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A B S T R A C T   

Increasing forest productivity is important to meet future demand for forest products, and to improve resilience 
in the face of climate change. Forest productivity depends on many things, but the timing of leaf development 
(hereafter: “plant phenology”) is especially important. However, our understanding of how plant phenology 
affects the productivity of managed forests, and how silviculture may in turn affect phenology, has been limited 
because of the spatial scale mismatch between phenological data and field experimental observations. In this 
study, we take advantage of a new 30 m satellite land surface phenology dataset and stand growth measurements 
from long-term experimental pine plantation sites in the southeastern United States to investigate the question: is 
stand growth related to remotely sensed phenology metrics? Multiple linear regression and random forest models 
were fitted to quantify the effect of phenology and silvicultural treatments on stand growth. We found that 1) 
Greater wood volume growth was associated with longer green up periods; 2) Fertilization elevated EVI2 
measurement values during the whole growing season, especially in the winter; 3) Competing vegetation could 
affect remotely sensed observations and complicates interpretation of remotely sensed phenology metrics.   

1. Introduction 

Forests play an important role in our environment and economy. The 
demand for forest products is rising due to the continued increase of 
Earth’s population, while land degradation and urbanization have 
significantly reduced productive forestland (Wear and Greis, 2002). 
Forest managers have applied increasingly intensive silvicultural prac
tices including site preparation, competition control, fertilization, and 
genetic improvement to increase forest productivity (Fox et al., 2007). 
Although the impacts of climate change on forest productivity vary 
across the landscape (Boisvenue and Running, 2006), silvicultural 
practices may need to adapt in order to maintain forest productivity in a 
changing climate (Brang et al., 2014). Thus, understanding the inter
active roles of climate change and silvicultural practices on forest pro
ductivity is important to maintain future ecosystem function and 
productivity in order to meet demand for wood products in the face of 
future climate change. 

The definition of forest productivity varies (Grier, 1989). In an 
ecologist’s perspective, intending to measure carbon storage, forest 
productivity could mean the total amount of plant material produced 

per unit area per year, net primary productivity (NPP). It could also 
mean net ecosystem production (NEP), which is NPP minus heterotro
phic respiration (Kirschbaum et al., 2001). If we consider the environ
mental effects from forest animals, forest productivity could refer to 
aboveground net primary productivity (ANPP) as well. From a forest 
manager’s view, however, forest productivity represents wood produc
tion per unit forest area per year. To better utilize data from the field 
experiments, here we use stand volume increment per unit area per year 
as the metric to represent forest productivity. 

Although forest productivity depends on many factors, the timing of 
leaf development (hereafter: “plant phenology”) is especially important. 
Plant phenology is one of the more sensitive indicators of environmental 
change (Parry et al., 2007). It responds not only to climate factors (Clark 
et al., 2014; Meng et al., 2020) such as temperature, light, and precip
itation, but also to factors including soil moisture and nitrogen avail
ability (Luo et al., 2020; Penuelas et al., 2009; Piao et al., 2019), 
performing as an integrative indicator of the living environment of 
vegetation. More importantly, phenological dynamics are critical to 
diagnose forest health problems and identify invasive species (Morisette 
et al., 2009), both of which directly affect forest productivity. 
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In addition, changes in phenology strongly affect carbon cycling and 
energy balance in terrestrial ecosystems (Jeong et al., 2009; Piao et al., 
2019). Plant phenology influences gross primary production (GPP) and 
net primary production (NPP) of forest ecosystems (Chang et al., 2019; 
Kaduk and Heimann, 1996; Keenan et al., 2014; Wang et al., 2017). The 
effect of altered phenological regimes on forest productivity appears to 
vary, with some studies indicating increased carbon uptake with 
warming-induced longer growing seasons (Keenan et al., 2014; Piao 
et al., 2017), and others indicating greater losses due to autumnal 
warming (Piao et al., 2008). As a direct measurement, stand volume 
growth represents a large portion of carbon sequestered from the at
mosphere in forest systems (Albaugh et al., 1998; Gonzalez-Benecke 
et al., 2014) and is related to annual NPP, so it can also be an important 
indicator of the changing carbon dynamics. Plus, NPP across landscapes 
is difficult to measure accurately. Thus, understanding the relationship 
between phenology and stand volume growth can help us reduce un
certainty in carbon cycle estimates. 

However, because of the spatial scale mismatch between phenolog
ical data (data typically collected at the leaf scale) and productivity 
measurements (at the stand or landscape scale), our knowledge of how 
phenology affects productivity, and how silviculture alters phenology is 
limited. Phenological observations from orbital platforms, land surface 
phenology (LSP), provide consistent phenological data over large areas 
and over long time periods (de Beurs and Henebry, 2004). But, until 
recently, available (i.e. operationally produced and accessible) LSP data 
have only been produced at coarse spatial resolution from sensors like 
the Advanced Very High-Resolution Radiometer (AVHRR; 8 km) and the 
Moderate Resolution Imaging Spectroradiometer (MODIS; 500 m). The 
spatial scales of these data are much coarser than typical silvicultural 
experimental plots (Albaugh et al., 2018), consequently, there have been 
few successful efforts to use LSP data to understand how productivity, 
silvicultural treatments, and phenology interact. 

Recently, a 30 m spatial resolution LSP dataset was produced from 

Harmonized Landsat and Sentinel-2 imagery (HLS-LSP; Bolton et al., 
2020). These HLS-LSP data, along with extensive field measurements 
from experimental forest stands throughout the southeastern United 
States, provide a unique opportunity to investigate the relationship be
tween forest productivity, silvicultural treatments, and phenology. 

In this study, we combined LSP data from satellite images with field 
measurements in a variety of models, to quantify the effect of phenology 
on productivity in managed stands, while controlling for a variety of 
silvicultural treatments. We mainly focused on exploring the question: is 
stand growth related to remotely sensed phenology metrics? Besides, we 
also investigated the potential of remotely sensed phenological obser
vations in estimating forest productivity. Results like these are relevant 
for forest managers and ecological modelers, particularly in light of the 
influence that future climate variability may have on phenological 
processes.. 

2. Materials and methods 

2.1. Data 

2.1.1. Field measurements 
Field measurements from long-term forest plantation field experi

ments (Albaugh et al., 2017; Vickers et al., 2012) distributed across the 
southeastern US were used in this study. Overall, there were 492 plots 
across 9 locations (Fig. 1a). Two experimental designs were used, one 
with fertilization and thinning as the main silvicultural treatments 
(RW19), and the other with fertilization, planting density, and genotype 
treatments (RW20). All sites were planted with loblolly pine (Pinus taeda 
L.). At RW19 sites, the same genotype, either control-pollinated (CP) or 
open-pollinated (OP), was planted in all plots at a given site whereas the 
RW20 sites had varietal, CP and OP genotypes planted in different plots 
at each site. RW19 research plots were installed in mid-rotation plan
tations between 12 and 16 years of age while RW20 research plots were 

Fig. 1. a) Distribution of field sites in the southeastern US; b), c), and d) Examples of treatment plot design for RW193901, RW194201, and RW201302, respectively. 
Background images are MidGreenup layers in the 30 m LSP dataset derived from Harmonized Landsat 8 and Sentinel-2 (HLS) imagery. The unit of the background 
images is day of year (DOY). 
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installed at site establishment. Four thinning treatments were applied at 
RW19 sites: thin to 247, 494, 741 and 1235 residual stems ha−1; fer
tilizer treatments were: none or 224 and 28 kg ha−1 of elemental ni
trogen and phosphorus, respectively, at study initiation plus 168 and 28 
kg ha−1 of elemental nitrogen and phosphorus, respectively, eight years 
after installation. After thinning in all RW19 plots, competing vegetation 
(all vegetation that was not a planted pine) was sprayed with herbicide 
in order to suppress or kill the competing vegetation. Six genotypes (four 
clonal varieties, one CP and one OP) were planted at three initial den
sities (618, 1235, and 1853 stems ha−1) at the RW20 sites. Silvicultural 
intensity at RW20 sites was operational (designed to follow current 
operational practices with competition control at planting and no 
fertilization to date) and intensive (designed to achieve near-maximum 
volume growth with competition control at planting and in years 1, 2, 5 
and 10 along with fertilization at years 1, 5 and 10). 

Individual tree height and diameter were measured annually at 
RW20 sites and annually for years 1-6 after initiation and every two 
years after that at the RW19 sites. Volume was estimated for each tree 
(Tasissa et al., 1997), summed for the plot and scaled to an area basis. 
Volume increment was calculated by subtracting the standing volume 

from the previous year from current year standing volume. Volume 
growth is dependent on stand density, though, it is easy to measure and 
directly reflects biomass growth in a unit area. 

Fertilization and thinning were the silvicultural treatments exam
ined in this study. Since fertilization timing and intensity were different 
at RW19 and RW20 sites, we categorized them into high and low silvi
culture levels based on different criteria. For RW19 sites, we categorized 
plots that were fertilized at study initiation (by 224 and 28 kg ha−1 of 
elemental nitrogen and phosphorus, respectively) and eight years after 
installation (by 168 and 28 kg ha−1 of elemental nitrogen and phos
phorus, respectively) as high silvicultural plots; plots that did not receive 
any fertilizer as low silvicultural plots (e.g. Fig. 1b, and c). For RW20 
sites, we categorized plots that had intensive silviculture as high silvi
cultural plots and plots that had operational silviculture as low silvi
cultural plots. Thinning was reflected by density levels, including 247, 
494, 618, 741, 1235, and 1853 stems ha−1 (e.g. Fig. 1d). 

2.1.2. EVI2 time series and land surface phenology 
Land surface phenology observations were retrieved from HLS 

(Harmonized Landsat 8 and Sentinel-2) (Claverie el al., 2018) v1.4 time 
series using a modified version of the algorithm that produced the 30 m 
spatial resolution HLS-LSP product (Bolton et al., 2020). The HLS-LSP 
algorithm uses the smoothed time series of the two-band enhanced 
vegetation index (EVI2) (Jiang et al., 2008) to detect the timing of 
vegetation phenological transitions (phenometrics). Phenometrics are 
defined as the date when the smoothed EVI2 trajectories reach specific 
percentages of the EVI2 amplitude during the growing season (Fig. 2). 
Additionally, derivative quantities such as the integrated area under the 
EVI2 curve (EVI2 area), EVI2 maximum value, and the growing season 
EVI2 amplitude are also provided. We also computed the minimum 
growing season EVI2 value by subtracting the EVI2 maximum from the 
EVI2 amplitude. The EVI2 Peak metric layer, which records the timing of 
when EVI2 reaches its maximum by day of year, was not available in the 
HLS-LSP product when we conducted this analysis. 

The HLS-LSP algorithm retrieves phenometrics only for vegetation 
cycles that exhibit some minimum amount of EVI2 variation during the 
growing season (EVI2 amplitude). This value was set at 0.1 to filter out 
non-vegetated pixels for the operationally produced product, which 
works well for most regions. However, many pixels in the experimental 
plots in our study had EVI2 amplitudes less than 0.1. Thus, we produced 
HLS-LSP data that covered our study regions using a lower EVI2 
amplitude threshold: 0.03. Otherwise, our approach to retrieving 

Fig. 2. Illustration of EVI2 time series and phenometrics. Greenup, MidG
reenup, Maturity, Peak, Senescence, MidGreendown, and Dormancy are 
phenological dates in day-of-year (DOY) format; EVI2min, EVI2max, EVI2 
amplitude, and EVI2 area are numerical metrics. 

Fig. 3. Measurement boundary design in RW20 and RW19 sites. Black dots in RW20 represent individual trees.  
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phenometrics was identical to that described in Bolton et al. (2020). 
To extract EVI2 time series and phenometrics for individual plots, 

mainly two strategies were used: 1) Measurement plot boundaries were 
used to avoid the influence of neighbor plots (Fig. 3). At RW20 sites, the 
treatment plot was a rectangle of 9 × 9 trees, and the measurement plot 
was the inner boundary around 5 × 5 trees. At RW19 sites, plot layouts 
are not as uniform as RW20 sites, the measurement plot boundaries were 
at least 10 m inside the treatment plot boundaries. 2) Since the di
mensions of measurement boundaries vary across plots and sites (in our 
study, 51.7% of total plots were averaged by at least 3 pixels, 33.6% 
were averaged by 2 pixels, and the rest 14.7% were represented by only 
1 pixel), if multiple pixels were covered by a boundary, pixel values 
were averaged; otherwise, the pixel that contains the measurement was 
extracted. The plots’ design and their relative sizes to 30 m HLS-LSP 
pixels can be viewed in Fig. 1b, c, and d. The variability of pheno
metrics retrieved from HLS-LSP dataset are shown in Fig. 4. 

Visual inspection was conducted to investigate the effects of silvi
cultural treatments on the trajectories of EVI2 time series. The EVI2 time 
series were averaged within categories defined by silvicultural intensity 
and stand density respectively for identifying site-independent patterns 
and reducing noise. Repeated measures ANOVA (Analysis of Variance) 
was also conducted across silviculture and density levels respectively to 
test the significance of effects on the mean values of phenometrics. 

2.3. Volume growth model 

Since HLS-LSP images are currently only available for 2016-2018, 
stand volume measurements from field experiments in the same time 
period were selected to perform further statistical analysis. 

A multiple linear regression model was used to analyze the rela
tionship between phenometrics, silvicultural treatments, and stand 
productivity (represented by volume growth). The outcome variable 

was volume increment per unit area, other variables were used as pre
dictors. HLS-LSP predictors were: Greenup, MidGreenup, Maturity, 
Senescence, Greendown, Dormancy, EVI2min, EVI2max, and EVI2area. 
Silvicultural treatment (including low and high silviculture levels) and 
stand density (247, 494, 618, 741, 1235, and 1853 stems ha−1) were 
categorical variables rather than numerical variables, and site ID was 
used to quantify random site effects, so we transformed them as factors 
in the model so that their values could be treated categorically. For the 
low silvicultural plots at RW20 sites, because competing vegetation was 
suppressed only at the time of planting, other vegetation was likely 
competing with crop trees for nutrients, light, water, and space. 
Including the RW20 low silvicultural plots in the productivity model 
would bias the model. Thus, in the multiple linear regression model, we 
removed records from the low silvicultural plots at RW20 sites. All the 
variable values were normalized so that they would all have means of 
zero and standard deviations of one. 

Although the multiple linear regression model can provide a direct 
quantification of the individual effects of the variables, it assumes the 
relationship to be linear. Random forest model can quantify non-linear 
relationships and is good at making predictions, thus it was used here 
to evaluate the potential of phenology in estimating annual volume 
growth. Random forest (Breiman, 2001) is an algorithm that is built 
upon the decision tree learning model but takes the advantage of 
ensemble learning. Instead of relying on a single decision tree, it con
structs a multitude of decision trees at training time and outputs the 
mean prediction of the individual trees as the regression result. Due to 
the flexibility of the random forest model for both classification and 
regression applications, and the ability to handle overfitting and missing 
value problems, it has been successfully applied to many fields (Belgiu 
and Drăguţ, 2016; Chen et al., 2018; Pal, 2005). We implemented the 
random forest algorithm by the “randomforest” package (Liaw and 
Wiener, 2002) in R v3.6.3. In the random forest model, in addition to the 

Fig. 4. Phenometrics retrieved from HLS-LSP dataset at RW19 and RW20 sites distributed across the southeastern United States. The unit of phenometrics is day of 
year (DOY). 
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variable stand density, which is directly related to the volume growth 
metric we were using, forest productivity was estimated only by phe
nometrics. Stand density was again treated as a categorical variable in 
the random forest model, and the records from the low silvicultural plots 
at RW20 sites were again removed. 

Three metrics were used to measure the importance of variables in 
the fitted random forest regression model: the increment of mean 
squared error (MSE) when excluding a variable, the increment of node 
purity when splitting on a variable, and the variable depth in the deci
sion trees. MSE is commonly used in assessing the model’s prediction 
performance, the larger a variable change the MSE of a model, the more 
important the variable is. Node purity is measuring the splitting choice 
on a variable in the decision tree, the higher the purity increases when 
using a variable to split the tree, the more important the variable is. As 
for variable depth, the lower mean depths indicate variables that 
partition the data into more homogeneous subgroups, and are therefore, 
in a particular sense, more important to predicting the response. In 
addition, although the random forest algorithm embeds cross-validation 
in its decision tree building process, to evaluate how well the model 
performed on out-of-bag data (i.e. data that are not used in the model 
training process), we randomly sampled 70% of our data as the training 
data set to build the random forest regression model, and used the other 
30% as the testing data to evaluate the model’s predicting performance. 
This sampling and testing process were performed 1000 times to 
quantify the uncertainty. 

3. Results 

3.1. EVI2 time series 

Plots subjected to high silvicultural treatments maintained greater 
dormant season EVI2 values, but maximum EVI2 values differed across 
sites (Fig. 5 a, b, Table 1, and Fig. 6). At RW19 sites, high silvicultural 
plots had higher EVI2 values during all growing seasons, whereas at 

RW20 sites, only dormant season EVI2 values corresponded to silvicul
ture intensity, the relationship reversed at maximum EVI2 values. At 
RW20 sites in the summer, the EVI2 values of low silvicultural plots 
were equal to or higher than that of high silvicultural plots. 

Stand density did not have a consistent and significant effect on the 
EVI2 time series across both RW19 and RW20 sites (Fig. 5 c, d and 
Table 1). When comparing the EVI2 time series between RW20 and 
RW19 sites where stand density was the same (1235 trees ha−1), the 
RW20 sites had a higher magnitude of EVI2 values than the RW19 sites 
across most dates (Fig. 5 c, d). 

As for the timing of phenology change, for RW20 sites, Greenup, 
MidGreenup, Maturity, and Senescence were significantly different be
tween low and high silvicultural plots. While RW19 sites didn’t suggest 
the same result (Table 1, Fig. 6). Likewise, no significant effect of density 
on the timing of phenology was found at RW19 and RW20 sites 
(Table 1). 

Fig. 5. EVI2 time series averaged by silviculture intensity and density levels. Treatment methods in RW20 and RW19 sites were described in Section 2.1.1. All sub- 
figures have the same range of x and y axis. 

Table 1 
Significance test by repeated measures ANOVA. P-values < 0.01, which indicate 
highly significant, were marked in bold.   

P-value (Silviculture, 
including low and high 
levels) 

P-value (Density, including 247, 
494, 618, 741, 1235, and 1853 
stems ha−1)  

RW20 RW19 RW20 RW19 

Greenup < 0.01 0.65 0.41 0.03 
MidGreenup < 0.01 0.18 0.34 0.40 
Maturity < 0.01 0.38 0.29 0.89 
Senescence < 0.01 0.51 0.25 0.64 
MidGreendown 0.90 0.96 0.10 0.12 
Dormancy 0.63 0.43 0.14 0.28 
EVI2min < 0.01 < 0.01 0.08 0.16 
EVI2max < 0.01 < 0.01 0.58 < 0.01 
EVI2area 0.3 0.15 0.28 0.03  
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3.2. Volume growth model analysis 

Greater density level tends to have greater annual volume increment 
per unit area for both high and low silviculture treatments (Fig. 7), 
although it does not mean individual trees in higher density level plots 
have greater annual volume increment than trees in lower density level 
plots. Silviculture and stand density were significant predictors with 
positive coefficients in the multiple linear regression model (Fig. 8). 

In the linear model, the phenometrics EVI2min and EVI2max were 
significantly positively related to volume growth (Fig. 8), which means 
higher EVI2 values in dormant season (EVI2min) and growing season 
(EVI2max) were associated with greater volume growth. However, the 
model shows significant negative relationship between the integral of 
EVI2 during the growing season (EVI2area) and stand volume growth. 

Among the dates, Greenup and Maturity significantly related to volume 
growth with Greenup showing a negative relationship with volume 
growth, and Maturity showing a positive relationship. This result sug
gests that earlier Greenup dates and later Maturity dates which result in 
a longer green up season were associated with greater volume growth. 

The cross validation of the random forest model performance had a 
mean R2 value of 0.86 with a 95% confidence interval of 0.79 to 0.91 (p- 
value << 0.01) and RMSE value of 0.80 m3 ha−1 yr−1 with a 95% 
confidence interval of 0.53 m3 ha−1 yr−1 to 1.16 m3 ha−1 yr−1 (Table 2), 
indicating that the random forest model can better express the rela
tionship between stand volume increment and phenometrics than the 
multiple linear regression model, and suggesting that the relationship is 
likely non-linear. The performance of the random forest model suggests 
that phenometrics have great potential in estimating annual unit area 

Fig. 6. Boxplots of phenometrics and EVI2 metrics at low and high silviculture levels for RW19 and RW20 sites.  

Fig. 7. Volume increment among silviculture and density levels. RW19 sites contain density levels of 247, 494, 741, and 1235 trees ha−1; RW20 sites contain density 
level of 618, 1235, and 1853 trees ha−1. The shape of notched boxplot of density 741 trees ha−1 was probably caused by relatively low sample size. 
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volume growth. 
The variable depth in Fig. 9a along with MSE and node purity metrics 

in Fig. 9b indicate that dormant season EVI2 (EVI2min) and peak season 
EVI2 (EVI2max) are important to estimate annual volume growth, and 
EVI2min is relatively more important than EVI2max, which is consistent 
with the multiple linear regression model. 

4. Discussion 

4.1. Phenology, silviculture, and productivity 

We found a relationship between EVI2 measured phenology and 
volume growth in managed pine stands in the southeastern US. Specif
ically, volume growth increased with a longer green up season, which is 
defined as the period between Greenup and Maturity dates. The rela
tionship between phenology and volume growth was likely to be non- 
linear as the random forest model better expressed the variability of 
volume growth than the multiple linear regression, even though silvi
culture levels were not included in the random forest model. Although 
land surface phenology has been used as an indicator of carbon uptake in 
forest ecosystems (Keenan et al., 2014), few studies have directly related 
volume growth with phenology at the stand scale due to limitations in 
spatial resolution of LSP products. Clearly, the newly developed 30 m 
spatial resolution LSP product has improved our ability to measure 
phenology at the stand scale. Volume growth is related to intercepted 
radiation (e.g. Cannell, 1989), and light interception increases with 
increasing leaf area index (LAI) (e.g. Vose and Allen, 1988) in loblolly 
pine. A relationship between volume growth and intercepted light for 
the RW20 sites has been reported (Albaugh et al., 2018), where volume 
growth per unit absorbed light increased with increasing stand density. 
This result was similar to our findings where stand density was a sig
nificant predictor variable of volume growth in the linear model, and 
similarly important in the random forest model. 

That volume growth was related to longer green up periods is 
consistent with the recent finding by field experiments where phenology 
was documented by digital repeat photography (Luo et al., 2020), and 
may be related to the hypothesis proposed by (Sampson et al., 2001) 
who found that current year growth was not supported by current 
photosynthate but relied on stored carbohydrates to meet carbon de
mand early in the season. Carbon can be fixed during the dormant 

Fig. 8. The significance of multiple linear regression coefficients. Black dots are 
the mean estimated values for coefficients, while bars and rectangles are 95% 
confidence intervals and 50% confidence intervals, respectively, 

Table 2 
Cross validation result of the random forest model. The regression statistics were 
computed by linear regression between model predicted volume increment (m3 

ha−1 yr−1) and field measured volume increment (m3 ha−1 yr−1).   

Mean 95% confidence interval 

Slope 1.12 (1.03, 1.21) 
Intercept -3.54 (-5.79, -1.03) 
R2 0.86 (0.79, 0.91) 
RMSE 0.80 (0.53, 1.16) 
p-value 4.87 × 10−35 (4.56 × 10−58, 1.44 × 10−37)  

Fig. 9. Variable importance of the random forest model. a) Distribution of minimal and mean depth of each variable in the decision trees. Bars and labels in each row 
represent the mean depth. X-axis indicates the number of decision trees containing the variable and y-axis indicates variable names. In this case, 500 decision trees 
were built and all variables were used in each decision tree; b) Variable importance plot of MSE increases when excluding a variable vs. node purity increases when 
splitting on a variable. The variables had MSE increase less than 10 and node purity increase less than 2500 were EVI2area (p-value < 0.01), MidGreendown, 
MidGreenup, Maturity, and Senescence. 
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season under favorable conditions (temperatures > 5 degrees C), yet 
little volume growth occurs at this time and the carbon is stored as labile 
carbohydrates. A large store of these carbohydrates available during the 
green up period may explain why this EVI2 measured time is so 
important to predicting volume growth. 

We also found that volume growth was associated with winter values 
(EVI2min) (Figs. 8 and 9) where higher winter values were associated 
with greater volume growth. EVI2 reflects the amount and activity 
(photosynthesis) of leaves. Trees with more active foliage during the 
winter would be able to produce and store more labile carbohydrates 
than trees with less foliage. Consequently, trees with more foliage in the 
winter will likely have more stored carbohydrates, that may become 
available to meet growth demands when current photosynthate is 
insufficient during the green up period. If so, it adds further support to 
the Sampson et al. (2001) hypothesis as stated earlier. 

Fertilization of nutrient-limited stands increases LAI and ultimately 
increases volume production (e.g. Albaugh et al., 1998). At the RW19 
sites, fertilization resulted in higher EVI2 values throughout the year 
(Fig. 5b), however, fertilization at the RW20 sites resulted in a situation 
where EVI2 values were higher in the high silvicultural plots in the 
winter but lower in the summer when compared to low silvicultural 
plots (Fig. 5a). It is likely that these differences were a result of the 
competition control practices applied in the two studies. In the RW19 
sites, all plots (both fertilized and unfertilized) received operational 
competition control after thinning. Consequently, the competing vege
tation populations were likely at relatively the same low levels across all 
plots so the differences detected by EVI2 measurements would be due 
solely to fertilization and would be visible throughout the year as 
measured with EVI2 data. At the RW20 sites, high silvicultural plots 
receiving intensive fertilization also received high levels of competition 
control such that there was very little competing vegetation in the 
fertilized plots. However, the plots that did not receive fertilization only 
received competition control at planting and had large populations of 
mostly deciduous competing vegetation. During the winter, when the 
deciduous competing vegetation was dormant and had no leaves, the 
high silvicultural plots had higher EVI2 values than the low silvicultural 
plots. But the reverse was true in the summer when the deciduous 
vegetation leafed out. It appears the EVI2 metric is quite sensitive to 
foliage display in that we were able to detect these differences. None
theless, this effect could be problematic if one were only interested in a 
particular species (crop or otherwise). The issue is similar to the diffi
culties encountered when measuring LAI remotely (Blinn et al., 2012). 
EVI2 data should be able to distinguish between evergreen and decid
uous species with time series data as done here and similar to those 
procedures used when measuring LAI (Blinn et al., 2012). However, 
measurement where the species of interest and other species are the 
same type (deciduous or evergreen) will likely require additional work 
to distinguish between the different species. 

For a given study, differences in stand density whether achieved at 
planting or with thinning were not detected by EVI2 metrics. This result 
may be related to the timing of our EVI2 measurements relative to stand 
development. For both studies, our EVI2 measurements were some years 
after the stand density management treatment (planting in RW20 or 
thinning in the RW19) was applied. During the intervening time period, 
the crowns on all trees would be expanding to fill the open space in the 
canopy. Given the length of time after treatment and at the stand density 
levels observed here, canopy closure or near canopy closure had likely 
occurred in all treatments. In the RW20, this effect has been quantified 
where the lower stand density treatments have trees with large branches 
low in the canopy that largely create a closed canopy (Albaugh et al., 
2019). 

The silvicultural treatments (fertilization, density management) 
imposed in our studies did influence volume growth as noted in the 
multiple linear regression model. But even though there were significant 
fertilization effects on the EVI2 time series, we did not find evidence 
suggesting that the silvicultural treatments directly influenced the EVI2 

phenology metrics (Table 1). In studies examining loblolly pine foliage 
phenology, fertilization could affect the size and number of fascicles but 
did not influence the overall pattern of foliage display and longevity 
(Albaugh et al., 2010). If this phenomenon was the case in our studies 
where fertilizer increased the foliage amount but not the foliage display, 
we could have observed an increase in the maximum EVI2 metric but 
would not expect to observe differences in metrics related to display 
(Area). Other studies have found site specific increases in growing sea
son length attributed to improved nitrogen availability (Xi et al., 2015). 
As noted, EVI2 data combines information on foliage amount and ac
tivity (photosynthesis). Other studies have shown that fertilization does 
not increase photosynthetic capacity over the long term (Gough et al., 
2004). Data from the RW20 sites did show statistically different effects 
on maximum photosynthesis due to silvicultural intensity for some 
measurement periods at the North Carolina RW20 site which were small 
in magnitude and the opposite of what one might expect where the low 
silviculture plots (no fertilization) had higher maximum photosynthetic 
rates than the high silviculture plots (Yáñez et al., 2017, p.). No differ
ences in photosynthetic rates were observed at the Virginia RW20 site in 
the Yáñez et al. (2017) study. The combination of these factors (fertil
ization affects foliage amount but not display and has small or no effect 
on photosynthesis) likely resulted in the lack of a direct effect of fertil
ization on EVI2 phenology metrics. Similarly, stand density did not 
directly affect EVI2 phenology metrics. Density management allocates 
site resources to a different number of individuals in the stand. After a 
time, a low density stand could have a similar amount of foliage mass as 
a high density stand, although it would be allocated over fewer in
dividuals. Photosynthetic rates do not increase overall in thinned stands, 
although foliage located lower (closer to the ground) in the crown of 
residual trees in thinned stands do have higher photosynthetic rates than 
corresponding foliage in trees where no thinning occurred (Peterson 
et al., 1997). These factors make it unlikely that stand density differ
ences in our stands would have directly influenced EVI2 metrics. 

4.2. Competing vegetation effects 

As noted earlier, competing vegetation played an important role in 
the observed EVI2 metrics. Our phenometrics were generated from the 
combination of crop species (pine) and competing vegetation (every
thing else) in the measured stands. If we ignored (or were unaware of) 
this effect on EVI2 signals, our conclusions about the relationship be
tween phenology, treatments, and productivity would be in error. For 
example, at RW20 sites, ignoring competing vegetation effects on EVI2 
signals would lead us to conclude that fertilization increased dormant 
EVI2 values but decreased maximum EVI2 values. Although the 
competing vegetation effect on the amplitude of EVI2 values might be 
relatively small, this effect could be amplified when being aggregated 
into coarse remotely sensed image pixels. For example, in coarse spatial 
resolution images, spring phenology could be dominated by vegetation 
with relatively early Greenup dates. Likewise, in the autumn, the 
remotely sensed phenometrics could be dominated by vegetation that 
has relatively late Senescence dates (Peng et al., 2017; Zhang et al., 
2017). If the competing vegetation has early spring Greenup and or later 
Senescence dates relative to the crop species, the remotely sensed 
growing season length would be overestimated. If these incorrect in
terpretations were then used in other analyses concerning, for example, 
the carbon cycle of the crop species, it is likely we might overestimate 
how productive the crop species would be in response to climate change. 
Recent studies have shown that competing vegetation could cause dis
crepancies between in situ observations and remotely sensed phenology 
data in the autumn and alter GPP and NEE estimates (Donnelly et al., 
2018; Donnelly et al., 2019; Zhao et al., 2020). Similarly, each species of 
competing vegetation will likely have its own response to climate 
change that further affects the observed phenometrics. Moreover, the 
competing vegetation effect would be difficult to quantify remotely 
when investigating forests with both deciduous crop trees and deciduous 
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competing vegetation. It would be challenging to separate their relative 
timing of leaf development and senescence from remotely sensed ob
servations. There would be a similar problem when both the crop species 
and competing vegetation were evergreen. In the final analysis, any use 
of EVI2 phenometrics requires a good understanding of the vegetation 
dynamics of the studied area. 

4.3. Limitations 

Our study has some limitations. 1) The field experiment data are 
limited. The field experiments were conducted across the southeastern 
US, accounting for different types of climatic environments, however the 
variation of fertilization intensity is limited. Thus, instead of investi
gating the impacts of different intensities of fertilization on phenology, 
we could only treat the fertilization data as categorical. Although we 
found that fertilization elevated EVI2 time series in the growing season, 
the impacts of fertilization on phenological dates need further investi
gation. At the same time, our range of fertilization did cover the likely 
range of what would be applied (our treatments included no fertilization 
and sufficient fertilizer to prevent any nutrient deficiencies) and, 
consequently, whereas additional levels of fertilization and the infor
mation of nutrients naturally in the soil would be useful, we have likely 
covered the range of response. 2) The field experiment designs were 
different for the RW19 and RW20 studies as they were designed to meet 
different objectives. Although the long-term field experiments provided 
a great resource of volume growth records, they were implemented in 
different years and their study purposes varied, i.e., RW19 and RW20 
treatments were not exactly the same. For example, the RW20 studies 
were treated from planting, whereas the RW19 studies were treated at 
mid-rotation when the trees were between 12 and 16 years old. 3) The 
study was made on trees with rather closed canopies. At locations where 
trees are younger or have less canopies, we would expect that the 
competing vegetation would have even more influence on the remotely 
sensed EVI2 signals, making it more difficult to conduct the analysis. 4) 
The scale limitation of the LSP product. Even though the HLS-LSP 
product improved the spatial scale of LSP to 30 m so that the scale 
can match the size of field experimental plots, allowing us to investigate 
the relationship between LSP and forest productivity. Higher spatial 
resolution LSP imagery would further reduce uncertainty caused by 
mixed pixel effect and improve our ability to investigate additional 
phenomena. 

There are many methods that can be used to retrieve phenometrics. 
In this study, we retrieved phenometrics using 15%, 50%, 90% of EVI2 
amplitude to represent Greenup, MidGreenup, Maturity in the spring, 
and Senescence, MidGreendown, Dormancy in the autumn. Although 
the LSP retrieval methodology has been validated with ground observed 
phenology datasets (Bolton et al., 2020), ground observations, which 
would help us better understand the ecological meaning of the LSP, were 
unavailable for our study sites. Those insights may improve our under
standing of the physical processes that link phenology and productivity, 
and point towards further model improvement. Other methods include 
retrieving phenometrics based on various vegetation indices (Delbart 
et al., 2005; Hmimina et al., 2013; Karkauskaite et al., 2017; Sakamoto 
et al., 2005; Zhu et al., 2012), transforming the time series of vegetation 
indices using logistic functions (Cao et al., 2015; Zhang et al., 2003), and 
selecting various thresholds to represent phenometrics (You et al., 
2013). Although the specific phenometrics derived (e.g. specific dates 
for Greenup and other variables measured here) might vary depending 
on the method used, the seasonal photosynthesis mechanism that affects 
productivity should be robust. In addition, at the time this study was 
conducted, the Peak layer, representing the date when EVI2 value rea
ches the maximum point, in the HLS-LSP product was not available, thus 
we did not include it in the analysis. 

5. Conclusion 

We investigated the relationship between phenology, silvicultural 
treatments, and forest productivity of managed pine stands in the 
southeastern US by utilizing a new 30 m land surface phenology dataset 
and field experiment measurements. We fitted a multiple linear regres
sion model that found greater volume growth associated with a longer 
Greenup season, which is defined by the period between the green up 
and maturity dates. Fertilization resulted in higher EVI2 values 
throughout the year and this increase in EVI2 values was especially 
noticeable at some sites during the winter. Despite the increase in EVI2 
values as a result of fertilization, no direct effects of silvicultural treat
ment on EVI2 phenological dates were found in this study. The random 
forest model was used as well and corroborated the results found with 
multiple linear regression. The cross validation with R2 value of 0.86 
and RMSE value of 0.8 m3 ha−1 yr−1 suggests that phenometrics are 
good indicators of stand productivity. Our EVI2 time series of controlled 
field experiments from HLS imagery found that competing vegetation 
could affect remotely sensed observations and should be paid special 
attention. While finer spatial resolution (< 30 m) LSP observations are 
still necessary to provide more variabilities of phenometrics, our find
ings can help better understand the impacts of future climate change on 
forest productivity and ecosystem carbon dynamics. 
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Yáñez, M.A., Fox, T.R., Seiler, J.R., Guerra, F., Baettig, R.M., Zamudio, F., Gyenge, J.E., 
2017. Within-crown acclimation of leaf-level physiological and morphological 
parameters in young loblolly pine stands. Trees 31 (6), 1849–1857. 

You, X., Meng, J., Zhang, M., Dong, T., 2013. Remote Sensing Based Detection of Crop 
Phenology for Agricultural Zones in China Using a New Threshold Method. Remote 
Sensing 5 (7), 3190–3211. https://doi.org/10.3390/rs5073190. 

Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., 
Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of 
Environment 84 (3), 471–475. https://doi.org/10.1016/S0034-4257(02)00135-9. 

Zhang, X., Wang, J., Gao, F., Liu, Y., Schaaf, C., Friedl, M., Yu, Y., Jayavelu, S., Gray, J., 
Liu, L., Yan, D., Henebry, G.M., 2017. Exploration of scaling effects on coarse 

resolution land surface phenology. Remote Sensing of Environment 190, 318–330. 
https://doi.org/10.1016/j.rse.2017.01.001. 

Zhao, B., Donnelly, A., Schwartz, M.D., 2020. Evaluating autumn phenology derived 
from field observations, satellite data, and carbon flux measurements in a northern 
mixed forest, USA. International Journal of Biometeorology 64 (5), 713–727. 
https://doi.org/10.1007/s00484-020-01861-9. 

Zhu, W., Pan, Y., He, H., Wang, L., Mou, M., Liu, J., 2012. A Changing-Weight Filter 
Method for Reconstructing a High-Quality NDVI Time Series to Preserve the 
Integrity of Vegetation Phenology. IEEE Transactions on Geoscience and Remote 
Sensing 50 (4), 1085–1094. https://doi.org/10.1109/TGRS.2011.2166965. 

X. Gao et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0168-1923(20)30339-7/sbref0051
http://refhub.elsevier.com/S0168-1923(20)30339-7/sbref0051
http://refhub.elsevier.com/S0168-1923(20)30339-7/sbref0051
https://doi.org/10.3390/rs5073190
https://doi.org/10.1016/S0034-4257(02)00135-9
https://doi.org/10.1016/j.rse.2017.01.001
https://doi.org/10.1007/s00484-020-01861-9
https://doi.org/10.1109/TGRS.2011.2166965

	Longer greenup periods associated with greater wood volume growth in managed pine stands
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.1.1 Field measurements
	2.1.2 EVI2 time series and land surface phenology

	2.3 Volume growth model

	3 Results
	3.1 EVI2 time series
	3.2 Volume growth model analysis

	4 Discussion
	4.1 Phenology, silviculture, and productivity
	4.2 Competing vegetation effects
	4.3 Limitations

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


