HaPPY-Mine: Designing a Mining Reward
Function

Lucianna Kiffer and Rajmohan Rajaraman

Northeastern University, Boston MA,USA
{lkiffer,rraj}@ccs.neu.edu **

Abstract. In cryptocurrencies, the block reward is meant to serve as the
incentive mechanism for miners to commit resources to create blocks and
in effect secure the system. Existing systems primarily divide the reward
in proportion to expended resources and follow one of two static models
for total block reward: (i) a fixed reward for each block (e.g., Ethereum),
or (ii) one where the block reward halves every set number of blocks
(e.g., the Bitcoin model of halving roughly every 4 years) but otherwise
remains fixed between halvings. In recent work, a game-theoretic anal-
ysis of the static model under asymmetric miner costs showed that an
equilibrium always exists and is unique [4]. Their analysis also reveals
how asymmetric costs can lead to large-scale centralization in blockchain
mining, a phenomenon that has been observed in Bitcoin and Ethereum
and highlighted by other studies including [11,15].

In this work we introduce a novel family of mining reward functions,
HaPPY-Mine (HAsh-Pegged Proportional Yield), which peg the value of
the reward to the hashrate of the system, decreasing the reward as the
hashrate increases. HaPPY-Mine distributes rewards in proportion to ex-
pended hashrate and inherits the safety properties of the generalized
proportional reward function established in [9]. We study HaPPY-Mine
under a heterogeneous miner cost model and show that an equilibrium
always exists with a unique set of miner participants and a unique to-
tal hashrate. Significantly, we prove that a HaPPY-Mine equilibrium is
more decentralized than the static model equilibrium under a set of met-
rics including number of mining participants and hashrate distribution.
Finally, we show that any HaPPY-Mine equilibrium is also safe against
collusion and sybil attacks, and explore how the market value of the
currency affects the equilibrium.

1 Introduction

Existing cryptocurrencies rely on block rewards for two reasons: to subsidize
the cost miners incur securing the blockchain and to mint new coins. Miners in
major cryptocurrencies like Bitcoin and Ethereum participate in the protocol
by packaging user transactions into blocks and incorporating those blocks into

** We thank the anonymous reviewers and Yonatan Sompolinsky for their helpful com-
ments. The first author was supported by a Facebook Fellowship and Dfinity Schol-
arship. This work was also partially supported by NSF grant CCF-1909363. This
work was initiated when the first author was at an internship at DAGlabs.

2 Lucianna Kiffer and Rajmohan Rajaraman

the blockchain (the global record of all transactions that have taken place in
the system). Creating a block involves significant computational power where
the miner preforms iterations of some kind of computation, the proof of work,
generally iterating over a hash function. This work, whether on a CPU, GPU or
other specialized hardware, comes at a cost to the miner. To compensate miners
for incurring this cost and to incentivize more miners to join, miners collect
a block reward of newly minted coins for each block that gets added to the
blockchain. In expectation, miners are rewarded in proportion to the resources
they contribute. This computational work is also what cryptographically ties
each block in the blockchain together and makes it so that anyone wanting to
fork the blockchain, i.e. erase transactions by creating their own version of a
subset of the chain, would have to redo an equivalent amount of work. The
more resources miners invest in the system, the greater the system hashrate, the
more expensive this attack becomes. In effect, the computational work of miners
secures the blockchain system by making the blockchain immutable.

There are two common frameworks for the block reward function in terms
of distribution of supply. Bitcoin’s protocol has a set maximum number of coins
that will ever be minted, therefore the mining reward diminishes over time. The
mining reward halves every 210,000 blocks (approximately every 4 years). For
now, miners continue to profit since the value of each Bitcoin has increased
over time making up for the decrease in reward with increases system hashrate.
Eventually though, the mining reward will reach zero and miners will be repaid
solely in transaction fees for the transactions they include in the blocks they
mine. Another cryptocurrency, Ethereum, currently has in its protocol a fixed
mining reward of 5 Ethers for all blocks ever. This means that the supply of
Ether is uncapped and the mining hashrate can grow linearly in the market
value of Ether.

In general miner costs are asymmetric [1] with miners with access to low-
cost electricity or mining hardware being at an advantage. This has led to large
centralization in both Bitcoin and Ethereum mining, with a significant portion
of the hashrate being controlled by a few mining pools [2,11,3]. This prevents
other players from having a share of the market. We ask the question, can we
design a mining reward function that alleviates these problems?

1.1 Main contributions

In this paper, we develop a novel hashrate-based mining reward function,HaPPY-
Mine, which sets the block reward based on the system hashrate. HaPPY-Mine is
defined so that as the system hashrate increases, the block reward smoothly
decreases. We now outline the main contributions of this paper.

1. We introduce the notion of a hashrate-pegged mining reward function, and
formally argue that it can help in decentralizing the blockchain by reducing
the hashrate that a new miner is incentivized to buy.

2. We present HaPPY-Mine, a family of hashrate-pegged mining reward func-
tions that dispense rewards in proportion to the expended hashrate. We con-
duct a rigorous equilibrium analysis of the HaPPY-Mine family under general

HaPPY-Mine: Designing a Mining Reward Function 3

miner costs. We establish that equilibria always exist, and are more decen-
tralized than an equlibrium under the static reward function: in particular,
HaPPY-Mine equilibria have at least as many participating miners as and
lower total hashrate than an equilibrium for the static reward function.

3. We show that HaPPY-Mine equilibria (as well as that of a static reward func-
tion) are resistant to any collusion attack involving fewer than half the min-
ers, and that a Sybil attack does not increase the utility of the attacker.

4. We finally consider the scenario where rewards are issued in the currency
of the blockchain and study the effect of the change in the currency’s value
on the equilibrium. We show that in HaPPY-Mine, an increase in the value
of the cryptocurrency allows more higher cost miners to participate, again
resulting in greater decentralization as compared to an equilibrium under
the static reward function.

Outline of the paper. We begin in Section 2 with a description of the equilib-
rium analysis of [4], which provides a basic game-theoretic framework that we
build on. We also describe the properties satisfied by the generalized proportional
allocation rule of [9], of which our function is a special case. In Section 3 we in-
troduce our hash-pegged mining reward function and in Section 4 we analyze
its equilibria. We analyze other factors that impact the equilibria in Section 5.
We conclude with a discussion on the practicality of implementing the hash-
pegged mining reward function in a system and with future and related work in
Sections 6 and 7.

2 Background

In this paper, we follow a miner model of asymmetric costs with rewards being
awarded in proportion to expended resources(hashrate). Our study builds on
an analysis framework developed in [4]. In this section, we first summarize the
model of [4] and their equilibrium analysis of a static reward function for mining.
We next review proportional allocation, used in both the static reward function
and HaPPY-Mine, and state salient properties established in [9].

Equilibrium analysis of static reward function. The simple proportional
model introduced in [4] has n miners with costs ¢, ¢, ..., ¢, where ¢; < ¢cg <
-+ < ¢, < 00. A miner ¢ who invests ¢; hashrate at a cost of ¢;g; has mining
reward and utility given by

zi(g) = Z‘]iq‘ and Ui(q) = :(q) — cais
5 45

respectively. The main result of [4] is that there is a unique pure strategy equi-
lebrium where each miner invests

1 *
qi = Emax(l —¢;/c*,0)
for the unique value ¢* s.t. X(¢*) = 1 where

X(c) = Zmax(l —¢;/c,0).

4 Lucianna Kiffer and Rajmohan Rajaraman

The value c¢* thus serves as a bound for which miners participate, with a miner
1 participating if ¢; < ¢*. They also show that the number of miners must be
finite for there to be an equilibrium strategy and that even countably infinite
miners would not have an equilibrium strategy.

Properties of proportional allocation. In [9], the authors define a set of
properties that allocation rules can satisfy: non-negativity, budget-balance (strong-
means all the reward is allocated, weak- means less or all of the reward is al-
located), symmetry (two miners with equal hashrate get equal reward), sybil-
proofness (can’t split hashrate and get more reward) and collusion-proofness
(can’t join hashrates and get more). They prove that the proportional allocation
rule is the only rule that satisfies all of the above properties. They also define a
generalized proportional allocation rule as

_ _ N4
zi(q) f(Ej: q])zj "

for some function f which takes in the sum of hashrate and returns the amount
of reward that will be allocated. The static reward function is an example of
the generalized proportional allocation rule with f(zj g;) = 1. In HaPPY-Mine,
we provide a family of functions for f. These functions follow the generalized
proportional allocation rule and, hence, satisfy all of the above properties with
a weak budget-balance as, by definition, the full reward value is not always
rewarded (Le. f(3_;q;) <1).

3 Hashrate-Pegged Block Reward

We now introduce the notion of a hash-pegged mining reward function. We con-
sider a miner’s decision of how much hashrate to purchase when they are joining
the system. In this section, we consider a simplified model where the network
currently has hashrate 1 with network operational cost ¢ and mining reward of
1 per block such that mining is profitable, i.e. ¢ < 1 and the system’s utility is
U =1 — c. Given the network hashrate H =) 4, we consider block reward

for a given parameter § > 0 such that any additional hashrate added to the
system decreases the block reward!.

The focus of this section is on answering the following question: Given a new
miner with cost ¢;, how much hashrate is this new miner incentivized to buy?
That is, what ¢; maximizes their utility

di

Ui(q) = T+ q,r(l + ;) — ciqi?
K3

! Note that our (H) function is replacing [9]’s ¢ function. We change notation so as
not to confuse the reward with the cost of hashrate

HaPPY-Mine: Designing a Mining Reward Function 5

Case: § = 0, static reward. First consider the fixed reward system where the
reward is always 1. A new miner joining the system with hashrate ¢; will have
utility U;(q) = qlqj_ —¢;q; which they want to maximize. By solving for U/(q) =0
with ¢; > 0 and ¢; < 1, we find that the miner maximizes their utility by buying

hashrate ¢; = ,/C% -1

Case: § = 1, linear decrease in reward. With r(H) = %, a miner now
wants to maximize U;(q) = (qii"l)z — ¢;q;. We can’t easily solve for U/(q) =
ﬁ - (qf%)g —¢; = 0. What we can observe is that U;” (q) = (qﬁ% - ﬁ

and that U;”(q) < 0 for ¢; < 2, i.e. U;(q) is concave down when a miner buys
less than double the current hashrate of the system. Since U(gq; = ,/c% -1)=

2¢;(y/c; —1) < 0 for ¢; < 1, we obtain that for a miner that’s acquiring less
than twice the current system hashrate, the hashrate bought by the miner under
a linearly diminishing reward (6 = 1) is less than that bought under a static
reward (6 = 0). (For a miner buying more than twice the hashrate (¢; > 2), ¢;
would have to be sufficiently small for this to be profitable i.e. ¢; < m < %)

General §. We now analyze the impact of a more drastic decay function (larger
0) on the optimal hashrate bought by a new miner joining the system. When a
new miner joins with additional hashrate ¢;, the mining reward becomes (ﬁ)‘;,

i 1 \¢ —
Qiq+1(m) -G =

where 0 < § < oo. The utility function is now U;(q) =

qi
(qi+1)5+1 Cig;-

Proposition 1. The optimal hashrate for a new miner decreases with increasing

d.

Our proof proceeds in two steps. We show that (1) the utility is a concave
function at the maxima and (2) the derivative of the utility w.r.t. g; is decreasing
in 6. We then obtain that the utility maximum (i.e. the ¢; s.t. U/(q) = 0) is
decreasing with an increase in §. Due to space constraints, we defer the proof to
Appendix A.

Thus, if we increase the § exponent in the total block reward, we decrease the
hashrate that a new miner is incentivized to buy. While this may not have an
effect for smaller miners who do not have the resources to purchase their maximal
utility hashrate, Proposition 1 demonstrates that a hash-pegged reward function
can be a useful decentralization tool that disincentivizes rational big miners from
joining the system with a large fraction of the hashrate.

Note that Proposition 1 does not take into account the dynamic game be-
tween different miner’s choices. We now formally define the above family of hash-
pegged mining reward functions for arbitrary system hashrate as HaPPY-Mine and
analyze the equilibria given a set of miners with asymmetric costs.

6 Lucianna Kiffer and Rajmohan Rajaraman

4 HaPPY-Mine Equilibrium Analysis

Building on the model of [4] we define a non-cooperative game between m miners
with cost ¢; < ¢y < -+ < ¢, where each miner ¢ with hashrate ¢; has utility

Ui(q) = zi(q) — ciqi-

In HaPPY-Mine we set the maximal block reward to be 1 and have the reward
start to decrease after the system’s hashrate surpasses @, for a parameter Q) > 0.
We define the reward for miner 7 as

5
i __& r where r = min Q

for system parameter ¢ € [0, 00).

The main results of this section concern the existence and properties of pure
Nash equilibria for the above HaPPY-Mine game. We begin our analysis by
differentiating r(¢) and z;(¢) with respect to ¢;, and finding the derivative of
Ui(q) w.r.t. ¢.

29— .
vt —{ T " Hoya <9
(chgj)6+2 [ZJ g — (6 +1)g] — ¢ if Zj g >Q

Recall that for equilibria we need that U/(q) < 0 with equality for ¢; > 0. (For
the case Zj g; = @, we need the left and right derivatives to be nonnegative
and nonpositive, respectively.)

4.1 Examples with diverse cost scenarios

We work through some cost examples to gain intuition for the equilibrium anal-
ysis of the above reward function.

Example 1 First we consider a general 2-miner case with § and @ set to 1. In this
model we have 2 miners with costs ¢y, ¢ s.t. ¢; < ¢o. See Appendix B for the full
analysis. If ¢c; +c2 > 1 we use the analysis of [4] with reward 1 and obtain that the
equilibrium hashrate is g1 +¢2 < @ = 1 with ¢; = ﬁ(l e).Ifep+e0 <1,
then there are multiple equilibria where o + 8 = 1 with 1*% <a<1l-—¢ and
1*% < 8 < 1—cs. Note the equilibria system hashrate with two miners is always
<Q-=1
Taking ¢; + ¢o < 1, let us consider the total utility of an equilibrium.

max(Uy + Us) = maﬁx(l —c1a — cof8) = max(1l —ca + (c2 — ¢1)a)

a,fB)

Thus, a utilitarian equilibrium is one where « is maximized, i.e. « = 1 —¢y. The
utilitarian equilibrium is thus the one with maximal utility for the miner with
least cost and lowest utility for the miner with most cost.

HaPPY-Mine: Designing a Mining Reward Function 7

i
T i+l
function ¢; = ;77 still considering § = @ = 1. This case is interesting because
in the static reward case (i.e. U;(q) = ﬁ — g;¢;) the equilibrium strategy has

Example 2: ¢; = We now consider an example from [4] where the cost

that), ¢; > 1 and that only the first 7 miners participate. This equilibrium
point would have less reward in HaPPY-Mine and thus may no longer be the
equilibrium point. We solve this in Appendix B and find that

1 n—2 (1 (n—2)i
g =5 —(1- —
2\ Y h > i+ 1)

for all miners that participate in equilibrium. We can iterate over n to find that
with this strategy, equilibrium exists at n = 25, i.e. for n > 25 only the first 25
miners participate otherwise all miners participate. Thus HaPPY-Mine with § = 1

results in an equilibrium with more miners participating than in the equilibrium
under a static reward function.

)

Example 3: ¢; = ¢ for all ¢ The next example we consider is the case of

homogeneous cost with m miners, @ = 1 and any §. See Appendix B for the full
analysis. For ¢ > %‘17 we can use the analysis of [4] and obtain ¢; = ’T’TL;CI with
>, =21t < 1. For m_T‘S_l < ¢ < =1 an equilibrium exists at Y, ¢; = 1

mc
where ¢; = % Finally for ¢ < ™==1 we get an equilibrium strategy with

> ;¢ > 1 where ¢; = % oy m%g;l. In each case the equilibrium hashrate for
HaPPY-Mine for any § is less than or equal to that of the static reward equilibria.

In Corollary 2 below, we show this in fact holds for any set of costs.
4.2 General analysis of HaPPY-Mine

We now analyze the equilibria for the general case of HaPPY-Mine with m > §+1
miners with costs ¢; < ¢y < ... < ¢ < Epy1 = 00. Recall the utility function

9 ; .
Uig) =) =o€ 2,0 =Q
i\q qi (Q)5 — gics O/W
2050 25 dici

In the propositions below we first derive necessary conditions for an equi-
librium to exist in different cases depending on how the system hashrate), ¢;
compares with (). Taking these propositions we derive lemmas proving the ex-
istence of equilibria given any set of miner costs. The lemmas also prove the
impossibility of equilibria to exist simultaneously for different values of). ¢;,
i.e. the uniqueness of the equilibria. We finish this section with our final theorem
statement defining the equilibria values given a set of costs, as well as corollaries
on the properties of the equilibria.

Proposition 2 (Necessary condition for equilibrium with total hashrate
less than Q, [4]). If Y. ¢; < Q at equilibrium then there exists a ¢* > 1/Q such
that X (c*) =1 and all miners i with ¢; < ¢* participate with ¢; = % (1 —¢;/c*).

8 Lucianna Kiffer and Rajmohan Rajaraman

Proof. If 3", ¢; < @ then miners have utility function U;(q) = Zq_iqj — g;c; which

is the same as the simple proportional model of [4] where there is an equilibrium

strategy with ¢; = X max(1 — ¢;/c*,0) for ¢* such that X(c*) = 1. In this

analysis Zj g = Ci“ and so for Zj g; < @ we have ¢* > 1/Q. O

Proposition 3 (Necessary condition for equilibrium with total hashrate
equal to Q). If Y. qi = Q at equilibrium then all miners with cost ¢; < 1/Q

participate and satisfy
1
m(@ - 6Q%) < ¢ <Q-aQ?

Proof. Assume there is an equilibrium strategy such that 3, ¢; = Q. The utility
of a miner ¢ is given by

so miners with cost ¢; > 1/Q will not participate; those with ¢; < 1/Q will.
We take the n miners for which ¢; <1/Q. >, ¢; = Q is an equilibrium iff,

Ul(q) = Q@ —a] —ci>0 for 3,45 < Q
= ZoQ -0+ Dl —e; <0 for Y0 >Q
Q5+2 i DS j i

and thus, any equilibrium strategy satisfies

1

m(@ - Q) < ¢ <Q—Q?

Note that ¢; = 1/Q implies g; = 0, so a miner with cost 1/Q does not participate.
Thus, exactly those miners with ¢; < 1/Q participate in an equilibrium. O

Proposition 4 (Necessary condition for equilibrium with total hashrate
more than Q). If >~,¢; > Q at equilibrium then there exists a et < 1/Q such
that X (c') = d + 1 and all miners with cost c; < ¢! participate with
5+1 /10
b= VT (1)
(64 1) "Wet

Proof. Assume first there exists an equilibrium where miner ¢ + 1 participates
and miner ¢ does not with sum of hashrate H. This means

Qé
1) = W[H = (6 + 1)gi+1] — cit1 =0,

and thus ¢;11 = H%—;[H — (0 4+ 1)git1]. For ¢; = 0 we get Ul(q) = H%—L —¢ <0

5
which means % < ¢;, putting both together we get

§ §

<6 < ¢ =

ot < W[H = (6 4+ 1)git1],

HaPPY-Mine: Designing a Mining Reward Function 9

which implies g;+1 < 0, a contradiction to miner ¢+ 1 participating. Thus in any
equilibrium, if miner 7 4+ 1 participates, then miner ¢ must also participate.
Letting H =), ¢; > Q, for a miner 7 that participates in equilibrium

Q(S H H6+1
/ =" IH— Da:l = ¢; = e 1—
Uz (Q) H5+2 [(6 +)Qz] (&5 0 = qi 5 F1 (Q5

Assuming that only the first n miners participate in equilibrium, we solve for H

Ci).

" H H* @ =0 —1)
— (5 Z?:l C; ’

This also means player n + 1 must have U;,,;(¢) <0 at g,41 = 0, so we get

/ Q° Q°
n+1(Q) = o+l [H— (6 +1)gnt1] — o1 = o+l cnt+1 <0,
B no
— Q _ Zz:l Ci < Cnil.

HOA1 n—§6—1"

Let ¢ be the bound for which miners participate, i.e. miner i participates iff

¢; < cf'. Then from the above we get that cf = % Rewriting this and using

the fact that ¢;/c* > 1 for ¢; > ¢!, we obtain

Zmax(l — i/l 0)=6+1,

co-opting the X(c) equation for ¢/ s.t. X(cf) = § + 1. Since cf = HQé—il it must

be that c¢f < 1/Q. Lastly we plug ¢! into the equation for ¢; and get

s+1/M6
- ! Q 1—¢ /ct O
q S (ci/ch).
(641) "Wet

We now use Propositions 2, 3, and 4 to establish the following lemmas, which
will help prove our main theorem. We first define ¢* as the value for which
X(c*) = 1 and, for m > 6§ + 1, ¢ as the value for which X(cf) = § + 1. Note

that X (c) is a continuous increasing function in ¢ and thus ¢* < cf.

Lemma 1 (Equilibrium when ¢* > 1/Q). If ¢* > 1/Q, then there exists a
unique equilibrium strategy with Y, ¢; < Q

Proof. We know from Proposition 2 that there is an equilibrium strategy with
Yot = ci < Q. Since ¢* > 1/Q that implies ¢! > 1/Q so by Proposition 4 there
is not an equilibrium strategy with). ¢; > Q. Finally, lets assume there is an
equilibrium strategy with >, ¢; = @. Recall from Proposition 3 that all miners
with cost < 1/@Q participate, so let n be those miners s.t. ¢; < 1/Q for i < n.
From the definition of X (c) we have that Y ;- ; 1 —¢;/c* <1 which we can solve
to be ¢*(n —1) < Y | ¢; and we get "7_1 < >, ¢;. From Proposition 3 we
have that ¢; < @ — ¢;Q? for all i < n. Thus >, ¢; < > | Q — ¢;Q? which
solves to E?Zl c < %, and thus there is no equilibrium at). ¢; = Q. a

10 Lucianna Kiffer and Rajmohan Rajaraman

Lemma 2 (Equilibrium when ¢* < 1/Q < cf). If ¢* < 1/Q < ¢ then there
exists at least one equilibrium at), q; = Q and any equilibrium strategy has
> ;@ = Q with a miner i participating iff ¢; < 1/Q.

Proof. First, since ¢* < 1/Q we know from Proposition 2 there is no equilibrium
at Y . q; < @, and since ¢t > 1/Q we know from Proposition 4 there is no equi-
librium at), ¢; > Q. Finally from Proposition 3, for there to be an equilibrium
at Y. q; = Q we need for each miner ¢ with ¢; < 1/Q, ¢; must satisfy

1

m(@ - @) < ¢ < Q- Q.

Summing over all n s.t. ¢; < 1/Q for i < n, and simplifying, we derive

Taking the fact that ¢* < 1/Q we get Y .- 1 —¢;/c* > 1 which simplifies to
c*(n—1) > 3" | ¢;. Taking the fact that ¢’ > 1/Q we get >_;, 1—¢;/cl <§+1
which simplifies to ¢f(n — ¢ — 1) < 37| ¢;. Putting these together, we obtain

n—1 - n—06—1
> C > ————
g 2L

O

Lemma 3 (Equilibrium when ¢ < 1/Q). If ¢’ < 1/Q then there ezists a
unique equilibrium strategy with Y, q; > Q.

Proof. We know from Proposition 4 that there is a unique equilibrium strategy
with Y, ¢, = Y/ %6 > Q. Since ¢* < ¢ we know from Proposition 2 there is

not an equilibrium strategy with >, ¢; < Q. Take the n miners s.t ¢; < ct for
i < n. From the definition of X (¢) we have

n—0—1

1—¢/cdt=6+1 = c=cn—6-1)< —.
; / ; () 0

Assume there is an equilibrium with). ¢; = Q. By Proposition 3, miner i s.t.
¢; < 1/Q participates with ﬁ(Q—CiQ% < g;. If there are n miners s.t. ¢; < cf,

n

n n _5_
Zl(sil(QCiQ2)§Zl(h§Q = TLC?lﬁ;Ci

which is a contradiction. Thus, there is no equilibrium with }, ¢; = Q. a

We can now put together the above lemmas to get our main result:

HaPPY-Mine: Designing a Mining Reward Function 11

Theorem 1. For any § € [0,00) and m > 2 miners with costs ¢; < ca < ... <
Cm < Cmg1 = 00, let

X(e) = Zmax(l —¢;/e,0)

and c* 5.t X(c*) =1 and (if m > 6+ 1) let ¢! s.t. X(cT) =6 + 1. HaPPY-Mine
with Q > 0 has equilibria as follows with system hashrate Y, q; = H:
(a) if ¢ > 1/Q, there is a unique equilibrium with H = L < Q with

1
¢i = max(— (1 —¢;/c"),0)
c
(b)ifc* <1/Q < cf orc* <1/Q and m < §+1, there exists an equilibrium and
every equilibrium satisfies H = Q, with ¢; =0 for ¢; > 1/Q, and otherwise

1

m(@ Q) < ¢ <Q—a@?

(c)ifct <1/Q, m > d+1, there is a unique equilibrium with H = °*{ %6 > Q,

(V@
Qi —max(((er D ‘”{/E(l ¢i/c"),0)

Proof. The case ¢* > 1/@Q follows directly from Lemma 1. Next we consider
¢* <1/Q and m < § + 1. Since ¢* < 1/Q we know from Proposition 2 there is
no equilibrium at). ¢; < Q. For equilibria with . ¢; = H > @Q we need that

U!(q) = 0 for all miners who participate which gives us that ¢; = 2= [1—¢; HHI]

5+1 Qv I
Assuming only the first n miners participate, we get H = > " ¢; = > %[1 -
ch:l] We can simplify this to be HQCS? >re; =n—30—1 <0 which is not

satisfiable. The only option for equilibria is then for), ¢; = @ which we get from
Proposition 3 iff ﬁ[@ — Q%] < g < Q — Q%c; for all miners with ¢; < 1/Q.
Summing over all miners i < n s.t ¢; < 1/Q we get "‘T‘S_l <>e < %‘1 must
be satisfied. Notice that the left-most expression is negative so the left expression
is satisfied. We know ¢* < 1/Q thus X(1/Q) = 3.1 1 — ¢;Q > 1 which simplifies
to S e < % Finally for m > 6 + 1, the case for ¢* < 1/Q < ¢ follows from

Lemma 2 and the case for ¢! < 1/Q follows from Lemma 3. O

In the following two corollaries we examine how the equilibria of HaPPY-Mine
changes with the parameter § in terms of miner participation and the system
hashrate. In particular we show that any HaPPY-Mine equilibria has at least as
many miners participating (with at most the same system hashrate) as in the
static reward function equilibria.

Corollary 1. For any m miners with costs ¢y < co < ... < ¢y, HaPPY-Mine with
any Q,0 has equilibria with at least as many miners participating as the static
reward function. Furthermore, the number of miners participating in equilibria
for HaPPY-Mine monotonically increases in 9.

12 Lucianna Kiffer and Rajmohan Rajaraman

Proof. By the analysis of [4] under the simple proportional model, the static
reward function has a unique equilibrium with all miners whose cost ¢; < c*
participating s.t X (¢*) = 1. HaPPY-Mine has at least all the same miners partici-
pating in 3 scenarios: ¢; < ¢* for ¢* > 1/Q, ¢; < 1/Q for ¢* <1/Q and m < d+1
or 1/Q < ¢ and ¢; < ¢! for ¢/ < 1/Q where ¢* < cf, i.e. in all four cases, all
miners with ¢; < ¢* are participating and possibly additional miners.

For the general statement, take any §-HaPPY-Mine equilibrium. If ¢* > 1/Q,
regardless of how you change §, ¢* remains fixed so by Lemma 1, the equilibrium
remain the same with the same miners. Suppose instead ¢* < 1/Q < cf, as §
increases ¢! increases. Thus for a larger §, the equilibrium remains at >0 =Q
with the same miners of cost ¢; < 1/Q participating. If ¢/ < 1/Q, then since cf
acts as an upper-bound for which miners participate, as ¢ increases, this upper
bound increases. This upper bound caps at 1/@Q; then we switch to the second
equilibrium case where all miners with ¢; < 1/Q participate. a

Corollary 2. HaPPY-Mine has equilibria with hashrate at most that of the static
reward function. Furthermore, HaPPY-Mine equilibria hashrate is monotonically
non-increasing with an increase in §.

Proof. We prove the second part of the statement and note that the static reward
function is HaPPY-Mine with § = 0, so the first statement follows. Given a set of
costs, we consider the possible values of ¢* and ¢f. (a) If ¢* > 1/Q, then for any
§, H is always 1/c¢*. (b) If ¢* < 1/Q < ¢! for some §, then the equilibria hashrate
for that ¢ is H = Q. As § increases, the value of ¢ increases so the equilibrium
hashrate will continue to be @ for any & > 6. (c) If ¢/ < 1/Q for some 4, we
that H > @ and we have two cases to consider for ' > 4. Since ¢l increases as

§ increases, either it increases s.t. c,.,, becomes > 1/Q or m < ¢’ + 1, in either

case the new equilibrium hashrate would be H' = Q < H. The last case is that
ct<et,, <1/Q and m > ¢ + 1. In this case we first assume H < H', i.e.

new
Q5/(6+1)
(cH1/G6+1)
Qa’/(6’+1)Q5/(5+1)—6’/(6’+1)
(cH1/(6+1)
Q(S’/(6/+1)Q&/(6+1)76'/(6’+1)
2z (Clew)l/(gu)
Q% /(0'+1) Q%/(5+1)=8"/(8"+1)
:(cilew)l/(durl) (ijw)1/(5+1)—1/(5’+1)
Q(8=6")/(3+1)(&"+1)
(Cjww)(aua)/(aﬂ)(a'ﬂ)
H’< 1)(5'5)/(6+1)(5’+1)

CILer
>H' (cl @ < 1and § > 6)

(ct < cf

new)

HaPPY-Mine: Designing a Mining Reward Function 13

O

The previous corollaries together say that as § increases, the number of miners
who participate in equilibrium increases with the total hashrate of the system
at equilibrium decreasing. We now explore what the impact of this is on the
market share of miners. In particular we want to check that the new equilibrium
does not disproportionately advantage lower cost miners. Unfortunately we can’t
make such a strong statement, owing to the presence of multiple equilibria when
the sum of hashrates equals @. Instead, we get the following corollary which
states that for most cases, a miner’s relative market share to any higher-cost
miner does not go up. Formally, given two miners 7,j with costs ¢; < ¢; and
0 s.t. ¢i,q; > 0 at equilibrium (i.e. both miners participate at equilibrium), we
define the relative market share r;;() as follows. If >°.¢; # @, then there is
a unique equilibrium, so we define 7;;(J) to be ¢;/¢;. Otherwise, there may be
multiple equilibria and we define r;;(4) to be the ratio of the maximum value of
g; to the maximum value of ¢; in equilibrium (defining it to be the ratio of the
minimum values yields the same ratio).

Corollary 3. For any two miners i,j with costs ¢; < ¢;j, parameters 6,9’ such
that both miners participate in equilibrium at parameter 6, and §' > 0, r;;(8") is
at least 7;5(0).

Proof. Consider a miner who participates at equilibrium with a certain §. Given
a set of costs, we consider the possible values of ¢* and cf. (a) If ¢* > 1/Q, then
for any §, the equilibrium stays the same. (b) for ¢* < 1/Q < cf, any increase
in § does not change this inequality and thus the equilibrium conditions do not
change and thus maintain the same equilibria maximum and minimum ratios
(i.e. ryj(0) = r;;(0") for all 6") .

The only interesting case is thus (c) ¢/ < 1/Q, as § increases ¢ increases.

Given a ¢’ > §, we compare the relative market share of two miners 4, where

S— Ly
ci < ¢j as r;(0') = “pe="L which is decreasing with an increase in cf,, (i.e.

new
Cnew —Cj

increasing ¢'). Thus, while cf,.,, < 1/Q, a miner’s relative market share to any

higher cost miner is decreasing.
The only case left to consider is a ' > § s.t. cf.,, > 1/Q. The new equilibrium

new
hashrate ¢ for miners participating is bounded by 75(Q — ¢;:Q*) < ¢j < Q —

¢;Q?. If we compare q;,q; at the bounds we get r;;(0") = % which is less
J
1—c;/c"

than the old relative market share of 1= /C'f since ¢l < 1/Q. 0
J

5 Impact of Attacks and Currency on Equilibria

Our equilibrium analysis in Section 4 assumes that the number of miners and
their costs are known, and that the miner costs and rewards are in the same
currency unit. In this section, we analyze certain attacks and events that may
impact equilibria. We begin with the question: if miners are able to collude (two
miners pretend to be a single miner) or duplicate themselves (a single miner

14 Lucianna Kiffer and Rajmohan Rajaraman

pretends to be multiple miners), can they increase their own utility? In other
words, are HaPPY-Mine equilibria resistant to miner collusion and sybil strategies?
We show that HaPPY-Mine equilibria are resistant to collusion and Sybil attacks.
We also study the effect of variable coin market value when reward is given in
the coin of the blockchain. Due to space constraints, we state the main results
for collusion resistance and the effect of variable coin market value, and refer the
reader to Appendix C for Sybil resistance and the missing proofs in this section.

Collusion resistance. We consider the case of m homogeneous miners.

Lemma 4. Suppose m miners with uniform costs participate in HaPPY-Mine
with parameters §,Q. If k < m/2 of the miners collude and act as one miner (so
the game now has m — k + 1 miners), with each colluding miner receiving 1/k
of the colluding utility, the utility achieved in an equilibrium with collusion is at
most that achieved without collusion, assuming m is sufficiently large.

In the heterogeneous cost model, it is unclear what collusion would mean
for two miners with different costs, but one could imagine models where there
are some miners with the same cost and they choose to collude. We leave this
further analysis for future work. The general intuition we get from Lemma 4
is that with fewer miners, the equilibrium hashrate decreases thus the reward
may increase as the cost decreases. So for the miners who don’t collude, the
equilibrium utility increases. But for miners who collude, they must then share
the increased utility with all colluders, and it is unclear if the increase is enough
to make up for splitting the utility into k parts.

Variable Coin Market Value. In Section 4, we view the miner cost and reward
in terms of the same currency unit. In reality, the reward is given in the coin
of the blockchain being mined while cost is a real-world expense generally paid
in the currency of the country where the mining is taking place. To bridge this
gap we must understand how to convert real-world change in the price of the
cryptocurrency to the relationship between the reward and the cost to miners.

Consider the equilibrium analysis to be saying that a hashrate of 1 for miner
i costs ¢; unit of cost (say dollars) and that one coin of the reward has 1 unit of
worth (i.e. $1). Now, say the value of the currency changes by R, so one unit of
currency is now worth $ R. We are now interested in understanding what happens
to the equilibrium of the system, i.e. which miners would now participate at
equilibrium and with what hashrate?

Lemma 5. In the static-reward model, an increase in the value of the cryptocur-
rency by a factor of R results in a new equilibrium strategy where the same miners
participate with Rq; hashrate where q; is the previous equilibrium hashrate. The
new system hashrate thus increases by a factor of R.

Lemma 6. In HaPPY-Mine, an increase in the value of the cryptocurrency by a
factor of R results in the participation cost threshold to increase (allowing higher
cost miners to participate), and the system hashrate to increase by a factor of R
until it reaches Q, then increase by a factor of *V/R.

HaPPY-Mine: Designing a Mining Reward Function 15
6 Discussion

In this paper we’ve presented a novel family of mining reward functions which
adjust to the hashrate of the system. Our functions fall in the class of gen-
eralized proportional allocation rules of [9] and thus inherit the properties of
non-negativity, weak budget-balance, symmetry, sybil-proofness and collusion-
proofness. These properties are defined based solely on the expectation of the
reward of a miner and not under any equilibrium. In this work we’ve shown that
for all @ > 0 and § > 0 HaPPY-Mine has an equilibrium at a unique hashrate and
set of miners, and if that hashrate is equal to @) there may be multiple equilibria
at Q. We further show that the equilibrium includes at least as many miners as
the static-reward function and is at a hashrate at most that for the static-reward
function. We also discuss collusion and sybil-proofness in equilibrium and that
as the market value of the coin increases, the equilibrium shifts to include more
miners at an increased hashrate that is sub-linear in the value of the coin af-
ter the system hashrate surpasses @ (unlike the static-reward function whose
equilibrium hashrate increases linearly indefinitely).

We show that by relaxing the budget-balance property from [9], we are able
to improve upon fairness properties of a mining reward function. A question
for future work is whether we can generalize this into an axiomatic framework
for mining reward fairness and if there exists other functions in the generalized
proportional allocation family that can improve upon our fairness results.
Long-term dynamics. As our analysis focuses on equilibria, a natural question
to ask is whether we introduce any unfavorable long-term dynamics by pegging
our reward to the system hashrate. One such concern is on the control of supply of
the system. Two current versions of coin issuance are the Bitcoin and Ethereum
models. In Bitcoin the reward per block halves every 210K blocks (approximately
every 4 years until it is 0), so that half the total supply ever was mined in the
first 4 years. In Ethereum the block reward is set at 5 Ethers so that the total
supply will never be capped. Our proposed model is novel in that assuming a
steady increase in hashrate, the issuance will decrease smoothly over time. The
rate of decrease, J, is a parameter set by the system designer.

In the start of any new cryptocurrency the coins have no value, thus the
miners that initially mine are speculating that the coins will have value in the
future making up for the cost. During this time the hashrate is generally low so
the existing miners do not incur much cost. When the currency does have more
value, it appears older coins were mined for “cheap”. One could argue that those
early miners mine speculatively, and for systems whose coin reward goes down
over time, early miners may also control a large portion of the supply. The steeper
the decline in the reward, the larger fraction of supply early miners control. As
an example, it is estimated that the creator of Bitcoin, Satoshi Nakamoto, and
assumed first miner, holds approximately 1 million Bitcoins 2, about 5% of the
total supply ever, probably mined at a cost of only a few dollars [17,13].

2 currently valued at 10 billion Dollars but which have never been spent and are
assumed to stay out of circulation

16 Lucianna Kiffer and Rajmohan Rajaraman

As a currency grows in value, new miners are incentivized to start mining in
the system until the cost to mine a block becomes close to the value of the reward
for that block. Since the total supply of the currency is tied to the hashrate
we get the interesting phenomena that as the system gains users (miners) the
projected total supply decreases, but inversely, if the system decreases in value
and starts to lose miners, HaPPY-Mine works a bit like a fail safe where the
reward will increase and hopefully aid in incentivizing the remaining miners to
stay, stabilizing the value of the system as opposed to a death spiral of miners
leaving and the reward just losing value. In this paper, we model the utility of
the miner as the per-block profit. To understand the long-term dynamics at play,
a future analysis of the evolving game should incorporate market share into the
utility of the miner and its impact on market centralization.

Setting @ and § We show that an increase in § comes with an increase in good
decentralization properties we want, like more miners mining at equilibrium and
big miners joining with less hashrate. The more you increase é however, the
more constrained the issuance of the currency becomes, which could lead to
centralization in the market control to early adopters. Setting 2 and ¢ is thus a
balancing game and involves practical considerations.

The § exponent in HaPPY-Mine controls how quickly the block reward declines.
A low § would correspond to a gradual decrease in the block reward as the
hashrate increases.) is the threshold from which point the reward starts to
decrease. One way to think of @) is as a security lower-bound for the system.
When the hashrate reaches @), any additional hashrate would lower the reward.
A system designer should then choose a @ based on the mining hardware of the
system (e.g. ASICs,GPUs, etc.) and some understanding of likely advancements
in its performance and choose @) to be a conservative bound on the cost to amass
enough hardware to attack the system (e.g. a 51% attack). Based on this and
the issuance rate the system designer is targeting a § can be set.

Since any change to parameters in blockchain systems generally require a
hardfork in the code, i.e. a change that breaks consensus between adopters and
non-adopters, the Bitcoin model of blockchain software development is to avoid
such changes unless absolutely critical. Other, more expressive systems (e.g.
Ethereum and Zcash), have relied on hardforks to implement changes and in-
crease functionality on a more regular basis. Though setting @ and § could be
thoughtfully done only once in the inception of a new system, another approach
would be to periodically update their values if the system’s growth (both miner
hashrate and value of the currency) is not within the predicted bounds. One such
concern would be if the target hashrate () underestimated the growth of the sys-
tem hashrate and thus stagnating the cost to attack the system. It would then
be incentive compatible to increase @) as it would incentivize higher hashrates
(increase security) while also increasing the reward for the miners. One idea is
to set @ based on a long-term expected growth and have periodic updates (on
the scale of years) to adjust @ based on miner increase and mining hardware
trends.

HaPPY-Mine: Designing a Mining Reward Function 17

7 Related work

In this paper we’ve provided an equilibrium analysis of HaPPY-Mine, a new fam-
ily of mining reward functions pegged to the network hashrate. As stated above,
HaPPY-Mine is an example of the generalized proportional model of [9]. We com-
pare HaPPY-Mine with the equilibrium of the static reward function of [4] asso-
ciated with most cryptocurrencies. Other papers have looked at different games
involved in mining including the game between participants in mining pools and
different reward functions for how the pool rewards are allocated [19]. In [16],
the authors present a continuous mean-field game for bitcoin mining which cap-
tures how miner wealth and strategies evolve over time. They are able to capture
the “rich get richer” effect of initial wealth disparities leading to greater reward
imbalances. [12] models the blockchain protocol as a game between users generat-
ing transactions with fees and miners collecting those fees and the block reward.
They show if there is no block reward, then there is an equilibria of transaction
fee and miner hashrate. Higher fees incentivize higher miner hashrate which leads
to smaller block times (in between difficulty adjustments). When you introduce
a high static block reward, the users may no longer be incentivized to introduce
mining fees and there may no longer be an equilibrium.

In contrast, [8] also studies the case where there is no block reward, and
analyzes new games in which miners may use transactions left in the mempool
(pending transactions) to incentivize other miners to join their fork. Another
work exploring the mining game when there is no block reward is that of [20]
who introduce the gap game to study how miners choose periods of times when
not to mine (gaps) as they await more transactions (and their fees). They show
that gap strategies are not homogeneous for same cost miners and that the game
incentivizes miner coalitions reducing the decentralization of the system.

Previous work on rational attacks in cryptocurrency mining includes [5] who
study the security of Bitcoin mining under rational adversaries using the Ratio-
nal Protocol Design framework of [10] as a rational-cryptographic game. Also,
[6] who analyze the Bitcoin mining game as a sequential game with imperfect
information, and [18] analyze selfish mining by looking at the minimal fraction of
resources required for a profitable attack, tightening the previous lower-bounds
and further extending the analysis to show how network delays further lower
the computational threshold to attack. In [14], the authors explore the game of
Bitcoin mining cost and reward focusing on incentives to participate honestly.
They outline the choices different players can make in a blockchain system and
their possible consequences, but their analysis does not take into account block
withholding attacks. Another work related to the incentives at play in cryptocur-
rency mining is [7] which looks at the coordination game of Bitcoin miners in
choosing which fork to build on when mining. They find the longest chain rule
is a Markov Perfect equilibrium strategy in a synchronous network and explore
other miner strategies, some that result in persistent forks.

18

Lucianna Kiffer and Rajmohan Rajaraman

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

Here’s how much it costs to mine a single bitcoin in your coun-
try. https://www.marketwatch.com/story /heres-how-much-it-costs-to-mine-a-
single-bitcoin-in-your-country-2018-03-06.

Pool distribution. https://btc.com/stats/pool?pool_-mode=month3.

Top 25 miners by blocks. https://etherscan.io/stat/miner?blocktype=blocks.
Nick Arnosti and S Matthew Weinberg. Bitcoin: A natural oligopoly. In 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Christian Badertscher, Juan Garay, Ueli Maurer, Daniel Tschudi, and Vassilis
Zikas. But why does it work? a rational protocol design treatment of bitcoin.
In Annual international conference on the theory and applications of cryptographic
techniques, pages 34-65. Springer, 2018.

Juan Beccuti, Christian Jaag, et al. The bitcoin mining game: On the optimality of
honesty in proof-of-work consensus mechanism. Swiss Economics Working Paper
0060, 2017.

Bruno Biais, Christophe Bisiere, Matthieu Bouvard, and Catherine Casamatta.
The blockchain folk theorem. The Review of Financial Studies, 32(5):1662-1715,
2019.

Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On
the instability of bitcoin without the block reward. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 154-167,
2016.

Xi Chen, Christos Papadimitriou, and Tim Roughgarden. An axiomatic approach
to block rewards. In Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, pages 124-131, 2019.

Juan Garay, Jonathan Katz, Ueli Maurer, Bjéorn Tackmann, and Vassilis Zikas.
Rational protocol design: Cryptography against incentive-driven adversaries. In
2013 IEEE 5jth Annual Symposium on Foundations of Computer Science, pages
648-657. IEEE, 2013.

Arthur Gervais, Ghassan O Karame, Vedran Capkun, and Srdjan Capkun. ”is
bitcoin a decentralized currency?”. IEEE security & privacy, 12(3):54-60, 2014.
Engin Iyidogan. An equilibrium model of blockchain-based cryptocurrencies. Avail-
able at SSRN 3152803, 2019.

Will Kenton. Satoshi Nakamoto. https://www.investopedia.com/terms/s/satoshi-
nakamoto.asp.

Joshua A Kroll, Ilan C Davey, and Edward W Felten. The economics of bitcoin
mining, or bitcoin in the presence of adversaries. In Proceedings of WEIS, volume
2013, page 11, 2013.

Nikos Leonardos, Stefanos Leonardos, and Georgios Piliouras. ”oceanic games:
Centralization risks and incentives in blockchain mining”. In Mathematical Re-
search for Blockchain Economy, pages 183-199. Springer, 2020.

Zongxi Li, A Max Reppen, and Ronnie Sircar. A mean field games model for
cryptocurrency mining. arXiv preprint arXiv:1912.01952, 2019.

Jamie Redman. Bitcoin’s early days: How crypto’s past is much different than the
present. https://news.bitcoin.com/bitcoins-early-days-how-cryptos-past-is-much-
different-than-the-present/.

Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 515-532. Springer, 2016.

HaPPY-Mine: Designing a Mining Reward Function 19

19. Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive
compatibility of bitcoin mining pool reward functions. In International Conference
on Financial Cryptography and Data Security, pages 477-498. Springer, 2016.

20. Itay Tsabary and Ittay Eyal. The gap game. In Proceedings of the 2018 ACM
SIGSAC conference on Computer and Communications Security, pages 713-728,
2018.

Appendix

A Proof of Proposition 1

Proof. First take the derivative of U;(q) w.r.t. ¢; and get

WUi(q) _ (6 +1)°"" — (1 +0)(q: +1)° R Sk L R
0q; (q; +1)200+D (g 102

We set it equal to 0 and get that for 0 < ¢; < 1 the only maxima is at ¢; =

% with ¢;0 < 1. Taking the second derivative we get

82Ui(q) . qi52 4+ q;0 —20 —2
dq; (e +1)F

so we get that the function is concave (828(]7;2@) < 0) for ¢;6 < 2, establishing (1).
£ 9Uil(a) '
0q;

For (2) we take the derivative o w.r.t. 6 and get

PUilg) (@+1)°"2(—q) —(1—q:6) m(1+q:)(gi + 1) —gi+ (¢:6 — 1)In(g; + 1)

04,06 (gi + 1)20+2) (gi 7 1)o+2
which we want to show is negative so we get
—¢;i + (g0 —1)In(g; +1) <0

which is negative at the maxima since ¢;0 < 1. a

B Hash-Pegged Reward Equilibrium Examples

General 2 miner example In this example we set § = 1 and @ = 1 and
have 2 miners with costs ¢1,c s.t. ¢; < co. First we solve for ¢* s.t. X(c¢*) =
Yo, max(l —¢;/c*,0) = 1. We get that ¢* = ¢ + ca.

First, if % = cliq < @ =1,ie. c; +cy > 1 then we can use the analysis of

[4] and get that g1 = = (1 —c1/(c1 + ¢2)) and g2 = (1 — ca/(c1 + 2))
with q1 +q2 = c1tca

Next we analyze the case where ¢; + ¢y < 1. First assume that in equilibrium
q1 + g2 > @ =1 with g1, g2 > 0. We have that

Ul(g) = q1 + g2 — 2g;

. — C; = O
‘ (1 +q2)3 '

20 Lucianna Kiffer and Rajmohan Rajaraman

and so

5 — _92—q1 — _91—G2 3 32=q91 _ 91—G2
S0 €1 = (q1+4q2)° and ¢ = (g1+4q2)3 therefore (Q1 + q2) c1 c2

q1 = go2. This could only happen if ¢; = ¢co = ¢. If so you have that the utility
for both miners is U;(q) = 1/q — c¢q and U/(q) = —1/¢*> — c i.e. the utility is
decreasing and would be maximized at the smallest ¢ which is ¢ < .5 since we
assumed g1 + g2 > 1. Thus there is no equilibrium with this assumption.
Finally, we check the other case for ¢; + co < 1 which is that any equilibrium
strategy has q; + ¢ = @ = 1. Assume an equilibrium strategy where miner 1
puts in o and miner 2 puts in 8 hashrate. We get that U; = —cia + /(o + B3)
and the derivative w.r.t. ais U] = —¢1 + /(o + B)%. With a4+ 8 = 1 we get
U! = 8 — ¢1 which is only non-negative if & < 1 — ¢;. Doing the same with Us
w.r.t 8 we get that § < 1—co. Assuming a+3 > 1 we get Uy = —c1+a/(a+p)?
and the derivative w.r.t. ais Uy = —¢1 + W - (aJrﬂ)s and if we set a+3 =1
we get o > % Doing the same with Us w.r.t S we get g > IT@ Putting
both bounds together we get that there are possibly many equilibrium strategies
Wherea—i—ﬁ:lwithl_TclSaSl—cl andl_%gﬁgl—cz

Example with ¢; = z-i%l We now consider the case of cost function ¢; = zﬁ
still considering 6 = @ = 1. This case is interesting because we can solve for
¢t = 43 ~ 88. This means that in the case of fixed reward, only the first

560
7 miners participate in equilibrium. Since this means 1/c¢* > @ = 1, the old

equilibrium point would now have less reward and thus may no longer be the
equilibrium point.

To see this let’s take the case where the lowest cost miner (i.e. miner i = 1
with cost 0.5) is deciding how much hashrate to buy knowing all other miners
are using the old equilibrium strategy of ¢; = ci max(l—¢;/c*,0) = % max(1—
¢ *560/493,0). So we have that the current sum of hashrate is

g i i % 560 560 2 3 4 5 7

6
_ St I 2 2 X 064513T4< Q=1
(i+1)493 93371t 5 57 8 N

This makes miner 1’s utility function:

Ul (q) H+q1 - 5Q1 if q1 S 1-H
(H+q1)2 —.5¢1 o/w

The old equilibrium strategy would have g; = igg (1 —.5560493) ~ 0.490765
giving utility Uy (q) =~ 0.134974. However, if we take ¢ = 1 — H we get a higher
utility of Uy (g) = 0.1774312, thus the old strategy doesn’t work.

In the old strategy only the first 7 miners would participate in equilibrium,
the next question is if this is still the case with the hash-pegged mining reward
function. Let’s assume the equilibrium point is at ;4 =1 and not all miners

participate at equilibrium. Take a miner ¢ who does not participate, this means

qi

—¢iq; <0

HaPPY-Mine: Designing a Mining Reward Function 21

which implies

1
i(——= —¢) <0 thus ¢; > —
QZ((I +q2)2 l) — (R (1 +qz)2
which for ¢; = 0 means ¢; > 1 but ¢; = w%l < 1 for all i. Thus if there is an
equilibrium strategy with ;4 =1, all miners would participate.
We follow this and assume there is an equilibrium strategy with) ;4 =1
for n miners. Taking the derivative of the utility for a miner i we get that at

equilibrium we have

Ul(g) = 1—¢—c¢; >0 forzjqjgl
' 1—-2¢ —¢; <0 forzjqj21

Using the bottom inequality we get for and equilibrium strategy, for each i

we have ¢q; > %(1 — ¢;). Summing up the lower bound for each ¢; gives us

that 1 = Z? q; > %Z? lJ%l which can only hold for n < 10. For n > 10, an
equilibrium strategy must thus have that 3 ;4 > 1, we analyze this next.
Since >, q; > 1 we can take the utility function U;(q) = (Zq#)g — ¢;q; with
39

derivative U/(q) = ﬁ(zj ¢; — 2q;) — ¢;. Assuming only the first n miners
§ 9

participate at equilibrium, set H = ;4 >1 and solve the ¢; for i < n, we get
1 i

—(H —2g;) — -
7R “W =51 =0

H
¢ = ?(1 — H?¢)

Summing over all ¢; for i < n we get

-2
H= |
2=t
So the equilibrium strategy has
1 n—2 (n—2)i

)

2\ Yo7 >im1 i+ 1)

for all miners that participate in equilibrium. We can iterate over n to find that
with this strategy, equilibrium exists with n = 25.

All miners have cost ¢ The next example we consider is the case of homo-

geneous cost with m miners with cost ¢. For this case we will use @ = 1 and

HaPPY-Mine with any 6. We can solve for ¢* s.t. X(c*) =), max(1 —¢/c*,0) =

m(l—c/c*) =1, we get ¢* = 25 For £ < Q =1 (i.e. ¢ > ™=1) we can use the
1

analysis of [4] and get that ¢; = - (1—c¢/c*) = 25t with), ¢; = 221 <Q = 1.

mc

22 Lucianna Kiffer and Rajmohan Rajaraman

We next consider the other case, i.e. ¢ < % = mTfl < 1. We first con-

sider the case of 37, ¢; > @ = 1. We get the following utility function U;(q) =
W — cq; with derivative

, g5 —(0+1)g
Ui (q) = Z](‘sz qi');Q)

—C

setting this equal to 0 with a homogeneous strategy we get ¢; = % KRy, m%g;l.

With this we get that >, ¢ = “\1/’”;73;1. For this to be > 1 we get that
c < m=9=1

m
Finally we consider the final case where m’n‘i’l <c< mT’l The only strategy

left if for H = > ;4= @@ = 1. Lets consider the case where all but one miner

invest %, the utility function for that last miner is thus

L({i+qi — cq; if g; <1/m
Uiy = e
gy~ o a2 1/m

we take the derivative w.r.t. ¢;

m—1

s — C ifg; <1/m

= —0q; .

m—1

For ¢; < 1/m we have that U/(q) = ﬁ —c¢> ™= — ¢ > 0 since
" me s
¢ < 221 For ¢; > 1/m we have that U/(q) = 7(Lﬂ+qf)q§+l —e< M=l 0 <0

since ¢ > L‘i’l. Thus U/ is positive for ¢; < 1/m and negative for ¢; > 1/m

therefore the equilibrium strategy of miner i is ¢; = 1/n.

With the static reward function, the equilibrium hashrate of the system is
> 4 = 1/c¢* = =L With HaPPY-Mine, we have 3 cases: (i) if ¢ > Z=1, then the
equilibrium hash-rate is the same as the static reward function, (ii) if m_T‘S_l <

c < mT’l then the equilibrium hashrate is Q = 1 < mm—*cl = the static reward

hashrate. Finally, (iii) if ¢ < m’T‘H, then the equilibrium system hashrate is
“@ <1l< "Z—;Ll Thus, given a ¢, HaPPY-Mine with any § has equilibria

with system hashrate less than or equal to the static reward equilibria.

C Proofs for Section 5

Resistance to collusion attacks.
Proof of Lemma 4: From Theorem 1 we take ¢* s.t. X(c*) = 1 and ¢' s.t.
X(c') =2 and get

cm

m—1 m—3§—1

HaPPY-Mine: Designing a Mining Reward Function 23

We now have 3 non-collusion equilibrium cases to compare against: ¢* > 1/Q,
¢ <1/Q <clfand cf >1/Q:

Case 1 (c* > 1/Q) We have that “™: > 1/Q meaning that at equilibrium

Dot = i < Q with U;(q) = i for all miners. Now consider that k& miners

collude so that there are now k— n—l—l miners. We have that ¢*_, = M > =

new —k
since c},.,, is increasing in k. Thus the new equilibrium utility for the colluders
is

w

1

Uir(q) = Em—k4 12

We check if U; 1(q) > U;(q) and get
1
kZm—§\/4m+1—|—l/2>m/2

meaning a majority of miners must collude for there to be a non-negative utility
gain.

Case 2 (c* < 1/Q < c¢f) We first note that ¢* = - < 1/Q means that ¢ < 1/Q

(m—k+1 —k+1
and m > ——. Next we note that ¢, = % and ¢, = % are
1ncreas1ng as k increases. Thus it will never be the case that cf_,, < 1/Q. We

must thus consider just two cases (i) ¢f.,, < 1/Q < cl., and (i) ¢, > 1/Q.
We compare the collusion utility with each miner’s utility before collusion which

is Ui(q) = (1 - cQ).

(i) ¢ ow < 1/Q < ¢l ., Since the miners are still in the equilibrium regime

such that the sum of hash rates will be Q, we get the new equilibrium for each

miner that colludes to be U; p = (%)m T +1(¢@). Comparing this to their

non-colluding equilibrium, we get that collusion is only beneficial if

N N
k'm—-—k+1

(k—m)(k—1)>0

which is never true for m > k > 1, thus collusion is not beneficial.

(ii) ¢ new > 1/Q. The new utility for the miners that collude is U; x(q) =
(%)(m e Note the non-colluding utility is U;(q) = L1 (1 — cQ) > # since
m 2> 1= CQ We are interested if U; 1 (q) > U;(q), i.e
1 1 1
- 1 _ -

which we saw from Case I is not satisfiable for k£ < m/2.

24 Lucianna Kiffer and Rajmohan Rajaraman

Case 3 (c < 1/Q) We start with the utility for each miner without collusion to
541/

be U;(q) = (Hl)ié?_ff(l —c/ch) (et —¢). As with case 2, since ¢* < 1/Q we know

¢ < 1/Q, and for ¢! to be defined it must be that m > §+1. We now must handle

each case for the collusion equilibrium (i) cf ., < 1/Q (ii) ¢} < 1/Q < ¢ .0

and (iil) ¢}, > 1/Q. [note: we also have that ¢ < <

m—1—c]

14cQ
(i) el .., < 1/Q. The collusion equilibrium is thus
1 e
Ui,k(q) = % S+1/ 7 (1 - C/c;rlew)(ciww - C)
(5 + 1) V Cnew
letting cf_,, = % we can re-write the utility as

_(6+1) 4, Qc
Ui,k(Q)— L \/(m—k+1)6+2(m—k—6)5'

Note that for small k& the denominator is increasing (U; 1 (¢) is decreasing) and
that for k& < m it will either keep increasing or flip once to decreasing. We thus
check if U; 1, (q) for k = m/2 is larger than for k = 1(non-collusion):

(5 + 1) S5+1 Q606 S+1 Q666
m/2 \/(m/z T2(mz —op = O+ \/<m)6+2(m =)

which simplifies to

20D m(m —1—6)° > (m+2)2(m — 26)°.

The above inequality fails to hold if m is large enough, i.e., if m > 2§ + 8.
(ii) ¢*,,, <1/Q < c! ... The new utility with collusion is

1
U; = ——(1- .
From ¢, > 1/Q for any k we get that ﬁ > mg_ff'l and c@ > Z:Z;‘f We

substitute those and obtain the following condition for collusion.
m?T2(m —1-0)° >k (m — k+ 1) 2(m — k — 6)°

For m sufficiently large, the RHS of the above inequality is minimized at k = 2;
this implies that the above inequality cannot hold as long m > 6 + 9.

(iii) ¢ > 1/Q. We have that the new utility is U, j, = m,
the following condition for collusion.

implying

1 541 Q665
R —hy1z 20D \/(m)6+2(m 1)y

m6+2(m _1— 5)6 > k_é—‘rl(m —k+ 1)5+2(m _ k)é

HaPPY-Mine: Designing a Mining Reward Function 25

This condition is weaker than the one derived for (ii); so we again obtain that
collusion cannot occur as long as m > § + 9.

O
Resistance to Sybil attacks. First, we consider a Sybil attack in the static
reward case where one miner pretends to be k& miners. Instead of utility U; = #,

this miner would get utility Us = km We want to solve for the case when

U, < U

i<k;
m? (m+k—1)2

E<m?—2m+1

it is thus more profitable to pretend to be multiple miners and arrive at an
equilibrium with higher total hashrate and utility. Taking U; = m we get

’

U, = % which is maximized at k = m — 1, i.e. the miner gets most utility
being m miners.

If it is optimal for a single miner, then each miner may want to optimize their
utility this way. We now consider a new game where we begin with m players
each with cost ¢ and each player i decides how many miners k; they want to
be and the hashrate ¢; ; for j € [1,k] each miner will have. Note that each
miner needs to act independently to arrive at a globally optimal equilibrium as
described above.

If there are N other miners, player i will choose k miners s.t.

k

Vi= wswmpe

is maximized. Taking the derivative of the utility we get

g Nk
(N + k)3
which is maximized at k = N.

Say all players choose the same number of miners then they would be trying to
maximize U; = W = ﬁ which maximized at the minimum k values which
is 1. But each player individually would choose £ = N for each N meaning that
the game would continue indefinitely with each player continuous choosing to
match the total number of other players which locally increases their utility but
brings the game to each miner’s utility approaching 0.

This is an example of the tragedy of the commons, where each player lo-
cally optimizing brings the utility of the whole system (and themselves) to it’s
minimum.

The problem with the above game is that we are considering the case where
a player chooses a k based on their equilibrium utility with that k. In actuality,
if a player has a single miner and the game is in equilibrium with their hashrate
being ¢ and all other players hashrate summing to H, if this player at that

26 Lucianna Kiffer and Rajmohan Rajaraman

moment pretended to instead be k miners with some ¢; hashrate for each of it’s
miners j s.t. Z]. g; = ¢ their utility would be

1 1
U:ZQj(m—C)ZQ(q+H—C)
J

i.e. their utility in the moment does not change. This same logic applies to the
hash-pegged utility case. In fact, if there is any overhead to Sybil, then there is
no reason to do a Sybil.

Variable Coin Market Value. Proof of Lemma 5: Consider first the static
reward function with the block reward being $1. In this model, the equilibria
has system hashrate H = 1/c¢*, and all miners with ¢; < ¢* participate with
hashrate ¢; = L (1 — ¢;/c*) and utility U;(q) = (1 — ¢;/c*)%

Say the block reward is now worth $R, the new utility is U/**"(q) = % —

qic;i = R[ﬁ — ¢;ci/R]. Let c'*" = ¢;/R, the utility is U (q) = R[ﬁ -
R 393
g;c™], since R is just an outside multiple, this utility has the same equilibria

as y;qj — qic;”. Thus we can solve for c;,, s.t. 3, max(1 — ¢ /c;.,,) = 1

and get that ¢, = ¢*/R. We thus get that the new system hashrate is H =

new
C*l = R/c* and all of the same miners participate with ¢** = R % ¢; and

uﬁlwity Ur*(q) = R x U;(q). Thus in the static reward case, all of the same
miners participate with R times the hashrate and utility. a
Proof of Lemma 6: With HaPPY-Mine, we get that the new utility is

new Rx [qu% o qiczlew] if Zj 4qj S Q
Ui (q) = R * [qu (Q)6 . new] /
=0\ T 4G orv
Like in Lemma 5, we get that ¢, = ¢*/R and similarly ¢, = cf/R. The

difference is how these two new values compare with 1/Q which decides which
case of the equilibria we end up in. For R > 1, we get the following cases:
(i) If ¢ < 1/Q, then we remain in the case where the equilibria hashrate is

> @ but it goes from H = °% %5 to Hpew = "1 %, with the same miners

participating.
(ii) If ¢* < 1/Q < ¢!, then we have two possibilities: If ¢¥,,, < 1/Q < cf..,,, then

the equilibria still has hashrate @ but now with all miners with ¢;/R < 1/Q
participating which could include more miners. The second case is that now

el < 1/Q, we get that the new system hashrate is H = °* % > @ and all

miners with hashrate ¢; < ¢! participate which is strictly greater than or equal
to the number of miners participating before.

(iii) If ¢* > 1/Q, we get the last case which includes 3 possibilities. First, if
Chow > 1/Q then we remain with the system hashrate less than @ (though R
times what it was before) and we get the case of the static reward function where
the same miners participate but now with R the hashrate and utility. The second

case is that now ¢}, < 1/Q < ¢!, meaning the equilibrium system hashrate

HaPPY-Mine: Designing a Mining Reward Function 27

is @ and all miners with ¢;/R < 1/Q participate which is at least as many as
before since cf,,,, < 1/Q means ¢* < R/Q. The last case is that now cf,.,, > 1/Q
so the system hashrate is now over Q and all miners with ¢; < ¢! participate
which is again at least as many miners as before. a

Thus what we get is that as the value of the currency (and therefore the
value of the block reward) increases, the HaPPY-Mine equilibrium shifts so that
the cut-off cost for miner participation increases. We also get an equilibrium
system hashrate increase, which is linear in R until the system hashrate reaches

the bound @ then it becomes linear in **V/R.

