Execution Reconstruction: Harnessing Failure
Reoccurrences for Failure Reproduction

Gefei Zuo

gefeizuo@umich.edu
University of Michigan, USA

Pramod Bhatotia
pramod.bhatotia@in.tum.de
TU Munich, Germany

Abstract

Reproducing production failures is crucial for software reli-
ability. Alas, existing bug reproduction approaches are not
suitable for production systems because they are not simul-
taneously efficient, effective, and accurate. In this work, we
survey prior techniques and show that existing approaches
over-prioritize a subset of these properties, and sacrifice the
remaining ones. As a result, existing tools do not enable the
plethora of proposed failure reproduction use-cases (e.g., de-
bugging, security forensics, fuzzing) for production failures.

We propose Execution Reconstruction (ER), a technique
that strikes a better balance between efficiency, effective-
ness and accuracy for reproducing production failures. ER
uses hardware-assisted control and data tracing to shepherd
symbolic execution and reproduce failures. ER’s key novelty
lies in identifying data values that are both inexpensive to
monitor and useful for eliding the scalability limitations of
symbolic execution. ER harnesses failure reoccurrences by it-
eratively performing tracing and symbolic execution, which
reduces runtime overhead. Whereas prior production-grade
techniques can only reproduce short executions, ER can re-
produce any reoccuring failure. Thus, unlike existing tools,
ER reproduces fully replayable executions that can power a
variety of debugging and reliabilty use cases. ER incurs on
average 0.3% (up to 1.1%) runtime monitoring overhead for
a broad range of real-world systems, making it practical for
real-world deployment.

CCS Concepts: « Software and its engineering — Soft-
ware testing and debugging,.
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1 Introduction

Failure reproduction is critical for software reliability. Not
only is failure reproduction the first step in effective debug-
ging [5, 21, 87, 89, 99], it also enables tools across many soft-
ware reliability domains including security forensics [49],
configuration management [34], and directed testing and
fuzzing [42]. These tools are particularly valuable when used
on production failures, because such failures may be elu-
sive and difficult to replicate in house, outside of specific
deployment scenarios. For instance, eliminating a produc-
tion bug can drastically improve availability [8-10, 61], or
a security audit of a production breach can help with leak
assessment [97, 102, 112].

Many techniques automate the process of reproducing
failures in software, yet, none offer comprehensive support
for production usage. Prior systems sacrifice at least one
of three key properties that are necessary for failure repro-
duction in production settings: (1) efficiency, which relates
to the amount of resources expended to reproduce failures,
(2) effectiveness, which relates to the capability to reproduce
different kinds of bugs (e.g., concurrency bugs [78] and bugs
where the failure and root cause are distant [54]), and (3)
accuracy, which relates to whether the control flow and the
data values of an execution can be recovered correctly. Our
motivating study (§2) reveals that existing bug reproduction
techniques over-prioritize a subset of the efficiency, effec-
tiveness and accuracy properties and thus over-sacrifice in
the other properties. Consequently, when used in production
systems, existing techniques cannot enable the plethora of
use cases (e.g., debugging, security forensics, fuzzing, etc.)
that are otherwise available.
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For instance, record/replay systems [32, 63-65, 82, 88, 92,
95, 98, 108] can accurately reproduce any execution and
are thus very effective in reproducing bugs, however, they
incur high overheads (e.g., up to 2x for a state-of-the-art sys-
tem [108]), making them unsuitable for production use cases.
Many techniques reduce runtime overhead by reproducing
failures using a combination of online (runtime) recording
and offline program analysis [47, 55, 93, 111, 113, 117]. For
instance, REPT [111] and POMP [113] use hardware tracing
to efficiently record a program’s control flow at runtime and
recover the program’s data values via static analysis. How-
ever, since programs overwrite data values frequently, these
tools cannot accurately reproduce full executions with only
control-flow information and the final program state. It is
difficult to debug programs with unreliable control flow and
data information, and, even worse, these systems cannot be
used in many domains including security forensics, directed
testing and fuzzing, and configuration management.

We present Execution Reconstruction (ER), a hybrid of-
fline/online failure reproduction technique that explores a
sweet spot in the efficiency-effectiveness-accuracy trade-off
space. Compared to prior work, ER’s main contribution lies
in determining a subset of the execution information that
is both inexpensive to monitor online and useful for failure
reproduction. ER is efficient enough to be deployed in pro-
duction (i.e., it incurs on average 0.3% runtime overhead);
effective in reproducing different kinds of bugs; and accurate
in reproducing data values and control flow that lead to the
original failure, which enables a variety of debugging and
analysis use cases for production scenarios.

At the heart of ER lies shepherded symbolic execution,
which uses dynamic control flow and data value information
to reconstruct an execution that leads to a production fail-
ure. Rather than exploring exponentially many control-flow
paths, ER follows a single recorded path that leads to a failure,
thereby eliminating the notorious path explosion problem
of symbolic execution. Symbolic execution computes con-
straints on program inputs that lead to the failure. Once ER
completes symbolic execution along the entire path that was
recorded during the failing production run, it invokes a con-
straint solver to compute failure-inducing program inputs.

Unfortunately, for real-world programs, eliminating path
explosion is not sufficient to reconstruct an execution via
symbolic execution. The constraints on input values grow
very complex, which prevents symbolic execution from mak-
ing progress (i.e., symbolic execution stalls) and eventually
causes constraint solving to timeout (see § 4 for how stalls
occur in practice). Our evaluation shows that shepherded
symbolic execution using only a control-flow trace stalls on
11/13 failures (§ 5). ER overcomes this challenge by carefully
selecting and recording a minimal set of data values that
simplify constraint solving and thus eliminate slowdowns
in symbolic execution without rendering ER too inefficient
for production use.
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Ideally, ER would select the data values that optimally
simplify constraint solving, but this is intractable. Instead,
ER turns to a novel heuristic to identify data values that dras-
tically simplify constraint solving in practice. ER builds and
analyzes a constraint graph during symbolic execution to
determine key data values (e.g., instruction operands, return
values, addresses, parts of the input), which are involved in
complex constraint dependencies. In particular, ER identifies
two patterns in the constraint graph that often cause con-
straint solver timeouts: long chains of symbolic writes, in
which each write in the chain is dependent upon a previous
write in the chain, and accesses to large symbolic memory
objects, which can be difficult to reason about, as many mem-
ory locations may be accessed. If known, the data values from
these patterns substantially simplify constraint solving. In
our evaluation, the selection heuristic identifies a small set
of data values that simplify constraint solving such that ER
can reconstruct failures with negligible overhead.

Anticipating the key data values and recording them be-
fore a failure is difficult. Key data values depend on the
constraints in symbolic execution, which ER cannot predict
without symbolically executing the program. Thus, to repro-
duce a production failure, ER introduces a novel iterative
algorithm that leverages frequent failure reoccurrences in
large scale deployments, similar to existing production moni-
toring systems [58, 71-73]. In each iteration, ER gathers more
data about the reoccurring failure, uses symbolic execution
to determine constraints of the failing execution, selects addi-
tional data values that can help symbolic execution complete,
and collects more data from programs in the next iteration.
To bootstrap this process, ER uses always-on control-flow
recording. When symbolic execution completes, ER deter-
mines program inputs that lead to the original failure and
stops iterating. Using this iterative process, ER guarantees
reconstruction of an entire failing execution for any reoccur-
ing failure. In certain cases (i.e., 2/13 cases in our evaluation),
ER can reproduce a failing execution even after a single oc-
currence of a failure. In practice, ER reproduces failures in
only a few occurrences (only requiring an average of ~3.5
occurrences in our evaluation).

ER resides at the sweet spot in the efficiency-effectiveness-
accuracy trade-off. By using hardware tracing, ER is efficient
enough for production use, as it incurs on average 0.3% (up to
1.1%) runtime overhead during online monitoring. By using
the iterative approach to shepherded symbolic execution, ER
is effective in reproducing failures in long-running real-world
program executions. Finally, by using shepherded symbolic
execution, ER is accurate enough for a plethora of software
reliability use cases (debugging, security forensics, fuzzing,
etc.). ER generates program inputs that are guaranteed to lead
to the original production failure. While ER-generated inputs
may differ from actual inputs that led to the production
failure, we empirically validate ER is useful for debugging



Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction

and other software reliability use cases, including a case-
study that uses likely program invariant computation to
perform automated failure localization.

To summarize, we propose Execution Reconstruction (ER),
an end-to-end technique for reproducing production failures
and make the following contributions:

e Shepherded Symbolic Execution, which follows a con-
trol flow and data value trace recorded in production
to eschew path explosion and solver stalls that hinder
traditional symbolic execution.

o Key Data Value Selection, which identifies data values
that drastically speed up constraint solving and can be
monitored efficiently with existing hardware support.

e An evaluation of ER on 13 bugs in real systems (e.g.,
memcached, SQLite, python, etc.) shows that ER is
efficient (on average 0.3% and up to 1.1% runtime over-
head), effective, and accurate enough for production

e An invariant-based failure localization case-study that
shows that ER can enable production use of software
reliability tools.

2 Motivation

Ideally, production-grade failure reproduction systems would
achieve three key properties: (1) efficiency, which is the abil-
ity to incur low overhead and use few resources, (2) effec-
tiveness, which is the ability to reproduce different kinds of
failures (e.g., due to concurrency bugs or latent bugs where
the failure (e.g., a crash) and the bug (e.g., an overflow) are
distant), (3) accuracy, which is the ability to recover the con-
trol flow (branches executed) and data (values read/written)
of the failing execution correctly. Unfortunately, all known
approaches that achieve effectiveness and accuracy on multi-
threaded applications (e.g., record/replay systems) record
detailed execution information, which imposes high over-
head. As a result, practical failure reproduction systems for
production must trade-off one or more desirable properties.

( Hybrid RR T )
BugRedux 1 REPT ESD
Full RR | Efficient RR POMP RDE

High Overhead f Production-grade Overhead

(a) Efficiency. Systems on right have production-grade overhead.

1" Hybrid RR )

(
REPT |
ESD_RDE _Efficient RR POMP__} Full RR

Cannot Handle Production Bugs 1 Handles Production Bugs

(b) Effectiveness. Systems on right reproduce all production bugs.

( 1 Hybrid RR )
REPT 1 BugRedux Efficient RR
POMP | ESD RDE Full RR

Unreliable Reproduction 1 Reliable Reproduction

(c) Accuracy. Systems on right reliably reproduce failures.

Figure 1. Prior techniques on a spectrum for each reproduc-
tion property. RR stands for record /replay. Hybrid RR and
BugRedux are shown as boxes spanning a property range.
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We study prior failure reproduction systems and place
them on a spectrum for each failure reproduction prop-
erty (see Fig. 1). For each property, we identify a usability-
boundary (shown as a vertical dotted-line in Fig. 1), an in-
flection point at which a failure reproduction system shifts
from an undesirable trade-off to an acceptable one. While
many systems are usable in one or two properties, no exist-
ing failure reproduction system is simultaneously efficient
enough for production, able to handle common production
bugs, and able to reliably reproduce an execution. Thus, no
existing failure reproduction system provides production sup-
port for the powerful software reliability tools that have been
developed for debugging, security forensics, fuzzing, etc. Be-
low we place systems onto each spectrum and construct a
usability-boundary for each property.

2.1 Efficiency

Efficiency, or low runtime performance overhead, is para-
mount for a production-grade system. A few failure repro-
duction techniques maximize efficiency by using an offline
analysis. For instance, ESD [114, 115] takes as input a failure
(e.g., a deadlock) location, statically computes intermedi-
ate statements that the program must execute before the
failure (e.g., locks before a deadlock), and steers symbolic ex-
ecution towards intermediate statements and then towards
the failure. Similarly, RDE [109] imposes negligible overhead
because it uses existing or light-weight data from the produc-
tion environment (application logs, system call sequences) to
guide symbolic execution towards a failure-inducing input.

Purely offline approaches struggle to achieve effective-
ness (see § 2.2), so many systems record execution informa-
tion at the cost of efficiency. Record/replay systems [29, 63—
65, 81, 82, 86, 88, 95, 98, 108] record all program inputs
and other non-deterministic events. Full record/replay sys-
tems [29, 108] record all inputs and all non-deterministic
events resulting in high overhead that is unsuitable for pro-
duction usage (up to 2x for a state-of-the-art system [108]);
efficient record/replay systems [49, 81, 86] record fewer
events but are less effective than full record/replay systems
(i.e., they cannot handle data races, see § 2.2).

Hybrid online/offline techniques provide a middle-ground;
they achieve better effectiveness than offline techniques by
recording some execution information, while achieving bet-
ter efficiency than record/replay by offloading analysis to
offline processing. BugRedux [69] uses symbolic execution to
synthesize an execution that reaches the locations traced by
one of two approaches: complete tracing records all control
flow (up to 10X overhead), or the more efficient call sequence
tracing, which records each function call (between 2%-50%
overhead). Similarly, hybrid record/replay techniques (e.g.,
PRES [93] and ODR [32]) search for an execution that reaches
execution states monitored using recording granularities
that occupy different points in the efficiency-effectiveness-
accuracy trade-off space: the finest-grained tracing records
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full program traces and has high overhead (3x-20X) but good
effectiveness/accuracy, while coarse-grained modes impose
lower overhead by only recording non-deterministic input
and synchronization operations, but have poor effective-
ness/accuracy. In Fig. 1, we plot ranges for BugRedux and
hybrid record/replay systems.

Recent hybrid approaches, REPT [111] and POMP [113],
use hardware-assisted tracing (e.g., Intel Processor Trace
(PT) [67]) to record control-flow information with low over-
head (below 5% [71, 111]). These approaches use static anal-
yses that perform reverse and/or forward execution along
the trace to reconstruct program state.

To identify a usability boundary, we use the analysis of
always-on record/replay systems [49, 86], which suggest that
run-time overhead of 10% or less is acceptable in production.
We consider offline, recent hybrid approaches (REPT and
POMP), and efficient record/replay systems to be efficient-
enough for production use. Full record/replay and BugRedux
are too inefficient for production use. Finally, hybrid record
/replay systems are efficient-enough when using coarse-
grained recording, but are too inefficient when using fine-
grained recording. Fig. 1b depicts this spectrum.

2.2 Effectiveness

A failure reproduction system is only useful if it can effec-
tively reproduce common production failures. Full record
/replay systems [29, 108] are maximally effective since they
can reproduce any error in any application. Efficient record
/replay systems [49, 81, 86] have unacceptable effectiveness
for production failure reproduction since they cannot replay
executions that contain data-races, an important class of pro-
duction bugs [54, 99]. REPT has limited effectiveness since it
does not guarantee that it can reconstruct data for arbitrary
failures. In particular, REPT can only reconstruct short execu-
tion fragments (15-60% of the data values are incorrectly re-
covered for traces longer than 100K dynamic instructions) be-
cause programs overwrite data values frequently. Thus, REPT
is not effective for latent bugs, where failures are distant
from the root cause. Latent bugs are an important and com-
plex class of production incidents [45, 46, 54, 60, 104, 105].
Prior techniques that rely on symbolic execution (ESD, Bu-
gRedux, and RDE) are not guaranteed to reproduce failures
because constraint solvers may timeout on real failures. Fi-
nally, hybrid record/replay systems are efficient when using
fine-grained recording, but can struggle to reproduce an
execution when using coarse-grained recording.

We find that very few solutions are effective enough for
production usage. Existing solutions that rely on symbolic
execution are not guaranteed to reproduce failures and are
undesirably ineffective. In addition, the inability of efficient
record/replay systems to handle data races and the latent
bug restrictions of REPT render these tools similarly ineffec-
tive, since these bug classes are prevalent in production. We
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identify a usability-boundary inspired by the coarse inter-
leaving hypothesis introduced by Snorlax [71] and adopted
by REPT [111]. The coarse interleaving hypothesis observes
that most events in concurrency bugs [74, 76] are interleaved
coarsely (e.g., 10s of microseconds separate the events). Thus,
we consider failure reproduction tools that can reproduce
any bug not violating the coarse interleaving hypothesis to
be effective-enough for production use, since these tools can
faithfully reproduce errors that arise in production (shown
in Fig. 1b). While REPT reproduces executions that satisfy
the coarse interleaving hypothesis, it cannot support latent
bugs and is thus not effective enough for production bugs.

2.3 Accuracy

All record/replay systems are accurate since they faithfully
reproduce all state in an execution [29, 49, 81, 86, 108]. ESD
and other offline tools achieve a useful accuracy property—
while ESD does not always reproduce the same data and con-
trol flow as the failure, it reproduces an execution that will
lead to the same failure. Hybrid record/replay systems offer
accuracy between record/replay and offline tools, depend-
ing on the recording granularity. REPT guesses data values
during post-mortem analysis, which yields incorrect regis-
ter or memory values in the majority of the reconstructed
executions—in its original evaluation, all failure reproduc-
tions contain incorrect values [111]. REPT is especially in-
accurate for bugs with long traces; for traces longer than
100K instructions, 15%-60% of the values were incorrectly
recovered by REPT. Even worse, incorrect values are not
guaranteed to be consistent with recorded control-flow trace
and may not be detectable without reproducing the failure,
thereby misleading developers.

Record/replay systems, offline techniques like ESD, and
hybrid record/replay techniques produce control flow and
data that lead to the failure. Thus, developers can trust the
output of these tools. In contrast, best-effort tools, such as
REPT, produce output with missing and/or inconsistent data
and control-flow. Inaccuracy is a major obstacle in practice—
the reliability of the tools and the accuracy of their results is
particularly important for developers [73], because testing
and debugging often requires significant effort and time [87].
Moreover, the output from best-effort failure reproduction
systems is not executable, which makes it impossible to lever-
age dynamic tools on top of these systems (see § 2.4). We
identify a usability-boundary at this inflection point: a tool
is acceptably accurate if it is guaranteed to reproduce a re-
playable execution with the same failure.

2.4 Summary

Existing bug reproduction tools are not sufficiently efficient,
effective, and accurate to (1) ensure low overheads that
are compatible with the performance requirements of pro-
duction settings, (2) reproduce complex failures found in
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Figure 2. The high-level design and usage model of ER

production environments, and (3) provide reliable and ex-
ecutable output. We find that prior systems over-prioritize
one or more properties at the expense of the others. Of-
fline and hybrid solutions, like REPT, are overly efficient;
they record little to no information, which imposes negli-
gible run-time overhead but sacrifices efficiency/accuracy.
Full record/replay systems are overly effective; they support
bugs which violate the coarse interleaving hypothesis, even
though those bugs do not appear in practice [71]. Efficient
record/replay systems are overly accurate; they are guaran-
teed to reproduce the exact control flow and data values from
a failure, but, in software reliability domains (e.g., debugging,
fuzzing, security forensics), it is sufficient to reproduce any
execution that leads to the same failure [114] (see § 5).

In contrast, ER lies at the usability-boundary of each fail-
ure reproduction property. Thus, ER reliably reproduces pro-
duction failures with production-grade efficiency and adds
production support for the wide-range of dynamic tools
that are built on top of failure reproduction systems. For
example, ER enables tools for debugging [63], configuration
management [34], security forensics [49], automated failure
localization [100, 120], large-scale parallelism [96], and bug
detection [42]. In § 5, we provide a case study that uses ER
for invariant-based failure localization.

3 Design

ER resides at the sweet spot in the design space of bug re-
production systems with respect to the aforementioned key
properties of efficiency, effectiveness, and accuracy. ER uses
execution information (control flow and data values) in con-
junction with symbolic execution to reconstruct a failure.
Through careful combination of these techniques, ER simul-
taneously mitigates the efficiency problems of purely online
approaches and the effectiveness problems of purely offline
approaches. At a high-level, ER follows an iterative algorithm
that monitors production failures and performs symbolic ex-
ecution to either generate a failure-inducing input or identify
the reason why inputs cannot be generated. In the latter case,
ER selects new data values to monitor which allow symbolic
execution to generate a failing input during future failure
occurrences.

1159

PLDI ’21, June 20-25, 2021, Virtual, Canada

Fig. 2 shows the high-level design of ER. ER provides a
runtime that monitors an execution to produce a trace of
control flow and data values as per the direction of ER’s
Analysis Engine (§ 3.1). When a failure occurs, the runtime
ships the failure trace to the analysis engine to perform shep-
herded symbolic execution. Shepherded symbolic execution
uses the runtime trace recorded in production to reconstruct
an execution that reproduces the failure (§ 3.2). Control-
flow information allows shepherded symbolic execution to
eschew the notorious path-explosion problem in symbolic
execution. However, the constraints on inputs nevertheless
grow complex and stall symbolic execution, eventually lead-
ing to constraint solver timeouts. So, ER performs key data
value selection, which analyzes the constraints from sym-
bolic execution to identify a small set of data values that will
simplify constraints and thus eliminate stalls in symbolic
execution(§ 3.3). ER instruments the program to record se-
lected data values, redeploys the program in production, and
waits until the failure reoccurs. This process continues until
ER successfully generates an input that leads to the failure.

We describe how ER performs online monitoring (§ 3.1),
shepherded symbolic execution (§ 3.2), and key data value
selection (§ 3.3), and how ER supports concurrency (§ 3.4).

3.1 Online Monitoring

ER uses the runtime and driver support to monitor a pro-
duction failure using efficient hardware support (via Intel
PT [67]). ER records the control flow and data values of pro-
duction executions, as per the directions of ER’s key data
value selection (§ 3.3). By default, ER always traces control-
flow, because control-flow information is useful to eliminate
path explosion (§ 3.2) and existing hardware techniques en-
able non-intrusive control-flow recording (i.e., executions
can be traced without any modifications). If desired, devel-
opers can configure ER to enable tracing only after a failure
is observed multiple times.

When a failure is detected, ER ships the runtime trace
including the control-flow trace and any data values to shep-
herded symbolic execution (§ 3.2, step @). The failure can
either be fail-stop (e.g. crashes, hangs, etc.) or programmati-
cally detectable by other criteria (e.g. semantic bugs checked
by developer-specified assertions).

3.2 Shepherded Symbolic Execution

Shepherded symbolic execution generates program inputs
that reproduce a production failure by following the runtime
trace produced during online monitoring and gathering con-
straints on input variables. The runtime trace includes the
control flow of the failing execution (i.e., the branches, calls,
and returns) and any data values (e.g., arguments to a func-
tion, return values, etc.) selected by key data value selection
(§ 3.3). The trace of a failure reoccurrences may have sub-
tle discrepancies with previous traces for the same failure;
shepherded symbolic execution always uses the latest trace.
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1 uint32 V[256] = {0};
2 foo(uint32 a, uint32 b, uint32 c, uint32 d) {

3  uint32 x = (a + b);

4 if (x < 256 && c < 256 && d < 256) {
5 Vix] = 1;

6 if (V[c] ==8) // x !=c¢c

7 Vlc] = 512;

8 VIV[x]] = x;

9 if (c < d) // d!=c

10 if (V[V[d]] == x)

11 abort();

Figure 3. Running example

To demonstrate ER’s end-to-end operation, we use the list-
ing in Fig. 3. If this program aborts (Line 11), then x equals d,
due to the statements V[V[x]] = x (Line 8)and if (V[V[d]]
x) (Line 10). Although this program is simple, it shows
the code patterns that cause symbolic execution stalls in
real-world applications, as discussed in § 3.3.

In our example, we make a few assumptions: (1) foo is
called as f00(@,2,0,2), which satisfies all the branch con-
ditions, (2) the program crashes on Line 11 due to the abort,
and (3) this is the first time the failure has occurred (so the
runtime trace only contains control-flow information). The
control-flow trace of the failing execution (i.e., the line num-
bers of the executed statements after each taken branch) in
Fig.3is 2— 5 — 7 — 10 — 11 (FAILURE). The ER runtime
ships this control-flow trace to the analysis engine.

By following a control-flow trace from a production failure,
shepherded symbolic execution eliminates the path explo-
sion challenge, since it only explores a single program state
that follows the trace. ER still executes the program with
symbolic inputs and builds up a path constraint. A path con-
straint is a collection of constraints on the program input at
any given point in symbolic execution.

In our example, ER starts executing foo with four symbolic
(unconstrained) arguments, A4, A , A and A4 (Line 2). Since
all the operands are symbolic, the value of x computed on
Line 3 is also symbolic. The branch on Line 4 compares
symbolic inputs (4., A7) and the symbolic value x to 256.
Since the next instruction executed in the recorded control-
flow trace is the memory write at Line 5 (see the above trace
in bold), the branch on Line 4 was taken and ER will update
the path constraint to include the outcome of the branch
condition, i.e. ((Ag + Ap) < 256) A (Ac < 256) A (Ag < 256).

Line 5 uses x to dereference an entry in V and creates
a symbolic memory address (the base address of V, offset
by (Aq + Ap)). ER cannot determine the addresses of V[xJ,
but the fact that the control-flow trace has more elements
indicates that dereferencing V[x] does not lead to the failure.
The control-flow trace indicates that the branch on Line 6
was also taken. Since V is updated at a symbolic address
on Line 5, the branch condition on Line 6 needs to treat
array V symbolically: (Read(Write(V, x, 1),c) == 0). Here,
we use a standard representation of accesses to symbolic
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memory [48, 56]: 1) Read (A, i) returns the value at location
Ali], where A is an array and i is the index. 2) Write(A, i,v)
updates the i-th entry in the array A with value o.

ER continues shepherded symbolic execution by updat-
ing the path constraint until it reaches the failure, or until
symbolic execution stalls because the underlying constraint
solver cannot handle the complex constraints that have been
gathered. During shepherded symbolic execution, ER in-
vokes a constraint solver every time the program accesses
symbolic memory (e.g., (Read(Write(V, x, 1), ¢) in our exam-
ple) to determine the set of concrete memory locations that
may be accessed. This approach prevents the symbolic execu-
tion engine from assuming that a write operation may write
to any address, which would complicate the path constraints
and lead to other scalability issues in symbolic execution.

If shepherded symbolic execution reaches the failure that
occurred in production (i.e., at the end of the trace), ER in-
vokes a constraint solver to determine concrete program
inputs that would lead to the failure. If constraint solving
can determine a satisfying assignment to the path constraint,
the failure is reproduced and a full test case is generated
for the developer. The generated test case may not include
the same inputs that caused the production failure, but is
guaranteed to lead the program along the same recorded
control flow and reproduce the same failure. As we show in
our evaluation, in a few cases (2 out of 13), ER can reproduce
the failure in the first attempt.

However, for most cases (11/13 in our evaluation), shep-

herded symbolic execution is not able to reproduce the fail-
ure in the first attempt. In these cases, ER identifies a solver
timeout (§ 4) and constructs a constraint graph (explained
below) that depicts the dependencies among data values and
constraints. ER passes the constraint graph to key data value
selection (§ 3.3).
Constraint Graph Construction When there is a solver
timeout, ER constructs a constraint graph, which succinctly
describes the dependencies between values and constraints
that are established as the program is symbolically executed.
This graph representation is inspired by the internal data
structures of the STP constraint solver [56]. The nodes in
the graph represent operations (arithmetic, logic, memory),
constants, program inputs (which are symbolic and there-
fore unknown), objects in the symbolic memory model (e.g.,
an array allocated in the program), and symbolic memory
addresses. The edges represent the dependencies among the
nodes and point from a node to its input dependencies. The
goal of a constraint solver is to identify a concrete assignment
for each symbolic input node that simultaneously satisfies
all the constraints in the graph.

We use our example from Fig. 3 to explain how ER con-
structs the constraint graph. Recall that shepherded symbolic
execution follows the control-flow trace (2— 5 — 7 — 10
— 11 (FAILURE)) recorded by running foo, and tries to re-
produce the crash (due to abort) on Line 11. Fig. 4 shows the
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Figure 4. Step-by-step construction of the constraint graph
for the example in Fig. 3.

example constraint graph that is generated right before foo
aborts. Since ER is executing the program symbolically, foo’s
arguments are represented as four symbolic input nodes
(Aa> Aps Ae> Ag). As shown in step @, the value computed by
x = (a+ b) on Line 3 is an arithmetic "addition" node, Add,
that depends on the values of the symbolic inputs A, and Ap.

Using the recorded control-flow trace, ER knows that the
branch on Line 4 was taken. Subsequently, in step @), the
value x is used to index into the array V and write 1 to an
element (Line 5). The write operation (Writeg') depends on
the target array (V), the destination address (x), and the value
to write (1). Note that the graph representation of the write
operation is equivalent to the representation we introduced
above, namely Write(V, x, 1).

In step @ (Lines 6-7), the branch condition includes a read
operation (Readg) , which depends on: (i) a symbolic array
to read from (which is represented by Writeg), as this node
represents the last state of the array V that was written to
in step @ and (ii) a source address (/). Note that the graph
representation of the read operation is equivalent to the rep-
resentation we introduced above, namely Read(Writeg), Ac).
The path constraint that ER builds by following the control-
flow trace (i.e., the branches that are taken) is represented in
the graph using the logic Eq nodes. Eqg, denotes that Readg,
was equal to 0. Finally, Writeg) represents the value 512 be-
ing written to the symbolic array V (whose final state before
being written to is again represented by Writeg).

Constraint graph generation is similar for steps @, ®.

3.3 Key Data Value Selection

Key data value selection eliminates symbolic execution stalls
by analyzing the constraint graph and determining the key
data values that will simplify the path constraints. We de-
scribe the main sources of constraint solving complexity (in
§3.3.1) and how ER determines the set of key data values
that will remove stalls in symbolic execution (in §3.3.2).

1We use subscripts to distinguish different nodes in different steps.
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3.3.1 Sources of Constraint Complexity. Recall from
section 3.2 that ER invokes the constraint solver every time a
symbolic memory location is accessed to simplify reasoning
about subsequent memory accesses. We now describe how
constraints on symbolic memory accumulate and provide
intuition about how these constraints lead to symbolic ex-
ecution stalls. We then explain the two key contributors to
constraint complexity, namely (1) the length of symbolic
write chains, and (2) the size of the accessed symbolic mem-
ory.

Examples of complex constraints. Consider the example
in Fig. 3, and the associated constraint graph in Fig. 4. On Line
5, (step @ in the constraint graph), the program writes the
value 1 to a symbolic address (V[x]), because x is a symbolic
value, x= (A, + Ap). Depending on the value of x, the access
will either be within the bounds of the array V and simplify
reasoning, or, outside the bounds of the array and require
that ER update other memory objects. Since the branch on
Line 4 was taken, the path constraint contains the constraint
Aqa +Ap < 256, and the solver deduces that the array access
on Line 5 is within the bounds of V, which has 256 elements.
ER represents the state of the symbolic memory in step @
as Write(V, x, 1), or Writeg) for short.

Symbolic execution can stall when encountering chains of
symbolic addresses. Consider the statement V[V[x]]=x on
Line 8 (step @ in the constraint graph). This statement first
reads V[x] from the most recent update to V (i.e. Writeg)
with offset x, where x = A; + A;. By the logic of the pre-
vious paragraph, the solver determines that the offset x is
always within the bounds of the array V. We denote this read
operation in step @ as Readg = Read(Write®, x), where
Writeg = Write(Writeg), A, 512). Expanding Writeg pro-
vides Writeg = Write(Write(V, x, 1), A, 512). Together with
the initialization of V on Line 1, this chain of writes identifies
that V[x] is 0,1 or 512. Thus, it is difficult to determine if
the access on line 8 (V[V[x]1]) is within the bounds of the
array V; the solver will have to combine constraints gathered
from Lines 5 (V[x] = 1)and 6 (if (V[c]==0)) to determine
that c cannot be equal to x and thus V[x] cannot be equal to
512. The memory read and the branch condition on Line 10
(if(VIVLd]] == x)) involves similar non-trivial reasoning
on the solver’s part.

While modern solvers, and hence ER, are able to reason
about cases such as Lines 8 and 10, as chains of symbolic
memory accesses increases, constraint solving becomes a
challenge. In addition, constraint solving is complicated by
accesses to large memory objects, since the solver needs to
reason about accesses to more memory locations. Therefore,
for the purpose of illustration, we assume that the accesses
on Line 8 and Line 10 are challenging for solvers to resolve
and thus cause symbolic execution to stall.

Key contributors of constraint complexity. An obvious
way to avoid all constraint solving complexity would be
to record all program inputs, similar to what record/replay
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engines do. Unfortunately, record/replay can incur high over-
head, therefore, ER aims to determine key data values that
causes the constraints to become complex and record them.
We observe that there are two key contributors to the com-
plexity of symbolic memory constraints:

1) Length of symbolic write chains. Updates (i.e., writes)
to symbolic memory add constraints to the memory state,
complicating constraint solving. In our example, the chain
of three Write operations in Fig. 4 can be represented as:

Writeg = Write(Write(Write(V, x, 1), A, 512),
Read((Write(Write(V, x, 1), A, 512), x), x)

This chain bottlenecks shepherded symbolic execution, when
the solver gets invoked for the read operations in steps @
and ® (Lines 8 and 10).

2) Size of the accessed symbolic memory. If the size of the
symbolic memory that is accessed is large, the solver needs to
reason about a large number of locations that can be accessed,
which is complicated. An example is the three Write nodes
in Fig. 4 that modify the 1024-byte array V (256 X 4), which
is larger than any other memory object in the graph.

3.3.2 Computing the Bottleneck and Recording Sets.
ER exhaustively searches in the constraint graph to identify
the longest symbolic write chain and the write chain that
updates the largest symbolic memory object. (Note that these
two chains can be the same.) We call the set of all symbolic
values that are read/written by operations in these two chains
as the bottleneck set; collectively, this set represents key data
values that should be recorded to simplify constraints and
resolve symbolic execution stalls. In our example, where we
assume constraint solving stalls on Line 8 in step @, there is
a single write chain (Writeg — Writem — Writeg) that
updates the symbolic array V, which is the largest symbolic
memory object. The bottleneck set comprises all the sym-
bolic values that are referred to by these three writes (see
the dashed address dependency arrows depicted in Fig. 4),
namely {x, A., V[x]1}.

Reducing the Cost of Recording. A naive strategy to sim-
plify constraint solving would be to record all the elements
in the bottleneck set the next time the failure occurs. In Fig. 4,
this strategy would correspond to recording the concrete
values for node x, A, and V[ x] (3 X 4 = 12 bytes total), which
will make it easier for the constraint solver to satisfy all the
constraints in the first four steps.

Unfortunately, this approach has high overhead. So, ER
reduces the amount of data it records by identifying an al-
ternative set of data values to record from which the bot-
tleneck set can be inferred. ER achieves this with the fol-
lowing algorithm: Initially, ER assigns the recording set of
data values, E = {Eg, Ey, .. ., Ex}, to be the bottleneck set. ER
assigns a cost (C;) to recording each element that is equal
to the size of the element times the number of times the
node is referenced in the recorded control-flow trace, i.e.,
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C; = sizeof (E;) X Countg,. ER’s goal is to minimize the total
cost of recording, C = YX, C;.

For each element E; in E, ER performs a depth-first search
in the constraint graph to determine if it can record a node
(or multiple nodes) with a lower cost than C; that ER can use
to determine the value of E;. ER continues searching until it
can no longer reduce C, the total cost of recording.

Consider the symbolic elements of the bottleneck set {x, A,
VIx1} in Fig. 4, where each element has a reference count of 1
since all the statements in foo executed once. The algorithm
first considers the element X, which has a recording cost of
4 (4 bytes of data X referred 1 time). ER continues the depth
first search and determines that it cannot record x with a
lower cost (the cost of recording both A, and A,—sum of
which equals x—is 8). Similarly, when ER does a depth-first
search starting with A, it does not update the recording
set (since A, is a leaf node, i.e., an input). Finally, when ER
performs a search starting with V[x], it finds out that V[x]
can be deduced given the values of x and A. This happens,
because given the values of x and A, all the memory writes
in steps @—-@ write a concrete value to a concrete address,
therefore, Readg reads a concrete value from a concrete
address as well. Consequently, ER removes V[x] from the
recording set. At this stage of the search, the elements in
the recording set do not change anymore and the set of key
values ER will record is {x, A.}.

3.3.3 Recording Key Data Values. Based on the final
recording set, ER instructs its runtime to record the elements
(e.g., values, addresses). The runtime records an element at a
point in the execution corresponding to where the element
is introduced in the constraint graph. For the recording set
{x, Ac} in our example, ER records the value x (to concretize
Aa + Ap), when x is first computed (Line 3 in Fig. 3, step @ in
Fig. 4). ER records the input value c (to concretize A.) when
it is introduced in the graph in the expression if (V[c] ==
@) (Line 6 in Fig. 3 and step @ in Fig. 4).

3.3.4 Iterative Operation. ER continues the iterative pro-
cess of recording runtime information, shepherded symbolic
execution, and key data value selection until it can repro-
duce the failure. In our example, a second occurrence of the
failure will ship the control-flow trace and values of x and
Ac to shepherded symbolic execution. Symbolic execution
will stall when calculating the memory read on Line 10 and
key data selection will identify a recording set of {x, A, A4}.
After a third occurrence of the failure, shepherded symbolic
execution is able to reproduce the failure on Line 11.

3.4 Handling Concurrency

Traditionally, symbolic execution reasons about different
thread interleavings in a program by encoding the thread
schedule in the path constraint of an execution [39]. Unfortu-
nately, in order to explore the potential thread interleavings,
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a symbolic execution engine has to fork program states af-
ter every instruction in the program, exacerbating the path
explosion problem. Although this naive method can be im-
proved by identifying data races in the program and only
forking program states at racing memory accesses [31, 75,
77], it is still not a tractable approach for large systems [114].

ER instead relies on observations of prior works [71, 111]
that suggest that in many cases, it is possible to use a coarse-
grained timer to track the execution order of shared memory
accesses in a multi-threaded program. Specifically, ER relies
on time tracking capabilities of modern hardware (timestamp
packets in Intel PT [67]) to record a partial order of instruc-
tions across multiple threads. During shepherded symbolic
execution, ER executes chunks of instructions from different
threads according to the partial order described by the timer
packets in the recorded trace. If ER is unable to establish a
total order among the chunks of instructions because the
associated timestamps overlap, ER arbitrarily selects a se-
quence of instructions and tries to reconstruct the execution.

If the granularity of the timer packets is fine enough to
capture all the data races and synchronization operations, ER
reconstructs the execution reliably. For the multi-threaded
programs in our evaluation (§5), ER is able to reconstruct
failing executions. However, if a program exhibits a high-
degree of fine-grained racing accesses, ER may not be able
to reconstruct the execution. In such cases, ER could use
state-space exploration techniques [32, 93] to determine the
order of finer grained racing accesses.

4 Implementation

Runtime and OS Driver. ER uses hardware-assisted con-
trol and data tracing in Intel PT [67] to collect the runtime
traces to quantify performance overhead. ER configures the
Intel PT Linux driver and records the control-flow, timing
information, key data values, in a 64MB ring buffer for each
monitored application. The buffer size is decided by the
largest trace we collect from the evaluated failures (§5.1).
Mapping x86_64 control-flow traces into LLVM IR (which is
required by KLEE to symbolically execute code) introduces
inaccuracies due to optimizations. In our evaluation, we ob-
serve that only 91.5% of the control-flow events (branches,
calls, returns) in the x86_64 executions can be mapped back
to LLVM IR. Meanwhile, recorded key data values can be
mapped fully accurately. Our prototype currently makes up
for the control-flow inaccuracy by tracing both control-flow
and key data values within KLEE.

Even though symbolic execution in KLEE can deal with
partially-recovered LLVM traces at the expense of slight path
explosion [106], we intend to tackle this problem by either
(1) instrumenting the clang optimization passes that cause
information loss to save metadata about optimizations in
order to increase the accuracy of x86_64-to-LLVM mapping,
or (2) turning to a binary symbolic execution engine [44].
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Recording Key Data Values. We implemented an LLVM
compiler pass (156 LoC) to instrument programs with the
ptwrite instructions [27], which records data values iden-
tified by key data value selection into the Intel PT trace.
Instrumentation requires redeploying a new version of the
application to record additional values, which suits the rapid
development cycles of modern software [101] well. Dynamic
binary instrumentation [37, 38, 83] presents a potentially less
invasive solution for less frequently updated applications.
Shepherded Symbolic Execution. We implemented a pro-
totype shepherded symbolic execution engine on top of
KrEE [40] in 13.8K LoC. We modified KLEE to follow a control-
flow trace and extended its POSIX environment model based
upon the changes from Cloud9 [39]. The extended POSIX
environment treats thread-interleavings and system calls
(e.g. the content of input files, packets from network sockets,
clock information, etc.) as sources of non-determinism. Our
prototype treats these non-deterministic values as symbolic
(unknown). The shepherded symbolic execution engine de-
tects the reoccurrence of a failure based on matching the
program counter and the call stack where the failure occurs.
Detecting Symbolic Execution Stalls Complex constra-
ints prevent symbolic execution from progressing. Some con-
straints (e.g. floating-point) are not expressible in KLEE; cer-
tain classes of constraints are known to be undecidable[35].
For constraints supported and solvable in KLEE, ER deter-
mines if shepherded symbolic execution is stalled by identi-
fying solver timeouts. The ideal timeout depends upon the
frequency of a failure. For failures that occur frequently, ER
should be configured with a relatively short timeout so that
shepherded symbolic execution can quickly simplify sym-
bolic constraints using recorded data values; for infrequent
failures, ER should use a longer timeout to reduce the num-
ber of reoccurrences required to reproduce a failure. For the
failures in our evaluation, we found that a 30 second timeout
provides a good balance between the time spent on symbolic
execution and the number of failure reoccurrences required
to reproduce a failure.

Key Data Value Selection. We implemented the key data
value selection algorithm in Python (1.3K LoC). When the
solver times out, ER passes the path constraint from KLEE
to the analyzer. The analyzer generates a list of LLVM IR
registers as the key data values to record.

5 Evaluation

In this section, we first describe our experimental setup (§5.1)
as well as our benchmark selection. We then evaluate our
prototype of ER by answering the following questions:
Effectiveness and Accuracy (§5.2) Can ER reproduce fail-
ures in complex, long-running executions? Is ER able to ac-
curately reproduce failing executions? Does key data value
selection choose to record useful data values? How useful is
data value recording for shepherded symbolic execution?
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Table 1. Bugs used in the evaluation of ER along with bug IDs and types. “MT” denotes if the program is multithreaded (Y for
Yes, N for No). “LoC” denotes the lines of code of each application. “#Instr(x86_64)" denotes the total number of executed
x86_64 instructions in the failing execution.“#Occur” denotes the number of failure occurrences ER needs to reproduce the
failure. “Symbex Time” represents the total time (sum for all iterations) ER spends on shepherded symbolic execution.

Application-BugID Bug Type MT LoC #Instr(x86_64) | #Occur | Symbex Time | Performance Benchmark
PHP-2012-2386 Integer overflow [7] N 968,607 5,460,436 6 1.7 min | Benchmark Script [6]
PHP-74194 Heap buffer overflow [13] N 1,303,868 5,791,278 10 111 min | Benchmark Script [6]
SQLite-7be932d NULL pointer dereference [14] N 413,846 1,408,411 3 3.3 min | Official fuzz test
SQLite-787fa71 Inconsistent data-structure [17] N 221,771 1,115,003 4 61.3 min | Official fuzz test
SQLite-4e8e485 NULL pointer dereference [18] N 302,653 1,349,129 3 21.8 min | Official fuzz test
Nasm-2004-1287 Stack buffer overrun [2] N 224,147 1,480,285 3 12.5 min | Assemble a large asm file
Objdump-2018-6323 Integer overflow [16] N 1,077,896 323,788 3 0.06 min | Disassemble a large binary
Matrixssl-2014-1569 Stack buffer overrun [20] N 160,447 4,448,948 6 6.5min | Official test
Memcached-2019-11596 | NULL pointer dereference [19] Y 151,716 1,840,258 2 3.1 min | memtier_benchmark [22]
Libpng-2004-0597 Buffer overflow [1] N 73,442 71,752 1 0.2 min | resvg-test-suite [23]
Bash-108885 NULL pointer dereference [12] N 335,176 866,668 1 0.3 min | Quicksort in Bash script
Python-2018-1000030 Shared data corruption [15] Y 1,020,698 36,108,946 2 23.5min | From PyPy benchmarks [24]
Pbzip2 Use-after-free [11] Y 13,052 6,937,510 2 2.6 min | Compress a .tar file

Efficiency (§5.3) What is the runtime performance over-
head incurred by ER due to online control and data record-
ing? How does ER’s runtime overhead compare against
record/replay? What is ER’s offline computational and mem-
ory overhead?

Case Study (§5.4) Can ER provide production support for
software reliability tools? How does ER’s support for these
tools differ from existing systems?

5.1 Experimental Setup

Target Programs and Bugs. As shown in Table 1, we eval-
uate ER using 13 failures from a broad range of 10 real-
world programs including the PHP interpreter; the Python
interpreter; SQLite database; memcached, a widely-used dis-
tributed object store; the Bash shell; the binary analysis tool
objump; NASM, a popular assembler in Linux; libpng, a per-
vasive image processing library; MatrixSSL, a TLS/SSL im-
plementation, and pbzip2, a parallel compression tool.

Bug IDs and bug types are also shown in Table 1. We
choose programs and bugs from closely-related work [71, 73,
111] and CVE exploits [25, 26] that were supported by the
POSIX environment model of the KLEE symbolic execution
engine [40], which ER uses for shepherded symbolic execu-
tion. The failures are caused by inconsistent data-structures,
integer overflow, buffer overflow, shared data corruption,
use-after-free, etc.

Workloads for Performance Evaluation. When available,
we use existing benchmarking and testing suites to assess
the performance impact of data and control-flow recording
by ER. To evaluate the performance overhead of NASM and
objdump, we assemble and disassemble the SQLite binary,
respectively. To evaluate pbzip’s performance, we compress
the SQLite codebase which is a 71 MB .tar file. We ran each
performance experiment 10 times and report averages and
standard error.

Software and Hardware Configuration. We evaluate ER
on two servers with Intel Xeon Silver 4114 CPU and Intel

Pentium Silver J5005 CPU. The servers have 187 GB and 8
GB of memory, respectively. The Linux kernel version on
both machines is 5.5.2.

Baseline. We compare ER against REPT [111], a state-of-
the-art deployed bug reproduction system, and rr [29], a
state-of-the-art record-and-replay system. Since REPT is not
publicly available, we are only able to compare with the
results reported in the REPT paper.

5.2 Effectiveness and Accuracy of ER

Length and Complexity of Reproduced Executions. Ta-
ble 1 shows all the failures that ER reproduced along with
the number of instructions in the executions that ER recon-
structed. As shown in the "#Instr(x86_64)" column, ER was
able to reconstruct failures in executions of up to ~36 mil-
lion dynamic x86_64 instructions, which is more than two
orders of magnitude (361x) longer than the executions that
REPT [111] can reproduce (~100K).

Accuracy of Reproduced Executions. ER accurately re-
constructs all data values of a failing execution, given a trace
of the control flow and a few key data values recorded in
production. Even though the input generated by ER may not
be the same input that caused the in-production failure, ER
guarantees the generated input will lead to the same control
flow as the failure and reproduce the same failure. Thus, ER
is able to provide developers a concrete test case (input +
control flow) that they can run in a debugger to debug root
causes. For example, the SQL queries recovered by ER in
three SQLite bugs ([14, 17, 18]) differ from the original in-
put that leads to these bugs in terms of SQL keywords (e.g.
sE1eCT instead of SELECT), identifier names (e.g. different
table/field names), data values, etc. Despite these differences,
the generated input follows the same control-flow because 1)
keywords are case-insensitive; 2) renaming identifiers does
not change query semantics; 3) recovered data satisfies all
control-flow conditions in the trace.
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In some instances, developers may be able to debug an
issue using an inaccurate execution, such as the one provided
by REPT, without relying on a full test case. However, REPT
has a substantial number of unknown and inaccurate values
as trace length extends beyond 100K instructions. To make
matters worse, a developer cannot know which values are
inaccurate, since they lack the ground truth. To demonstrate
when this may be an issue, we investigated the MatrixSSL
bug (for which thorough developer patches and documenta-
tion were available) to determine the root cause of the failure.
We found the last instruction from the patch that fixes the
bug to be executed 3 million instructions prior to the failure.
So, REPT would likely not have been able to provide infor-
mation about the data values of the variables used by the
patch and not accurate enough for a developer to debug this
issue (we only provide a qualitative comparison, as REPT is
closed-source and only available on Windows).

Key Data Value Selection Effectiveness. To determine
the effectiveness of key data value selection, we compared
key data value selection with a version of ER that uses a
random data recording strategy. The random recording strat-
egy records the same amount of data that ER records, but
selects the data randomly among all the data elements in
the constraint graph. ER with random data recording only
reproduces one failure among the failures that require data
value recording (Nasm-2004-1287). In all other cases, ER with
random data recording encounters symbolic execution stalls
which it is not able to simplify with the random data, and
thus cannot complete symbolic execution.

Benefits of Data Value Recording. We show the benefits
of data value recording on shepherded symbolic execution.
Fig. 5 compares the progress of shepherded symbolic execu-
tion on the PHP-74194 bug when using a control-flow trace
compared to using traces containing control flow and the
data values selected during the first and second iterations of
key data value selection. We disable the solver timeout and
let shepherded symbolic execution execute the same num-
ber of instructions in all three cases. Our results show that
shepherded symbolic execution with no data values, the first
iteration data values and the second iteration data values
take 11468, 5006, and 1800 seconds, respectively, to symboli-
cally execute the same number of instructions. We conclude
that shepherded symbolic execution drastically benefits from
data values and that ER’s iterative approach is effective in
current production environments where bugs often reoccur.

5.3 Efficiency of ER

Runtime Performance Overhead. We measure the run-
time performance overhead of online control flow and data
value tracing. For each program, we report the recording
overhead of ER for the last occurrence of the failure needed
to reproduce the failure. We choose the last occurrence be-
cause ER records the most data in the last iteration. Similar to
prior work [57], our sensitivity analysis shows no statistical
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Figure 5. Number of instructions executed and the time
spent on shepherded symbolic execution for PHP-74194.

difference in the runtime overhead for buffer sizes of 4KB,
64KB, 1MB, 16MB, 64MB (using a 90% confidence interval).

As shown in Fig. 6, ER incurs on average 0.3% (and up to
1.1%) runtime performance overhead across all the programs
we evaluate. The overhead numbers for some applications
are sufficiently low to be affected by the variability in other
factors such as disk I/O (e.g., Libpng’s performance bench-
marks open and read about 1000 files). These results are in
line with prior work that demonstrated that Intel PT is effi-
cient enough to be deployed in production [71, 73, 111]. In
our work, we also demonstrate that recording a few key data
values does not increase the overhead incurred by Intel PT.
Comparison to Record/Replay. A key question we set out
to explore in this paper is whether we can achieve the same
level of effectiveness (i.e., failure reproduction ability) as a
record replay engine, with better efficiency (i.e., by incurring
lower runtime performance overhead).

Fig. 6 also displays the recording overhead incurred by a

state-of-the-art record/replay engine, Mozilla rr. rr imposes
an average of 48.0% (and up to 142.2%) runtime performance
overhead. The overhead of rr is prohibitive, even for single-
threaded applications (objdump, libpng, etc.). We conclude
that ER is able to effectively reconstruct all the failures in our
evaluation, and incur lower overhead than a state-of-the-art
record/replay system.
Offline Memory and Computational Overhead of ER.
The maximum amount of memory consumed by shepherded
symbolic execution and iterative constraint reduction is 10
GB, which we believe is a reasonable amount given the de-
creasing trends of memory cost [28, 62]. The largest con-
straint graph in our evaluation had about 40K nodes, from
which computing bottleneck sets and recording sets took at
most 15 seconds. The average and the maximum total shep-
herded symbolic execution time was 19 and 111 minutes,
respectively.
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Figure 6. Runtime performance overhead incurred by ER’s
control and data flow recording as well as recording using
rr [29]. The error bars display standard error.

5.4 Invariant-Based Failure Localization

ER allows software reliability tools across many domains
(e.g., security forensics, fuzzing, etc.) to leverage produc-
tion failures. In this case study, we show how ER provides
production-support to MIMIC [120], an invariant-based auto-
mated failure localization technique. MIMIC uses Daikon [52]
to calculate likely invariants, predicates which are observed
during successful executions. When presented with a failure,
MIMIC identifies the likely invariants that are violated by
the failure and proposes these as potential root causes. In
our case study, MIMIC gathers likely invariants offline, us-
ing existing integration and unit tests. When a production
failure occurs, ER reconstructs the failure and passes it to
MIMIC, which identifies potential root causes.

We test this approach using the coreutil bugs (od [3] and
pr [4]) from MIMIC. For both applications, we generate likely
invariants using 4 successful executions. We then use ER to
reconstruct a failing execution that exhibits the bugs, and
pass the reconstructed execution to Daikon. Daikon identi-
fies the same potential root causes (i.e., invariant violations)
when using the reproduced execution from ER as it does
when using the failing test case directly.

As discussed in Fig. 1, existing techniques for reproducing
bugs cannot support tools like MIMIC in production sce-
narios (although they may help with the relatively simple
programs, od and pr, discussed above). Full record/replay sys-
tems, hybrid record/replay systems, and BugRedux are too
expensive for production deployment. Offline approaches
(e.g., ESD) and efficient record/replay cannot handle all pro-
duction bugs and are not guaranteed to reproduce the failure
to pass to MIMIC. Finally, REPT does not produce output
that MIMIC can execute to produce invariants. If MIMIC
could generate invariants from the inaccurate data values
recovered by REPT, MIMIC might identify root causes that
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are both false positives (i.e. inaccurate values violate a likely
invariant that should be satisfied) and false negatives (i.e.
inaccurate values satisfy a likely invariant that should be
violated).

6 Related Work

Reverse execution of failed executions. REPT [111] is
the state-of-the-art approach to recover the data flow of a
program given the control flow. We compare our work with
REPT in §2 and subsequent sections, in particular, we discuss
its limitations in terms of effectiveness and accuracy. Simi-
larly, RETracer [47] reverse-executes a program to determine
the root causes of memory corruption. RETracer is efficient
in that it only uses a core dump, without data or control-flow
information, however its scope is limited to reasoning about
memory corruption bugs within a stack trace.
Record-replay. iDNA [36], PinPlay [94], ReVirt [51], rr [92]
and many others [32, 63-65, 81, 82, 86, 88, 95, 98, 108] record
at run-time all non-deterministic events (i.e., system calls,
thread scheduling, etc.) that impact program execution. They
allow users to replay and analyze the execution afterwards.
Although useful during development, they are not com-
monly used in production due to high overheads, e.g., rr
has an overhead that can range from 49% to 685% [92]. Other
approaches [90] propose specialized hardware for record-
replay, but adoption is slow and difficult.

Schedule record-replay. Several approaches specifically
target the challenges posed by multi-threaded applications
[53], which depend not just on program input but also on the
thread interleavings. For instance, H3 [66] records the con-
trol flow of programs (with overheads between 1.4%-14.7%)
and uses this information to determine the thread interleav-
ings that lead to concurrency bugs. Notably, PRES [93] and
HOLMES [43] record select run-time information, such as the
total order of synchronization calls, system calls, or function
call invocations, to constrain the interleaving space explo-
ration during post-failure analysis. Unlike ER, these tools
assume that the failure-inducing input is already known by
employing uni-processor record-replay techniques, hence
these approaches are orthogonal to ours.

Symbolic execution. Symbolic execution techniques [79]
reason about programs symbolically using SMT solvers (e.g.,
Z3 [48]) and are often used to explore the input space of
programs and conduct path-sensitive analysis [40, 44, 59,
91]. To reproduce a particular failure, state-of-the-art ap-
proaches [41, 69, 114] take a stack trace where the program
crashed, and steer symbolic execution towards the failure lo-
cation, which traditionally leads to path explosion. Symbolic
backward execution [50, 84] is a variant technique that tries
to reason about programs from a source code location (e.g.,
an assertion) backwards to the initial program state. Such
approaches are not able to address the constraint complexity
challenges like ER. Concolic testing approaches augment
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symbolic execution with concrete executions to automat-
ically generate test cases [59, 85, 103]. Although concolic
testing can simplify the path constraints by recording con-
crete values from random testing, it is generally designed
for path exploration, and does not focus on a specific failure
trace like ER.

Failure analysis and diagnosis. A large body of work has
developed techniques for failure diagnosis and root cause
analysis [30, 33, 68, 70, 71, 73, 80, 100, 107, 110, 116, 119],
which can complement ER, since failure reproduction can as-
sist failure diagnosis. Other work [113] has explored different
approaches to analyze core dumps of failed executions and
extract useful information. Pensieve [118] reproduces the set
of events that are relevant to a failure in a distributed system.
ER can be used in conjunction with Pensieve to thoroughly
reason about failures in a single node.

7 Conclusion

In this paper, we presented Execution Reconstruction (ER),
a technique to reproduce production failures. ER strives for
a sweet spot among efficiency, effectiveness and accuracy.
ER uses shepherded symbolic execution to leverage dynamic
control flow to eschew path explosion. In addition, to avoid
solver stalls, ER uses key data value selection, which an-
alyzes the constraints generated by shepherded symbolic
execution to identify a set of data values that can accelerate
symbolic execution. Using these techniques, ER will even-
tually generate concrete test cases that reproduce complex
failures. We have implemented an end-to-end prototype to
demonstrate the effectiveness of our approach based on Intel
PT and KieE. Real world applications show that ER is able to
reproduce failures with similar efficiency to state-of-the-art
efficient failure reproduction tools (on average 0.3%) while
providing similar accuracy/effectiveness as state-of-the-art
accurate/effective failure reproduction tools. In addition, we
show that ER allows software reliability tools to leverage
production failures.
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