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ABSTRACT

Graph centrality measures use the structure of a network to quan-
tify central or “important” nodes, with applications in web search,
social media analysis, and graphical data mining generally. Tra-
ditional centrality measures such as the well known PageRank
interpret a directed edge as a vote in favor of the importance of the
linked node. We study the case where nodes may belong to diverse
communities or interests and investigate centrality measures that
can identify nodes that are simultaneously important to many such
diverse communities. We propose a family of diverse centrality
measures formed as fixed point solutions to a generalized nonlinear
eigenvalue problem. Our measure can be efficiently computed on
large graphs by iterated best response and we study its normative
properties on both random graph models and real-world data. We
find that we are consistently and efficiently able to identify the
most important diverse nodes of a graph, that is, those that are
simultaneously central to multiple communities.

CCS CONCEPTS

• Information systems→ Page and site ranking; •Mathemat-

ics of computing→ Graph algorithms.
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1 INTRODUCTION

A fundamental question in network analysis concerns graph cen-

trality: Which nodes are “important” to understanding the overall
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network structure? Particular measures of centrality vary from
node degrees to citation indices in publication networks [19] to the
celebrated PageRank originally developed for web search [30]. In
such work, it is typically assumed that the graph is composed of
a single homogeneous community of nodes. We explore the ques-
tion of centrality in a context of graphs with many heterogeneous
communities and propose to answer the question:

Which nodes are simultaneously “important” to mul-
tiple diverse communities within the graph?

As a concrete example, consider the Twitter graph of members
of the United States Congress (where the members are nodes and
directed edges represent following relationships on Twitter). Tradi-
tional graph centrality measures attempt to quantify the importance
of particular members within the social network of the Congress
as a whole. It is well known that the United States Congress is
(roughly) composed of two communities: Democrats (or liberals)
and Republicans (or conservatives). We are interested in the fol-
lowing question: Who are the most important members in the
Congress, both in terms of network structure and bipartisanship?
We address this particular example in our real-world experiments
in Section 6. As another example, suppose we study publication
networks composed of several sub-disciplines and are interested in
identifying papers or authors who are most important to several
sub-disciplines simultaneously or who serve as interdisciplinary
bridges between publication communities.

To address these questions, we consider a model where in ad-
dition to a directed graph, we have a score vector for each node
corresponding to community affiliation. These score vectors are
real-valued and denote the degree of affiliation with different com-
munities. We say that a node is polarized or biased if it is mostly
affiliated with a particular community, and balanced if it is com-
parably affiliated with all communities. We begin with the same
basic intuition as other classic measures of graph centrality, that
a directed edge from one node to another constitutes a “citation”
or “vote in favor” of the target node. In the standard PageRank
model, the centrality is a fixed point solution that sets the measure
of a node 𝑢 to the average of the measures of the nodes that cite 𝑢.
Thus, a node could have a high PageRank even if it is only cited by
members of its own community. On the other hand, in our model, a
node should only receive a high Diverse Centrality if it is cited
by nodes of high Diverse Centrality score from multiple commu-
nities. Informally, the Diverse Centrality of a node 𝑢 therefore

Poster Session I  WSDM ’21, March 8–12, 2021, Virtual Event, Israel

644

https://doi.org/10.1145/3437963.3441789
https://doi.org/10.1145/3437963.3441789
https://doi.org/10.1145/3437963.3441789


is the minimum over communities of the average Diverse Cen-
trality of the nodes of that community that cite 𝑢. We present the
formal and more general definition in Section 2.

1.1 Contributions and Outline

Our first contribution in Section 2 is the proposal of a general family
of centrality measures called Diverse Centrality that capture
the idea of centrality with diversity in graphs with community
structure. Diverse Centrality is the fixed point solution to a
generalized nonlinear eigenvalue problem; we first show that such
a solution is guaranteed to exist and provide an iterative algorithm
for computing a solution.

In Section 3 we define our simulation setup for studying Di-
verse Centrality on random graphs motivated by real-world net-
works, including Erdős-Rènyi graphs [12], preferential attachment
graphs [3], and a polarity attachment variant inspired by affiliation
networks [28] that we introduce. In Section 4, we show empirically
that Diverse Centrality can be computed efficiently via iterated
best response and that it converges to a unique equilibrium.

In Section 5, we present three criteria that a Diverse Central-
ity measure should satisfy. (1) Centrality: The measure should be
greater for nodes with greater PageRank. (2) Local Polarity: The
measure should be higher for balanced nodes than polarized nodes.
(3) Neighborhood Polarity: The measure should be higher for nodes
with diverse citations. We show by simulations on the random
graph models that in contrast to simple methods of re-weighting
PageRank, Diverse Centrality simultaneously satisfies all of
these properties. An added advantage of Diverse Centrality
compared to simple re-weighting is that it propagates diverse influ-
ence in the sense that it amplifies scores of nodes that are pointed
to by nodes that are also influential and balanced.

In Section 6 we study Diverse Centrality on real-world graphs.
We consider two graphs: a network of political blogs and the Twit-
ter network of the United States Congress. Both examples have
externally verifiable community structure. We show that in ad-
dition to the aforementioned properties, the Diverse Central-
ity model favors nodes that are not only influential (in terms of
PageRank), but that are also bipartisan in their neighborhood struc-
ture.Interestingly, we show that for the United States Congress, the
top-scoring senators found by our algorithm correlate well with
the senators that join the most number of bipartisan bills, while
not all these senators are as highly ranked by standard PageRank.

Given our empirical observation that Diverse Centrality finds
central nodes that also serve as bridges between communities, in
Section 6.1, we propose and investigate a natural generalization of
Betweenness Centrality [14], which we call Diverse Between-
ness Centrality. Though Diverse Betweenness Centrality
might appear better suited to capture our desiderata, we show Di-
verse Centrality dominates Diverse Betweenness Centrality
in our experiments, and is indeed the preferred method for achiev-
ing centrality with diversity.

1.2 Related Work

The theory and practice of PageRank-based notions of graph cen-
trality are significant topics in the literature on network analysis

and data mining [17, 21, 23, 24, 30]. Much of the literature is con-
cerned with the efficient computation of PageRank on extremely
large networks typical of the web graph. By contrast, we are pri-
marily interested in understanding an alternate notion of centrality
with diversity in a graph with community structure.

There is a long line of work on algorithms for community detec-
tion in social networks [5, 27, 29, 35, 36]. In contrast with this work,
we are interested in graphs with known community structure or
affiliation and how that influences the determination of a diverse
centrality measure.

There is also a rich literature on modeling how communities
and polarizing opinions arise in evolving networks [10, 15, 18, 34].
Polarization of opinions has become an increasingly important
societal topic, since it is largely a corrosive process that leads to the
splintering of society and the formation of opinion bubbles. Our
paper can be viewed as taking a step towards mitigating the effect
of polarization. Our centrality measure suggests a way to calculate
influence in a “depolarized” manner by prioritizing nodes that are
simultaneously important and bridge different viewpoints.

The Diverse Centrality measure can be viewed as enforc-
ing the concept of max-min (or Rawlsian) fairness on centrality
measures. Related notions of fairness have been widely studied in
resource allocation [7, 8, 33], classification [4, 11, 16, 26, 31], and so
on. The main difference in our work is that we enforce such fairness
locally at each neighborhood in the graph, and examine the effect of
propagating such a notion through the network. We show that such
a process leads to interesting insights even in real-world networks.

The influential work of Everett and Borgatti [13] (see also [25])
proposes a number of measures for the centrality of a given group
of network nodes. These are defined by extending the notions
of degree centrality and Betweenness Centrality to measure
the extent to which group members serve as “bridge nodes” in the
network. For instance, group betweenness is defined as the sum over
all pairs of nodes of the fraction of the shortest paths between those
nodes that use group members. Our focus is on the case where there
are many groups and each node’s group membership is fractional.
In Section 6, we propose a natural generalization of Betweenness
Centrality to our setting; however, we show empirically that it is
not as effective as Diverse Centrality.

Finally, just as PageRank is a special case of the eigenvalue
problem, the Diverse Centrality measure is a special case of non-
linear eigenvalue problems, which have a long and rich history in
functional analysis and numerical methods; see [9] for a survey. In
contrast to the standard eigenvalue problem that admits to efficient
computation, there are no general efficient algorithms known for
the non-linear generalizations. Nevertheless, we find that our notion
of Diverse Centrality is simple enough that algorithms similar
to those for computing PageRank are effective in practice.

2 DIVERSE CENTRALITY

In this section we define Diverse Centrality as a fixed point
solution to a generalized nonlinear eigenvalue problem and prove
that a solution always exists. We then present an iterative algorithm
to find such an equilibrium.

Let (𝑉 , 𝐸) be a directed graph with 𝑛 nodes 𝑉 = {1, 2, . . . , 𝑛}.
Let 𝑑𝑖 be the outdegree of node 𝑖 . In addition, we assume there
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are 𝐾 communities within the network. For each node 𝑖 , there is
an affiliation vector q(𝑖) ∈ R𝐾+ with




q(𝑖)



1
= 1 characterizing the

communities it belongs to.
To be concrete, consider again the example of the Twitter graph

of members of the US Congress. There are 𝐾 = 2 communities. 𝑞 (𝑖)1
and 𝑞 (𝑖)2 = 1 − 𝑞 (𝑖)1 describe to what extent node 𝑖 belongs to the

Democratic and Republican communities. A node with
���𝑞 (𝑖)1 − 𝑞 (𝑖)2 ���

close to 1 would be considered highly polarized or partisan; a value
close to 0 would indicate balance or bipartisanship.

Now we can define Diverse Centrality. To get the intuition,
consider a single node 𝑖 . We calculate the centrality of 𝑖 according
to each community in turn by taking the average centrality of
nodes that cite 𝑖 , weighted by their affiliation with that community,
and adding a damping term based on 𝑖’s own affiliation with that
community. Then we take the minimum (or more generally some
concave function) of these scores over all of the communities so
that 𝑖’s centrality is limited by the communities for which 𝑖 is
less central. This defines a nonlinear iterative procedure, to which
Diverse Centrality is the fixed point solution.

Definition 1. The Diverse Centrality of a graph (𝑉 , 𝐸) with
damping factor 𝑝 ∈ (0, 1) is a vector s ∈ R𝑛≥0 such that ∥s∥1 = 1,
and for all 𝑖 ∈ 𝑉 ,

𝜆𝑠𝑖 = 𝑓
©­«(1 − 𝑝) q

(𝑖)

𝑛
+ 𝑝

∑
𝑗 :( 𝑗,𝑖) ∈𝐸

𝑠 𝑗

𝑑 𝑗
q( 𝑗)ª®¬

where 𝑓 : R𝐾≥0 → R≥0 is a concave function and 𝜆 ∈ R+ is the
normalization constant. We require 𝑓 to map any strictly positive
vector to a positive number, i.e. 𝑥𝑖 > 0 ∀𝑖 ∈ [𝐾] implies 𝑓 (x) > 0.

Note that if 𝐾 = 1 or 𝑓 (x) = ∥𝑥 ∥1, then the notion becomes the
standard PageRank. We are interested in the case where 𝐾 ≥ 2
and 𝑓 is concave to prioritize diversity. For example, we desire
𝑓
(
(0.5, 0.5)

)
to be greater than 𝑓

(
(0.1, 0.9)

)
or 𝑓

(
(0.9, 0.1)

)
. Some

convenient choices of 𝑓 include the minimum function and the
geometric mean. In our experiments, we focus on the minimum.
The damping terms of (1 − 𝑝) q

(𝑖 )

𝑛 are similar to those in standard
PageRank – 1−𝑝

𝑛 – but multiplied by q(𝑖) to account for the local
polarity of the node. We use a damping factor of 𝑝 = 0.85 for
PageRank and Diverse Centrality in our experiments.

2.1 Existence of Equilibrium

Now we establish the existence of Diverse Centrality.

Theorem 1. The Diverse Centrality of a directed graph always

exists, that is, there exists s that satisfies Definition 1.

Proof. We use Brouwer’s fixed-point theorem, which states
that any continuous mapping from a compact and convex set to
itself must have a fixed point, to show an equilibrium of Diverse
Centrality always exists. Define function𝐺 that maps the simplex
[0, 1]𝑛 ∩ {s : ∥s∥1 = 1} to itself such that 𝐺𝑖 (s) = 𝑡𝑖∑𝑛

𝑗=1 𝑡 𝑗
, where

𝑡𝑖 = 𝑓
©­«(1 − 𝑝) q

(𝑖)

𝑛
+ 𝑝

∑
𝑗 :( 𝑗,𝑖) ∈𝐸

𝑠 𝑗

𝑑 𝑗
q( 𝑗)ª®¬ , ∀𝑖 ∈ [𝑛] .

Intuitively, the function 𝐺 is almost 𝑓 except that it also maps
the output of 𝑓 back to the simplex proportionally. Note that by
Definition 1, 𝑓 is concave and hence continuous; therefore,𝐺 is also
continuous as it is the ratio between two continuous positive func-
tions (each 𝑡 𝑗 is positive so the denominator is positive). Further-
more,𝐺𝑖 (s) > 0 for all 𝑖 ∈ [𝑛]. The function𝐺 is thus a continuous
mapping from the compact and convex set [0, 1]𝑛 ∩ {s : ∥s∥1 = 1}
to itself. By Brouwer’s fixed-point theorem, 𝐺 has a fixed point s,
i.e.𝐺 (s) = s. This s satisfies our definition of Diverse Centrality
that 𝑠𝑖 is proportional to 𝑡𝑖 . □

2.2 Algorithm for Diverse Centrality

We present Algorithm 1 to compute Diverse Centrality. It starts
from a random weight vector s(0) and iteratively updates itself
using the formula in Definition 1. It terminates when an iteration
does not change the weight vector much: When the 𝐿1-distance
between the weight vectors of two iterations is smaller than the
given precision 𝜖 .

Algorithm 1: Diverse Centrality

Input : (𝑉 , 𝐸), 𝑝 , 𝑓 (·), 𝜖 ,
{
q(𝑖)

}
𝑖∈[𝑛]

1 Choose any s(0) ∈ R𝑛≥0 with



s(0)




1
= 1, and set 𝑘 ← 0 ;

2 do

3 𝑘 ← 𝑘 + 1;

4 𝑡𝑖 ← 𝑓

(
(1 − 𝑝) q

(𝑖 )

𝑛 + 𝑝
∑
𝑗 :( 𝑗,𝑖) ∈𝐸

𝑠
(𝑘−1)
𝑗

𝑑 𝑗
q( 𝑗)

)
, ∀𝑖 ∈ [𝑛];

5 𝑠
(𝑘)
𝑖
← 𝑡𝑖∑𝑛

𝑗=1 𝑡 𝑗
, ∀𝑖 ∈ [𝑛];

6 while




s(𝑘) − s(𝑘−1)



1
> 𝜖 ;

7 return s(𝑘) ;

Experimentally, we find that on most random graphs the algo-
rithm converges to an equilibrium in a small number of iterations
and the equilibrium is most likely unique. The experiments are
described in detail in Section 4.

3 SIMULATION SETUP

In this section, we describe the simulation setup that we will use
to study the convergence behavior of the algorithm, as well as
its properties relative to simpler baselines. We perform this study
using a collection of well-motivated random graph models.

For simplicity, all experiments in subsequent sections focus on
the special case of 𝐾 = 2. We will refer to the two communities
as blue and red, with 𝑏𝑖 and 𝑟𝑖 scores to denote node 𝑖’s affiliation
to each community. Formally, 𝑏𝑖 = 𝑞

(𝑖)
1 and 𝑟𝑖 = 𝑞

(𝑖)
2 . We will

sometimes refer to these values as “polarities” of a node; note that
having either 𝑟𝑖 or 𝑏𝑖 close to 1 indicates polarization within that
community. We use a damping factor of 𝑝 = 0.85 for PageRank
and Diverse Centrality in all the experiments in Sections 4 and 6.
Further, the function 𝑓 in Definition 1 is chosen to be the minimum.
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3.1 Random Graph Models

We use three classes of randomly generated undirected graphs,
along with their modifications, in our experiments.

A Fully Random graph is generated using the Erdős–Rényi
model [12]. The graph contains 𝑛 = 1000 nodes, and each node’s 𝑟𝑖
value is drawn from a uniform distribution on (0, 1) with 𝑏𝑖 = 1−𝑟𝑖 .
Each edge is included with probability 𝑒 = 0.2.

A Preferential Attachment graph is generated by a preferen-
tial attachment mechanism such as the Barabási–Albert model [3].
The graph begins with a clique of𝑚 = 20 nodes. New nodes are then
added one at a time until a total of 𝑛 = 1000 nodes, and each new
node 𝑖 is randomly connected to𝑚 existing nodes with probability
proportional to their degrees. Formally, the 𝑚 nodes are drawn
from the distribution 𝑝 𝑗 =

𝑑 𝑗∑
𝑘 :𝑘<𝑖 𝑑𝑘

∀𝑗 < 𝑖 . All nodes in the graph
have random polarities (i.e. 𝑟𝑖 is drawn uniformly at random from
(0, 1)). This generative model simulates social networks without
any consideration of polarized community formation.

A Polarity Attachment graph has nodes that are connected
based on how similar their polarities are, resulting in polarized clus-
ters. This is motivated by affiliation networks [28]. The graph con-
tains 𝑛 = 1000 nodes with random polarities, and each pair of nodes
𝑖 and 𝑗 is connected with a probability of 𝑝𝑖 𝑗 = 0.5

(
𝑟𝑖𝑟 𝑗 + 𝑏𝑖𝑏 𝑗

)
.

Nodes with similar polarities are thus more likely to be connected.
This generative model simulates the creation of polarized neighbor-
hoods in the graph, such as what may occur when people are more
likely to connect to others with similar opinions as their own.

4 CONVERGENCE AND UNIQUENESS

In this section, we compute Diverse Centrality scores and PageR-
ank scores on the random graphs introduced in Section 3.1. We
compare the rate of convergence of the two models in order to as-
sess the efficiency of Algorithm 1. We also examine the uniqueness
of Diverse Centrality scores found by Algorithm 1.

4.1 Rate of Convergence

Figure 1 shows the distribution of the number of iterations of PageR-
ank and Diverse Centrality on Fully Random, Preferential
Attachment and Polarity Attachment graphs, when 𝜖 = 10−10.
Each run uses a different randomly generated graph, and for both
models the importance vector is initialized to 𝑠𝑖 = 1

𝑛 for 1 ≤ 𝑖 ≤ 𝑛.
The results suggest that not only does the Diverse Centrality

model always converge to an equilibrium in practice, but its number
of iterations is typically within a constant factor of PageRank. The
rate of convergence is the slowest on Fully Random graph with
an average of 23.883 iterations, or 2.99 times of PageRank.

These experiments offer empirical evidence that the Diverse
Centrality model converges in practice, and its rate of conver-
gence is competitive compared to traditional centrality algorithms
such as PageRank.

4.2 Uniqueness of Equilibrium

We also examine whether Algorithm 1 always converges to a unique
equilibrium independent of initialization. For this, we generate 600
runs each for the 3 graphs in Section 3.1. Each run uses a different
random graph, and in each run Algorithm 1 is executed twice, one

Figure 1: Number of iterations of PageRank and Diverse

Centrality on different graphs over 1000 runs.

with a constant initial vector s such that 𝑠𝑖 = 1
𝑛 = 10−3 ∀1 ≤ 𝑖 ≤ 𝑛,

and the other with a random s. Each execution converges to a local
equilibrium with 𝜖 = 10−10 (𝐿1-norm), so we calculate and analyze
the differences of each node’s scores between the two executions.

We also observe that the maximum difference of any node’s
score between the constant initialization and random initialization
executions observed is 3.544× 10−11 (over all 1800 runs on different
graphs). This is insignificant compared to the average node score of
1
𝑛 = 10−3. Therefore, these experiments provide strong empirical
evidence that Algorithm 1 always converges to a unique global
equilibrium, regardless of the initial vector s.

5 NORMATIVE PROPERTIES

In this section, we compare the quality of the solution found by
Diverse Centrality against simpler baselines. First, we propose
three criteria that a centrality measure with diversity should satisfy:

Centrality. The measure should be higher for nodes that are
more central according to standard graph centrality mea-
sures such as PageRank.

Local Polarity. The measure should be higher for nodes that
belong to multiple communities in the sense of having bal-
anced rather than polarized affiliation scores.

Neighborhood Polarity. The measure should be higher for
nodes that bridge communities in the sense that they are
cited by multiple communities.

5.1 Baseline Algorithms

We compare our Diverse Centrality model against three baseline
centrality measures listed below. Note that by definition, the PageR-
ank model captures centrality, while Reweight Node Bias and
Reweight Neighbor Bias capture local polarity and neighborhood
polarity respectively.
• The PageRank model, with damping factor 𝑝 = 0.85.
• Reweight Node Bias: Re-weight the score vector of PageR-
ank proportional to𝑤𝑖 = min{𝑟𝑖 , 𝑏𝑖 }. This means balanced
nodes having greater𝑤𝑖 will be considered more important.
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• Reweight Neighbor Bias: Re-weight the score vector of
PageRank proportional to𝑤𝑖 = min

{
𝑅𝑖

𝑅𝑖+𝐵𝑖 ,
𝐵𝑖

𝑅𝑖+𝐵𝑖

}
, where

𝑅𝑖 =
∑

𝑗 :( 𝑗,𝑖) ∈𝐸
𝑗≠𝑖

𝑟 𝑗 +
∑

𝑗 :(𝑖, 𝑗) ∈𝐸
𝑗≠𝑖

𝑟 𝑗 , (1)

𝐵𝑖 =
∑

𝑗 :( 𝑗,𝑖) ∈𝐸
𝑗≠𝑖

𝑏 𝑗 +
∑

𝑗 :(𝑖, 𝑗) ∈𝐸
𝑗≠𝑖

𝑏 𝑗 . (2)

This means nodes in balanced neighborhoods which have a
greater𝑤𝑖 will be considered more important.

We show that Diverse Centrality captures all three criteria –
centrality, local polarity, and neighborhood polarity – concurrently,
while PageRank, Reweight Node Bias and Reweight Neighbor
Bias cannot. Section 5.2 analyzes the effects of fixing neighborhood
polarity and centrality while changing local polarity. Section 5.3
analyzes the effects of fixing local polarity and centrality while
changing neighborhood polarity. Section 5.4 analyzes the effects of
fixing local and neighborhood polarities while changing centrality.

We further note that Diverse Centrality differs from the base-
lines in a more fundamental way. As mentioned before, it propa-
gates influence in the sense that it amplifies the score of nodes that
are themselves pointed to by nodes that are central and have bal-
anced polarity. This feature is not shared by simple modifications
of PageRank based on node or neighborhood polarity.

5.2 Local Polarity

Consider a bidirectional graph Change Local Polarity with 2000
nodes. The graph is first generated using the Fully Random model;
then, 600 nodes are chosen uniformly at random and divided into
three sets:
• 𝑉1 with 150 nodes, each with polarity 𝑟𝑖 = 0.99, 𝑏𝑖 = 0.01.
• 𝑉2 with 300 nodes, each with polarity 𝑟𝑖 = 𝑏𝑖 = 0.5.
• 𝑉3 with 150 nodes, each with polarity 𝑟𝑖 = 0.01, 𝑏𝑖 = 0.99.

Since the Fully Random graph does not consider polarities dur-
ing random generation, 𝑉1,𝑉2 and 𝑉3 will have close to balanced
neighborhoods. The random selection of nodes ensures that cen-
trality of these nodes will span the entire range of centrality values
as measured by PageRank.

Figure 2 shows the average scores of nodes in 𝑉1, 𝑉2 and 𝑉3
given by Diverse Centrality. The spectrum of PageRank values
is first divided into 7 buckets;1 nodes within each bucket are further
grouped by their local polarity (i.e. whether they are in 𝑉1, 𝑉2 or
𝑉3), and for each given bucket, the average Diverse Centrality
scores of nodes from𝑉1,𝑉2 and𝑉3 are shown with the red, grey and
blue bars respectively. Welch’s 𝑡-tests are performed within each
bucket, comparing all polarized nodes against all balanced nodes.

For both Diverse Centrality and Reweight Neighbor Bias,
we then compare the differences in scores between balanced nodes
and polarized nodes in Figure 3. Within each of the 7 buckets, for
each model, the average scores of balanced nodes minus the average
scores of polarized nodes is plotted, with 𝑡-tests performed similarly
to Figure 2.
1The 7 buckets are obtained by first dividing the entire range of PageRank values
evenly into 15 intervals, and then merging the first 5 and last 5 intervals which contain
too few nodes individually.

Figure 2: Average Diverse Centrality scores of nodes in

Change Local Polarity graph given range of PageRank

values and local polarity (864 runs).

Figure 3: Average scores of balanced nodes minus po-

larized nodes in Change Local Polarity graph, given

range of PageRank values, for Diverse Centrality and

Reweight Neighbor Bias models (864 runs).

Within each bucket of PageRank values, nodes have approxi-
mately constant neighborhood polarity and centrality, but different
local polarity. Both Figures 2 and 3 show that the Diverse Central-
ity model ranks balanced nodes in 𝑉2 higher than polarized nodes
in 𝑉1 and 𝑉3, and the difference is statistically significant in all 7
buckets. Conversely, the Reweight Neighbor Bias model gives
nodes in each bucket approximately the same scores regardless of
their local polarity, with none of the differences being significant.

This shows that our Diverse Centrality model reflects the dif-
ferences in local polarities of nodes even when centrality and neigh-
borhood polarity are held constant, while the Reweight Neighbor
Bias model fails to capture local polarity.

5.3 Neighborhood Polarity

Consider a bidirectional graph Change Neighborhood Polarity
with 2000 nodes. The graph is first generated using the Polarity
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Figure 4: Average Diverse Centrality scores of nodes in

Change Neighborhood Polarity graph given range of

PageRank values and neighborhood polarity (600 runs).

Attachment model to allow polarized clusters to form. Then, a set
of 600 nodes𝑉0 are chosen uniformly at random, and their polarities
are changed to balanced with 𝑟𝑖 = 𝑏𝑖 = 0.5.

Although all nodes in 𝑉0 have the same local polarity, their
neighborhood polarity differs since neighborhood polarity in the
Polarity Attachment graph strongly correlates with their origi-
nal polarities that were generated randomly.

Figure 4 shows the average scores of nodes in 𝑉0 given by Di-
verse Centrality. Similar to Section 5.2, the spectrum of PageR-
ank values is divided into 7 buckets. Nodes within each bucket
are further grouped by their neighborhood polarity: node 𝑖 with
0.45 ≤ 𝑅𝑖/(𝑅𝑖 + 𝐵𝑖 ) ≤ 0.55 is considered to be in a balanced neigh-
borhood, where 𝑅𝑖 and 𝐵𝑖 are defined in Eq (1) and (2); otherwise, it
is considered to be in a polarized neighborhood. Empirically, around
42% of nodes in each bin are classified as in balanced neighborhoods.

For each given bucket, the average Diverse Centrality scores
of nodes in red, balanced and blue neighborhoods (over 600 runs) are
shown with the corresponding bars. Welch’s 𝑡-tests are performed
within each bucket, comparing all nodes in balanced neighborhoods
against nodes in polarized neighborhoods.

Within each bucket of PageRank values, nodes have the same
local polarity and approximately constant centrality, but different
neighborhood polarity. Figures 4 show that Diverse Centrality
ranks nodes in balanced neighborhoods higher than nodes in po-
larized neighborhoods, with statistical significance in all buckets.

For both Diverse Centrality and Reweight Node Bias mod-
els, we compare the differences in scores between nodes in bal-
anced and polarized neighborhoods, similarly to Figure 3. Within
all 7 buckets, the average Diverse Centrality scores of nodes in
balanced neighborhoods is significantly higher than nodes in po-
larized neighborhoods, with differences ranging from 6.890 × 10−5
to 7.011 × 10−5. On the other hand, nodes in balanced neighbor-
hoods typically have lower Reweight Node Bias scores than those
in polarized neighborhoods, with a much smaller magnitude of
difference from 2.887 × 10−9 to 1.192 × 10−7.

These results show that our Diverse Centrality model cap-
tures the differences in neighborhood polarities of nodes even when

50 nodes 50 nodes 50 nodes

150 nodes 150 nodes 150 nodes

450 nodes 450 nodes 450 nodes

𝐴1

𝐵1

𝐶1

𝐴2

𝐵2

𝐶2

𝐴3

𝐵3

𝐶3

Figure 5: 9 Clusters graph.

Figure 6: Average scores of 𝐵1, 𝐵2 and 𝐵3 in 9 Clusters graph

from PageRank and Diverse Centrality (300 runs).

centrality and local polarity are held constant, and gives balanced
neighborhoods a higher score than polarized neighborhoods. Di-
verse Centrality thus captures our neighborhood polarity crite-
rion, but Reweight Node Bias does not.

5.4 Centrality

Given that our Diverse Centrality algorithm has a similar formu-
lation to standard PageRank, one would naturally expect Diverse
Centrality scores to correlate with PageRank. Specifically, in the
case where all nodes in the graph are balanced with 𝑟𝑖 = 𝑏𝑖 = 0.5,
Definition 1 reduces to PageRank with damping factor 𝑝 . However,
we would like to analyze the relationship with centrality in more
general, nontrivial cases where nodes may have varying polarities,
and observe the effects of changing centrality on a subset of nodes
whose local and neighborhood polarities are fixed.

Consider a bidirectional graph 9 Clusters whose general struc-
ture is shown in Figure 5. The graph contains nine clusters: nodes
in the central clusters 𝐵1, 𝐵2 and 𝐵3 all have polarities 𝑟𝑖 = 𝑏𝑖 = 0.5,
while nodes in other clusters have random polarities. Each pair of
nodes within the same cluster have a probability of 0.5 of being
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connected, while each pair of nodes across two clusters adjacent in
Figure 5 have a probability of 0.1 of being connected.

All nodes in 𝐵1, 𝐵2 and 𝐵3 are balanced, and have largely bal-
anced neighborhoods due to randomness.2 However, the three
clusters have different centrality with 𝐵3 being the most central
and 𝐵1 the least.

Figure 6 shows the average scores given to each of 𝐵1, 𝐵2, 𝐵3
by PageRank and Diverse Centrality. The PageRank scores
confirm the difference in centrality between the three clusters.
More importantly, Diverse Centrality also shows an increase in
scores from 𝐵1 to 𝐵3, similar to PageRank. This shows that Diverse
Centrality reflects the differences in centrality of nodes when
both local and neighborhood polarities are held largely constant,
giving important nodes a higher score.

6 REAL-WORLD GRAPHS

In this section we apply the Diverse Centrality to some graphs
generated from real-world networks, to show its performance on
these datasets and compare the results with conventional wisdom
regarding the networks. We choose two real-world graphs where
centrality and polarization are relevant: the network of members
of the United States Congress and a network of political blogs.

Before presenting our results, we first present a natural general-
ization of a different and equally classic centrality notion, Between-
ness Centrality [14], to capture diversity. Subsequently, we will
evaluate the performance of Diverse Centrality using Diverse
Betweenness Centrality along with PageRank as benchmarks.

6.1 Diverse Betweenness Centrality

The Betweenness Centrality of a vertex 𝑣 quantifies the fre-
quency it appears on the shortest path of two other vertices. For-
mally,

BC(𝑣) :=
∑
𝑠≠𝑣≠𝑡

𝛿𝑠𝑡 (𝑣)

where 𝛿𝑠𝑡 (𝑣) is the fraction of 𝑠-𝑡 shortest paths passing through 𝑣 .
We naturally generalize it into Diverse Betweenness Central-

ity to incorporate diversity considerations. We define

DBC(𝑣) :=
∑
𝑠≠𝑣≠𝑡

𝛿𝑠𝑡 (𝑣) |𝑟𝑠 − 𝑟𝑡 |

to measure how often it appears on the shortest path of two other
vertices, while giving larger weights if those two vertices are from
different communities.

Diverse Betweenness Centrality can be computed in 𝑂 (𝑛𝑚)
time on unweighted graphs, where 𝑛 and 𝑚 are the numbers of
nodes and edges respectively, using a simple modification from
Brandes’ algorithm [6]. In practice, it is typically slower than Di-
verse Centrality which takes 𝑂 (𝑚) per iteration.

6.2 Congress Graph

We create a graph thatmodels all members of the 116th United States
Congress (2019–20) linked by their connections on Twitter. Each
Congress member with an official Twitter account is represented

2Empirically, over 300 runs, 𝑅𝑖/(𝑅𝑖 + 𝐵𝑖 ) values of nodes in 𝐵1 , 𝐵2 and 𝐵3 have a
mean of 0.499987 and standard deviation of 0.007689.

as a node. A directed edge from member X to member Y exists if X
was following Y on Twitter as of May 30, 2020.3

There are 𝐾 = 2 communities, and for node 𝑖 , the affiliation
vector q(𝑖) = [𝑏𝑖 , 𝑟𝑖 ] measures how much the Congress member’s
ideologies align with the Democrats and Republicans respectively.
To generate this vector, we use the DW-NOMINATE procedure
that provides a quantitative measure of their ideologies based on
factors such as voting behavior [32]. For each member, this method
produces a number between −1 (most liberal) and 1 (most conser-
vative), which we scale linearly to fit our notion in Section 2.

When comparing Diverse Centrality with PageRank and
Diverse Betweenness Centrality on the Congress Graph, as
shown in Figure 7, we observe a bridging effect:

The Diverse Centrality model favors nodes that
are not only bipartisan and influential (in terms of
PageRank), but that also serve as a bridge to similarly
bipartisan and influential nodes in other communities.

Specifically, while the graph in Figure 7 is clearly separated into
two polarized clusters, each of them contain a sub-cluster shown on
the bottom left and bottom right. The sub-clusters highly correlate
to the Senate, with the main cluster largely being the House. In
general, senators from both parties arewell-connected to each other;
each senator is connected to a large number of representatives from
their own party and a smaller number from the other party; edges
directly between representatives of different parties exist, but are
less common. This means the Senate sub-clusters serve as bridging
nodes between the two clusters, since two representatives from
different parties are typically connected via one or more senators.

While both Figures 7a and 7b show the Senate sub-clusters
ranked above average, the difference between the Senate and the
House shown by Diverse Centrality in Figure 7a is much more
pronounced, as both sub-clusters receive much higher scores here.
Figure 7c, on the other hand, shows Diverse Betweenness Cen-
trality ranks the Senate similarly to the House. Instead, the mea-
sure appears to favor nodes with high outdegrees, as the highly
ranked members follow most or all other members of Congress on
Twitter. While these nodes can serve as a bridge across the two
communities, they are not necessarily bipartesan and influential
themselves.

Senators
Node DC PR DBC

Susan M. Collins 1 10 152
Lisa Murkowski 6 20 224
Kyrsten Sinema 9 23 2
Joe Manchin, III 5 64 198
Rob Portman 11 8 30

Table 1: Top 5 senators joining greatest proportion of biparti-

san bills, with their ranks by Diverse Centrality, PageR-

ank, and Diverse Betweenness Centrality respectively.

3Two members in the graph did not follow any other members. In order to prevent
their PageRank values from being artificially inflated, edges are added from each of
the two sinks to all nodes in the graph.
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(a) Diverse Centrality (b) PageRank (c) Diverse Betweenness Centrality

Figure 7: Congress Graph. Layout generated by the ForceAtlas2 algorithm [20]. Nodes are colored based on polarities (q(𝑖) ).

Figure 8: Number of cut edges among top 𝑘 nodes in Con-

gress Graph ranked by Diverse Centrality, PageRank,

and Diverse Betweenness Centrality scores.

To verify that the Diverse Centrality indeed finds the most
important bipartisan members of the Congress, we consider the
top five senators with the highest percentage of bills cosponsored
that were introduced by the other party, an independent metric
that serves as a proxy of bipartisanship of members [1]. As shown
in Table 1, 4 out of these 5 senators are ranked significantly higher
by Diverse Centrality (DC) than either PageRank (PR) or Di-
verse Betweenness Centrality (DBC). Furthermore, these five
senators are among top 11 in the entire graph ranked by Diverse
Centrality; This indeed shows that Diverse Centrality priori-
tizes bipartisan and influential nodes in the graph.

We can quantify this bridging effect by analyzing intersections
of top nodes and the cut between two clusters. Spectral clustering
is first performed on the graph (converted to an undirected graph)
to identify the two polarized clusters [22]. Then, for each ranking
algorithm and for various values of 𝑘 , we count the number of
edges in the subgraph induced by the top 𝑘 nodes that are also in
the cut. Figure 8 shows the results for all these centrality models.

The Diverse Centrality model has a greater number of cut
edges for any given value of 𝑘 . This shows that Diverse Central-
ity has a greater focus than PageRank on bridging nodes that

Figure 9: Number of cut edges between top 𝑘 nodes in Polit-

ical Blogs Graph ranked by Diverse Centrality, PageR-

ank, and Diverse Betweenness Centrality scores.

connect the two polarized clusters, instead of central nodes within
each community which may not be well connected to each other.
Diverse Centrality beats Diverse Betweenness Centrality
in this metric too, even though the latter emphasizes this bridging
effect in its definition.

6.3 Political Blogs Graph

We also ran the algorithms on a graph that models blogs on U.S.
politics in 2005 [2]. The dataset is a directed graph that forms edges
among blogs based on hyperlinks.4

We again assume 𝐾 = 2 communities in the graph. Since the
dataset does not contain fine-grained polarity data of the blogs, for
our adaptation, all liberal blogs are assigned 𝑟𝑖 = 0.01, 𝑏𝑖 = 0.99, and
all conservative blogs have 𝑟𝑖 = 0.99, 𝑏𝑖 = 0.01. These values are
approximately discrete, denoting community memberships rather
than extent of affiliation to each community.

We can again analyze the number of cut edges among top nodes
to quantify this bridging effect, as shown in Figure 9. For any given
value of 𝑘 , Diverse Centrality gives the greatest number of cut

4Four nodes are not connected the rest of the graph, so we removed them and other
disconnected nodes to ensure spectral clustering finds a good cut.
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edges across the two clusters than PageRank, similar to the Con-
gress Graph. Therefore, on this graph, Diverse Centrality still
favors nodes on the frontier of the two clusters bridging them to-
gether. This example also shows that Diverse Centrality still
performs well when nodes have extreme affiliation vectors (in the
sense of being nearly 0 or 1).

7 CONCLUSION

In this paper, we defined a new measure of centrality, Diverse
Centrality, that gives importance to nodes that bridge different
communities. We propose several elementary criteria for such a
centrality measure with diversity and show via simulations on
realistic random networks that Diverse Centrality satisfies all the
proposed criteria, while simple modifications to standard PageRank
do not. We further show how important bipartisan senators are
naturally unearthed by our measure when run on a social network
constructed from the United States Congress.

Our work leads to several open questions. First, we do not have
a complete theoretical understanding of Diverse Centrality. Is
the fixed point unique under reasonable assumptions on the net-
work? Can it be proven that our iterative algorithm for computing
the fixed point always converges? Further, in several real-world
settings, there could be several different types of communities, cor-
responding for instance to politics, demographics, religion, location,
etc. An individual could belong to one or more communities for
each of these dimensions. How can we generalize the notion of
Diverse Centrality to handle this setting, and how does it impact
the performance of the resulting algorithms on real data?
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