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ABSTRACT: We use first-principles calculations to uncover and
explain a new type of anomalous low-velocity stopping effect in
proton-irradiated graphene. We attribute a shoulder feature that occurs
exclusively for channeling protons to enhanced electron capture from σ-
and π-orbitals. Our analysis of electron emission indicates that backward
emission is more sensitive to proton trajectory than forward emission
and could thus produce higher contrast images in ion microscopy. For
slow protons, we observe a steep drop in emission, consistent with
predictions from analytical models.
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Graphene, an exceptionally strong and intrinsically semi-
metallic sheet of carbon atoms arranged in a honeycomb

lattice,1−4 was the first 2D material ever fabricated1 and
remains promising as a conductive layer in novel electronics
based on 2D heterostructures.5 It has attracted enormous
interest due to its potential for transistors,1,6−8 solar cells,9

detectors,10,11 plasmonics,12 qubits,13 and other devices.9,14

However, graphene’s sensitivity to defects and nanostructural
features, which can degrade performance when undesirable15,16

or enable an application when intentional,17−21 poses a major
obstacle for scalable fabrication of graphene-based devices.
Consequently, precise techniques for characterization,

patterning, and defect engineering of 2D materials including
graphene are necessary to realize their incredible potential.
Focused ion beams are promising in this context, with several
empirical demonstrations of their capability to image22,23 and
characterize24 2D materials, create point defects in them17,18,25

or otherwise alter their atomic structure,19,20,26−31 and tune
their mechanical25 and electronic29 properties. However, ion
beam parameters must be specially tuned for 2D materials
because they exhibit a highly pre-equilibrium response to ion
irradiation which differs from bulk and thin films. Highly
charged ions partially neutralize32,33 and reach an equilibrium
charge state only after traversing ∼10 nm of material,34,35

leading to deviations from bulk behavior for atomically thin
systems.36 Even in the case of proton irradiation, surface
plasmons are predicted to enhance energy deposition,37 and
the radically different plasmonic properties of 2D materials38,39

should further influence charge and energy transfer processes
upon ion impact.

Despite the practical importance of ion beam techniques, a
detailed understanding of the unique physics occurring during
an energetic ion’s traversal of a 2D material remains elusive.
While experimental work routinely identifies intriguing results
of applying specific beam parameters to particular materials,
direct observation of the underlying mechanisms is limited by
spatial and temporal resolutions of measurement techniques.
Accurate first-principles calculations offer a promising
alternative, enabling extremely detailed simulations of femto-
second-scale dynamics after a single ion impact. Indeed,
numerous studies32,40−54 have demonstrated the predictive
power of such calculations for bulk materials under ion
irradiation, showing, for instance, that directional bonding in
semiconductors and insulators makes electronic stopping
sensitive to ion trajectory even for slow ions, when core
electrons are negligible.32,47,52,54

Additionally, computational studies48−53 have elucidated
experimentally observed55−57 threshold effects in low-velocity
stopping power, where exciting electrons across a band gap
requires a minimum projectile velocity. Similar effects can be
expected for electron emission, where transferring sufficient
energy for electrons to overcome the work function would
require a minimum projectile velocity. Although experiments
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support their existence,58,59 to date no first-principles study has
examined such threshold emission effects. Furthermore,
graphene presents a highly interesting case with directional
bonding but no band gap. While previous work60−67 has
simulated ion-irradiated 2D materials, none has established the
connection between energy transfer, charge capture, and
electron emission, or even separately analyzed emissions
from both sides of the material.
In this Letter, we present a comprehensive, first-principles

computational study of proton-irradiated graphene and
discover a new type of anomalous effect in energy deposition
by slow ions with less than 1 atomic unit (at. u.) of velocity.
This effect only occurs along some proton trajectories and is
accompanied by enhanced electron capture by the projectile.
Furthermore, calculations of emitted electron yields from both
sides of the material lead to predictions relevant to ion beam
microscopy and the first first-principles study of threshold
electron emission.
We begin with a discussion of energy deposition for different

proton impact points (see Figure 1a). While proton-irradiated

graphene has been simulated before,62−64 including some
exploration of different impact points,62,63 a comprehensive
understanding of the trajectory dependence of energy
deposition remains absent. Our analysis allows us to interpret
the underlying physics in terms of spatial inhomogeneity of the
electron density arising from chemical bonding in graphene.
For the centroid impact point, which is often considered a
good approximation to an ensemble average over all
trajectories,41,45,63 our results for energy transferred from
proton to graphene agree well with earlier TDDFT
calculations63,64 and empirical data for per-layer electronic
stopping power of hydrogen in graphite68 (see Figure 1b). We
discuss potential sources of minor discrepancies among
computed energy transfer results in the Supporting Informa-
tion (SI).
Interestingly, we find that energy transfer is quite sensitive to

the impact point: We compute considerably lower electronic
stopping for the channeling than for the centroid trajectory at
velocities above 0.4 at. u. (see Figure 1b). This contrasts with
behavior in bulk metals, where valence electrons are largely
delocalized and stopping power depends strongly on the

projectile’s trajectory only for velocities sufficiently high to
excite localized core electrons.40,41 However, our finding
confirms earlier reports of higher energy deposition when the
proton passes through a CC bond than through the center
of the hexagon.62,63 Trajectory-dependent stopping power has
also been reported in bulk semiconductors such as Si,32 Ge,52

graphite,54 and phosphide-based compounds.47 In these
materials, directional bonding leads to differences in the
electron density with which the projectile interacts when
moving along different channels, causing strong trajectory
dependence of electronic stopping. Nonetheless, studies
finding channel-dependent stopping in bulk materials largely
observed the same qualitative behavior as a function of
projectile velocity across different channels, namely, a
featureless rise52 toward a single peak32,47 positioned near
the experimental maximum even while the peak height
depends on projectile trajectory. As a notable exception,
graphite exhibits slightly different behavior for projectiles
traveling at different angles with respect to the graphitic
planes.54

Conversely, we found dramatically different behavior for
different normal trajectories through graphene: energy trans-
ferred along a channeling trajectory in graphene exhibits an
unusual, bimodal velocity dependence featuring a shoulder
between 0.4 and 0.7 at. u. of velocity (see Figure 1). Similar
features appeared in the results of Bubin et al. for proton-
irradiated graphene fragments,62 but no explanation was
offered. Deviations from linear low-velocity stopping are
typically attributed to band structure effects. In insula-
tors48−51,55,56 and semiconductors,52,53,57 slow projectiles
cannot excite electrons across the band gap, and in
metals,42−44,59,69−71 slow projectiles cannot excite electrons
from deeper valence bands. However, to our knowledge no
study has explained the anomalous trajectory dependence of
stopping for semimetallic 2D graphene.
To explain this behavior, we examine both the electronic

structure and the spatial distributions of partial electron
densities of graphene in Figure 2. Our analysis reveals that
high-energy states lying less than 2.75 eV below the valence
band maximum (VBM), commonly known as π-electrons, are
more localized in-plane around the carbon atoms than lower-

Figure 1. (a) Proton impact points (cyan) in monolayer graphene
(orange) investigated here. The projectile always travels normal to the
graphene plane. (b) Total energy deposited in graphene by energetic
protons. Results from this work are compared to SRIM68 and previous
TDDFT results.63,64 Symbols correspond to the different impact
points illustrated in (a).

Figure 2. (a) Projected density of states of ground-state graphene
with valence band divisions indicated by horizontal dashed lines (see
text). Energies are referenced to the valence band maximum. (b)
Ground-state electron density contributed by the high-energy (top)
and low-energy (bottom) graphene valence bands. Electron density
has been integrated along the direction normal to graphene and is
normalized by the number of electrons within each set of bands.
Annotations indicate minimum and maximum values.
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energy states (between 2.75 and 8 eV below the VBM),
consisting of both π- and σ-orbitals. This spatial inhomogenity
and spectral separation suggests that high-energy states could
be more difficult for a channeling proton to excite, and below
we explore how these observations affect velocity-dependent
stopping.
Specifically, to investigate the source of the shoulder-like

feature in the stopping power of channeling protons, we
examined the occupation of the original, ground-state orbitals
after irradiation and the extent to which the proton excites
electrons from different bands. We obtained the excited
electron contribution nj(t) from a ground-state KS orbital |
ϕj
(GS)⟩ by summing over projections of the time-dependent KS

orbitals |ϕl(t)⟩,

∑ ϕ ϕ= − |
i

k
jjjjjj

y

{
zzzzzzn t t( ) 2 1 ( )j

l
l j

(GS)
2

(1)

where the factor of 2 accounts for spin degeneracy.
Subsequently, the nj(t) were summed over states within the
particular energy bands illustrated in Figure 2a; the results
become constant over time (see Figure S1 in the SI), and we
report the number of electrons excited from each band at the
end of each simulation in Figure 3.

Figure 3 shows that the shoulder in the energy transfer for
channeling protons is associated with a drop in the total
number of electrons excited. Analysis of the contributions of
different valence bands provides deeper insight. While a
channeling proton indeed excites high-energy valence electrons
at lower rates than a proton traversing the centroid trajectory
(as suggested by the electron density distributions in Figure
2b), this effect remains nearly constant throughout the entire
velocity range. Unexpectedly, the most striking difference
between the excitations induced along different proton
trajectories occurs in the low-energy valence bands, where
the number of electrons excited by the channeling proton
exhibits a much more pronounced maximum near velocities of
0.3−0.4 at. u. We thus conclude that the features in the total
number of excited electrons and in electronic stopping near
those velocities mainly originate from the low-energy valence

bands. Finally, the extent of deep valence band excitation is not
sensitive to projectile trajectory in this velocity range.
Analyzing the charge captured by the projectile after

transmission through graphene offers additional insight into
the physics of trajectory-dependent stopping. For the centroid
trajectory, our results for electron capture agree well with
previous calculations64 and show the same trend of decreasing
capture for faster protons (see Figure 4) reported for proton-

irradiated aluminum.37 However, for channeling protons, the
enhanced excitation at velocities of 0.3−0.4 at. u. (see Figure
3) is accompanied by a similar feature in the number of
electrons captured by the projectile (see Figure 4). This
suggests that resonant electron capture from the low-energy
valence bands may be responsible for the shoulder in energy
transfer for channeling protons. Experiments such as those in
ref 36, which simultaneously measure projectile energy loss
and charge state, could potentially confirm this prediction.
While our above analysis of energy deposition can help

explain eventual radiation damage, ion-induced electron
emission has additional implications for imaging.22,23,72−74

Here, we calculate emitted electron yields for the side from
which the projectile approaches before impact (entrance-side)
and the side from which it emerges (exit-side). Interestingly,
the exit-side and entrance-side emissions shown in Figure 5
exhibit very different velocity dependencies; maximum
entrance-side emission occurs at a velocity of 0.63 at. u.,
while the peak in exit-side emission occurs much closer to the
stopping maximum at a velocity of 1.41 at. u. Furthermore, the
exit-side emission is more sensitive to proton trajectory,
particularly near the emission maximum, where the centroid
trajectory yields 65% more electrons than the channeling
trajectory. These findings indicate that detecting exit-side
electron emission after irradiation by 50 keV protons may
provide high contrast images of graphene samples, especially
since protons at this energy are not expected to damage the
atomic structure.62

Finally, our first-principles results also describe behavior
near the theoretically expected but experimentally elusive
kinetic emission threshold for slow projectiles. We observe a
steep drop in electron emission with less than 0.02 electrons
emitted for a proton with 0.1 at. u. of velocity (see Figure 5).

Figure 3. Number of electrons excited after a proton traverses
graphene (a) along the channeling trajectory and (b) along the
centroid trajectory. The total number of excited electrons is
decomposed into contributions from the different sets of valence
bands illustrated in Figure 2a.

Figure 4. Electrons captured by the proton after transmission through
graphene along channeling and centroid trajectories. Results from this
work are compared to previous TDDFT results.64
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This is consistent with the threshold velocities vth = 0.13−0.19
at. u. predicted by several analytic models43,53,58,75 (see details
in eqs S1−S3 of the SI). However, these estimates for vth can
be understood to predict the velocity below which the
projectile cannot excite electrons directly into the continuum,
though it could still, for instance, excite electrons into
conduction bands and subsequently promote them into the
continuum. Thus, the low but nonzero emitted electron yields
that we calculate for a proton velocity of 0.1 at. u. may
represent nonlinear or subthreshold emission, which has been
indirectly measured.76

We note that in addition to such subthreshold effects,
numerical uncertainties also limit the conclusiveness of our
emission predictions for proton velocities below 0.2 at. u. This
includes the sensitivity of low emission data to the precise
definition of the material-vacuum boundary, since accurately
distinguishing emitted electrons with extremely low kinetic
energy from an excess electron density on the graphene surface
would require very long simulation times. The time needed for
an electron with kinetic energy E to emerge into the vacuum
scales inversely with its velocity or as 1/ E . We do not expect
recapturing of electrons by graphene to introduce uncertain-
ties, since this process does not occur during our few-
femtosecond simulations (see Figure S2 of the SI) and the
positive charge induced in the graphene spreads out too
quickly to attract escaping electrons strongly.
In summary, we found an anomaly in low-velocity energy

deposition by channeling protons in graphene which does not
occur for protons traversing a centroid trajectory. This
behavior is accompanied by pronounced features in the
numbers of electrons excited from lower-energy graphene
valence states and those captured by the proton. Thus, we
propose that this anomalous behavior is caused by resonant
projectile charge capture from the lower-energy valence bands.
Since a projectile’s charge equilibrates after traversing a few
nanometers of material, this effect may be specific to few-layer
materials.
We also characterized electron emission from proton-

irradiated graphene and found that exit-side emission is more
sensitive to proton trajectory than entrance-side emission,
making it a strong candidate for high-contrast imaging
techniques. A steep drop in emitted electron yields for slow

protons is consistent with threshold velocities predicted by
analytical models. The quantitative predictions of our first-
principles results open a new avenue for optimizing parameters
for ion beam techniques and studying the fundamental physics
of threshold emission effects in real materials.

■ METHODS

We performed real-time time-dependent density functional
theory (TDDFT)77−81 simulations of the excited electron
dynamics in proton-irradiated monolayer graphene using the
Qbox/Qb@ll code.82−86 Converged ground-state single-
particle Kohn−Sham (KS) states from DFT87 served as the
initial condition for real-time propagation of the time-
dependent KS equations

ϕ ϕ∂
∂

= − ∇ + [ ]
i
k
jjjj

y
{
zzzzi

t
t V n t tr r r( , )

2
( , ) ( , )j j

2

KS
(2)

Here, ϕj are single-particle KS orbitals evolving in a time-
dependent effective potential VKS which is a functional of the
electron density

∑ ϕ=n t f tr r( , ) ( , )
j

j j

2

(3)

and f j are orbital occupations.
KS states are represented in a plane-wave basis with a cutoff

energy of 100 Ry, exchange and correlation (XC) is treated
with the adiabatic local density approximation,88,89 and the
electron−ion interaction is described using HSCV pseudopo-
tentials.90 Atomic forces on all carbon atoms in the initial
structure were relaxed to less than 2 meV/Å. Large simulation
cells with 112 carbon atoms and 150 a0 of vacuum were
needed to converge electron emission, allowing reciprocal-
space sampling using only the Γ-point. We address
convergence with respect to cutoff energy and vacuum size
in Figures S3 and S4 of the SI. To help interpret our TDDFT
results, a projected density of states (DOS) for ground-state
graphene was calculated using VASP91,92 with a 4-atom
supercell, 64 × 64 × 1 Γ-centered Monkhorst−Pack93 k
point mesh, and the same vacuum length, cutoff energy, and
XC approximation as above; the obtained DOS is similar to
previously reported results.94−96

We begin real-time propagation with the proton 25 a0 away
from the graphene. It then approaches and traverses the
material at a constant velocity along a normal trajectory (see
Figure 1a). Carbon nuclei are held fixed because the few-
femtosecond time-scale of the simulations is too short for them
to move appreciably. For numerical integration of the time-
dependent KS equations, we use the enforced time reversal
symmetry (ETRS) method85,97 with a time step of 1.0
attosecond, a choice shown to evolve similarly large systems
with exceptional accuracy.37,98 For the case of a channeling
proton impacting graphene with 1 at. u. of velocity, we found
that using a time step half as large changed the charge and
energy transfer by less than 0.1%.
The Hellmann−Feynman force on the projectile gives the

instantaneous electronic stopping power, or rate of energy
transfer from the proton to the material. To obtain the total
energy transferred, the instantaneous stopping data (see Figure
S6 in the SI) is integrated over a layer thickness taken as the
interlayer separation in graphite, though we find very similar

Figure 5. Electrons emitted after a proton traverses graphene along
the (a) channeling and (b) centroid trajectory. The total number of
emitted electrons is decomposed into exit-side and entrance-side
emission. The gray bar indicates the range of threshold velocities
predicted by different analytic models.
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trends for other possible choices such as the dielectric
thickness reported in ref 99 (see Figure S7 in the SI).
Upon proton impact, electrons are emitted from both sides

of the graphene. Entrance- and exit-side emitted electron yields
are determined by integrating the time-dependent electron
density from the TDDFT simulations over the corresponding
vacuum regions (see details in Figure S5 of the SI) and
subtracting electrons captured by the projectile, as determined
by fits to analytical orbitals as described in ref 37. All inputs
and outputs from our simulations are available at the Materials
Data Facility.100,101
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