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Abstract—Every year, the U.S. economy loses more than $411 billion because of work performance reduction, injuries, and traffic
accidents caused by microsleep. To mitigate microsleep’s consequences, an unobtrusive, reliable, and socially acceptable microsleep
detection solution throughout the day, every day is required. Unfortunately, existing solutions do not meet these requirements. In this
paper, we propose WAKE, a novel behind-the-ear wearable device for microsleep detection. By monitoring biosignals from the brain,
eye movements, facial muscle contractions, and sweat gland activities from behind the user’s ears, WAKE can detect microsleep with a
high temporal resolution. We introduce a Three-fold Cascaded Amplifying (3CA) technique to tame the motion artifacts and
environmental noises for capturing high fidelity signals. Through our prototyping, we show that WAKE can suppress motion and
environmental noise in real-time by 9.74-19.47 dB while walking, driving, or staying in different environments, ensuring that the
biosignals are captured reliably. We evaluated WAKE using gold-standard devices on 19 sleep-deprived and narcoleptic subjects. The
Leave-One-Subject-Out Cross-Validation results show the feasibility of WAKE in microsleep detection on an unseen subject with
average precision and recall of 76% and 85%, respectively.

Index Terms—Behind-the-ear sensing, Microsleep detection, Drowsiness monitoring, Wearable devices, Cyber-Physical systems.

F

1 INTRODUCTION

MORE than 65 million people in the U.S. suffer from
Excessive Daytime Sleepiness (EDS) due to sleep de-

privation, obstructive sleep apnea, and narcolepsy [1]. EDS
often results in frequent lapses in awareness of the environ-
ment (i.e. microsleeps). Healthy people with sleep depriva-
tion usually experiences microsleep [1]. Shift workers, night
time security guards, and navy sailors with sleep problems
have a 1.6x higher risk of being injured, causing 13% of all
work injuries [2]. Sleepy drivers are at a 3x higher risk of an
accident causing one in five fatal car crashes [3]. People with
sleep apnea also suffers from microsleep. The microsleep
issue due to sleep apnea alone leads to a loss of nearly $150
million every year due to daily work performance reduction
and vehicle accidents [4]. Additionally, more than half of
Narcoleptic people are unemployed because of uncontrol-
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Fig. 1. Biosignals monitoring from behind the ears concept.

lable microsleep [5]. They often use Amphetamines to keep
themselves awake, resulting in many drug overdose cases
[6]. Combined, the sleepiness problem of drivers and the
workforce costs the U.S. up to $411 billion annually [7].

Polysomnography (PSG) and camera-based solutions
have been used for microsleep detection. In particular, the
Maintenance of Wakefulness Test (MWT) using PSG [8] is
the medical gold standard to quantify microsleep based
on the electrical signals from the human head, such as
brain waves, eyes ball movements, chin muscle tone, and
behaviors including eyelid closure, eye blinks, and head
nods. This method requires a complicated setup performed
by trained technicians in a controlled clinical environment.

Using cameras is another solution to detect microsleep.
This approach is the most affordable and common method
to detect microsleep for drivers [9, 10]. The camera-based
approach only captures the outer reflection of sleepiness,
such as eyelid closure and head nods and ignores the
other physiological signatures of sleepiness (e.g., brain and
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muscle activities) [11]. Thus, it cannot capture microsleep
reliably if the episode happens while the subject’s eyes still
open, which often occurs [12]. Furthermore, using cameras
raises strong privacy concerns [13]. Besides, cameras are also
limited by environmental light conditions. While wearable
cameras can address this issue, wearing a camera on the
face is not socially acceptable in daily use. For example, the
mixed criticisms of Google Glass on its privacy [14] and
form-factor [15] have shown that wearable cameras are not
easily accepted by the public.

In this paper, we explore the challenges of building a
novel wearable physiological sensing device, called WAKE,
for microsleep detection situated only behind the ears (BTE),
as illustrated in Fig. 1a. WAKE captures the core biomarkers
that are directly related to microsleep from the human head,
namely brain waves (EEG), eye movements (EOG), facial
muscle contraction (EMG), and skin conductivity (EDA),
while being light-weighted and socially-acceptable. While
WAKE is currently a standalone device, it could be inte-
grated with earphones and headsets (Fig. 1b), which are
already worn daily for listening to music or communication.
WAKE includes (1) a wearable design with customized
flexible silicon BTE earpieces, electrodes, and a device to
sense head-based biosignals, (2) a sensing hardware and
software platform to capture different signal types with high
fidelity while being robust to motion and environmental
noise, and (3) a classification model to detect microsleep.

Challenges. To realize WAKE, we face the following key
challenges: (1) heavy noise created by motion and coupled
from the environment in daily use is the long-standing
challenge limiting the practical uses of wearable biosignal
sensing systems, as it is difficult to ensure high fidelity sig-
nals; (2) making a wearable, and socially-acceptable device
that can capture microsleep is non-trivial because multiple
sensors are usually needed to capture its core biomarkers;
(3) microsleep detection from behind the ears is an unex-
plored topic where existing techniques cannot be applied
directly; and (4) the BTE biosignals are weak and overlap
with each other in the three-orders magnitude range.

Contributions: To overcome the aforementioned chal-
lenges, we make the following contributions:
1) We devise a Three-fold Cascaded Amplifying (3CA)

hardware technique to make it more practical by en-
suring high fidelity signals while mitigating motion and
environmental noises.

2) We identify and localize the minimum number of areas
behind human ears where biomarkers from the brain, the
eyes, facial muscles, and sweat glands can be captured
reliably for microsleep detection.

3) We design and prototype a wearable, compact, and so-

cially acceptable device that can capture multiple head-
based physiological signals.

4) Using a wide range of microsleep biomarkers as features,
we developed a hybrid model of a hierarchical classifica-
tion model and EMG-event-based heuristic rule to detect
users’ microsleep.

5) We evaluate the proposed system using our custom-
built prototype on 19 subjects. In Leave-One-Subject-
Out Cross Validation (LOSOCV), the system obtains 76%
precision and 85% recall, showing the feasibility for
microsleep detection of WAKE on an unseen subject.
Potential Applications: WAKE aims to support a wide

range of applications where microsleep detection is essential
to ensure user’s safety, such as patients with narcolepsy
and sleep disorders, heavy machine workers, shift workers,
night time security guards, drivers, pilots, and sailors (Fig.
1b). WAKE can also be used for continuous monitoring
applications, such as epileptic seizure warning, focus su-
pervising, ADHD monitoring, etc.

2 UNDERSTANDING MICROSLEEP

In this section, we discuss the background knowledge on
the physiology and manifestation of microsleep and explain
why building a wearable and socially acceptable solution
for microsleep detection is challenging.

The manifestation of microsleep. The Orexin system is a
wakefulness network throughout the whole central nervous
system, as illustrated in Fig. 2. It promotes neuron activity
in the mid-brain, the cerebrum, and the visual cortex. These
neuronal activities are represented through brain waves,
such as fast Beta (β) and Alpha (α) waves while the brain
is wakeful and conscious, and the slow Theta (θ) waves
when the brain experiences sleepiness. Furthermore, studies
on animals [16] have shown that Orexin neurons modulate
pupil size, eyelid position, and possibly convergence and
eye alignment via motoneurons of multiple muscle fibers.
As a result, the wakefulness state is also represented by the
movements and activities of the eyes. Additionally, several
studies [17] have shown that Orexin regulates wakeful-
ness in the autonomic nervous system (ANS) by activating
the ANS through projections to the ventrolateral medulla
(VLM) and spinal cord causing the inhibition of sleep. The
changes in sympathetic tone are, in turn, represented by
changes in facial muscles and sweat gland activity.

Microsleep detection. Microsleep is the temporary
episode of losing consciousness and is the key to captur-
ing the transition from wakefulness to sleep. A microsleep
episode can last from a few to 30 seconds and people
can still wake up after an episode. Microsleep manifests
itself both behaviorally (slow-rolling eyes, gradual eye-lid
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Fig. 5. EEG, EOG, EMG and EDA signals captured from behind the ears.

closure, head nods [18]) and electrically (shift in electroen-
cephalography (EEG) from fast α and β waves to slower θ
activities [19]). These manifestations link to the inhibition
of the Orexin system. Microsleep is extremely dangerous
for tasks requiring constant awareness since people who
experience MS are usually unaware of them and still believe
that they are awake the whole time [20]. This often happens
with people who have EDS.

Conventionally, the need for placing multiple sensors on
the user’s head to capture different biomarkers for accu-
rate microsleep detection makes it challenging to build a
wearable and socially acceptable system. As illustrated in
Fig. 3b, several electrodes (e.g. at least 9 in the standard
PSG system [21]) are usually needed to be placed on the
user’s scalp to capture brain waves. A wearable camera
or 2-4 biopotential electrodes can be placed on the user’s
eyes to capture eye movements. To capture facial muscle
contractions, electrodes are placed on the user’s chin. Lastly,
sweat gland activity is often captured by electrodes on
the wrist or the fingers. With this amount of sensors at
different locations on the user’s head and face, achieving
wearability and social acceptability for microsleep detection
is not a trivial task. These studies confirm that there are
four key bio-markers that we need to capture for microsleep
detection. The remaining questions are (1) where to place the
sensors, (2) how many sensors are sufficient, and (3) how the
sensors can be made to capture this information? (Section. 3).

Impact of environmental noises and motion artifacts.
Various noises and artifacts affect a wearable biosignal
sensing system. Motion artifacts and electromagnetic inter-
ference from the environment are two major roadblocks for
the practicality of the system. Several approaches have been
proposed to address the issues of artifacts and noise such
as blind source separation with independent component
analysis (ICA) or incorporating additional sensors such as
inertial measurement units. These approaches, however,
depend on a large number of electrodes to provide spatial
information, require significant computation, and are diffi-
cult to implement in a real-time system [22]. Throughout
our in-lab experiments using a PSG device, we found that
environmental noises generate significant impacts on the
original signal while human motion artifacts completely
distort the whole signal, making it not even usable. This
requires a novel solution to remove these noises from the signals
captured from wearable devices. (Section. 5, 6)

3 EXPLORING MICROSLEEP BIOMARKERS FROM
BEHIND THE EARS

As mentioned in the previous Section, the ear is the in-
tersection of multiple microsleep biomarker sources (e.g.
the brain, the eyes, facial muscles, and sweat glands) and

is also a natural harbor point where a wearable device
could be worn. While recent works on ear-based biosensing
have shown the feasibility of capturing individual biosig-
nals (e.g., EEG [23], EOG [24], EEG/EMG [25], and EDA
[26]) from the area around and behind the ears, monitoring
microsleep-related biosignals with a wearable form-factor
has not been explored before. Thus, it is unclear about (1)
where are the best places for EEG, EOG, EMG and EDA sensors
to achieve both wearability and sensing sensitivity, (2) what is
the minimum number of required electrodes, and (3) what are the
unique characteristics of BTE signals?

The BTE electrodes placements. From our study on the
ear anatomy, we derive the best sensor placement locations
for microsleep detection, as shown in Fig. 3a and Fig. 4.
At these locations, we can capture signals coming from the
mid-brain area (EEG), eye movements (EOG), facial muscle
contractions (EMG), and sweat gland activities (EDA). These
sensor locations allow us to design a socially-acceptable
wearable device that is well-hidden behind the user’s ears
just like commercial off-the-shelf (COTS) earphones.

Fig. 4 illustrates the anatomy of the temporal bone
covering the whole BTE area. It consists of two major parts,
i.e. the Squamous and Mastoid processes. To capture EEG
generated by the mid-brain area, we would want to place
the electrodes on the Squamous process, which is the thin
upper part of the temporal bone. This makes electrodes as
close to the brain as possible. Two electrodes, i.e. channel 1
on the left ear and channel 2 on the right ear, are used to
capture EEG on both sides of the brain. To capture EOG, i.e.
vertical EOG (vEOG) and horizontal EOG (hEOG), we need
to maximize the vertical and horizontal distance between
each pair of electrodes, respectively. Thus, we place the
reference electrode on the Mastoid process, which is the
thick lower part. With this setup, channel 1 can pick up
eye blinks and up/down movements, while channel 2 can
capture the eyes’ left and right movements. Additionally,
both channel 1 and 2 can capture most of the facial muscle
activities that link to the muscle group beneath the area
behind the ears. Since EEG, EOG, and EMG are biopotential
signals, we can use the same electrodes. Thus, we only need
four electrodes, including two signal electrodes, a reference,
and a common ground, to capture them. Capturing EDA
behind the ear is promising because it has high sweat gland
density [27]. As sweat gland activities are not symmetric
between two halves of the body, placing two electrodes on
each ear is necessary to reliably capture EDA.

Examining BTE signals. Signals captured from BTE
electrodes resemble the most important biomarkers of mi-
crosleep that we would expect from standard electrodes
placements (i.e, EEG, EOG, EMG, and EDA), as shown in
Fig. 5. In particular, Fig. 5a presents the α rhythms seen
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on both BTE leads when the eyes are closed. Similarly, the
same features, such as eye blinks, left gaze, right gaze, teeth
grinding, and emotional arousal can be captured with BTE
electrodes, as shown in Fig. 5b, c, and d, respectively. Thus,
the results confirm that we could capture the aforemen-
tioned microsleep features from only behind the ears.

There are unique challenges to BTE signals. First, BTE
signals are much smaller than the ones expected with stan-
dard placements. Particularly, the amplitude of EEG and
EOG captured from BTE are all less than 50uV, which are
much smaller than standard placements (100-500uV)[28].
This is probably because BTE electrodes are far from the
signal sources of EEG and EOG. Secondly, we notice a sig-
nificant amplitude difference (i.e. three orders of magnitude)
between BTE EEG/EOG and EMG signals, as BTE EMG
events could be as strong as a few millivolts. Moreover,
the spectrogram in Fig. 5 shows that BTE EMG events have
very strong power in all frequency bands from 0.3 to 100Hz.
As we use the same BTE electrode to capture EEG, EOG,
and EMG, addressing the overlap of the three signals is not
trivial. Low amplitude BTE EEG/EOG signal overlapped
with EMG making it challenging to ensure high fidelity mi-
crosleep features while being robust against environmental
noise and motion artifacts.

4 SYSTEM OVERVIEW

We design WAKE to include four main components (Fig. 6):
(1) a motion mitigation sensing hardware using the 3-folds
Cascaded Amplifying (3CA) technique, (2) a firmware adap-
tively amplifies of the signals; (3) a software running on a
host device to process data from BTE sensors and detect
user’s microsleep; and (4) an ear-worn device designed for
long-time usage.

WAKE hardware. We design a highly sensitive sensing
circuit (Fig. 7) to capture the brain waves (EEG), polarization
signal created by eyeball activities (EOG), facial muscle
contractions (EMG), and electrodermal activities (EDA). In
WAKE, we derive an approach called 3CA, allowing the
system to minimize the impact of motion artifacts and
environmental noises in real-time at hardware and firmware
levels. The key idea is to utilize multiple buffering and am-
plifying stages with precision buffers and instrumentation
amplifiers to address the effects of electrode fluctuation,
cable shaking, and environmental interference (Sec. 5).

WAKE firmware. WAKE firmware is designed to control
our sensing hardware so that data from four main sensors:
EEG, EOG, EMG, and EDA can be captured reliably (Sec. 6).
The key challenges are that the signals are often weak and
overlap each other. Thus, we design the firmware with
three main components (1) adaptive gain control (AGC),
(2) contact quality checking, and (3) Bluetooth and SD

card streaming. AGC addresses the overlapping issue by
dynamically changing the amplifier gain based on different
signal types. Electrode contact quality is monitored so that
we can detect and remove noisy signals created by loose
electrodes. The collected data is streamed over Bluetooth
and to an SD card for later analysis.

WAKE algorithms. WAKE algorithms are implemented
on a host device (i.e., mobile phones, laptops, etc.). Upon
receiving the signals from the WAKE ear-worn device, the
data are separated into different streams and ready for
further processing. There are three main data streams are
collected including a BTE EEG/EOG/EMG signals, EDA
signal, and contact impedance signal. During signal pre-
processing, the DC, electricity noises, and other noises are
removed by DC removal, notch, median, and outlier filters,
respectively. The clean EEG, EOG, EMG, and EDA signals
obtained from pre-processing are then used for microsleep
classification. The features extracted from these signals are
later used to together with a set of machine learning algo-
rithms to detect microsleep.

WAKE earpieces. WAKE system is designed for com-
fortable, reliable, cost-effective, and continuously collecting
behind the ear signals. To realizing that goal, we design the
earpieces by carefully sketching the device architecture and
then implementing them using off-the-shelf components.
The earpieces materials were also carefully selected ensur-
ing good contacts between the electrodes and the human
skin as well as allowing it to be comfortably worn by users.
We also validated and identified the most proper electrode
materials that provide the highest sensitivity (Sec. 8).

In the next section, we will discuss our proposed solution
to address one of the most important challenges of design-
ing a reliable wearable device: “how to cancel the noises created
by human motion artifacts and coupled from the environment?”

5 MITIGATING IMPACT OF MOTIONS & NOISE – A
HARDWARE SOLUTION

Noises created by motion and coupled from the environ-
ment are important challenges that we need to overcome
to ensure the reliability and practicality of WAKE. These
noise span across all frequency of interest and are highly
unpredictable, making their removal non-trivial from the
signal by software methods such as filtering or ICA. In
literature, Active Electrodes (AE) [29] have been proposed
to mitigate motion artifacts and environmental interference.
However, conventional AE does not consider the unique
characteristic of BTE signals, which are (1) weak EEG and
EOG signal amplitudes, (2) signals overlap with three or-
ders of magnitudes difference, and (3) limited spaces for
BTE electrodes. We propose a technique called Three-fold
Cascaded Amplifying (3CA) on the electrical pathway of
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WAKE. Fig. 8 presented the model for the 3CA technique
with three stages: (1) Stage 1 – Unity Gain Amplifying, (2)
Stage 2 – Feed Forward Differential PreAmplifying (F2DP),
and (3) Stage 3 – Adaptive Amplifying. The 1st and 2nd
stages are implemented on our BTE earpieces, while the 3rd
stage is implemented on the sensing circuit and its firmware.

Stage 1 – Unity-gain amplifying. The root cause of mo-
tion artifacts lies in the fluctuations of the wires and micro-
movements of electrodes [30]. These fluctuations create
changes in the electrical pathway resulting in measurement
noise. We address the motion artifacts by introducing the
first stage: unity-gain amplifying (a.k.a buffering). Consid-
ering the reference circuit model, as in Fig. 8, Vs is the signal
source from the ears, Cw is inherent capacitance on signal
cables, and Zc is the skin-electrode contact impedance. Vo,
A, Zi, Ri, Ci, Zo, Cp are output voltage; ideal voltage
gain; input impedance, resistance, and capacitance; output
impedance; and parasitic capacitance of each amplifier.

Since the biosignals are extremely weak (i.e., µV level),
instrumentation amplifiers are usually used to amplify the
signals, making them available for further processing. When
an instrumentation amplifier is used, we can model the
effect of motion artifacts by using the voltage gain rule
(Vo = A ∗ Vi) and Kirchhoff’s current and voltage laws (1)
at the input of the amplifier:

(Vs − Vi)/(Zc1 + Zc2)− (Vi)/(Zi) + jωCp(Vo − Vi) = 0. (1)

By eliminating Vi from Eq. 1, we have a relationship among
the actual gain (G = Vo/Vs) of the circuit, skin-electrode
contact impedance (Zc1, Zc2), and the inherent capacitance
on signal wires (Cw):

G =
A

1 + (Zc1 + Zc2)(
1
Ri

+ jω(Cw + Ci − (A− 1)Cp))
. (2)

As motions happen, cable sway and electrode movement
create the fluctuation on Cw and Zc1 + Zc2, respectively.
This results in the fluctuation of the actual gain (G). To
minimize the fluctuation effect of Cw (generated by tribo-
electric processes and change of parasitic capacitance in
the measurement network [31]), we can use an op-amp
buffer for each electrode to convert the high impedance lines
(Zc1, Zc2) to approximately zero (Zo1, Zo2 ≈ 0). Rewrite Eq.
2 for the op-amp buffer in the first stage, we have

G =
A1

1 + Zc1(
1

Ri1
+ jω(Cw1 + Ci1 − (A1 − 1)Cp1))

=
A1

1 + Zc1γ
.

(3)
Ideally, the effect of Zc1 fluctuation can be removed if we
can satisfy the following equation: γ = 0. While it is very
challenging to achieve in practice, we still can make γ as
close to 0 as possible. This could be done by using an ultra-
high input impedance buffer, where A1 = 1, Ri1 → ∞,
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SkinBody
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V
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o
is
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Earth

Zrl

Vcm

Fig. 8. 3CA model.

and Ci1 → 0 in our first stage. Putting a buffer circuit
directly on the electrodes is the best way to minimize Cw1.
However, this is not desirable, as we have limited space for
our BTE electrodes. We notice that as long as we keep Cw1

small and stable, putting the circuit directly on the electrode
is possible. This is done by fixing the connection between
each electrode and its buffer in a stable structure to avoid
triboelectric noise and shielding it by using a micro-coax
shielded cable. By driving the shield with the same voltage
as the signal from the output of the amplifier, we effectively
minimize Cw1. Up to this point, the unity-gain amplifying
stage can remove the impact of human motion artifacts.

The use of ultra-high input impedance buffers at this
stage also brings another benefit, i.e., reducing environ-
mental noise coupled into the measurement because of
the imbalance among signal lines. When a common-mode
voltage (Vcm) is introduced to the subject body by an
environmental noise source (Vnoise) (Fig. 8), a portion of
Vcm leaks into our differential measurement and becomes
noise (Vn) because of impedance mismatch, i.e. Vn =
Vcm(Zc/Zi)((∆Zc/Zc) + (∆Zi/Zi)) [32]. During a long-
term measurement in practice, contact impedance can easily
deteriorate (e.g., from <10kΩ to several hundreds of kΩ)
because of drying gel or unstable contacts [33]. Junction-
gate field-effect transistor (JFET) input amplifier is a good
solution to address this issue thanks to its extremely high
input impedance (1012 − 1015Ω). Thus, we can significantly
reduce Vn making our measurement more robust against
impedance mismatch. The signals, however, need to go
through another stage to remove all the environmental
noise, as described in the following discussion.

Stage 2 – Feed Forward Differential PreAmplifying
(F2DP). To ensure robustness against environmental inter-
ference, intuitively, we would want to preamplify our weak
and overlapped BTE signals before driving the cables to our
sensing circuit. Conventionally, if an amplifier with positive
gain (> 1) is used, the equation γ = 0 cannot be satisfied,
making the system prone to motion artifacts. Furthermore,
electrode contact impedance mismatch, which is often seen
in practice, leads to the a gain mismatch among electrodes,
as shown in Eq. 3. Gain mismatches between two electrodes
will allow more common-mode noise to be coupled into the
system. By dividing into unity-gain and F2DP stages, we
overcome this challenge since the input impedance of F2DP
is effectively close to 0. Thus, the effect of contact impedance
will not affect the gain in the next stages.

Inspired by the robustness against noises of balanced
audio systems where preamplified differential signals are
generated before transiting over wires, differential signaling
is employed in our design. We apply the Feed-Forward (FF)
differential amplifying technique, which has been shown
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by simulation in [34] to significantly increase the Common-
Mode Rejection Ratio (CMRR), i.e. the ability to reject noise
coupled from the environment, than using the conventional
Driven Right-Leg circuit (DRL) by 49 dB. The FF topology
used in [34], however, is not practical because its stability
suffers from gains mismatch when two different gain resis-
tors are used in the proposed topology. Mismatch in these
resistors causes the output common-mode level to move
with the output signal, resulting in distortion [35]. Thus, we
employ the cross-connection technique where only one gain
resistor (i.e., Rg in Fig. 8) is needed to set the gain for two
FF instrumentation amplifiers in our F2DP. After F2DP, fully
differential and preamplified signals are produced making
them robust against environmental interference while driv-
ing the cables to the sensing circuit.

F2DP only works when the DC component is removed
completely. We found that the traditional high pass RC filter
approach is not efficient in removing the DC component
(100x larger than signals of interest) because it introduces
an additional ground-path and component mismatch, which
reduces the efficiency of rejecting environmental noise of
F2DP. Balanced AC-coupling topology [36] is a best-fit so-
lution to overcome these challenges because it does not
introduce any additional ground-path and minimizes the
component mismatch since the pole and zero of the filter
cancel themselves out. In particular, considering ’Balanced
AC-coupling’ components in Fig. 8, this topology does not
include the ground-path, thereby eliminating its side-effects.
Moreover, RC components are never precise in practice
(approximately from 1% to 20% error for a capacitor) and
their mismatch problem is difficult to solve. The chosen
balanced AC-coupling topology dampens these mismatches
by canceling the redundant poles and zeros created by
component mismatch [36].

Stage 3 – Adaptive Amplifying. After the previous
stage, the system can reliably collect BTE signals; we are
now solving the problem of our BTE signals themselves.
The unique challenge that we need to address with our
BTE signals is the significant amplitude range differences
between EEG/EOG and EMG signals (i.e. from uV level
to mV level for EEG/EOG and EMG signals, respectively).
This challenge has not been considered in the traditional
EEG system, as EEG electrodes are placed far away from
EMG sources. The difference leads to signal saturation at
the ADC on the sensing circuit when EMG signals are
amplified with the same gain as EEG/EOG signals. The
CMRR of the amplifier is presented by the following equa-
tion: CMRR = 10 ∗ log A2

d

A2
cm

, where Ad and Acm are the
differential and common-mode gain, respectively. In an in-
strumentation amplifier,Acm is a constant depending on the
internal resistors. Thus, CMRR only depends on Ad. Since

the difference between EMG and EEG/EOG could be as
large as three orders of magnitude, setting the gain too low
to avoid EMG saturation will also significantly lower CMRR
(up to 60 dB), increasing the noise floor to a level where
EEG/EOG signal cannot be captured. We found that the
gain needs to be dynamically adjusted in real-time so that
both small EEG/EOG and large EMG signals are captured
with high resolution.

6 SIGNAL PROCESSING

6.1 WAKE On-board processing.
Adaptive Gain Control. As aforementioned in Sec. 5, one
important and unique challenge in ensuring high fidelity
BTE signals is the large difference in the amplitude range
(which could be up to three orders of magnitude) between
EEG/EOG and EMG signals. Thus, the analog gain of
our sensing circuit needs to adapt dynamically with the
changes in signal amplitude. Fortunately, we observe that
(1) EMG events do not happen frequently, (2) EMG events
can happen quickly with strong amplitude changes, and,
(3) signal amplitude during an EMG event is stochastic and
can vary significantly. Understand these characteristics, we
then design our AGC to (1) keep the gain at maximum
for EEG/EOG signals while there is no significant EMG
events, (2) react quickly to the abrupt increase of amplitude
to detect EMG events but (3) react slowly to the decrease of
amplitude while an EMG event is still happening to avoid
gain oscillation. Peak Envelope Detector (PED) and Square
Law Detector (SLD) are two popular AGC techniques [37]
that fit with our needs. We use PED because of its low
computational complexity. If there is no EMG event, we use
a small window size so that PED can react quickly while a
larger window size is used during an EMG event to avoid
gain oscillation.

We can choose the PED window size based on the
property of EMG signals, sampling rate, desired response
time, and the device’s computational resource. According to
[38, 39], EMG signal has the frequency range of 1-500Hz
and is most dominant in between 50-150Hz. Thus, with
the sampling rate of 1000Hz, we can cover the EMG signal
range by using the small and large window sizes of 2 and
1000 samples, respectively. With the large window size of
1000 samples, our AGC can guarantee that the gain will
be adjusted within one second after the EMG event has
ended. This response time is acceptable in our application
as a microsleep can last at least a few seconds. The small
window size of two samples can make our AGC very sen-
sitive even with the fastest EMG signal, but it also increases
our processor load. Since the dominant EMG signal power
is in the range of 50-150Hz, we can increase the small
window size to reduce the load. During a gain transition,
the amplifier needs to be stabilized before new data can be
obtained. We can interpolate missing samples with a light-
weight linear interpolation. Fig. 9 shows an EMG event is
captured without saturation by using AGC with the small
and large window size of 10 and 1000 samples, respectively.

Σ−∆ modulation. To ensure high signal quality during
the quantization process, we employ the Σ−∆ modulation,
which could be found in high precision Analog-to-Digital
Converters (ADCs). Low quantization noise is achieved by
utilizing oversampling, noise shaping, digital filtering, and
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Fig. 11. Signals captured by WAKE during the transition between awake and microsleep.

decimation, as illustrated in Fig. 10. With a given ADC
having the resolution of b bits, the full signal scale FS,
and the quantization error (ε) is assumed to be a station-
ary, random process; the quantization noise is a constant
(σε2 = FS2/(3 ∗ 22b)) [40]. Without a noise shaping func-
tion, the quantization noise spreads out uniformly over the
Nyquist spectrum. Thus, the power spectral density is also
constant, i.e. Se(f) = σe

2/fs with fs is the sampling fre-
quency. Oversampling (by a factor of K) widens the Nyquist
spectrum, thereby, reducing the quantization noise energy in
the spectrum of interest, i.e., Se(f) = σe

2/(Kfs). To further
reduce the noise inside the spectrum of interest, we pass the
signal through a noise shaping function called the Σ − ∆
modulator. Fig. 10 presents a first-order Σ − ∆ modula-
tor constructed as a negative feedback loop. By using Z-
transform, we have the noise transfer function (NTF) of the
loop to be NTF (z) = 1 − z−1 [40]. Converting the NTF
to the frequency domain by using trigonometric identities,
we have NTF 2(f) = 4sin2(πf/fs). Thus, the new noise
power spectral density is Se(f) = σe

2/(Kfs) ∗ |NTF (f)|2.
Similarly, we can generalize the NTF equation for a Nth-
order Σ−∆ modulator asNTF 2(f) = [2sin(πf/fs)]2N . As
illustrated in Fig. 10, a Σ−∆ modulator can shift the noise
energy to the high frequency of the spectrum. A digital filter
removes the noise power outside our spectrum of interest.
The signal is then decimated to the required sampling rate
before outputting the results. Thus, we can achieve a low
noise floor for our measurement.

Contact quality checking. To monitor contact quality,
we inject a small sinusoidal AC current (i.e. I = 6nA,
30Hz) through the skin-electrode contact. By measuring the
response voltage, we can calculate the contact impedance
by this equation: Z30Hz = VRMS,30Hz/I − Rprotection. We
follow the clinical standards as in [21] stating the acceptable
upper limit of electrode impedance is 10kΩ to achieve
optimal biosignals recording. This can be achieved with
standard procedures of skin preparation and conductive
gel application. As the electrode impedance can varies over
time because the electrode contact loosens or the gel dries
out, we can notify the user to adjust contact or reapply the
gel if the impedance is higher than our defined threshold.

6.2 WAKE Physiological Signals Extraction
In WAKE, each sensor data (EEG/EOG/EMG, and EDA) is
pre-processed at the host device corresponding to their own
characteristics before putting it into the signal analyzing
procedure. We show the examples of changes in those
signals between microsleep and awake states in Fig. 11. We
apply to all sensor data the notch filter to remove 50/60Hz
power line interference, linear trend removal to avoid DC
drift, and outlier filters to remove spikes and ripples.

Collecting EEG/EOG/EMG signals. WAKE’s mixed-
biosignals include EEG, EOG, and EMG, which are in the
frequency range of 4-35 Hz, 0.1-10 Hz, and 10-100 Hz,
respectively. We apply different bandpass filters to split the
mixed BTE biosignals into the signals at the frequency range
of interest. In particular, we extract wakefulness-related EEG
bands (i.e θ, α, and β waves) using 4-8 Hz, 8-12 Hz, 12-35
Hz bandpass filters, respectively. We extract horizontal EOG
(hEOG) for eye movement and vertical EOG (vEOG) for eye
blink using 0.3-10 Hz filters. A 10-100Hz bandpass filter
and a median filter are then applied to the mixed signals
to extract the EMG band and get rid of spikes and other
excessive components.

Collecting EDA signal. EDA signal is the superposition
of two different components, skin conductance response
(SCR) and skin conductance level (SCL) at the frequency
range of 0.05-1.5 Hz and 0-0.05 Hz, respectively. Even
though EDA signals have fast responses, they are very slow
to decline to baseline. Thus, if another response happens
right after the first response, the signal level will increase
even more. Thus, frequency filtering is not effective to
separate EDA signal. To address this, we employ an non-
negative deconvolution technique proposed in [41] to de-
compose EDA into SCR and SCL components.

7 ALGORITHMS

We present two classification methods: (1) feature
engineering-based classification, and (2) deep learning on
raw data. Feature-based classification is built on well-
studied microsleep features with off-the-shell machine
learning models. While this approach may help the learning
procedure more stable, interpretable with less amount of
data, it is labor-intensive for processing features. The second
approach using deep learning tackles this issue, and has
been shown to achieve the state-of-the-art performance on
micro-sleep detection.

7.1 Classification based on Feature Engineering

EMG active events detection: Microsleep appears when the
body is relaxed. A strong EMG signal can have significant
power across all frequency bands of interest (discussed in
Sec. 3). It will contaminate our BTE EEG and EOG signals
rendering them unusable. We detect the active event based
on the sum of all frequency bands in the spectrogram. For
each data signal, we use the first 10 seconds as the ground-
based noise. Any data whose total spectrum energy is 10%
larger than that of ground-based is an active event.

Feature Extraction: We divide the collected time series
data from each source into fixed-size epochs. The selected
features are extracted from each epoch for classification.
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Temporal features: This category includes typical features
used in the literature for time series data analysis in the
temporal domain, namely mean, variance, min, max, hjorth,
skewness, and kurtosis. In microsleep detection, EOG, EMG,
and EDA signals are often analyzed in the time domain due
to their considerable variation in amplitude and lack of dis-
tinctive frequency patterns [42]. Those six temporal features
are extracted from each of hEOG, vEOG, EMG, and EDA
signals for a total of 24 temporal features. We use wavelet
decomposition for the hEOG signal to extract saccade fea-
tures, namely mean/max velocity, mean/max acceleration,
and amplitude range. Eyeblink features, namely mean/max
amplitude, peak closing velocity, peak opening velocity, and
closing time are extracted from the vEOG signal.

Spectral features: The spectral features are extracted to
analyze the characteristics of the EEG signal because brain-
waves are generally available in discrete frequency ranges at
different stages. Those features include the ratio of powers,
absolute powers, θ/β, α/β, θ/α, and θ/(β + α). Accord-
ingly, 14 features are extracted from each channel of EEG
providing 28 spectral features in total.

Non-linear features: Bioelectrical signals show various
complex behaviors with nonlinear properties. In particular,
the chaotic parameters of EEG can be used for microsleep
detection. The discriminant ability of nonlinear analyses
of EEG dynamics is demonstrated through the measures
of complexity such as correlation dimension, Lyapunov
exponent, entropy, fractal dimension, etc. [43], with the last
two features proven to be most informative. In this study,
we extract these two non-linear features for each of the two
EEG channels (a total of four features).

Feature Selection: When all features are used altogether,
irrelevant correlated features or feature redundancy can
degrade the performance. Therefore, we adopt three feature
selection methods, including Recursive Feature Elimination
(RFE), L1-based, and tree-based feature selection to select
the set of most relevant features. RFE is a greedy optimiza-
tion algorithm that removes the features whose deletion will
have the least effect on training error. L1-based feature selec-
tion is used for linear models, including Logistic Regression
and SVM. In our linear models, we use the L1 norm to
remove features with zero coefficients. Finally, the feature
importance ranking generated by the tree-based model is
used to eliminate irrelevant descriptors.

Microsleep Classification: Various classification meth-
ods from Support Vector Machine (SVM), Linear Discrim-
inant Analysis (LDA), Logistic Regression (LR), Decision
Tree (DT) to ensemble methods like RandomForest or Ad-
aBoost have been proposed in the literature for awake
and microsleep classification, each shown to be effective in
specific settings [44]. To cope with the high complexity of

our collected signals, we developed a hierarchical stack of
three base classifiers. Our hierarchical model consists of a
Random Forest classifier (with 50 estimators) in the first
layer, Adaboost classifier (with 50 tree estimators) in the
second layer, and SVM (with RBF kernel) in the last layer.
Specifically, for the first two layers, we only keep the predic-
tions with high probabilities (> 0.7) and transfer the rest of
samples to the next layer. In the last layer, SVM classifies all
of the remaining samples. We also apply a heuristic rule to
the final predication based on the knowledge that an EMG
event is likely to leads to an ‘awake’ event. The results of our
empirical analysis are presented in Sec. 9, which highlights
the overall accuracy of the performance and proves the
efficiency of the proposed classification model.

7.2 Deep Learning on Raw Data
Deep neural networks (DNNs) is a branch of Artificial
Neural Network which can model highly complex nonlin-
ear functions. An advantage of DNNs compared to other
machine learning algorithms is its ability to automatically
learn features from raw inputs. Also, DNNs usually require
less manual adjustments even though they need more data
and computations, thus being easier to deploy and maintain.

Modified Sorsnet: while deep learning community has ex-
tensively studied perceptual data (e.g., image, audio, text),
brain signals are still under-explored. Recent works from
sleep staging and microsleep detection have demonstrated
the effectiveness of DNNs, especially Convolutional Neu-
ral Networks (CNNs) in learning meaningful patterns of
EEG signals. We make use of a relevant CNN architecture
proposed by [45] as it achieves the state-of-the-art perfor-
mance for sleep classification using a single EEG channel.
This model contains 12 1-D convolutional blocks followed
by 2 fully connected layers. Each block consists of a 1-D
convolution layer, a BatchNorm layer and a ReLU activation
function. As our data contain 24 1-D signals, we modify
this architecture by stacking these signals into a 24-channel
signals and update the input channel of the first convolu-
tional layer. For training, we use cross-entropy loss [46],
Adam optimizer [47] with β1 = 0, β1 = 0.99, and Lambda
scheduler for the learning rate decay. We train the SorNet
model with 200 epochs. To derive the best hyper-parameter,
we apply the grid search for learning rate in [1e−4, 0.1],
and find out that learning rate 0.002 works well for us in
most of the cases. We use an additional validation set on
the precision score to overcome the over-fitting and pick the
best model.

8 IMPLEMENTATION
Earpieces’ Material. We design the BTE biosensing ear-
pieces by attaching electrical conductive material on top of
a silicone base as illustrated in Fig. 12. The silicone material
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(Dragon Skin 10) is chosen so that the earpiece can fit
with the curve created by the mastoid process, while being
comfortable and alterable with different user’s ears (Fig. 12,
13). Furthermore, the chosen silicone material is skin safe
and does not create irritation to the user’s ears. The silicone
base is molded based on the average size of the human
ear [48]. To maintain a good contact between the electrodes
and skin, we put a memory wire inside the silicone base. The
memory wire creates a grip on the wearer’s ears, pushing
the silicone against the skin. It helps the earpieces be usable
for different human ear sizes and shapes.

Electrodes’ Material. We evaluated three different mate-
rials for the electrodes attached to the earpieces including
(1) silver fabric, (2) copper pad and (3) gold-plated copper
pad. The silver fabric electrodes are highly conductive and
can make good contact with the skin thanks to the flexibility
of the fabric, but the silver gets tarnished quickly because
of the skin oil and sweat. Thus, the contact quality degrades
after several uses as the resistance increases dramatically
from less than 1Ω to several hundred kΩ. Similarly, copper-
based electrodes also degrade quality after several uses. We
address that issue by plating gold liquid over the copper
electrodes, because the gold-plated electrodes are more re-
sistant to skin oil and sweat. In addition, gold is well-known
to be chemically inert. Thus, the skin allergy with gold is
extremely rare. The resistance of the gold-plated electrodes
is always less than 1Ω. To enhance contact conductivity
and adhesion, we apply Weaver’s Ten20 conductive paste
on the electrodes before wearing the earpieces. The contact
impedance between the electrodes and the skin is also
measured to be in the range from 5 to 10 kΩ at 30Hz with
a proper skin preparation. This impedance value satisfies
the clinical standards [21], which state the acceptable upper
limit is 10kΩ, to achieve optimal recordings.

Putting Things Together. We use the low power, preci-
sion AD8244 JFET-input buffer to implement our Stage 1 of
3CA. The AD8244 device has unity gain, very high input
resistance (i.e., 20TΩ), and very low input capacitance (i.e.,
12pF) so that the effect of motion and impedance mismatch
can be minimized as pointed out in Sec. 5. The precision,
instrumentation amplifier AD8222 is used to implement
our Stage 2 (F2DP). The preamplifying gain is chosen at
100 so the full range of the ADC (i.e., -2.5V to 2.5V) is
utilized. We use an ultra-low noise amplifiers and 24-bits
ADC chip ADS1299 to digitize the signals. The ADS1299
provide an integrated second-order Σ − ∆ modulator. It
samples the input signal at 1.024 MHz and shapes the noise
across the Nyquist bandwidth (i.e. 0-512 kHz). A third-order
digital low-pass Sinc filter is used to remove most of the
noise at high frequency. The decimator downsamples the
filtered signal to 1000 Hz and 250 Hz to be stored in a SD
card and transmitted over Bluetooth, respectively. The main

processing unit (MSP432) is used to (1) drive the analog
front end on the sensing circuit, (2) to adjust the amplifier
gain dynamically, and (3) to stream data to a host device
through Bluetooth.

9 PERFORMANCE EVALUATION

9.1 BTE Signals Sensitivity Validation

In this section, we compare the ability to capture EEG, EOG,
EMG, and EDA with WAKE from BTE against the ground-
truth devices from standard placements on the scalp, the
eyes, the chin, and the wrist (Fig. 3). Ground-truth EEG,
EOG, and EMG are measured by using an FDA-approved
Lifeline Trackit Mark III device with electrodes placed at
C3, C4, O1, O2, Cz, M1, M2, upper and lower parts of
the left eye (VEOG), two sides of the left and right eyes
(HEOG), and the chin (chinEMG), according to the Interna-
tional 10-20 system. Ground-truth EDA is measured by the
BioPac’s BioNomadix Wireless EDA Amplifier system with
electrodes placed on the left wrist. The data was collected
for one hour while the subject sat on a couch. We calculate
Normalized Cross-Correlation (NCC) between our BTE sig-
nals with the ground-truth ones to measure the similarity
between them. The measured signals are shown in Fig. 15.
NCCs of EEG, EOG, EMG, and EDA are as follows: Ear1-C3:
0.35, Ear1-O1: 0.28, Ear2-C4: 0.44, Ear2-O2: 0.52, Ear1-VEOG:
0.47, Ear2-HEOG: 0.59, Ear1-chinEMG: 0.62, Ear2-chinEMG:
0.76, and EarEDA-WristEDA: 0.37. The results show that
Ear2, i.e. the channel crossing right and left ears, has strong
correlations with scalp EEG and horizontal EOG. Ear1, i.e.
the channel placed on the left ear, has a moderate correlation
with scalp EEG and a strong correlation with vertical EOG.
Both Ear1 and Ear2 channels have strong correlations with
chin EMG. EDA on the left ear shows a moderate correlation
with the signal from the wrist.

9.2 Noise Suppression Performance

Motion Artifacts Mitigation. We evaluated the 3CA tech-
nique in two scenarios: (1) walking and (2) sitting in a car.
Each evaluation is done in one hour. Evaluation (1) consists
of ten minutes of standing stationary and 50 minutes of
walking in a hallway. Evaluation (2) also consists of ten
minutes of sitting in a car while it is parked in a parking
lot and 50 minutes of driving on an urban road (40 mph).
Evaluation (1) presents artifacts created by human motion
while evaluation (2) presents artifacts introduced from the
environment while driving. Two pairs of electrodes are put
as close as possible on the same ear of a subject so that the
same signals could be obtained.

Without 3CA, the BTE EOG signals (i.e. eye blinks) are
completely distorted by significant motion artifacts. The
noise power introduced by motion is shown in Fig. 18.
During standing and parking scenarios, BTE signals with
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and without 3CA have the same power. However, during
walking and driving, 3CA reduces the noise power by 19.47
dB and 11.87 dB. Thus, the eye blink signals are captured
reliably (Fig. 16, 17).

Environmental Noise Reduction. We evaluated the abil-
ity to minimize environmental noise in three different prac-
tical environments: (1) in an office, (2) at home, and (3)
inside a car. The results of the noise spectrum are shown in
Fig. 19, 20, and 21, where 3CA can reduce the noise power
by 9.74 to 16.1 dB. We also found that the 60Hz noise and
its harmonics coupled from the electrical power line are
the main sources of noise while the subject is stationary.
During motion, motion artifacts are the most significant
noise source at frequency ranges 0.3-100Hz (Fig. 21).

9.3 Microsleep Detection Performance

We evaluated WAKE’s ability to detect microsleep by con-
ducting the Maintenance of Wakefulness Test (MWT), which
is the existing gold-standard for quantifying microsleep [49].
We conducted three sets of experiments on the data of 19
subjects. In the first experiment, we performed the Leave-
One-Subject-Out Cross-Validation (LOSOCV), i.e. train each
classifier on the set of 18 subjects and evaluate on the unseen
subject. The second and third sets deal with each individual
subject, in which we provided test-set and 10-folds cross-
validation. Also, we conduct these sets of experiments on 4
different epoch sizes: 3s, 5s, 7s, 9s.

TABLE 1
Demographic data of participants

Age 18 - 44 years old
Sleepiness Level Healthy: 9, EDS: 8, SEDS: 1, Narcolepsy: 1
Gender Ratio Male: 12, Female: 7

Experimental Protocol. WAKE protocol has been thor-
oughly designed and approved by the Institutional Review
Board. 19 sleep-deprived and narcoleptic subjects on the
campus were recruited for the study. Participants’ demo-
graphics are shown in Tab. 1. The Sleepiness Level of each
subject was recorded by using the Epworth Sleepiness Scale
(ESS). The ESS score is interpreted as <10, healthy level; 10-
15, Excessive Daytime Sleepiness (EDS); and 16-24, Severe

Excessive Daytime Sleepiness (SEDS). The subjects were
advised to sleep for less than five hours (only applied to
subjects at the healthy level) on the night before the study
and also not to consume caffeine or alcohol products before
the study so that their microsleep could be faithfully cap-
tured. During each MWT session, the subject was asked to
try to stay awake in a sleepiness-inducing environment. We
use an FDA-Approved Video-EEG system (Lifelines Trackit
Mark III) to conduct PSG as the ’ground truth’.

The MWT Protocol. We conducted two sessions of MWT
for each subject with a maximum of 40 minutes each. The
subject was asked to sit comfortably on a couch. The WAKE
device and the ’ground-truth’ PSG system were installed on
them as shown in Fig. 22. We minimized all the external fac-
tors that could affect the subject’s drowsiness by blocking all
the light and sound coming from outside of the experiment
room. The room was dark and its temperature was set at
the subject’s comfort levels. The subject was asked to relax
but try to keep themselves awake for as long as possible,
so they would not fall asleep voluntarily. The MWT starts
when the light in the experiment room was turned off. We
woke the subject up after they fell asleep. The collected PSG
data was sent out for scoring by two certified sleep experts.
To handle the variation of the manual process, one expert
scored while the other expert verified independently, and
the differences were resolved by discussion. Awake and
microsleep episodes were marked down by following the
guideline of AASM for Sleep Study [50].

Classification Evaluation Metrics. We cast the problem
of microsleep detection as a binary classification problem:
positive class for microsleep epoch and negative class other-
wise. Here, we briefly describe four indices of the confusion
matrix: true positive (TP) is the number of actual positive
epochs which are correctly classified; true negative (TN)
id the number of actual negative epochs which are cor-
rectly classified; false positive (FP) is the number of actual
negative epochs which are incorrectly classified as positive;
false negative (FN) is the number of actual positive epochs
which are incorrectly classified as negative. Given these
notions, we can now define precision, sensitivity, speci-

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 25,2021 at 00:20:10 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3090829, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 11
TABLE 2

Evaluation scores with Leave-one-subject-out cross validation setting
using feature-based classification, over 4 epoch sizes (3s, 5s, 7s, 9s).

Epoch Precision Sensitivity Specificity
3s 0.76 0.65 0.80
5s 0.76 0.85 0.81
7s 0.76 0.61 0.81
9s 0.75 0.58 0.81

TABLE 3
Evaluation scores with Test-Set validation setting using feature-based

classification, over 4 epoch sizes (3s, 5s, 7s, 9s).
Epoch Precision Sensitivity Specificity

3s 0.83 0.9 0.81
5s 0.87 0.9 0.87
7s 0.88 0.93 0.86
9s 0.89 0.95 0.88

ficity scores as follow: Precision = TP
TP+FP ;Sensitivity =

TP
TP+FN ;Specificity = TN

TN+FP . Due to the nature of our
detection problem (the number of microsleep epochs is
much less than that of awake ones), precision, sensitivity,
and specificity are preferred over the accuracy index.

Data summary. Our dataset contains 19 subjects. We
then segment and label each epoch based on the epoch size.
For instance, with 5s epoch (80% overlap), our data consists
of 35,558 and 8,845 samples for awake and microsleep states,
respectively. The ratio of negative:positive is approximately
4:1, as an essence of rare microsleep events. This imbalance
problem is known to severely affect the performance of
popular classification algorithms. Thus, we downsampled
the awake set to the same amount of microsleep data in each
experiment and put this imbalance ratio (number of neg-
ative epochs/number of positive epochs) in the weighted
cost during training. For example, in the first iteration of the
LOSOCV experiment, we left subject 18 out for testing and
we pooled samples of all training subjects, which consists
of 32,778 negative samples and 8,572 positive samples.
We downsampled the negative samples to 8,572 instances
(same as the positive one) and used the weighted cost of
32,778:8,572 for training. For feature-based classification, we
perform experiments on 4 epoch sizes: 3s, 5s, 7s, 9s. With the
recommended epoch size of 5s, we illustrate the promising
results of deep neural networks on learning micro-sleep
from the collected signals.

Set 1: Leave-one-subject-out cross validation: we alter-
natively trained our classifiers on the data pool of 18 subjects
and evaluated the trained model on the remaining subject.
The final scores are the average over these 19 iterations.
Table 2 and Table 5 (row 1) present our results on this setting
for feature-based learning and deep learning respectively.
The hierarchical classifier achieved the best performance
among examined classifiers, obtaining approximately 0.76
on precision and just over 0.8 on specificity for all epoch
sizes. The model has a slight variation on sensitivity scores
in which the recommended size of 5-second results in the
highest sensitivity of 0.85. This result is expected as large
value shifts are known to happen across different subjects.
Nevertheless, this result shows the feasibility of WAKE for
microsleep detection on unseen subjects.

Set 2: Test-set on each subject (Test-set): we applied
stratified split onto data of each subject, dividing them
into two parts with the ratio 75% (training): 25% (testing)
with respect to the percentage of positive and negative
samples. We then trained our classifiers on the training

TABLE 4
Evaluation scores with 10-fold cross validation setting using

feature-based classification, over 4 epoch sizes (3s, 5s, 7s, 9s).
Epoch Precision Sensitivity Specificity

3s 0.84 0.89 0.83
5s 0.88 0.89 0.96
7s 0.88 0.93 0.87
9s 0.9 0.94 0.90

TABLE 5
Evaluation scores using Deep neural network on raw data with epoch

size = 5s. We evaluated on 3 test settings.
Setting Precision Sensitivity Specificity

LOSOCV 0.56 0.45 0.65
Test-Set 0.86 0.85 0.86

10-Folds CV 0.88 0.89 0.88

data and evaluated the performance on the test set. Table
3 and Table 5 (row 2) present our results on this setting
for feature-based learning and deep learning respectively.
Among simple classifiers, RandomForest models with 20
estimators constantly achieved the best scores for each of the
epoch size. Compared to Setting 1 (LOSOCV), this setting
results in better evaluated scores (above 0.8 for precision
and nearly 0.9 for sensitivity), which can explained by the
high similarity between data within a certain subject.

Set 3: 10-fold cross validation: we conducted cross-
validation for each subject’s data and averaged the scores
for the final results. Specifically, for cross-validation on a
particular subject, we left 1/10 of the data for evaluation
and trained on the remaining data. This procedure was
performed 10 times before we got the average scores as the
representative. Table 4 and Table 5 (row 3) show our results
on this setting for feature-based learning and deep learning
respectively. Similar to Test-set setting, our Random Forest
classifiers were able to achieve high scores on precision,
sensitivity, and specificity over all of the subjects.

Compared to feature-based classification, deep learning
models show promising and comparable performance, espe-
cially on test-set and k-fold classification. Fig. 23 presents the
learning curves of training SorNet on the test-set setting. Af-
ter 200 epochs, the training loss and precision curves reach
a point of stability. The training loss, training precision,
and validation precision converge to 0.015, 0.998, and 0.897,
respectively. Our learning curves show that the network is
sufficiently expressive and capable of learning the target
classification function over the data. Poor performance of
our deep networks on on the leave-one-subject-out setting is
expected due to the highly complex pattern of brain signals
and the challenging cross-subject phenomenon. Regarding
the size of epoch, 5-second constantly leads to reliable per-
formance: high precision and high sensitivity with respect
to the average scores, though increasing epoch size may
improve performance in some test settings.

Performance on Mobile Devices: To evaluate the perfor-
mance of our developed Machine Learning algorithm on
a mobile device, we deploy both the features-based and
deep neural network (DNN) models on a Samsung Galaxy
S10 (Android 11, 1.95-2.73GHz Octa-core CPU, 128GB Flash,
8GB RAM). For each model, we run the classification 100
times and measure the maximum memory usage and infer-
ence latency. Table 6 presents our experimental results with
the maximum memory usage and latency are 118MB and
72ms, respectively. The latency of the feature-based model
is a bit higher than the DNN model since we could not find
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Fig. 23. Learning curves of training SorNet on the test-set setting.

equivalent native Android libraries. Thus, it is deployed
inside a virtual Linux environment on Android. Neverthe-
less, we can see from the results that the computational
overhead of both feature-based and deep learning models
is not significant and the developed models can be readily
deployed on mobile platforms.

9.4 Usability Analysis

WAKE Prototype Power Usage. We measured the power
consumption of the WAKE prototype by using a Monsoon
Power Monitor device with the sampling rate at 5 kHz.
Each measurement was done in 180s, resulting in 900k
data points, to get a stable result. At 250C and 3.7V nom-
inal battery voltage, the average power usage of WAKE is
as follows: (1) Active state (real-time biosignals streaming
with Bluetooth) consumes 241.5mW , and (2) Idle state (no
streaming with only MCU is kept running in idle mode
while other components are turned off) consumes 51.60mW .
With a 600mAh Li-Po battery, WAKE prototype can operate
for 9.2 hours in Active, and stay in Idle for 43.1 hours. Fur-
ther component-level measurements of usage power during
Active were done by turning off each component one by
one and repeating the measurements. Fig. 24 presents a
full active power usage breakdown of the WAKE device.
The sensing components (amplifiers and external ADCs)
and Bluetooth communication module consume the most
of system power with the average of 93.5mW and 85.2mW ,
respectively. The storage module (uSD card) will increase
an additional 90.2mW if it is turned on. The processing unit
only consumes 62.8mW . These numbers show the capability
of our WAKE prototype to monitor the user’s microsleep
during a long duration. They could be further lowered by
optimizing Bluetooth transmission parameters and taking
advantage of deep power saving modes of the MCU.

WAKE Prototype Thermal Profiling. We conducted ther-
mal measurement for the processing unit of our WAKE pro-
totype for 14 hours continuously. The measurement was de-
signed to emulate the scenario where continuous microsleep
monitoring is needed during normal working hours. It was
divided into three states: (1) idle (the device waits for a
Bluetooth connection), (2) streaming (the device streams the
measured biosignals to both its onboard uSD Card and a
Bluetooth-connected mobile device), (3) standby (the device
stops data streaming but its Bluetooth connection is still
available for future commands). The idle, streaming, and
standby states lasted for 1, 12, 1 hour, respectively. Thermal
data was measured by the internal temperature sensor of
the processing unit and reported every 5s. Fig. 25 presents
our measurement results. On average, the temperature of
idle and standby states are 31.65 and 35.75 degrees Celsius,
respectively. During streaming, the temperature increases to
an average of 37.38 degrees and the peak is 38.9 degrees.
According to the standard of American Society for Test-
ing and Materials, 43 degrees Celsius is the threshold for
prolonged use (i.e. > 8h) on human skin without creating

TABLE 6
Classification performance on a Galaxy S10.

Memory Usage Latency (avg./std.)
Feature-based 74MB 72.4/19.5 ms
DNN 118MB 5.74/1.93 ms

any injury [51]. The temperature of our WAKE prototype is
always below this threshold.

User Study. We conducted a survey to evaluate WAKE’s
usability. We distributed our survey to the 19 subjects in
our MWT study and 17 other people on the campus after
they have used the WAKE device for at least two hours. In
total, 36 people answered our survey. Fig. 26a presents the
questions that we used to ask our participants’ opinions on
their experience with the WAKE device. The results show
that over 85% of people felt comfortable with our WAKE
device and were willing to wear it during daily mental
fatigue tasks, such as during driving, night-time working,
etc. 91.6% of people agree that the WAKE device is more
comfortable than the ‘ground-truth’ device used in PSG.
62.5% of people found it easy to use the WAKE device,
while 16.7% had some difficulties with skin preparation and
putting on the conductive paste.

We noticed that people with eyeglasses are most likely
to be affected by wearing WAKE, as both devices need to be
rested on users’ ears. Thus, to evaluate the compatibility of
WAKE and eyeglasses during daily activities, an additional
users’ study on a population of eight people was conducted.
In this study, we asked the users to wear both WAKE and
eyeglasses during their daily working time for 3-4 hours.
They were asked to wear WAKE before wearing eyeglasses
so that the eyeglasses’ temple tips could sit on top of the
WAKE’s silicone earpieces. The survey questions and results
are presented in Fig. 26b. All users reported that they did
not feel disturbed during their normal activity, and they
can easily wear both WAKE and eyeglasses. 75% of users
agree that it was comfortable to wear both devices for long
hours thanks to the softness of the silicon. Only two users
had slight discomfort because of additional weight and the
gripping force of WAKE earpieces.

10 RELATED WORKS

Existing microsleep detection systems mainly use scalp
EEG, eye tracking with EOG or cameras, IMU, and infrared
light. EEG and EOG signals have been widely used to detect
microsleep [52, 53]. However, the conventional devices used
to captured those signals can only be used in a controlled
environment and are not socially acceptable. Camera-based
approaches detect microsleep by analyzing the movement
of head and eyes [9], or pupils’ dilation [54]. IMU sensors
can be used to approximate body motion corresponding
to microsleep (smartwatch [55], hairband [10]). In addition,
infrared light reflection methods monitor the eyelid move-
ment of the subject such as Vigo [56], BlinQ [57]. These
devices cannot recognize the inner physiological state and
its reliability has not been thoroughly evaluated.

In literature, there are also many drowsiness detection
and monitoring works such as [58, 59, 60]. Drowsiness and
microsleep detection works, however, should not be treated
equally. In particular, drowsiness is a physiological state
that is defined when there exists a sleep pressure, which
may cause slower reaction time or compromise vision but
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does not mean fatal as our brain is still conscious of the
surrounding environment [11]. Microsleep, on the other
hand, is the brief and often fatal duration, where the brain
loses consciousness [20]. Additionally, drowsiness detection
works (especially in driving scenarios) use various methods
to quantify the existence of drowsiness such as steering
pattern monitoring, vehicle position in lane monitoring,
driver eye/face monitoring, etc. [58], which are different
from ones (i.e. brain activity represents microsleep period)
used for microsleep. Particularly, in [59], the authors detect
drowsiness by quantifying wake/sleep epochs, however,
they also state that their system is not sensitive enough to
detect microsleep events. In [60], lane deviation in a driving
simulation, which is pointed out in [58] that it is not a
reliable metric, is used as the indicator of drowsiness.

cEEGrids [23] and TYTH [25] demonstrated the feasibil-
ity to capture EEG/EMG from behind the ear. However, the
ability to detect microsleep from BTE sensors has not been
evaluated before. Vital signs monitoring using wearable and
mobile sensors has also been investigated in various studies
such as breathing measurement [61], stress estimation (heart
rate variability, galvanic skin response, and EMG) [26], and
eating detection (IMU, microphone, and proximity) [62, 63].
However, to the best of our knowledge, there are no existing
works to detect microsleep from wearable BTE sensors
accurately and reliably.

11 DISCUSSIONS

In-the-wild evaluation. With the promising results from
our in-lab evaluation, we aim for a larger scale out-lab
evaluation. One of the key challenges is the limitation of
the existing ground-truth for microsleep detection. Up to
now, the gold standard to objectively assess microsleep is
based on polysomnographic (PSG) data, which can only
be conducted in a controlled environment. Ground-truths
based on pupil dilation or eye-tracking have potentials and
are directions worth exploring.

Impact of sweat condition. While WAKE can address
motion and environmental noises, there are several artifacts
posing as challenges to the real-world usability of a wear-
able system like WAKE. For instance, sweating and hydra-
tion can introduce noises into the measurement. Addressing
these artifacts is the question that we will explore to enhance
the practicality of WAKE.

Optimizing WAKE device. The current prototype is de-
signed with off-the-shelf materials and components. Hence,
it is challenging to ensure the manufacturing quality of our
customized earpieces, electrodes, and the sensing circuit.
The use of wet electrodes is also not desirable during daily
usages because of the additional steps needed to apply
the conductive paste. Besides, the current power consump-
tion is still high. Thus, improving the quality of our cus-

tomized components, optimizing power consumption, em-
ploying dry electrodes, and a better mechanism to maintain
electrode-skin contact are important tasks to further increase
the usability of the system.

Trade-off between classification performance and la-
tency. Though highly complex prediction models may im-
prove the accuracy, they usually take larger amount of com-
putations because of the complex processes. We, thereby,
make use of simpler off-the-shell classifiers which are de-
ployed and optimized commonly in latency-sensitive li-
braries. Another key part of our system is to use highly
informative expert-based features which are simple and
efficient to compute. These settings help us reduce the pro-
cessing and inference time, shortening the latency toward
warning the user.

Feasibility of deep learning on raw data. Deep neu-
ral networks (DNNs) are designed to automatically ex-
tract features from raw bio-signal data. This is a huge
advantage compared to other classical machine learning
algorithms, which require labor-intensive domain-crafted
features. Shown in Table 5, DNNs achieve high detection
accuracies for both test-set and 10-fold CV evaluations,
which are as good as the performance of feature-based
models (Tables 4, 3). However, we observe a non-trivial
drop of performance in LOSOCV setting. Notice that the
LOSOCV is highly challenging because bio-signal data come
from different subjects. We hypothesize that this drop is due
to large variance of inter-subjects’ signals, outliers in physi-
ological signals, and the lack of training data for DNNs. On
the other hand, classical algorithms utilize embedded prior
knowledge in hand-designed features to generalize better,
in the low-data regime. Nevertheless, our results illustrate
the promise of DNNs in detecting micro-sleep using our
WAKE data, and leaves an open question on improving its
generalization over different subjects.

12 CONCLUSION

We presented WAKE, a novel compact, lightweight, and so-
cially acceptable wearable device to detect microsleep from
behind the ears. We proposed the Three-fold Cascaded Am-
plifying technique to remove the impact of motion artifacts
and environmental noises. We evaluated the motion and
environmental noise suppression and microsleep detection
performance on 19 subjects. WAKE can reduce noise power
by 9.74 - 19.47 dB in different practical scenarios such as
walking, driving. We develop a classification model based
on the core biomarkers of microsleep captured by WAKE.
WAKE achieves 76% precision and 85% recall in detecting
microsleep in LOSOCV.
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