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We consider the algorithmic question of choosing a subset of candidates of a given size k from a set of m
candidates, with knowledge of voters’ ordinal rankings over all candidates. We consider the well-known and
classic scoring rule for achieving diverse representation: the Chamberlin-Courant (CC) or 1-Borda rule, where
the score of a committee is the average over the voters, of the rank of the best candidate in the committee for
that voter; and its generalization to the average of the top s best candidates, called the s-Borda rule.

Our first result is an improved analysis of the natural and well-studied greedy heuristic. We show that

greedy achieves a (1 - %)—approximation to the maximization (or satisfaction) version of CC rule, and a

(l - %)—approximation to the s-Borda score. This significantly improves the existing submodularity-based

analysis of the greedy algorithm that only shows a (1 — 1/e)-approximation. Our result also improves on the
best known approximation algorithm for this problem. We achieve this result by showing that the average
dissatisfaction score for the greedy algorithm is at most 2% for the CC rule, and at most 252 ']?TJrll for s-Borda.
We show these dissatisfaction score bounds are tight up to constants, and even the constant factor of 2 in the
case of the CC rule is almost tight.

For the dissatisfaction (or minimization) version of the problem, it is known that the average dissatisfaction
score of the best committee cannot be approximated in polynomial time to within any constant factor when s
is a constant (under standard computational complexity assumptions). As our next result, we strengthen this
to show that the score of ’;:T+11 can be viewed as an optimal benchmark for the CC rule, in the sense that it
is essentially the best achievable score of any polynomial-time algorithm even when the optimal score is a
polynomial factor smaller. We show that another well-studied algorithm for this problem, called the Banzhaf
rule, attains this benchmark.

We finally show that for the s-Borda rule, when the optimal value is small, these algorithms can be improved
by a factor of Q(+/s) via LP rounding. Our upper and lower bounds are a significant improvement over previous
results, and taken together, not only enable us to perform a finer comparison of greedy algorithms for these

problems, but also provide analytic justification for using such algorithms in practice.
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1 INTRODUCTION

Multiwinner elections are a classical problem in social choice. In this problem, the goal is to find a
set of candidates (or winning committee) of fixed size from voter preferences over the candidates.
Indeed, some of the earliest work on the design of voting rules that map individual preferences to a
winning committee dates back at least a century [26].

Multiwinner elections clearly arise in choosing a winning parliament in representative democra-
cies. They have also recently found applications in design of systems for making procurement or
hiring decisions [21, 24], and in participatory budgeting [16, 23]. In these settings, the candidates are
products or public projects that provide shared utility to individuals. An entity such as a company
or a city government has to decide, based on individual preferences, which of these projects or
products to produce subject to a cardinality constraint.

Much of the work on multiwinner elections has focused on the question of proportional or diverse
representation: How can we choose a winning committee where every voter feels they have some
representation? Indeed, classic voting rules such as Proportional Approval Voting (PAV) [26] or
Single Transferable Voting (STV) [27] explicitly attempt to enforce such representation.

In this paper, we consider the question of choosing a committee of fixed cardinality k from a set C
of m candidates, when voters express ordinal rankings over these candidates. In many applications,
including parliamentary democracies or participatory budgeting, it is reasonable to assume voters
can compare candidates or projects and hence can rank them ordinally, while they may not be able
to articulate cardinal utilities for the same.

A classic set of objectives for ensuring diverse representation [5] based on ordinal preferences
uses the so-called Borda score. In the minimization (or dissatisfaction) version, the Borda score of
candidate ¢ for voter v, denoted r,(c), is the ordinal rank of ¢ in v’s ranking. Here, the top-ranked
candidate has Borda score 1, and the bottom-ranked candidate has score m.! Let V denote the set
of all voters, with n = |'V|. Given a committee (that is, a set of candidates) T of size k, the s-Borda
score of this committee (for s < k) is given by

()= Y (QJ%T{&_SZ m(c)). M

veV ceQ

Throughout the paper, we will denote the minimum possible score as OpT = minrcc,|r|=k v (T).

To interpret the above score, for each voter, consider the s candidates in T whose Borda score
is the smallest. Now, take the sum of these scores, and average it over all the voters. Therefore,
the s-Borda score assumes each voter is represented by the s best candidates in T according to her
ranking, so that optimizing this score implies a form of proportional representation, where each
voter on average has s “good” candidates representing her.

Our goal in this paper is to study the computational complexity (in m, n) of finding good commit-
tees according to the s-Borda score function. In particular (though not exclusively), we focus on the
analysis of greedy algorithms, which are appealing for their simplicity and ease of use, especially
in settings involving human decision making, such as parliamentary elections or participatory
budgeting with ordinal preferences.

1.1 Results for 1-Borda Score (Chamberlin-Courant Rule)
Our main results focus on the canonical case where s = 1. This case has been extensively studied

in computational social choice [5, 12, 13, 21, 24, 25], starting with the work of Chamberlin and

IExisting literature also uses a score of 0 for the best ranked and m — 1 for the worst ranked candidates. Since our results
concern absolute scores, they carry over to this setting by simply subtracting 1 from the bounds. We use a minimum score
of 1 since it is the more challenging setting for showing hardness results.
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Courant [7]. Here, each voter v is represented by candidate arg min . r,(c), that is, the most
preferred candidate from T in o’s ordering. The score of the voter is the rank of its representative,
and the goal is to minimize the average of this score over the voters. This rule is also called the
Chamberlin-Courant voting rule, though we will henceforth call it the 1-Borda score for consistency
with the generalizations we study later.

The 1-Borda score is an ordinal version of the celebrated k-medians problem [1]. Unfortunately,
for the ordinal version, it is not possible to approximate the minimum score, OPT, to any constant
factor in polynomial time unless P = NP [25].

The GREEDY Algorithm. A natural algorithm for the 1-Borda score is the GREEDY algorithm
that iteratively adds the candidate that decreases the 1-Borda score the most. This algorithm was
analyzed in [21] as follows. Consider the maximization (or satisfaction) version where the score
of a candidate ¢ for voter v is m + 1 — r,(c), so that the score of a committee T is m + 1 — ry(T).
Clearly, the maximization and minimization versions have the same optimum solutions, though
they are very different from an approximation perspective. It is easy to check that the maximization
objective is submodular [21], so that GReeDY is a (1 — %)—approximation by the classic result of [22].
However, this analysis only shows that GREEDY yields a solution of score at most m/e for the
minimization objective.

Our first, and technically most challenging, contribution is an almost-tight analysis of this
GREEDY heuristic for the minimization version. In Section 3, we show that it achieves a score (given
by Eq. (1)) of at most 2 - ;I?T+11 for any instance with m candidates from which we need to choose a
committee of size k. We complement this analysis by exhibiting an instance where GREEDY has
score at least 1.962 - ’,%11

For the maximization (or satisfaction) version, since the maximum possible score is m, the above
result directly implies the following theorem.

THEOREM 1.1. GREEDY isa (1 — %) -approximation for the maximization version of 1-Borda score.

For k larger than a small constant, this significantly improves the submodularity-based analy-
sis [21] that only yields a (1 —1/e)-approximation. Furthermore, it also improves on the best known
approximation algorithm for this problem, Algorithm P in [25], which achieves an approximation

factorof [1-O %

At a technical level, the standard analysis of GREEDY for maximizing submodular functions
shows that the next candidate yields an improvement in objective that is at least 1/k fraction of
the gap between the current solution and the optimum. We use Cauchy-Schwarz inequality on
per-voter improvements to show an overall improvement per step that has a quadratic dependence
on the gap. This yields a significant improvement when the gap is large, and is the crux of why we
are able to improve the upper-bound analysis of the maximization version significantly. Our lower
bound instance works by carefully choosing per-voter improvements that make Cauchy-Schwarz
inequality almost tight. This requires a non-trivial construction where the candidates chosen by
GREEDY have ranks that lie on a carefully chosen spiral, and these are interspersed with candidates
for whom voters’ preferences are random. The ranks in each subsequent layer of the spiral decrease
by a factor equal to the golden ratio.

A Benchmark and an Optimal Algorithm. The next natural question we ask is: How much better
can we do in polynomial time? In Section 4, we show some hardness results for the minimization
version (Eq (1)). Our main result significantly improves the constant factor hardness of approximation
result of [25] and shows the following:
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THEOREM 1.2. Unless ZPP = NP, no polynomial-time algorithm can distinguish between instances

with OpT > (1 —0(1)) - % from those with either:

(1) Opt < (’,Z‘jll) , where § € (0,1) is a constant; or

(2) OpT < & - 241 where a > 0 is a constant.

This construction yielding this theorem is delicate. We require the full power of Feige’s hardness
proof of Max CoVER [14], in particular, that it works on “regular” instances where each set has the
same size, and where a collection of disjoint sets cover the instance completely in the “YES” case.

Theorem 1.2 motivates us to define the score ’,Z’:ll as a reasonable benchmark for this problem,
and we call any efficient algorithm achieving this score as an “optimal algorithm”. Such a benchmark
is appealing in that it helps us analyze other simple and natural algorithms that have been proposed
in literature, and perform a more fine-grained comparison. As we have already seen, the GREEDY
algorithm is always within a factor of 2 of this benchmark.

We now observe that if we pick a subset of k candidates at random from C, the expected score
is exactly the benchmark r;:+11 We therefore denote the score r]?+1l as RAND. Now, we can design
a deterministic optimal algorithm via derandomizing this randomized algorithm. Interestingly,
we show that this derandomization yields a greedy algorithm that is exactly the same as the
BanzHAF algorithm proposed in [13] as a polynomial time heuristic for this problem. In that
work, the BANZHAF algorithm was derived by viewing the problem as a cooperative game where
players are candidates, and coalitions are committees, and adapting the notion of Banzhaf score
of coalitions [3, 11]. It was emprically shown to be a very effective heuristic for this problem,
beating GREEDY on most instances. We justify this empirical observation by viewing the BANZHAF
algorithm instead as a derandomization of an optimal randomized algorithm.

In summary, we show the following theorem.

THEOREM 1.3. The BANZHAF algorithm achieves a minimization objective of at most RAND = ’,%11

in polynomial time, and is a (1 — k+1) -approximation to the maximization objective of 1-Borda.

To complete the picture, we show that an easy consequence of Theorem 1.2 is that the approxi-
mation factor of (1 - ﬁ) is best possible for the maximization version unless NP = ZPP.

Committee Monotonicity. One appealing property of GREEDY is that it is committee-monotone [12]:
The committee found for a smaller k is always a subset of a committee found for larger k’s. This is
immediate because GREEDY adds the next candidate to the committee based on the improvement in
the 1-Borda score, and this improvement does not depend on k. On the other hand, the BANZHAF
algorithm requires knowledge of k at each greedy step, and is therefore not committee-monotone.
We therefore ask: Is there a committee-monotone algorithm that can achieve the benchmark
RaND? In Section 5, we answer this question in the negative: There exist instances where any
committee-monotone algorithm has score at least 1.015 - RAND. This shows a separation between
committee-monotone algorithms and an optimal algorithm such as the BANzZHAF algorithm.

Connection to the Core. The notion of core from cooperative game theory is appealing as a notion
of fairness, and provides a strong notion of proportionality. Informally, in a core solution, every
reasonably large subgroup of voters is happy in the sense that they do not all prefer the same
candidate outside the chosen committee. Formally, the work of [9, 19] defines an ¢-approximate
core as follows. Fix some a > 1. Given a committee T of size k, a candidate c is blocking if at least
a- % voters prefer ¢ to any candidate in T, that is,

(2)

>a-

{Z)G(V

, , n
ro(c) < min ru(c )} -
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A committee T is in the a-approximate core if it does not admit a blocking candidate. The work
of [9, 19] shows that a 16-approximate core always exists and can be computed in polynomial time,
while a (2 — ¢)-approximate core is not guaranteed to exist for any constant ¢ > 0.

In the full version, we show that the core indeed achieves a stronger notion of proportionality
than the 1-Borda score in the following sense: Any a-approximate core solution has 1-Borda score
at most a(1 + 1/k) - RaND. The converse of this statement is however false: None of OpT, GREEDY,
or BANZHAF lies in an a-approximate core for any constant a.

1.2 Results for s-Borda Score

We next consider the s-Borda score for 1 < s < k. We start with an analysis of the natural extensions

to the greedy algorithms considered above for s = 1. It is easy to show that choosing a random

1 L
S(s+ ) . RaND, where as before, RAND = ’,%11 This implies

its derandomization — the BANZHAF algonthm - has score at most @ -RaND. Furthermore, there

committee of size k yields expected score

are instances where the best possible score OpT > S(s+1) - RAND.

Analysis of GREEDY. The GREEDY algorithm extends naturally to this setting. In Section 6.1, we
extend the result in Section 3 to show that GREEDY achieves an s-Borda score of at most 2s% - RAND,
which is within a factor of 2% . +1 of the upper bound for the BANZHAF algorithm.

For the maximization version, recall that the score of candidate ¢ for voter v is m+ 1 — r.(v), and
the voter’s score for a committee is the sum of top s candidate scores. Since the maximum possible
score at most ms, this directly implies the following theorem. For s = o(k), this again significantly
improves on the classic submodularity-based analysis that only shows a (1 — %)—approximation.

THEOREM 1.4. GREEDY isa (1 — k+1) -approximation for the maximization version of s-Borda.

Note that for the related maximum multi-cover problem [4], the approximation factor of (1—1/e)
is actually tight for GREEDY. Therefore, our analysis of GREEDY points to fundamental algorithmic
differences between Max MULTI-COVER (resp. Max CovER [14]) and s-Borda (resp. 1-Borda), since
we obtain significantly better factors for the latter.

Improved Algorithm. In contrast with the s = 1 case, for larger values of s, we can obtain a non-
trivial improvement over these greedy algorithms (for the minimization version of s-Borda) by using
the natural LP relaxation for this problem [6]. In Section 6.2, we devise a randomized algorithm that
is based on carefully combining dependent rounding of this LP solution with choosing a committee
by uniform random sampling. We show that this algorithm achieves expected score

A1G <3-0pT+ 0O (33/2 log s) - RAND,

where OPT = minrcc r|=k r(T) is the minimum possible s-Borda score of any committee.

This result improves on the aforementioned bounds for greedy algorithms when Opt is small.
For instance, if OpT = O(s*/?) - RAND, the improvement is Q(+/5). We note that such an improved
bound cannot be achieved by GREEDY when OpT is small: In Section 6.1, we show instances where
OpT = 0(1) - RaND, while the score of GREEDY is Q(s?) - RAND. On the flip side, our improved
bound is based on solving and rounding an LP, and is therefore not as simple or intuitive as the
GREEDY or BANZHAF algorithms.

1.3 Related Work

The literature on multiwinner elections is too vast to survey here. We present a survey of computa-
tional results in this space to place our work in context.
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Suppose the candidates and voters are embedded in a metric space, and suppose the score r,(c)
is not the Borda score, but instead the metric distance between voter v and candidate c. Then the
objective for the s = 1 case is precisely the celebrated k-medians objective [1, 8, 18, 20], while
the general-s case has been studied as fault-tolerant k-medians [17]. For both these problems,
constant-factor approximation algorithms are known. The versions we consider can therefore
be viewed as ordinal versions of k-medians and fault tolerant k-medians respectively. Towards
showing better bounds for the ordinal versions, it is tempting to impose a condition such as the
ordinal preferences of voters should correspond to distances in some underlying metric space.
However, it is easy to show that given any set of ordinal preferences, there is a metric space that
can realize these preferences, which means this assumption does not help. Nevertheless, the LP
relaxation we use to derive improved bounds for the s-Borda score is the same as the standard LP
relaxation for the (fault-tolerant) k-medians objective [17]. It is an interesting open question to
explore what other natural assumptions on voter preferences will lead to improved upper bounds
for the 1-Borda and s-Borda objectives.

The work of [12] considers generalizations of the 1-Borda and s-Borda scores to committee scoring
rules. A committee scoring rule is a function that for each voter v and committee T of size k, maps
the set of ordinal ranks {r,(c),c € T} to a score. The s-Borda score we consider is an example
of a decomposable rule, meaning that the score can be written as a sum of contributions from
the committee members. The work of [24, 25] defines a special case of committee scoring rules
where the score is a weighted sum of ranks of the committee members. They call these Ordered
Weighted Average (OWA) rules. Again, it is easy to see that the s-Borda rule is an OWA rule. For
the maximization version of committee scoring rules, the GREEDY algorithm continues to be a
(1- %)-approximation via submodularity. It is an interesting open question to extend the results in
this paper to other rules that achieve diverse or proportional representation [2, 5].

Finally, the work of [6] considers the variant where the score r,(c) is an arbitrary cardinal value,
which is different from our focus on ordinal preferences. They consider the “harmonic” OWA rule
where a voter assigns weight 1 to candidate in the committee with lowest score, weight % to the
candidate with second lowest score, and so on, till weight ; to the candidate with highest score.
They show this version has a constant-factor approximation algorithm by randomized rounding of
the natural LP relaxation, first used in [10]. The difficulty with the s-Borda rule is that the weight
jumps discretely from 1 to 0 when we move from the top s candidates for a voter to the (s + 1)
candidate. This discontinuity is most pronounced for s = 1, and leads to our strong impossibility
result. In essence, this discontinuity is what motivates us to consider an alternate benchmark to
analyse the performance of natural greedy algorithms assuming ordinal preferences.

2 PRELIMINARIES

We consider the problem of selecting a subset of cardinality k from a set C of m candidates. We call
this subset a committee. A set V of n voters express their preferences on the candidates ordinally.
Each voter v has a bijective ranking function r, : C — {1,2,...,m}, and v prefers those ¢’s with
smaller r,(c). For example, the top-ranked candidate of v, denoted by ciop(v), satisfies r, (ctop(v)) =1,
and the bottom-ranked cyo(o) satisfies r, (Cbot(v)) =m.

In s-Borda score, the cost for a voter v of a committee T is the sum of her ranks of the top s
candidates in T: r,(T) = mingcr,|0[=s Xcep "v(¢)- Further, the s-Borda score (s < k) of a committee
T is the average cost for all voters:

CIOEEDWAGEEDY (Qc‘%{i&:sz ru(c>).

veV veV ceQ
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In particular, when s = 1, rq/(T) = % Dpey Minger ry(c).
Fix a voter v and look at her ranking on C. If we pick a random size-k subset of C, the ¢ smallest
rank is ¢ - ’,;”1 in expectation. (See the full version for a proof of this well-known fact.) Therefore,

the expected performance of a random committee is

Zs:t m+1  s(s+1) m+1

Ercelryv(T)] = = ZETCC[rU(T) e

UE(V
Define the benchmark RAND to be the expected performance of a random committee when s = 1 as
RAND = ’,?:11 We will justify this benchmark in the subsequent sections.

We consider two simple committee-selection rules: GREEDY and BANZHAF. These algorithms run
in k iterations, during which they build sets @ =Ty € T; € - -+ € Ti, and declare T as the selected
committee.

In the j iteration, GREEDY picks candidate ¢ ;i € C\ Tj—; that minimizes rq/ (Tj—1 U {c;}), and let
Tj = Tj—1 U {c;}. BANZHAF [3, 13], on the other hand, picks candidate c¢; € C \ Tj_; to minimize

D ()

SCC:|S|=k
S2T;1U{c;}
in the j iteration, and then sets T; = Tj—1 U {c;}. In other words, it greedily picks the candidate
that minimizes the final score if the rest of the committee is chosen uniformly at random. Both
GREEDY and BANZHAF can run in polynomial time [13].
Throughout the paper, we use RAND, GREEDY and BANZHAF to denote either the algorithms or
their performances, which should be clear from the context.

3 ANALYSIS OF GREEDY FOR 1-BORDA

In this section, we analyze the performance of GREEDY, evaluated with respect to the benchmark
RaND. Throughout this section, we only consider the 1-Borda score, i.e., s = 1. We first show an
upper bound that GREEDY < 2 - RAND, and then present an almost-matching lower-bound instance
where GREEDY > 1.962 - RAND.

3.1 Upper Bound
Now we show GREEDY < 2 - RAND as an upper bound. We first present the following lemma, which
gives a lower bound on the improvement at each iteration.

LEMMA 3.1. Let T; and T4, be the set of candidates produced by GREEDY in the t™ and (t + 1)*
iterations, and roy (T;), roy (T41) e their respective score. We have:
2oey To(Tt) (ro(Ty) — 1)
2n(m —t) '

ry(Ty) —ry(Trn) 2

Proor. For a candidate ¢ ¢ T;, define A, := rq/(T;) — ry(T; U {c}), i.e., the current marginal
contribution of ¢ to the 1-Borda score. Taking the sum of A, over ¢ ¢ T;:

ro(T;)-1

1 o Dpey To(T1) (ro(Ty) — 1)
> a1y Bnmemn

ceC\T; veV j=1

GREEDY chooses ¢* = arg max, A, at the (t + 1)% iteration, giving us

ry(T) = ry(Tr1) = A 2

Z A= UE(V rv(Tt)(rv(Tt) - 1) )

cEC\Tt 2n(m - t)

703



Technical Program Presentation - EC '21, July 18-23, 2021, Budapest, Hungary

Now we prove our upper bound of 2.
THEOREM 3.2. GREEDY < 2 - RAND.

Proor. We prove by induction. As the base case where k = 1, GREEDY < m < m+ 1 = 2 - RAND.
Now suppose that the claim holds for some k — 1 and we will prove that it also holds for k. By
induction hypothesis, we have:

m+1

ry(Te1) £ 2

If rop(Tr—y) < 2- P, then roy(Ti) < roy(Ti—y) < 2 - %2 finishes the proof. Thus, we only need
to consider the following case:

m+1 m+1
2. -
k+1

We now have the following, where the first inequality is by Lemma 3.1 and second by Cauchy-
Schwarz inequality:

<ry(Te-1) <2-

ray(Ti—1) — roy(Tx) > Zoey r;g;;lz(]:ui?)_l) =

. 2 (Xpey ro(Tk=1))? = Zpey ro(Te-1)

- 2n(m—-k+1)

_ Zoey ro(Te-1)®  m+1  Foey(ro(Tie) — 1)
2n’(m+1) m-—k+1 Doey To(Te-1)

Since rq/(Ty—1) = 2 - ',%11 by assumption, we have:

m+l  Seey(ro(fe) =1 m+1 2R -1
m-k+1 ZwevTo(lem) m—k+1 2.7
:2(m+1)—k—121'

2(m+1) - 2k

Combining the previous two inequalities, we therefore have:

(Boew ro(Tee)? 1y (Te)

r(V(Tk—l) — T(V(Tk) > 2n2(m + 1) - Z(m + 1) ’

which is equivalent to:
1
rap(Ti) < —————r2,(Ti—1) + oy (Te—r).
v (Tk) 2m+ 1) v (Tk—1) + ry (Ti—y)
Notice that the right hand side is a quadratic function in rq (Ti_;), which is monotonically
increasing for rqy(Tg—;) < m+ 1. Since rqy (Tj—1) < 2 - mT“ < m+ 1, the right hand side reaches its

maximum at 2 - mT” Thus, we have:

ry(Ty) < - ! (2(m+1))2+ 2(m+1) < 2(m+1)

2m+1) | k kK T k+1

which concludes our induction. m]

Proof of Theorem 1.1. For the maximization version, the above result implies GREEDY achieves
score at least (m+1) - (1 — %) Since the maximum possible score is m, this implies that GREEDY
is a (1 — 5 )-approximation.
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3.2 Lower Bound

Now we complement our result with a lower-bound example for GREEDY.
THEOREM 3.3. There exists an instance in which roy(T;) > 1.962 - RAND.

Construction. In the sequel, we will prove the above theorem. In the instance we construct, m, n,
and k are all sufficiently large. For convenience of illustration, we scale down the ranks by a factor

of m: now the ranks are L, 2,..., ™1 1. Asm — o0, L — 0, so the set of ranking (L, 2 . ..,1}
m m m

will become dense in [0, in], glnd thus we regard the ranking as being continuous from 0 Ctno 1. Our
goal becomes to construct an instance in which GREEDY gives r«(Tj) > 1.962 - ﬁ

There are sufficiently many voters, enabling us to view them as a continuum from 0 to 1, forming
a circle (the base in Fig. 1) with angular position ranging from 0 to 2z. Imagine that each voter
writes down her favorite, her second favorite, ..., her least favorite candidate in that order vertically.
The result is the side of a cylinder with height 1, as depicted in Fig. 1. Each point on the side
identifies a candidate, whose distance to the top, d, indicates the corresponding voter ranks him
as her (dm)™ favorite candidate (i.e., the candidate has a rank of d in the voter’s preference after

scaling).

Voters

Rank: 0

2" Layer

~——_ Higher-Layer Candidates Decreasing

1% Layer
&al Candidates / Preferences

Lower-Layer Candidates

\ / ¥ Rank: 1

Fig. 1. Construction of the Bad Instance for GREEDY

We divide the set of candidates into two types — critical and dummy. The former set has size
k < m, and the latter has size m — k. Our proof will show that GREEDY will choose the critical
candidates in a fixed order, and will not choose any dummy candidate.

The critical candidates are present in ¢ “layers” as shown in the red spiral in Fig. 1, where ¢ is
sufficiently large. This figure shows the ranks of the critical candidates in the voters’ profiles. We
parametrize this spiral by 8, which maps to the voter at the corresponding angular position 276. We
place critical candidates in order, where each candidate appears a number of times consecutively
on the spiral. Therefore, each voter has one critical candidate from each layer t = 0, 1,. .., £ in the
spiral part of its ranking.

In the t™ layer, the parameter 6 lies in [t — 1,t). The critical candidate when the parameter
is 0 has rank g(6) = ag? for the voter at angular position 2776. Here, ¢ denotes the golden ratio

% ~ 0.618, and a is a sufficiently small constant so that rounding to the nearest integer does
not change the analysis. This critical candidate is placed for a certain length A(6) on the spiral,
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which means this candidate appears at rank g(0) for voters in the range [276, 27(6 + h(6))]. In
our construction, h(0) will be very small, so that we will say this candidate appears h(0) times at
rank ¢g(0) for parameter 6. The greater 0 is, the smaller h(6) has to be, and we will calculate its
expression later.

For the convenience of analysis, at the layer t = 0, that is, for 8 € [—1,0), there is a special
candidate appearing on the spiral throughout the layer. This special candidate is picked first by
GREEDY. Other than its appearance on the spiral, any critical candidate is placed at the very bottom,
i.e., rank 1, for the other voters. Denote the total number of critical candidates by k. Then we have
m — k dummy candidates. These dummy candidates are symmetrically placed at other ranks. We
copy each voter (m — k)! times, once for each possible permutation of the dummy candidates to
place in the remaining ranks.

The idea of this construction is to trick GREEDY into picking every critical candidate on the spiral
in order, while in fact, lower-layer critical candidates have no contribution to the objective once
higher-layer ones have been selected. The following analysis computes the optimal parameters to
realize this plan.

Not Choosing a Dummy Candidate. We first ensure GREEDY does not choose a dummy candidate
in this instance by setting h(6) properly. We assume that GREEDY chooses critical candidates in
increasing order of 0, and we will justify this assumption later.

To simplify notation, denote X = fol ap?dfand Y = /01 a?9*®dh. Computing these explicitly:

a a?

4 o1 y=-32_
(¢ = 1), 2lng

X = _yelerlne
Ing

(p*-1) = 2o 1)

Using this notation, consider the critical candidate at the beginning of the first layer, that is, at
0 = 0. Since GREEDY chooses the candidate at layer t = 0, the decrease in score due to this critical
candidate is:

h(0) - (g(-1) - g(0)) = h(0) - a- (% - 1) = h(0)-a-g. (3)

where we have used that since ¢ is the golden ratio, ¢ + ¢? = 1.

Now consider the dummy candidates. Just after GREEDY has chosen the special candidate at layer
t = 0, each such candidate improves the rank of g(6 — 1) fraction of voters at 8 € [0, 1). This is
because we placed all permutations of the dummy candidates with each voter 6, and GREEDY has
already chosen the special candidate. By the same reasoning, conditioned on improvement, the
average improvement is g(6 — 1)/2. Therefore, the decrease in score due to a dummy candidate is:

120 -1) 2 [ 1
/gTd(’:z—q,z/ q)zt"de:ﬁ-y. 4)
0 0

Since we want GREEDY to choose the critical candidate, we need to set

h(0) = .
0= 55
By the symmetry of the spiral, an identical calculation now holds for all 8 > 0. To make GREEDY
choose the critical candidate at this location (assuming it has chosen critical candidates for smaller
values of 0), we need:

Y 0
2(p3a(p '
Note that h(0) depends linearly on a, so that for very small a, we can pretend this set of voters lies
exactly at 6. Further, h(0) is decreasing with 6.

h(6) =
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Choosing Critical Candidates in Order. We now show that GREEDY chooses the critical candidates
following the order on the spiral.

LEmMMA 3.4. GREEDY chooses the critical candidates in increasing order of 0.

Proor. The calculation is identical at any step of GREEDY, so we focus on the step where GREEDY
is at the beginning of the first layer, that is, considering the critical candidate at § = 0. Recall that
GREEDY has chosen the special candidate at layer ¢t = 0. The previous analysis showed that the
critical candidate at 6 = 0 yields decrease of Z—YZ For critical candidates in the same layer t = 1 (that

is, for 6 € [0, 1)), the contribution of the candidate at 6 is
Y _ Y
h(O) - (9(0 1) = 9(0)) = 50" ("~ = ¢7) = — - ™,
@ 29
which decreases with 0, so that the current candidate, @ = 0, offers the best decrease. Here, we have
used that since ¢ is the golden ratio, ¢ + ¢ = 1.

For ¢t > 1, suppose we instead considered a candidate ¢ + 6 for 6 € [0, 1) located in layer ¢ + 1.
Conditioned on having chosen layer ¢ = 0, this candidate gives a contribution of

h(t+0) - (g(0 — 1) —g(t +0)) <h(z) - (g(-1) — g(2))
< max (h(2) - g(=1), h(1) - (g(=1) = g(1)))
Y Y 1 Y
e i)
where the first inequality uses that h(0) is decreasing in 0, and that ¢ < 1.
Therefore, GREEDY will pick the critical candidate at 6 = 0 instead of another candidate at the

same or a higher layer. Since the argument is identical at each 8, GREEDY picks critical candidates
in order on the spiral. O

The Lower Bound. So far we have shown that GREEDY chooses critical candidates in increasing
order of layers and does not choose dummy candidates. We finally put it all together and show the
following bound, which completes the proof of Theorem 3.3.

PRrOOF OF THEOREM 3.3. The number of critical candidates on the t™ layer (6 € [t — 1,)) is

| 2¢0%a [t _, 2a o 2a 'y 2X
/t—l h(0) 4= Y -/t.—lq) 4= Q'Y [1 ¢do= (Pt_SY-/O ¢rdh = Q'3Y’

Therefore, when it is done with the £ layer, the number of candidates GREEDY has picked is
2X
(1-@)p%Y

2X _
kz(pf__3y(l+(p+¢2+.”+<0[1)_)
when ¢ is large. Meanwhile, the 1-Borda score of GREEDY is

1
r(Ty) = / g(t—1+0)do = q)[*lX.
0

Therefore, the approximation ratio is

2X _ 202 X? 202 2(p-1) 4¢?
k+Drg(T) > ——————— o' 1X = = . =- > 1.962.
(ke rv(T) 2 = ey ¢ X = 0o~ -9) (p+Dlng - (p+ Ding
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4 HARDNESS OF 1-BORDA AND OPTIMAL DETERMINISTIC ALGORITHM

Throughout this section, we focus on 1-Borda score. We justify our choice of benchmark Ranp =
’,%11, and show that a deterministic algorithm, BANZHAF, achieves this benchmark optimally. First,
notice that if the input consists of one voter for each possible preference of m candidates (thus
n = m!), picking any committee has the same 1-Borda score by symmetry, so OPT is just RAND.

Thus, we have the following proposition:

PrRoPOSITION 4.1. For any m and k, there exist instances where OPT = RAND.

4.1 Hardness Result for 1-Borda: Theorem 1.2

We now show Theorem 1.2: Even if OpT is very small, it is computationally hard to significantly
beat RAND. To prove this hardness result, we show a reduction from the decision version of the
REGULAR Max K-COVER problem.

Definition 4.2. In REGULAR Max K-COVER, these is a universe U of n elements {ay, as, ..., a,},
and a family ¥ = {S,52,...,S;} of subsets of U. Each S; has the same size 7. The value of an
instance is the maximum size of the union of k sets from ¥ . For any constant ¢ > 0, we consider
the following decision version:

e “YES” instances are those with value n. Therefore, there exist k disjoint sets each of size n/k
that cover all the elements.
e “NO” instances are those with value at most %n.

The above problem known to be NP-hard to approximate via the following lemma that is implicit
in the proof of Theorem 5.3 in [14].

LEmMMA 4.3 ([14]). The decision version of REGULAR MAx K-CoVER from Definition 4.2 is NP-hard,
that is, unless P = NP, there is no polynomial time algorithm that can decide always answers “YES”
for “YES” instances and answers “NO” for “NO” instances.

Note that if the instance has value n, there exist k disjoint sets each of size n/k that cover all
the elements. This aspect will be crucial in our reduction. Also needed in our reduction, we state
the following lemma for constructing a profile with polynomial number of voters, where the best
solution with score OpT has similar performance as RAND.

m(k+1)?
€2

LEMMA 4.4. Fixanye > 0 andletn > [ ] Consider the instance where the preference of each

voter is an independent and uniformly random permutation. Let OPT’ denote the expected value of the
optimum score, and RAND’ = %, then Pr[OpT < (1 —¢) - RAND] < %, where the probability is over
the randomness in the permutations.

Proor. Fix any committee T of size k. Notice that E[rq,(T)] = RAND’ since the preferences are
uniformly random. We have

Pr[rq/(T) — RAND’ < —¢ - RanD’] = Pr

1
. Z ro(T) —RaAND > ¢ - RAND’]
n veV

—2n(e - RanD’)? —2ne?
Sexp T Sexp m N

708



Technical Program Presentation - EC '21, July 18-23, 2021, Budapest, Hungary

where the second step comes from Hoeffding’s inequality. By union bound,

Pr[OrT’ < (1—¢)-RaND’] < (’Z) - Pr[rq/(T) — RAND’ < —¢ - RAND']
- —2né? i) <o o ! o
X -_— -.
R TSI ERR I

Now we are ready to prove Theorem 1.2.

Proor oF THEOREM 1.2. Fix a ¢ > 0 and let ¢/ = 10e. We will choose ¢ appropriately later.
Given any instance of REGULAR Max K-CovEr with n elements and z sets each of size n/k (as in
Definition 4.2), we construct the following instance for our problem:

e There are N = nR voters v;; where i € [n] and j € [R]. We have m = %kz candidates. The
first z candidates {cy, cs, ..., ¢, } are “critical” candidates, and the other m — z candidates are
“dummy” candidates. Each voter corresponds to an element in the universe and each critical
candidate corresponds to a set in REGULAR Max K-COVER.

e If aset S; covers aj, then voters v;; for j € [R] rank c; within top ¢’ fraction. Otherwise, v;;’s
rank c; within bottom ¢’ fraction.

e Independently for each voter, fill the rest of her preferences with the m — z dummy candidates
uniformly randomly.

o The copies of a voter only differ in the ranking of the dummy candidates. We set the number

lomk*

n 2

of copiestobe R = [ -‘ These copies are there to ensure Lemma 4.4 applies to the dummy

candidates.

Clearly, the above construction has size poly(1/¢, n, z, k). Let OpT denote the optimal score on
this instance. Recall that RAND = ’,%1 First suppose the instance of REGULAR Max K-COVER has
value n (“YES” instance) so that there are k sets that cover all n elements, then it is easy to check
that choosing the corresponding critical candidates as the committee yields OpT < z < ¢’ - RAND.

On the other hand, suppose the instance of REGuLAR Max K-CovER is such that any collection
of sets of size k only covers at most (1 — 1/e+¢&)n < %n elements (“NO” instance). Consider any
committee T and suppose T = R U D where R is a subset of critical candidates and D is a subset of
dummy candidates. Let r = |R| and d = |D| = k — r. Let n’ be the number of elements R covers in
the REGUuLAR Max K-CoVER instance. By assumption, n — n’ > ¢ since any collection R covers at
most %n elements. Further, since the instance is regular, n — n’ < %r, sothatn —n’ > d%.

Using Lemma 4.4, with probability > % over the choice of the ranking of the dummy candidates,
the optimal score of D on the (n — n”)R uncovered voters using the m — z dummy candidates
is greater than (1 — ¢) ‘7=F. Inserting the critical candidates cannot decrease this score for these
voters, since the candidates in R appear last in their ordering. Further, we have assumed m = %kz.

Therefore, with probability > %, we have:

n—n’ m—-z n-—n' gy m+1
OrT > . .

1- >
( E)d+1_ n d+1

We now split the analysis into two cases:

k+1 g ’ n
(1) Suppose d +1 < ==. Since n —n” > %, we have

’

1 £ m+1 g\ m+1 ,
opT>--|1-=]- >1-=—]|- > (1 - ¢")RaND.
4 4 d+1 4 k+1
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(2) Supposed +1 > %. Sincen—n’ > %n, and since d, k = w(1), we have:

e’) m+1 _ d k+1( e') m+1

d
OPT>E.(1__ d+1 d+1 k k+1

1-¢)Ra
2 > (1 - ¢/)RAND.

4

Therefore, our construction ensures that with probability > 1 we have OpT > (1 — ¢/)RaND if
the original REGuLAR MAX K-CoVER instance has value at most %n.

Now suppose there is a polynomial time algorithm that can distinguish between instances with
Oprt < ¢’RAND and OPT > (1 — ¢’)RAND. Then, feeding the output of the above construction
to this algorithm implies a coRP algorithm for the decision version of REGULAR Max K-COVER,
which by Theorem 4.3 implies NP C coRP. Since RP C NP, this implies RP C coRP, so that
ZPP = RP N coRP = RP. Since ZPP is symmetric with respect to “YES” and “NO” instances, this
implies ZPP = coRP, so that ZPP = NP.

1-6
We now show how to set e. For the first part of the theorem, we set ¢ = o (%) . This

can be achieved by choosing m such that (%)5 = 20kz. Note that this ensures m = poly(k, z)
when § is a constant, so that the construction runs in polynomial time. For this setting, we have

o . mEl o (m_+1)5’ while ¢’ = (ﬁ)l_(s = (504 )% = 0(1), completing the proof
m

k+1 — \Vk+1 20kz
For the second part of the theorem, we set m = 20k'*%z, and ¢ = 10 k“ Again, we have m =
poly(k, z), and ¢’ = 0(1), completing the proof. O

Theorem 1.2 now implies the following easy corollaries.

COROLLARY 4.5. Unless NP = ZPP, there is no k*-approximation to the 1-Borda score for any

m+1

ey )1 -approximation for any constant § € (0, 1).

constant a > 0. Similarly, there is no (7
The next corollary adapts the hardness proof to the maximization version of the problem.

COROLLARY 4.6. For the maximization version of 1-Borda, there is no polynomial time (1 — m)—
approximation for constant € € (0,1/2) unless NP = ZPP.

PROOF. Set ¢ > 0 to be a small constant in the proof of Theorem 1.2. Then, in the “NO” instance,
the maximization score is at most (m + 1) (1 - m) while for the “YES” instance, the score is at

least (m+1) (1 - m) For ¢ € (0, 1/2), the approximation factor achievable is therefore at most
(1 - 2=%), completing the proof. |

4.2 An Optimal Deterministic Algorithm

Given the lower bound and the hardness result, an immediate question is whether there is a
deterministic rule to achieve the benchmark RAND. We answer in the affirmative: The BANZHAF
algorithm [3, 11, 13] can be viewed as a derandomization of RAND: Instead of randomly picking
a candidate at each iteration, it picks the candidate that gives the best expected performance if
the rest of the committee is randomly constructed. It is shown in [13] that this algorithm runs in
polynomial time. The following theorem implies Theorem 1.3.

THEOREM 4.7. BANZHAF < RAND.

Proor. Recall that BANZHAF builds sets @ =Ty & Ty € - -+ G Tk, where at step j, BANZHAF picks
¢j € C\ Tj_; such that:
cj = argminceC\Tj_1 Z ry(S). (5)

SCC:|S|=k
SQTj,IU{C}
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We now use induction to show that for any j € {0,1,...,k},

1
— Z ro(S) < RanD,
(k—j) ScCiIS|=k
S2T;

which is clearly true when j = 0, and gives the desired result BANzZHAF < RAND when j = k.

For the inductive step, assume it holds for some j — 1. Now in the jth iteration, we have the
following inequalities that complete the proof. Here, the first step follows since BANZHAF picks c;
in step j. The second step follows since BANZHAF solves Eq (5), so that the score from adding c;
beats the average score of adding one of the m — j + 1 candidates in C \ Tj_;. The final equality
follows since (Zlf]]:ll ) = ',?__]]:11 (',?:j] ), and by observing that for any S 2 T;_;, there are k — j + 1
choices of c € S\ Tj_;.

1 1
— D )= > r(S)
(k—j)SQC:Islzk (k—j) ScC:|S|=k

S2T; S2T;_1U{c;}

1 1
e = D, 2 ™
() \m—i*+1 &7 sl
SQTj,IU{C}

1 k-j+1 1
(M) m—j+1 | k—j+1 Z Z rv(S)

k—j ceC\T;_; SCC:|S|=k
ST 1U{c}
! S) <Ra
—(m7j+1) Z re(S) < RAND. O
k—j+1) ScC:|S|=k

SQqu

To complete the proof of Theorem 1.3, for the maximization objective, BANZHAF achieves a
value at least (m + 1) (1 — i7). Since the maximum possible value is m, this implies a (1 — £i7)-

approximation.

5 LOWER BOUND ON COMMITTEE-MONOTONE ALGORITHMS FOR 1-BORDA

Consider the 1-Borda score. A nice property of GREEDY is that it is committee-monotone: In each
iteration, the candidate chosen by GREEDY only depends on which candidates have been chosen in
previous iterations and not on k, and thus when k increases, the committee selected by GREEDY
includes all the candidates GREEDY used to select. On the other hand, BANZHAF does not satisfy
committee monotonicity, as the candidates chosen by BANzZHAF does depend on k.

This naturally brings up the question: Is there a committee-monotone algorithm which is optimal
with respect to the benchmark RAND? We answer this question in the negative, by presenting a
lower bound of 1.015 for all committee-monotone algorithms.

THEOREM 5.1. For any large enough m, there exist instances with m candidates where any committee-
monotone algorithm ALG satisfies rqy(Ti.) > 1.015 - RAND for some value k € {1,2}. Here, Ty, is the set
of candidates ALG chooses when the size of this set is k.

Proor. The construction goes as follows: There are two types of candidates, X and Y. Candidates
of type X are ranked between [am, bm] by every voter and candidates of type Y are ranked between
[1,am] U [bm, m] by every voter, where 0 < a < b < 1 are two parameters. We construct sufficiently
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many voters so that all candidates of the same type are symmetric (by having all permutations of
candidates of type X and those of type Y). We want to find proper a and b, so that when k = 1,
the optimal choice is to choose a candidate of type X, while when k = 2, the optimal choice is to
choose two candidates both of type Y. This means that no committee-monotone algorithm can
produce optimal choice for both the first iteration and the second iteration. We optimize over a and
b to find the maximum lower bound.

In particular, the search procedure goes as follows. Let rq/(Y) denote the 1-Borda score of
choosing a candidate of type Y; rq,(XX) denote the score of choosing two candidates both of type
X; and rq/(XY) denote the score of choosing a candidate of type X and a candidate of type Y. We
can easily see that, when m goes to infinity, up to an o(1) additive error:

iy (Y) = 4 -Pr[Yisat [1,am]] + 42 - Pr[Y isat [bm,m]] = § - iy + B2 - 725
m+1r(V(XX) = @
m+1rq/(XY) Pr[Y is at [1,am]] + “+b -Pr[Yisat [bm,m]] = 5 - T‘—a) + # . %

A committee-monotone algorithm either chooses Y in the first iteration, or chooses XX or XY in
the first two iterations. Thus, we maximize min (ﬁrq/(Y), %rq/ (XX), %rq/ (XY)) (note that
the value on the numerator corresponds to the value of k + 1) over 0 < a < b < 1, and find that, for
a =0.377 and b = 0.552, it achieves a lower bound greater than 1.015. O

6 THE s-BORDA SCORE

In this section, we extend our analysis of the greedy algorithms to s-Borda score, and show how to
significantly improve on the GREEDY and BANZHAF rules via linear programming,.

Recall that RanD = ’,Z’:II and choosing a random committee of size k yields expected score
s(st) . RAND. As a derandomization, BANZHAF has score at most this value similar to Theorem 4.7.
Let Opt denote the best possible s-Borda score. Considering the instance with one voter for each

permutation of candidates as its preference ordering, we have the following proposition:
ProprosITION 6.1. For any s, m and k, there exists instances where OPT = S(SH) - RAND.

We first consider a natural extension of GREEDY in the 1-Borda case. In the full version, we show
that it achieves an s-Borda score at most 2s% - RAND (Theorem 6.2), which is within a factor of 2 oI
of the BANZHAF rule. We then show that this bound cannot be improved even when OPT is small.
However, unlike the 1-Borda case, there is no fundamental barrier to an improved algorithm when

Oprr is small, and we present such an algorithm in Section 6.2.

6.1 The GrREEDY Algorithm

The GREEDY algorithm follows exactly the same procedure as for 1-Borda, except that we now
compute the score based on s-Borda. We present an upper bound for GREEDY in the following
theorem. Since the proof is very similar to the s = 1 case, we present it in the full version.

THEOREM 6.2 (PROVED IN THE FULL VERSION). GREEDY < 2s° - RAND.

Lower Bound for Small OpT. In general, OpT = Q(s%) - RAND, in which case the analysis of greedy
is tight to within a constant factor. The question we now ask is: Does GREEDY always perform
better when OPT is small? We answer this in the negative; the proof is in the full version:

THEOREM 6.3 (PROVED IN THE FULL VERSION). There exists an instance where OpT = O(s?) =
0(1) - RAND, while the score of GREEDY is Q(s%) - RAND.

This shows that GREEDY can perform as bad as random even when OpT is small and thus motivates
the improved guarantee in Section 6.2.
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6.2 An Improved Algorithm via LP Rounding

As mentioned above, GREEDY can hit its worst-case bound of Q(s?)-RAND even when OpT is actually
small. We know that for the case of 1-Borda, no polynomial-time algorithm can do better. Now the
question is, can a different algorithm do better in the case of s-Borda for s = w(1)? We answer this
question in the affirmative by presenting an algorithm that is based on dependent rounding of an
LP relaxation combined with uniform random sampling, which provides nontrivial improvement
when OPT is small. In particular, it achieves expected score at most 3 - OpT + O(s*?log s) - RAND.

6.2.1 LP-Rounding-Based Algorithm. The following linear program (based on [6, 8, 10, 17, 20]) is a
natural relaxation for the s-Borda problem.

n S m

minimize Z Z Z xfj -1y, (cj),
i=1 £=1 j=1
m

subject to Z yi =k

Jj=1

fojﬁyj, ie{l,...,n}, je{1,...,m},
=1

m
fosz ie{l,...,n}, £e{l,... k)

ypx; €[0,1],  ie{l....n}, je{l,...,m}, €€{1,... k}.

Variable y; denotes how much candidate c; is chosen; integral values 1 and 0 mean choosing and
not choosing candidate cj, respectively. The first constraint encodes choosing exactly k candidates.
We copy each voter k times, and the ¢ copy of the voter v; is assigned to the £!"-preferred chosen
candidate. Variable xfj denotes how much the £ copy of voter v; is assigned to candidate c;. The
second constraint prevents a voter from being assigned to a candidate that is not chosen. The third
constraint ensures that each copy of the voter is assigned to some candidate. The objective function
computes the s-Borda score.

We will use dependent rounding [15] to round this LP solution. There is a catch though: Dependent
rounding can cause a deficit in around O(+/s) candidates from the top s that are fractionally chosen
by the LP. Since any solution must account for the top s scores, we need to ensure these “deficit”
candidates do not increase the score too much. Towards this end, we scale down the LP solution,
and choose enough candidates uniformly at random so that these candidates can absorb the deficit.
However, such scaling creates a further deficit that will have to be absorbed by random sampling.
We find that the right trade-off is achieved by scaling down by a factor of (1 — \/ig)

Without further ado, the overall algorithm works as follows:

(1) Solve the above linear program and let §j denote the optimal solution.

(2) For j=1,2,...,m,lety; = (1 - \/ig)g] Note that 3.7, y; = k(1 - ‘/ig)

(3) Apply dependent rounding [15] on the variables {y;} so that exactly k(1 — ‘/ig) candidates

are chosen. Let T} denote the set of chosen candidates.

(4) Finally choose a set T, of ‘% candidates uniformly at random from C\ S and output T = T UT;.

We will show the following theorem:

THEOREM 6.4. When m = w(k), k = w(s*/?), and s = w(1), we have:

E[ry/(T)] < 30pT + O(s*?log s) - RAND.
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6.2.2  Analysis: Proof of Theorem 6.4. First consider dependent rounding on {y;}. Let Y; denote
the random variable which returns 1 if y; is rounded to 1 and 0 if y; is rounded to 0. Note that
E[Y;] = y; for all candidates j € C. The following lemma is an easy consequence of Chernoff
bounds:

LEMMA 6.5. For any subset of candidates {cj,, ...,cj,}, let W = Yt_ y;,. IFW = »(1), then

z[: Y, € (W —9\Wlog W, W +9W log W)
t=1

We now compute the expected s-Borda score for each voter. Towards this end, we partition the
candidates into buckets with geometrically decreasing sum of y; values, and account for the expected
score generated by dependent rounding in each bucket against the LP value of the subsequent
bucket. Lemma 6.5 will ensure the number of candidates chosen from each bucket is close to the LP
value, and the deficit gets taken care of by the uniformly randomly chosen candidates.

Pr

w3’

For simplicity of notation, let = log, ‘/75 Fix a voter v;, and suppose its preference order is
¢i, > Ci, > ... > cj,. Recall that {7, x} is the LP solution. The values x;; in the LP are set as follows:
Consider the prefix of the ordering such that 3:!_, 7;, < s and X./*] §;, > s. The LP sets x;;, = ij;,
fort < ¢, and sets x;;,,, = — Zﬁ:l ij;,. The contribution of v; to the LP objective is therefore

¢
OPTi = Z rUi (Ci,)gi, + rUi (Ci[+1 ( Z ylt) - Z rUi (Ci[)git~ (6)

t=1 t=1

Consider the first £ candidates in the above ordering. We have Y" j=19j = s — 1, so that

4
Zyjz(s—1)(1—i)zs—(\/§+1)zs—2\/§. (7)
Vi

We split these ¢ candidates into sets Cj, .. ., C; as follows: We walk down the preference order of
v;. We take C; as the set of candidates whose y-values sum to ; Cy as the next set of candidates
whose y-values sum to §, and so on until C;, whose sum of y- values is 37 = 2+/s. Now the sum of
y-values of all candldates in {Cy,...,C,} is exactly s — 2v/s. Formally, we define

1 1
Zyif > (1—2—h)s , YVhe{l,...,n},
t=1

and correspondingly define the sets {Cy,...,Cy} as:
Cn=A{ciy | On-1 <q < 0p}, YVhe {1,....n}.

Forallh € {1,....n}, let yg, = X cc, yj and Yo, = X ¢, ¥j- Note that yg, decreases by a
factor of 2 as h increases. Now consider the outcome of the dependent rounding procedure for each
of the sets Cy, . .. C;. We say the rounding fails for v; if there exists h € {1,...,7 — 1} such that the
number Y, of chosen candidates in Cj, is not in range y¢, + 94/yc, log y¢,. We will not consider
C, when defining failure, and will deal with this set separately.

Let Fa1L denote the failure event. We now bound the probability of the event FaIL for voter v;.

0y =0, 0, = min {q

LEMMA 6.6. Pr[FarL] < s=3/2.

Proor. By union bound applied to Lemma 6.5, we have:

n—-1
< 873/2’

r[FAIL]
h=1 Cn yCr] 1

714



Technical Program Presentation - EC '21, July 18-23, 2021, Budapest, Hungary

where we have used that {y¢, } is a geometrically decreasing sequence, and that y¢, , = 4vs. O

We are now ready to compute the expected score for v; in our algorithm. Recall that T denotes
the set of chosen candidates and OpT; denotes the s-Borda score for v; in the LP solution. Let BAD
denote the expected s-Borda score for v; in the event Fa1L, and Goop denote the expected score
otherwise. We will bound these separately below.

LEMMA 6.7. BAD < O(s*/?) - RAND.

Proor. If FAIL happens, the final solution is still at least as good as choosing the £ v random

candidates in Step (4) of the algorithm. Note that since we assumed k = w(s*/?), we have £ v >
so that we will have chosen enough random candidates to fill up at least s positions for computmg
s-Borda score. Further, since we assume that m = w(k), the score of the solution will at most double

had we assumed these ‘kf candidates are chosen randomly from the entire set of m candidates

instead of from the remaining m — k(1 - —) candidates after dependent rounding. Thus, we have:

s(s+1) m+1
2 k4
E41

S

< 4s3/2(s + 1) - RAND,

Bap < 2ET§C,|T|=k/\/§[r“i(T)] <2

which yields that BAp < O(s°/?) - RAND. O
LEMMA 6.8. Goop < 30pT; + O(s*/?log s) - RAND.

Proor. Suppose FArL does not happen. Denote the set of candidates chosen by the algorithm
from {Cy,...,Cy-1} as Ty, and the randomly chosen £ v candidates as T,. Therefore T = T; U T5.

From Eq (7), we have
n—-1
Zych :s—2\/§—yc,7 =5 —4vs.
h=1

Since FAIL does not happen, we have:

n-1 n-1
|Ty| > 3_4‘/__2\/%;1 logyc, > s—4\/§—21/2%10gs > s —4vVs — (V2 + 1)4/slogss.
h=1 h=1

Denote u = 45 + (V2 + 1)4/slogs = O(+/slogs), so that |T;| > s — u. The quantity u is the total
“deficit” in candidates from the top s that is caused by scaling the LP and dependent rounding. We
make up this deficit using the set T;. Specifically, consider the subsets,

T = argming 7, 0j=s—u Z ro; (€) and T; = argmingcy, o=y Z ro; ().
ceQ ceQ
Note that T;" € T;, and T C T;. We will evaluate the score of these subsets of candidates, which
will be an upper bound on the score of the algorithm. Towards this end, we define py, as the scaled
LP score of Cp, that is:
On
Z]I Oy +1 10 (Cl])ylj

Uy = , Vhe{1,...,n}.
yc,

Since y; < 7j;, combining the previous inequality with Eq (6), we have:

n
Z,Uhych < Opr;.
h=1
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Since y¢, > 2Vs = w(1) forall h € {1,2,...,n}, we have:

3
ITy N Chl < yg, +9vVyc, logyg, < S YCh-

Since pp, > ry,(c), Ve € Cp—q and since yg, < 2yc,,,, we can bound the expected score of T} as:

-1 n—1

3
Z ro,(€) £ )5 Yot < Z 3 Yy M1 < 30PT;.
ceTy 1 h=1

=

=
I

We can again assume that the LS random candidates are chosen randomly from the entire set of

m candidates. This yields a bound on the score of T; as:

Z ry; () < Z t - (\s - Ranp) = O(s*%log s) - RAND.

ceTy t=1

where we used u = O(+/slogs) to derive Y i, t = O(slogs).

Therefore, we can bound Goobp as follows:

Goop < Z ry; (C) + Z ro,(¢) < 30PT; + O(s>/ log s) - RAND. o

ceTy ceTy
Synthesizing the bounds from Lemmas 6.7 and 6.8, we can conclude that:
E[ry,(T)] = BaD - Pr[FaiL] + Goop - (1 — Pr[FaIL])
< s73/2.0(s°/?) - RanD + 30pT; + O(s°/? logs) - RAND
= 30pT; + O(s*/* log s) - RAND.

Taking expectation over all voters, this yields Theorem 6.4.

7 CONCLUSION

Our work opens some interesting directions for further research. One open question is to extend
our results to the stronger notion of approximate core stability under the CC rule for which the
best known result is a 16-approximation [9, 19]. It would be interesting to explore if our techniques
can help improve the approximation factor via a simple-to-implement procedure.

We conjecture that there is a lower bound of Q(s*?) - RAND on the score achievable by poly-time
algorithms for s-Borda, i.e., that the algorithm in Section 6.2 is almost optimal. This will require a
non-trivial strengthening of known hardness results for maximum multicover [4]. It would also be
interesting to explore if there are greedy rules that can match these bounds.

In the same vein, another interesting question is to map the landscape of approximation ratios
for generalizations such as committee scoring rules. The work of [6] shows strong positive results
when voters assign a smooth set of weights to all candidates in the committee, while our work
considers the case where the weights are concentrated on higher-ranked candidates. There is a
large middle ground where the approximability of this problem is poorly understood.
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