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Increasing forest productivity is important to meet future demand for forest products, and to improve resilience
in the face of climate change. Forest productivity depends on many things, but the timing of leaf development
(hereafter: “plant phenology”) is especially important. However, our understanding of how plant phenology
affects the productivity of managed forests, and how silviculture may in turn affect phenology, has been limited
because of the spatial scale mismatch between phenological data and field experimental observations. In this
study, we take advantage of a new 30 m satellite land surface phenology dataset and stand growth measurements
from long-term experimental pine plantation sites in the southeastern United States to investigate the question: is
stand growth related to remotely sensed phenology metrics? Multiple linear regression and random forest models
were fitted to quantify the effect of phenology and silvicultural treatments on stand growth. We found that 1)
Greater wood volume growth was associated with longer green up periods; 2) Fertilization elevated EVI2
measurement values during the whole growing season, especially in the winter; 3) Competing vegetation could

affect remotely sensed observations and complicates interpretation of remotely sensed phenology metrics.

1. Introduction

Forests play an important role in our environment and economy. The
demand for forest products is rising due to the continued increase of
Earth’s population, while land degradation and urbanization have
significantly reduced productive forestland (Wear and Greis, 2002).
Forest managers have applied increasingly intensive silvicultural prac-
tices including site preparation, competition control, fertilization, and
genetic improvement to increase forest productivity (Fox et al., 2007).
Although the impacts of climate change on forest productivity vary
across the landscape (Boisvenue and Running, 2006), silvicultural
practices may need to adapt in order to maintain forest productivity in a
changing climate (Brang et al., 2014). Thus, understanding the inter-
active roles of climate change and silvicultural practices on forest pro-
ductivity is important to maintain future ecosystem function and
productivity in order to meet demand for wood products in the face of
future climate change.

The definition of forest productivity varies (Grier, 1989). In an
ecologist’s perspective, intending to measure carbon storage, forest
productivity could mean the total amount of plant material produced
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per unit area per year, net primary productivity (NPP). It could also
mean net ecosystem production (NEP), which is NPP minus heterotro-
phic respiration (Kirschbaum et al., 2001). If we consider the environ-
mental effects from forest animals, forest productivity could refer to
aboveground net primary productivity (ANPP) as well. From a forest
manager’s view, however, forest productivity represents wood produc-
tion per unit forest area per year. To better utilize data from the field
experiments, here we use stand volume increment per unit area per year
as the metric to represent forest productivity.

Although forest productivity depends on many factors, the timing of
leaf development (hereafter: “plant phenology™) is especially important.
Plant phenology is one of the more sensitive indicators of environmental
change (Parry et al., 2007). It responds not only to climate factors (Clark
et al., 2014; Meng et al., 2020) such as temperature, light, and precip-
itation, but also to factors including soil moisture and nitrogen avail-
ability (Luo et al., 2020; Penuelas et al., 2009; Piao et al., 2019),
performing as an integrative indicator of the living environment of
vegetation. More importantly, phenological dynamics are critical to
diagnose forest health problems and identify invasive species (Morisette
et al., 2009), both of which directly affect forest productivity.
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In addition, changes in phenology strongly affect carbon cycling and
energy balance in terrestrial ecosystems (Jeong et al., 2009; Piao et al.,
2019). Plant phenology influences gross primary production (GPP) and
net primary production (NPP) of forest ecosystems (Chang et al., 2019;
Kaduk and Heimann, 1996; Keenan et al., 2014; Wang et al., 2017). The
effect of altered phenological regimes on forest productivity appears to
vary, with some studies indicating increased carbon uptake with
warming-induced longer growing seasons (Keenan et al., 2014; Piao
et al., 2017), and others indicating greater losses due to autumnal
warming (Piao et al., 2008). As a direct measurement, stand volume
growth represents a large portion of carbon sequestered from the at-
mosphere in forest systems (Albaugh et al., 1998; Gonzalez-Benecke
et al., 2014) and is related to annual NPP, so it can also be an important
indicator of the changing carbon dynamics. Plus, NPP across landscapes
is difficult to measure accurately. Thus, understanding the relationship
between phenology and stand volume growth can help us reduce un-
certainty in carbon cycle estimates.

However, because of the spatial scale mismatch between phenolog-
ical data (data typically collected at the leaf scale) and productivity
measurements (at the stand or landscape scale), our knowledge of how
phenology affects productivity, and how silviculture alters phenology is
limited. Phenological observations from orbital platforms, land surface
phenology (LSP), provide consistent phenological data over large areas
and over long time periods (de Beurs and Henebry, 2004). But, until
recently, available (i.e. operationally produced and accessible) LSP data
have only been produced at coarse spatial resolution from sensors like
the Advanced Very High-Resolution Radiometer (AVHRR; 8 km) and the
Moderate Resolution Imaging Spectroradiometer (MODIS; 500 m). The
spatial scales of these data are much coarser than typical silvicultural
experimental plots (Albaugh et al., 2018), consequently, there have been
few successful efforts to use LSP data to understand how productivity,
silvicultural treatments, and phenology interact.

Recently, a 30 m spatial resolution LSP dataset was produced from
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Harmonized Landsat and Sentinel-2 imagery (HLS-LSP; Bolton et al.,
2020). These HLS-LSP data, along with extensive field measurements
from experimental forest stands throughout the southeastern United
States, provide a unique opportunity to investigate the relationship be-
tween forest productivity, silvicultural treatments, and phenology.

In this study, we combined LSP data from satellite images with field
measurements in a variety of models, to quantify the effect of phenology
on productivity in managed stands, while controlling for a variety of
silvicultural treatments. We mainly focused on exploring the question: is
stand growth related to remotely sensed phenology metrics? Besides, we
also investigated the potential of remotely sensed phenological obser-
vations in estimating forest productivity. Results like these are relevant
for forest managers and ecological modelers, particularly in light of the
influence that future climate variability may have on phenological
processes..

2. Materials and methods
2.1. Data

2.1.1. Field measurements

Field measurements from long-term forest plantation field experi-
ments (Albaugh et al., 2017; Vickers et al., 2012) distributed across the
southeastern US were used in this study. Overall, there were 492 plots
across 9 locations (Fig. 1a). Two experimental designs were used, one
with fertilization and thinning as the main silvicultural treatments
(RW19), and the other with fertilization, planting density, and genotype
treatments (RW20). All sites were planted with loblolly pine (Pinus taeda
L.). At RW19 sites, the same genotype, either control-pollinated (CP) or
open-pollinated (OP), was planted in all plots at a given site whereas the
RW20 sites had varietal, CP and OP genotypes planted in different plots
at each site. RW19 research plots were installed in mid-rotation plan-
tations between 12 and 16 years of age while RW20 research plots were
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Fig. 1. a) Distribution of field sites in the southeastern US; b), c), and d) Examples of treatment plot design for RW193901, RW194201, and RW201302, respectively.
Background images are MidGreenup layers in the 30 m LSP dataset derived from Harmonized Landsat 8 and Sentinel-2 (HLS) imagery. The unit of the background

images is day of year (DOY).
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Fig. 2. Illustration of EVI2 time series and phenometrics. Greenup, MidG-
reenup, Maturity, Peak, Senescence, MidGreendown, and Dormancy are
phenological dates in day-of-year (DOY) format; EVI2min, EVI2max, EVI2
amplitude, and EVI2 area are numerical metrics.

installed at site establishment. Four thinning treatments were applied at
RW109 sites: thin to 247, 494, 741 and 1235 residual stems ha™; fer-
tilizer treatments were: none or 224 and 28 kg ha™! of elemental ni-
trogen and phosphorus, respectively, at study initiation plus 168 and 28
kg ha™! of elemental nitrogen and phosphorus, respectively, eight years
after installation. After thinning in all RW19 plots, competing vegetation
(all vegetation that was not a planted pine) was sprayed with herbicide
in order to suppress or kill the competing vegetation. Six genotypes (four
clonal varieties, one CP and one OP) were planted at three initial den-
sities (618, 1235, and 1853 stems ha~1) at the RW20 sites. Silvicultural
intensity at RW20 sites was operational (designed to follow current
operational practices with competition control at planting and no
fertilization to date) and intensive (designed to achieve near-maximum
volume growth with competition control at planting and in years 1, 2, 5
and 10 along with fertilization at years 1, 5 and 10).

Individual tree height and diameter were measured annually at
RW20 sites and annually for years 1-6 after initiation and every two
years after that at the RW19 sites. Volume was estimated for each tree
(Tasissa et al., 1997), summed for the plot and scaled to an area basis.
Volume increment was calculated by subtracting the standing volume

RW20
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from the previous year from current year standing volume. Volume
growth is dependent on stand density, though, it is easy to measure and
directly reflects biomass growth in a unit area.

Fertilization and thinning were the silvicultural treatments exam-
ined in this study. Since fertilization timing and intensity were different
at RW19 and RW20 sites, we categorized them into high and low silvi-
culture levels based on different criteria. For RW19 sites, we categorized
plots that were fertilized at study initiation (by 224 and 28 kg ha™! of
elemental nitrogen and phosphorus, respectively) and eight years after
installation (by 168 and 28 kg ha! of elemental nitrogen and phos-
phorus, respectively) as high silvicultural plots; plots that did not receive
any fertilizer as low silvicultural plots (e.g. Fig. 1b, and c). For RW20
sites, we categorized plots that had intensive silviculture as high silvi-
cultural plots and plots that had operational silviculture as low silvi-
cultural plots. Thinning was reflected by density levels, including 247,
494, 618, 741, 1235, and 1853 stems ha! (e.g. Fig. 1d).

2.1.2. EVI2 time series and land surface phenology

Land surface phenology observations were retrieved from HLS
(Harmonized Landsat 8 and Sentinel-2) (Claverie el al., 2018) v1.4 time
series using a modified version of the algorithm that produced the 30 m
spatial resolution HLS-LSP product (Bolton et al., 2020). The HLS-LSP
algorithm uses the smoothed time series of the two-band enhanced
vegetation index (EVI2) (Jiang et al., 2008) to detect the timing of
vegetation phenological transitions (phenometrics). Phenometrics are
defined as the date when the smoothed EVI2 trajectories reach specific
percentages of the EVI2 amplitude during the growing season (Fig. 2).
Additionally, derivative quantities such as the integrated area under the
EVI2 curve (EVI2 area), EVI2 maximum value, and the growing season
EVI2 amplitude are also provided. We also computed the minimum
growing season EVI2 value by subtracting the EVI2 maximum from the
EVI2 amplitude. The EVI2 Peak metric layer, which records the timing of
when EVI2 reaches its maximum by day of year, was not available in the
HLS-LSP product when we conducted this analysis.

The HLS-LSP algorithm retrieves phenometrics only for vegetation
cycles that exhibit some minimum amount of EVI2 variation during the
growing season (EVI2 amplitude). This value was set at 0.1 to filter out
non-vegetated pixels for the operationally produced product, which
works well for most regions. However, many pixels in the experimental
plots in our study had EVI2 amplitudes less than 0.1. Thus, we produced
HLS-LSP data that covered our study regions using a lower EVI2
amplitude threshold: 0.03. Otherwise, our approach to retrieving
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Fig. 3. Measurement boundary design in RW20 and RW19 sites. Black dots in RW20 represent individual trees.
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Fig. 4. Phenometrics retrieved from HLS-LSP dataset at RW19 and RW20 sites distributed across the southeastern United States. The unit of phenometrics is day of

year (DOY).

phenometrics was identical to that described in Bolton et al. (2020).

To extract EVI2 time series and phenometrics for individual plots,
mainly two strategies were used: 1) Measurement plot boundaries were
used to avoid the influence of neighbor plots (Fig. 3). At RW20 sites, the
treatment plot was a rectangle of 9 x 9 trees, and the measurement plot
was the inner boundary around 5 x 5 trees. At RW19 sites, plot layouts
are not as uniform as RW20 sites, the measurement plot boundaries were
at least 10 m inside the treatment plot boundaries. 2) Since the di-
mensions of measurement boundaries vary across plots and sites (in our
study, 51.7% of total plots were averaged by at least 3 pixels, 33.6%
were averaged by 2 pixels, and the rest 14.7% were represented by only
1 pixel), if multiple pixels were covered by a boundary, pixel values
were averaged; otherwise, the pixel that contains the measurement was
extracted. The plots’ design and their relative sizes to 30 m HLS-LSP
pixels can be viewed in Fig. 1b, ¢, and d. The variability of pheno-
metrics retrieved from HLS-LSP dataset are shown in Fig. 4.

Visual inspection was conducted to investigate the effects of silvi-
cultural treatments on the trajectories of EVI2 time series. The EVI2 time
series were averaged within categories defined by silvicultural intensity
and stand density respectively for identifying site-independent patterns
and reducing noise. Repeated measures ANOVA (Analysis of Variance)
was also conducted across silviculture and density levels respectively to
test the significance of effects on the mean values of phenometrics.

2.3. Volume growth model

Since HLS-LSP images are currently only available for 2016-2018,
stand volume measurements from field experiments in the same time
period were selected to perform further statistical analysis.

A multiple linear regression model was used to analyze the rela-
tionship between phenometrics, silvicultural treatments, and stand
productivity (represented by volume growth). The outcome variable

was volume increment per unit area, other variables were used as pre-
dictors. HLS-LSP predictors were: Greenup, MidGreenup, Maturity,
Senescence, Greendown, Dormancy, EVI2min, EVI2max, and EVI2area.
Silvicultural treatment (including low and high silviculture levels) and
stand density (247, 494, 618, 741, 1235, and 1853 stems ha~1) were
categorical variables rather than numerical variables, and site ID was
used to quantify random site effects, so we transformed them as factors
in the model so that their values could be treated categorically. For the
low silvicultural plots at RW20 sites, because competing vegetation was
suppressed only at the time of planting, other vegetation was likely
competing with crop trees for nutrients, light, water, and space.
Including the RW20 low silvicultural plots in the productivity model
would bias the model. Thus, in the multiple linear regression model, we
removed records from the low silvicultural plots at RW20 sites. All the
variable values were normalized so that they would all have means of
zero and standard deviations of one.

Although the multiple linear regression model can provide a direct
quantification of the individual effects of the variables, it assumes the
relationship to be linear. Random forest model can quantify non-linear
relationships and is good at making predictions, thus it was used here
to evaluate the potential of phenology in estimating annual volume
growth. Random forest (Breiman, 2001) is an algorithm that is built
upon the decision tree learning model but takes the advantage of
ensemble learning. Instead of relying on a single decision tree, it con-
structs a multitude of decision trees at training time and outputs the
mean prediction of the individual trees as the regression result. Due to
the flexibility of the random forest model for both classification and
regression applications, and the ability to handle overfitting and missing
value problems, it has been successfully applied to many fields (Belgiu
and Dragut, 2016; Chen et al., 2018; Pal, 2005). We implemented the
random forest algorithm by the “randomforest” package (Liaw and
Wiener, 2002) in R v3.6.3. In the random forest model, in addition to the
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variable stand density, which is directly related to the volume growth
metric we were using, forest productivity was estimated only by phe-
nometrics. Stand density was again treated as a categorical variable in
the random forest model, and the records from the low silvicultural plots
at RW20 sites were again removed.

Three metrics were used to measure the importance of variables in
the fitted random forest regression model: the increment of mean
squared error (MSE) when excluding a variable, the increment of node
purity when splitting on a variable, and the variable depth in the deci-
sion trees. MSE is commonly used in assessing the model’s prediction
performance, the larger a variable change the MSE of a model, the more
important the variable is. Node purity is measuring the splitting choice
on a variable in the decision tree, the higher the purity increases when
using a variable to split the tree, the more important the variable is. As
for variable depth, the lower mean depths indicate variables that
partition the data into more homogeneous subgroups, and are therefore,
in a particular sense, more important to predicting the response. In
addition, although the random forest algorithm embeds cross-validation
in its decision tree building process, to evaluate how well the model
performed on out-of-bag data (i.e. data that are not used in the model
training process), we randomly sampled 70% of our data as the training
data set to build the random forest regression model, and used the other
30% as the testing data to evaluate the model’s predicting performance.
This sampling and testing process were performed 1000 times to
quantify the uncertainty.

3. Results
3.1. EVI2 time series

Plots subjected to high silvicultural treatments maintained greater
dormant season EVI2 values, but maximum EVI2 values differed across
sites (Fig. 5 a, b, Table 1, and Fig. 6). At RW19 sites, high silvicultural
plots had higher EVI2 values during all growing seasons, whereas at
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Table 1
Significance test by repeated measures ANOVA. P-values < 0.01, which indicate
highly significant, were marked in bold.

P-value (Silviculture, P-value (Density, including 247,

including low and high 494, 618, 741, 1235, and 1853

levels) stems ha™!)

RW20 RW19 RW20 RW19
Greenup < 0.01 0.65 0.41 0.03
MidGreenup <0.01 0.18 0.34 0.40
Maturity < 0.01 0.38 0.29 0.89
Senescence < 0.01 0.51 0.25 0.64
MidGreendown  0.90 0.96 0.10 0.12
Dormancy 0.63 0.43 0.14 0.28
EVI2min < 0.01 < 0.01 0.08 0.16
EVI2max < 0.01 < 0.01 0.58 < 0.01
EVI2area 0.3 0.15 0.28 0.03

RW20 sites, only dormant season EVI2 values corresponded to silvicul-
ture intensity, the relationship reversed at maximum EVI2 values. At
RW20 sites in the summer, the EVI2 values of low silvicultural plots
were equal to or higher than that of high silvicultural plots.

Stand density did not have a consistent and significant effect on the
EVI2 time series across both RW19 and RW20 sites (Fig. 5 ¢, d and
Table 1). When comparing the EVI2 time series between RW20 and
RW19 sites where stand density was the same (1235 trees ha’l), the
RW20 sites had a higher magnitude of EVI2 values than the RW19 sites
across most dates (Fig. 5 c, d).

As for the timing of phenology change, for RW20 sites, Greenup,
MidGreenup, Maturity, and Senescence were significantly different be-
tween low and high silvicultural plots. While RW19 sites didn’t suggest
the same result (Table 1, Fig. 6). Likewise, no significant effect of density
on the timing of phenology was found at RW19 and RW20 sites
(Table 1).
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Fig. 5. EVI2 time series averaged by silviculture intensity and density levels. Treatment methods in RW20 and RW19 sites were described in Section 2.1.1. All sub-

figures have the same range of x and y axis.
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3.2. Volume growth model analysis

Greater density level tends to have greater annual volume increment
per unit area for both high and low silviculture treatments (Fig. 7),
although it does not mean individual trees in higher density level plots
have greater annual volume increment than trees in lower density level
plots. Silviculture and stand density were significant predictors with
positive coefficients in the multiple linear regression model (Fig. 8).

In the linear model, the phenometrics EVI2min and EVI2max were
significantly positively related to volume growth (Fig. 8), which means
higher EVI2 values in dormant season (EVI2min) and growing season
(EVI2max) were associated with greater volume growth. However, the
model shows significant negative relationship between the integral of
EVI2 during the growing season (EVI2area) and stand volume growth.

Among the dates, Greenup and Maturity significantly related to volume
growth with Greenup showing a negative relationship with volume
growth, and Maturity showing a positive relationship. This result sug-
gests that earlier Greenup dates and later Maturity dates which result in
a longer green up season were associated with greater volume growth.

The cross validation of the random forest model performance had a
mean R2 value of 0.86 with a 95% confidence interval of 0.79 to 0.91 (p-
value << 0.01) and RMSE value of 0.80 m® ha ! yr~! with a 95%
confidence interval of 0.53 m® ha™* yr’1 to1.16 m>ha! yr’1 (Table 2),
indicating that the random forest model can better express the rela-
tionship between stand volume increment and phenometrics than the
multiple linear regression model, and suggesting that the relationship is
likely non-linear. The performance of the random forest model suggests
that phenometrics have great potential in estimating annual unit area
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Fig. 8. The significance of multiple linear regression coefficients. Black dots are
the mean estimated values for coefficients, while bars and rectangles are 95%
confidence intervals and 50% confidence intervals, respectively,

Table 2

Cross validation result of the random forest model. The regression statistics were
computed by linear regression between model predicted volume increment (m>
ha~! yr™!) and field measured volume increment (m® ha™! yr™1).

Mean 95% confidence interval
Slope 1.12 (1.03, 1.21)
Intercept -3.54 (-5.79, -1.03)
R? 0.86 (0.79, 0.91)
RMSE 0.80 (0.53, 1.16)
p-value 4.87 x 107° (4.56 x 10758, 1.44 x 107%7)
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volume growth.

The variable depth in Fig. 9a along with MSE and node purity metrics
in Fig. 9b indicate that dormant season EVI2 (EVI2min) and peak season
EVI2 (EVI2max) are important to estimate annual volume growth, and
EVI2min is relatively more important than EVI2max, which is consistent
with the multiple linear regression model.

4. Discussion
4.1. Phenology, silviculture, and productivity

We found a relationship between EVI2 measured phenology and
volume growth in managed pine stands in the southeastern US. Specif-
ically, volume growth increased with a longer green up season, which is
defined as the period between Greenup and Maturity dates. The rela-
tionship between phenology and volume growth was likely to be non-
linear as the random forest model better expressed the variability of
volume growth than the multiple linear regression, even though silvi-
culture levels were not included in the random forest model. Although
land surface phenology has been used as an indicator of carbon uptake in
forest ecosystems (Keenan et al., 2014), few studies have directly related
volume growth with phenology at the stand scale due to limitations in
spatial resolution of LSP products. Clearly, the newly developed 30 m
spatial resolution LSP product has improved our ability to measure
phenology at the stand scale. Volume growth is related to intercepted
radiation (e.g. Cannell, 1989), and light interception increases with
increasing leaf area index (LAI) (e.g. Vose and Allen, 1988) in loblolly
pine. A relationship between volume growth and intercepted light for
the RW20 sites has been reported (Albaugh et al., 2018), where volume
growth per unit absorbed light increased with increasing stand density.
This result was similar to our findings where stand density was a sig-
nificant predictor variable of volume growth in the linear model, and
similarly important in the random forest model.

That volume growth was related to longer green up periods is
consistent with the recent finding by field experiments where phenology
was documented by digital repeat photography (Luo et al., 2020), and
may be related to the hypothesis proposed by (Sampson et al., 2001)
who found that current year growth was not supported by current
photosynthate but relied on stored carbohydrates to meet carbon de-
mand early in the season. Carbon can be fixed during the dormant

b
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Fig. 9. Variable importance of the random forest model. a) Distribution of minimal and mean depth of each variable in the decision trees. Bars and labels in each row
represent the mean depth. X-axis indicates the number of decision trees containing the variable and y-axis indicates variable names. In this case, 500 decision trees
were built and all variables were used in each decision tree; b) Variable importance plot of MSE increases when excluding a variable vs. node purity increases when
splitting on a variable. The variables had MSE increase less than 10 and node purity increase less than 2500 were EVI2area (p-value < 0.01), MidGreendown,

MidGreenup, Maturity, and Senescence.
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season under favorable conditions (temperatures > 5 degrees C), yet
little volume growth occurs at this time and the carbon is stored as labile
carbohydrates. A large store of these carbohydrates available during the
green up period may explain why this EVI2 measured time is so
important to predicting volume growth.

We also found that volume growth was associated with winter values
(EVI2min) (Figs. 8 and 9) where higher winter values were associated
with greater volume growth. EVI2 reflects the amount and activity
(photosynthesis) of leaves. Trees with more active foliage during the
winter would be able to produce and store more labile carbohydrates
than trees with less foliage. Consequently, trees with more foliage in the
winter will likely have more stored carbohydrates, that may become
available to meet growth demands when current photosynthate is
insufficient during the green up period. If so, it adds further support to
the Sampson et al. (2001) hypothesis as stated earlier.

Fertilization of nutrient-limited stands increases LAI and ultimately
increases volume production (e.g. Albaugh et al., 1998). At the RW19
sites, fertilization resulted in higher EVI2 values throughout the year
(Fig. 5b), however, fertilization at the RW20 sites resulted in a situation
where EVI2 values were higher in the high silvicultural plots in the
winter but lower in the summer when compared to low silvicultural
plots (Fig. 5a). It is likely that these differences were a result of the
competition control practices applied in the two studies. In the RW19
sites, all plots (both fertilized and unfertilized) received operational
competition control after thinning. Consequently, the competing vege-
tation populations were likely at relatively the same low levels across all
plots so the differences detected by EVI2 measurements would be due
solely to fertilization and would be visible throughout the year as
measured with EVI2 data. At the RW20 sites, high silvicultural plots
receiving intensive fertilization also received high levels of competition
control such that there was very little competing vegetation in the
fertilized plots. However, the plots that did not receive fertilization only
received competition control at planting and had large populations of
mostly deciduous competing vegetation. During the winter, when the
deciduous competing vegetation was dormant and had no leaves, the
high silvicultural plots had higher EVI2 values than the low silvicultural
plots. But the reverse was true in the summer when the deciduous
vegetation leafed out. It appears the EVI2 metric is quite sensitive to
foliage display in that we were able to detect these differences. None-
theless, this effect could be problematic if one were only interested in a
particular species (crop or otherwise). The issue is similar to the diffi-
culties encountered when measuring LAI remotely (Blinn et al., 2012).
EVI2 data should be able to distinguish between evergreen and decid-
uous species with time series data as done here and similar to those
procedures used when measuring LAI (Blinn et al., 2012). However,
measurement where the species of interest and other species are the
same type (deciduous or evergreen) will likely require additional work
to distinguish between the different species.

For a given study, differences in stand density whether achieved at
planting or with thinning were not detected by EVI2 metrics. This result
may be related to the timing of our EVI2 measurements relative to stand
development. For both studies, our EVI2 measurements were some years
after the stand density management treatment (planting in RW20 or
thinning in the RW19) was applied. During the intervening time period,
the crowns on all trees would be expanding to fill the open space in the
canopy. Given the length of time after treatment and at the stand density
levels observed here, canopy closure or near canopy closure had likely
occurred in all treatments. In the RW20, this effect has been quantified
where the lower stand density treatments have trees with large branches
low in the canopy that largely create a closed canopy (Albaugh et al.,
2019).

The silvicultural treatments (fertilization, density management)
imposed in our studies did influence volume growth as noted in the
multiple linear regression model. But even though there were significant
fertilization effects on the EVI2 time series, we did not find evidence
suggesting that the silvicultural treatments directly influenced the EVI2
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phenology metrics (Table 1). In studies examining loblolly pine foliage
phenology, fertilization could affect the size and number of fascicles but
did not influence the overall pattern of foliage display and longevity
(Albaugh et al., 2010). If this phenomenon was the case in our studies
where fertilizer increased the foliage amount but not the foliage display,
we could have observed an increase in the maximum EVI2 metric but
would not expect to observe differences in metrics related to display
(Area). Other studies have found site specific increases in growing sea-
son length attributed to improved nitrogen availability (Xi et al., 2015).
As noted, EVI2 data combines information on foliage amount and ac-
tivity (photosynthesis). Other studies have shown that fertilization does
not increase photosynthetic capacity over the long term (Gough et al.,
2004). Data from the RW20 sites did show statistically different effects
on maximum photosynthesis due to silvicultural intensity for some
measurement periods at the North Carolina RW20 site which were small
in magnitude and the opposite of what one might expect where the low
silviculture plots (no fertilization) had higher maximum photosynthetic
rates than the high silviculture plots (Yanez et al., 2017, p.). No differ-
ences in photosynthetic rates were observed at the Virginia RW20 site in
the Yanez et al. (2017) study. The combination of these factors (fertil-
ization affects foliage amount but not display and has small or no effect
on photosynthesis) likely resulted in the lack of a direct effect of fertil-
ization on EVI2 phenology metrics. Similarly, stand density did not
directly affect EVI2 phenology metrics. Density management allocates
site resources to a different number of individuals in the stand. After a
time, a low density stand could have a similar amount of foliage mass as
a high density stand, although it would be allocated over fewer in-
dividuals. Photosynthetic rates do not increase overall in thinned stands,
although foliage located lower (closer to the ground) in the crown of
residual trees in thinned stands do have higher photosynthetic rates than
corresponding foliage in trees where no thinning occurred (Peterson
et al., 1997). These factors make it unlikely that stand density differ-
ences in our stands would have directly influenced EVI2 metrics.

4.2. Competing vegetation effects

As noted earlier, competing vegetation played an important role in
the observed EVI2 metrics. Our phenometrics were generated from the
combination of crop species (pine) and competing vegetation (every-
thing else) in the measured stands. If we ignored (or were unaware of)
this effect on EVI2 signals, our conclusions about the relationship be-
tween phenology, treatments, and productivity would be in error. For
example, at RW20 sites, ignoring competing vegetation effects on EVI2
signals would lead us to conclude that fertilization increased dormant
EVI2 values but decreased maximum EVI2 values. Although the
competing vegetation effect on the amplitude of EVI2 values might be
relatively small, this effect could be amplified when being aggregated
into coarse remotely sensed image pixels. For example, in coarse spatial
resolution images, spring phenology could be dominated by vegetation
with relatively early Greenup dates. Likewise, in the autumn, the
remotely sensed phenometrics could be dominated by vegetation that
has relatively late Senescence dates (Peng et al., 2017; Zhang et al.,
2017). If the competing vegetation has early spring Greenup and or later
Senescence dates relative to the crop species, the remotely sensed
growing season length would be overestimated. If these incorrect in-
terpretations were then used in other analyses concerning, for example,
the carbon cycle of the crop species, it is likely we might overestimate
how productive the crop species would be in response to climate change.
Recent studies have shown that competing vegetation could cause dis-
crepancies between in situ observations and remotely sensed phenology
data in the autumn and alter GPP and NEE estimates (Donnelly et al.,
2018; Donnelly et al., 2019; Zhao et al., 2020). Similarly, each species of
competing vegetation will likely have its own response to climate
change that further affects the observed phenometrics. Moreover, the
competing vegetation effect would be difficult to quantify remotely
when investigating forests with both deciduous crop trees and deciduous
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competing vegetation. It would be challenging to separate their relative
timing of leaf development and senescence from remotely sensed ob-
servations. There would be a similar problem when both the crop species
and competing vegetation were evergreen. In the final analysis, any use
of EVI2 phenometrics requires a good understanding of the vegetation
dynamics of the studied area.

4.3. Limitations

Our study has some limitations. 1) The field experiment data are
limited. The field experiments were conducted across the southeastern
US, accounting for different types of climatic environments, however the
variation of fertilization intensity is limited. Thus, instead of investi-
gating the impacts of different intensities of fertilization on phenology,
we could only treat the fertilization data as categorical. Although we
found that fertilization elevated EVI2 time series in the growing season,
the impacts of fertilization on phenological dates need further investi-
gation. At the same time, our range of fertilization did cover the likely
range of what would be applied (our treatments included no fertilization
and sufficient fertilizer to prevent any nutrient deficiencies) and,
consequently, whereas additional levels of fertilization and the infor-
mation of nutrients naturally in the soil would be useful, we have likely
covered the range of response. 2) The field experiment designs were
different for the RW19 and RW20 studies as they were designed to meet
different objectives. Although the long-term field experiments provided
a great resource of volume growth records, they were implemented in
different years and their study purposes varied, i.e., RW19 and RW20
treatments were not exactly the same. For example, the RW20 studies
were treated from planting, whereas the RW19 studies were treated at
mid-rotation when the trees were between 12 and 16 years old. 3) The
study was made on trees with rather closed canopies. At locations where
trees are younger or have less canopies, we would expect that the
competing vegetation would have even more influence on the remotely
sensed EVI2 signals, making it more difficult to conduct the analysis. 4)
The scale limitation of the LSP product. Even though the HLS-LSP
product improved the spatial scale of LSP to 30 m so that the scale
can match the size of field experimental plots, allowing us to investigate
the relationship between LSP and forest productivity. Higher spatial
resolution LSP imagery would further reduce uncertainty caused by
mixed pixel effect and improve our ability to investigate additional
phenomena.

There are many methods that can be used to retrieve phenometrics.
In this study, we retrieved phenometrics using 15%, 50%, 90% of EVI2
amplitude to represent Greenup, MidGreenup, Maturity in the spring,
and Senescence, MidGreendown, Dormancy in the autumn. Although
the LSP retrieval methodology has been validated with ground observed
phenology datasets (Bolton et al., 2020), ground observations, which
would help us better understand the ecological meaning of the LSP, were
unavailable for our study sites. Those insights may improve our under-
standing of the physical processes that link phenology and productivity,
and point towards further model improvement. Other methods include
retrieving phenometrics based on various vegetation indices (Delbart
et al., 2005; Hmimina et al., 2013; Karkauskaite et al., 2017; Sakamoto
et al., 2005; Zhu et al., 2012), transforming the time series of vegetation
indices using logistic functions (Cao et al., 2015; Zhang et al., 2003), and
selecting various thresholds to represent phenometrics (You et al.,
2013). Although the specific phenometrics derived (e.g. specific dates
for Greenup and other variables measured here) might vary depending
on the method used, the seasonal photosynthesis mechanism that affects
productivity should be robust. In addition, at the time this study was
conducted, the Peak layer, representing the date when EVI2 value rea-
ches the maximum point, in the HLS-LSP product was not available, thus
we did not include it in the analysis.
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5. Conclusion

We investigated the relationship between phenology, silvicultural
treatments, and forest productivity of managed pine stands in the
southeastern US by utilizing a new 30 m land surface phenology dataset
and field experiment measurements. We fitted a multiple linear regres-
sion model that found greater volume growth associated with a longer
Greenup season, which is defined by the period between the green up
and maturity dates. Fertilization resulted in higher EVI2 values
throughout the year and this increase in EVI2 values was especially
noticeable at some sites during the winter. Despite the increase in EVI2
values as a result of fertilization, no direct effects of silvicultural treat-
ment on EVI2 phenological dates were found in this study. The random
forest model was used as well and corroborated the results found with
multiple linear regression. The cross validation with R? value of 0.86
and RMSE value of 0.8 m® ha! yr™! suggests that phenometrics are
good indicators of stand productivity. Our EVI2 time series of controlled
field experiments from HLS imagery found that competing vegetation
could affect remotely sensed observations and should be paid special
attention. While finer spatial resolution (< 30 m) LSP observations are
still necessary to provide more variabilities of phenometrics, our find-
ings can help better understand the impacts of future climate change on
forest productivity and ecosystem carbon dynamics.
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