∕s.
The hybrid feedback controller (35–37) is implemented with the

gains kp � 4, kd � 4. Noise is added to the simulations, as discussed

in Sec. V.A. As shown in Fig. 4, the rigid body tracks the reference

orientation, position, and angular and linear velocities, respectively. In

addition, Fig. 5 illustrates the position of the rigid body as seen in the

rigid-body frame of reference and desired frame of reference.
As discussed in the set-point stabilization problem in Sec. V.B,

a discontinuous controller where the switching logic variable h ≔
sgn�ηr� as in Eq. (41) would result in chattering and not tracking the
desired reference, whereas a hybrid controller with h ∈ f−1; 1g
tracks the reference pose efficiently in the presence of measurement

errors. These results are illustrated in Fig. 6.

Fig. 4 Rigid-body pose tracking with controller (35–37), h � 1, and δ � 0.4 resolved into the rigid-body frame of reference.

Fig. 5 Desired and rigid-body trajectories expressed in desired frame of reference and rigid-body frame of reference, respectively.

Fig. 3 Reference trajectory generated with Eq. (42) and resolved into the desired, body frames of reference, respectively.
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VI. Conclusions

In this paper, a hybrid UDQ feedback control scheme was pro-

posed for rigid-body robust pose stabilization with full state of the

system available for feedback. The stability of the closed-loop system

was guaranteed through an energy-based Lyapunov function analysis

using invariance principles for hybrid systems presented as set-point

stabilization and tracking problems. It has been shown that the

proposed control schemes can globally asymptotically stabilize the

kinematics and kinetics, and establish global asymptotic stability for

a rigid-body. In addition, these proposed hybrid schemes allow for

the controlled system to be stable in the presence of uncertainty,

which would otherwise cause chattering about the point of discon-

tinuous control. Simulation results for the rigid-body motion are

presented. For future research directions, these results will be

extended to the problem of spacecraft formation flying under orbit/

attitude coupling forces and moments, such as atmospheric drag,

gravity gradients, and solar radiation pressure, whichmake it imprac-

tical to design separate controllers for the translational and rotational

dynamics.

Appendix: Dual Quaternions

1)A set of quaternions (not necessarily normalized) are denoted by

H ≔ fq:q � �η; μ�; η ∈ R; μ ∈ R3g, in which η ∈ R is the scalar

part and μ ∈ R3 is the vector part.
2) S3 denotes the set of unit quaternions, which is often used to

parameterize the Lie group SO(3) of rigid-body attitude, where each

unit quaternion is such that jqj2 � η2 � μ⊤μ � 1. Trivially, S3 ⊂ H.
3) The set S3 has, under the quaternion product, an identity

element 1 � �1; 03×1�, and eachq � �η; μ� ∈ S3 has an inversegiven
by the quaternion conjugate q� � �η;−μ�.
Note that, given q1; q2 ∈ H, where q1 � �η1; μ1� and q2 � �η2; μ2�,
under the quaternion multiplication rule, we have

q1 ⊗ q2 �
�

η1η2 − μ⊤1 μ2

η1μ2 � η2μ1 � μ1 × μ2

�

4) The set of dual quaternions is given by

Ĥ ≔ fq̂: q̂ � �η̂; μ̂� � qr � ϵqt; qr; qt ∈ Hg

where ϵ is the unit dual, defined as ϵ ≠ 0, ϵ2 � 0, and given

q̂ � �η̂; μ̂� ∈ Ĥ
a) η̂ � ηr � ϵηt is the dual scalar part, where ηr; ηt ∈ R.
b) μ̂ � μr � ϵμt is the dual vector part, where μr; μt ∈ R3.
c) qr � �ηr; μr� ∈ H, where ηr ∈ R, μr ∈ R3.
d) qt � �ηt; μt� ∈ H, where ηt ∈ R, μt ∈ R3.

5) The space Ĥv
denotes the dual quaternions with zero scalar part

[i.e., Ĥv ≔ fq̂ � �η̂; μ̂� ∈ Ĥ: η̂ � 0g].
6) The set of dual quaternions with zero vector part is given

by Ĥs ≔ fq̂ � �η̂; μ̂� ∈ Ĥ: μ̂ � 03×1g.
7) Given a dual quaternion q̂ ∈ Ĥ, the following definitions hold:
a) Conjugate: q̂� � q�r � ϵq�t � �η̂;−μ̂�.

b) Swap: q̂s � qt � ϵqr
where q� � �η;−μ� is the conjugate of a given quatern-
ion q � �η; μ�.
8) Given any dual quaternions q̂1; q̂2; q̂3 ∈ Ĥ, we define the

following:
a) Dual-quaternion multiplication: q̂1⊗ q̂2�qr1 ⊗qr2�ϵ�qr1 ⊗

qt2�qt1 ⊗qr2�∈Ĥ.

b)Dot product: q̂1 ⋅q̂2��1∕2��q̂�1⊗ q̂2�q̂�2⊗ q̂1���1∕2��q̂1⊗
q̂�2�q̂2⊗ q̂�1��qr1 ⋅qr2�ϵ�qt1 ⋅qr2�qr1 ⋅qt2�∈Ĥs

.

c) Cross product: q̂1 × q̂2 � �1∕2��q̂1 ⋅ q̂1 − q̂�2 ⋅ q̂�1� ∈ Ĥv
.

d) Circle product: q̂1 ∘ q̂2 � qr1 ⋅ qr2 � qt1 ⋅ qt2 .
e) Dual norm: kq̂k2 � q̂ ⊗ q̂� � q̂� ⊗ q̂ � q̂ ⋅ q̂.
f) M⋆q̂��M11qr�M12qt��ϵ�M21qr�M22qt�, Mij ∈ R4×4,

i; j ∈ f1; 2g.
Note that, given a matrix M ∈ R4×4 and a quaternion q �
�η; μ� ∈ H

Mq � �m11η�m12μ; m21η�m22μ� ∈ H

where m11 ∈ R, m12 ∈ R1×3, m21 ∈ R3×1, and m22 ∈ R3×3 are
entries of

M �
�
m11 m12

m21 m22

�

9) The zero dual quaternion is given by 0̂ � 0� ϵ0.
10) The sub bullet points are the properties satisfied by the dual

quaternions q̂1; q̂2; q̂3 ∈ Ĥ satisfy the following properties:
a) q̂1 ∘ �q̂2 ⊗ q̂3� � q̂s2 ∘ �q̂s1 ⊗ q̂�3� � q̂s3 ∘ �q̂�2 ⊗ q̂s1�.
b) q̂1 ∘ �q̂2 × q̂3� � q̂s2 ∘ �q̂3 × q̂s1� � q̂s3 ∘ �q̂s1 × q̂2�.
c) �M⋆q̂1� ∘ q̂2 � q̂1 ∘ �M⊤⋆q̂2�.
d) q̂1 ∘ q̂2 � q̂2 ∘ q̂1.
e) q̂s1 ∘ q̂s2 � q̂1 ∘ q̂2.
f) �q̂s1�s � q̂1.
g) q̂1 × q̂1 � 0̂.

11) The set of unit dual quaternions (UDQs) is denoted by Ŝ3
,

where each UDQ q̂ � qr � ϵqt ∈ Ĥ, qr, qt ∈ H, under the dual
norm:

kq̂k2 � q̂ ⊗ q̂� � q̂� ⊗ q̂ � qr ⊗ q�r � ϵ�qr ⊗ q�t � qt ⊗ q�r �

is such that qr ⊗ q�r � 1 and qr ⊗ q�t � qt ⊗ q�r � 0.
12) The set Ŝ3

has, under the dual-quaternion multiplication, an

identity element 1̂, where 1̂ � 1� ϵ0, 1 � �1; 03×1�, 0 � �0; 03×1�,
and the inverse given by the dual-quaternion conjugate q̂�.
13) Given an invertible matrix M ∈ Rn×n, we define the opera-

tion M⋆M−1 ≔ In.
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