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Abstract
It is a pleasure to congratulate Ni et al. (Stat Methods Appl 490:1–32, 2021) on the

recent advances in Bayesian graphical models reviewed in Ni et al. (Stat Methods

Appl 490:1–32, 2021). The authors have given considerable thought to the con-

struction and estimation of Bayesian graphical models that capture salient features

of biological networks. My discussion focuses on computational challenges and

opportunities along with priors, pointing out limitations of the Markov random field

priors reviewed in Ni et al. (Stat Methods Appl 490:1–32, 2021) and exploring

possible generalizations that capture additional features of conditional independence

graphs, such as hub structure and clustering. I conclude with a short discussion of

the intersection of graphical models and random graph models.

Keywords Graphical models � Random graphs � Random graph priors � Nodewise

regression

1 Priors: generalizations of Markov random graph priors

I agree with Ni et al. (2021) that two important advantages of a Bayesian approach

are the ability to incorporate prior knowledge and provide a natural measure of

uncertainty about unknown quantities of interest, including the conditional

independence graphs of graphical models (Lauritzen 1996; Maathuis et al. 2019).

Having said that, the Markov random field priors reviewed in Ni et al. (2021) have

limitations. I single out two of them and explore possible generalizations that

capture additional features of conditional independence graphs, such as hub

structure and clustering.
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1.1 Markov random graph priors

The Markov random field priors reviewed in Ni et al. (2021), proposed by Peterson

et al. (2015) and others, assume that the prior probability of the conditional

independence graphs G1; . . .;GK of groups of subjects 1; . . .;K is proportional to

PðG1; . . .; GK j m; HÞ /
Yp

i\j

exp mi;j
XK

k¼1

gk;ij þ
XK

k¼1

XK

l¼1

hkl gk;ij gl;ij

 !
: ð1Þ

While Ni et al. (2021)—in line with Peterson et al. (2015)—call such priors Markov

random field priors, it would be more appropriate to call them Markov random

graph priors, because such priors are distributions on sets of graphs with Markov

properties (Frank and Strauss 1986; Lauritzen et al. 2018). To be sure, Markov

random fields and Markov random graphs have common ancestors in the form of

Markov random fields in spatial statistics (Bartlett 1955; Whittle 1963; Besag 1974),

but linking such priors to Markov random graphs opens the door to constructing

more sophisticated priors that capture additional features of conditional indepen-

dence graphs, such as hub structure and clustering. To explore Markov random

graph priors and possible generalizations in more depth, let me first point out two

implicit assumptions made by the Markov random graph priors reviewed in Ni et al.

(2021).

1.2 Assumption 1: between-group dependence and within-group
independence

While accomplishing the stated goal of encouraging a connection between two

variables i and j in the conditional independence graph of group k if the same

connection is present in the conditional independence graphs of related groups

l 6¼ k, the Markov random graph priors reviewed in Ni et al. (2021) assume that the

conditional probability of the event that there exists an edge between two variables i
and j in group k, given everything else, does not depend on the absence or presence

of edges between other pairs of variables:

Pðgk;ij ¼ 1 j everything elseÞ / exp mi;j þ
XK

l 6¼k

hkl gl;ij

 !
: ð2Þ

The assumption of within-group independence is restrictive, because data on net-

works have revealed that connections tend to depend on other connections. As a

case in point, it is not credible that connections between regions of the human brain

are independent, because complex tasks such as walking, writing, and performing

mathematical operations may require the coordination of multiple brain regions.

1.3 Assumption 2: short-tailed degree distributions

The assumption of within-group independence and the absence of model

components that encourage other relevant features of conditional independence
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graphs suggests that the model does not capture many relevant features of

conditional independence graphs, such as hub structure. If conditional independence

graphs contain hubs, their degree distributions are long-tailed rather than short-

tailed. Therefore, priors should accommodate both short- and long-tailed degree

distributions.

1.4 Generalizations of Markov random graph priors I: hub structure
and clustering

Markov random graph priors are special cases of exponential-family random graph

priors, which provide a large and flexible class of priors on sets of graphs with

convenient properties (Schweinberger et al. 2020). The class of exponential-family

random graph priors constitutes a natural class of priors, because graphical models

and exponential-family random graph priors have common ancestors in the form of

Markov random fields in spatial statistics (Besag 1974) and share the same

mathematical platform: the statistical exponential-family platform (Sundberg 2019).

One of the greatest advantages of exponential-family random graph priors is the

fact that within-group dependence can be captured along with addititional features

of conditional independence graphs, such as hub structure and clustering. For

example, using an exponential-family model with the degrees of nodes as sufficient

statistics along with Dirichlet process priors, Schweinberger et al. (2021) con-

structed a flexible semiparametric Bayesian model that allows some of the nodes to

have many connections while others have few connections. Exponential-family

random graph priors capturing hub structure along with between- and within-group

dependence can be constructed along similar lines, and provide a Bayesian

alternative to the non-Bayesian approach of Mohan et al. (2014). An additional

feature of many networks is clustering, which can likewise be captured by

exponential-family random graph priors. The literature on exponential-family

random graphs provides valuable lessons on how to capture such features of

conditional independence graphs through exponential-family random graph priors

(Hunter et al. 2012; Lusher et al. 2013; Schweinberger et al. 2020).

1.5 Generalizations of Markov random graph priors II: groups of different
sizes

Exponential-family random priors open the door to weakening other assumptions

made in Ni et al. (2021), e.g., the assumption that the number of variables p is

constant across all groups of subjects. If the groups of subjects correspond to

patients in various stages of a disease and different stages of the disease are driven

by different genes, the assumption that the number of variables is constant across all

stages of the disease may be restrictive. Constructing models that allow the number

of variables to vary according to the stage of the disease would be interesting, but

gives rise to additional challenges: e.g., if edges are assumed to be independent

BernoulliðlÞ random variables and l 2 ð0; 1Þ does not depend on the number of

nodes, the expected degrees of nodes grow with the number of nodes. In the

applications considered in Ni et al. (2021), the expected degrees of nodes in the
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conditional independence graph of group k would depend on the number of nodes in

the conditional independence graph of group k, which may be an untenable

assumption. It would be more reasonable to assume that the expected degrees of

nodes are invariant to the number of nodes in the conditional independence graphs

of the groups. Exponential-family random graph priors with such invariance

properties have been proposed in the literature on exponential-family random

graphs (Krivitsky et al. 2011; Krivitsky and Kolaczyk 2015; Butts and Almquist

2015). Exponential-family random graph priors with other invariance properties can

likewise be constructed.

2 Computational challenges and opportunities

While some scalable approaches to Bayesian inference for graphical models have

been explored (e.g., Tan et al. 2017; Li et al. 2020), scalable Bayesian inference

remains an open problem. I highlight two interesting directions for future research.

The first one is a Bayesian approach adapting the main ideas of the ‘1-penalized

nodewise regression approach of Meinshausen and Bühlmann (2006), without

losing the Bayesian advantage of capturing uncertainty. The ‘1-penalized nodewise

regression approach of Meinshausen and Bühlmann (2006) reduces the estimation

of Gaussian graphical models to ‘1-penalized regressions of each variable on all

other variables. The ‘1-penalized regressions help estimate the neighborhood of

each node in the conditional independence graph, and combining the estimated

neighborhoods gives rise to an estimate of the entire conditional independence

graph. The ‘1-penalized regression approach has at least three advantages:

– Computational advantages: ‘1-penalized nodewise regression reduces the

estimation of Gaussian graphical models to ‘1-penalized linear regressions,

which can be performed on multi-core computers and computing clusters in

parallel, facilitating large-scale computing.

– Theoretical advantages: Since ‘1-penalized nodewise regression reduces the

estimation of Gaussian graphical models to ‘1-penalized regressions and the

properties of ‘1-penalized regressions have been studied, one can conclude that

the neighborhoods of all nodes in the conditional independence graph can be

recovered with high probability and, by a union bound, the entire conditional

independence graph can be recovered with high probability (provided strong

assumptions are satisfied).

– The ‘1-penalized nodewise regression approach is simple and can be adapted to

non-Gaussian graphical models (e.g., Ravikumar et al. 2010).

It would be worthwhile to explore whether a form of Bayesian nodewise regression

helps scale up Bayesian inference for graphical models, without losing the Bayesian

advantage of capturing uncertainty.

The second one is a Bayesian approach based on pseudo-likelihoods (Besag

1974) or composite-likelihoods (Lindsay 1988; Lindsay et al. 2011). Despite

scepticism in the statistical literature concerned with spatial data (e.g., Besag 2001)

and network data (e.g., Corander et al. 2002; van Duijn et al. 2009), the
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pseudolikelihood-based approach of Besag (1974) seems to undergo a renaissance,

both in the Bayesian literature (e.g., Ghosh et al. 2021) and the non-Bayesian

literature (e.g., Amini et al. 2013; Ghosal and Mukherjee 2020; Stewart and

Schweinberger 2021). Indeed, while pseudo- and composite-likelihoods may not

perform well when the dependence induced by the model is too strong (as Besag

pointed out in 2001), such approaches are scalable and can perform well when the

dependence is not too strong. It would be interesting to explore Bayesian pseudo- or

composite-likelihood approaches to graphical models with a view to scaling up

Bayesian inference for graphical models.

3 Graphical models and random graph models

In the discussion of Ni et al. (2021), the authors bring up an interesting connection

with a related branch of literature: models of network data (Kolaczyk 2009).

3.1 Graphs representing data structure, model structure, and mathematical
operations

To discuss the connection between models of network data and graphical models in

more depth, it is useful to distinguish three streams of data science involving graphs:

– Graphs that represent data structure: random graph models (e.g., Holland and

Leinhardt 1981; Frank and Strauss 1986; Lauritzen et al. 2018; Schweinberger

et al. 2020; Hoff 2021).

– Graphs that represent model structure: graphical models (e.g., Pearl 1988;

Lauritzen 1996; Maathuis et al. 2019).

– Graphs that represent mathematical operations: e.g., neural networks (e.g.,

Goodfellow et al. 2016; Schmidt-Hieber 2020; Fan et al. 2021).

These three streams intersect: e.g., graphical models and random graph models

intersect (e.g., Frank and Strauss 1986; Lauritzen et al. 2018) and have common

ancestors in the form of Markov random fields in spatial statistics (Bartlett 1955;

Whittle 1963; Besag 1974); and graphical models and neural networks intersect,

because some generative neural network models have representations as graphical

models (e.g., restricted Boltzmann machines, MacKay 2003).

3.2 Learning dependence structure

Ni et al. (2021) suggest that random graph models and graphical models are

distinguished by whether networks are observed or unobserved, in which case the

networks are learned from data.

The relationship between these two model classes is more complicated. First of

all, it is helpful to keep in mind that every distribution P—including every random

graph distribution—factorizes with respect to some graph (e.g., the complete graph

with all possible edges), although the graph may not be sparse and may not be able

to represent all conditional independencies of P. Indeed, many random graph
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models possess conditional independencies and, in most applications, the condi-

tional independence structure of random graph models is unknown and specifying

the conditional independence structure is challenging. Worse, some of the earliest

attempts to specify the conditional independence structure of random graph models

turned out to be problematic (e.g., Handcock 2003; Schweinberger 2011; Chatterjee

and Diaconis 2013). While models with more reasonable assumptions and

properties have been developed (Schweinberger et al. 2020) and some of them

have been equipped with provable statistical guarantees (Schweinberger and

Stewart 2020; Mukherjee 2020), it would be preferable to learn the conditional

independence structure of random graph models from data rather than specifying the

conditional independence structure. In the literature on graphical models, consid-

erable progress has been made on learning the conditional independence structure of

models from data (e.g., Meinshausen and Bühlmann 2006; Maathuis et al. 2019),

but most of those advances require independent replications from the same source

(in a well-defined sense). In studies involving network data, independent

replications from the same source are hard to obtain, and even when independent

replications are available (e.g., in multilevel network data sets, Lazega and Snijders

2016), the replications may not have the same size: e.g., if networks of friendships

within school classes can be assumed to be independent across school classes, then

independent replications of within-school-class networks are available, but the

school classes may not have the same size, because researchers do not have control

over the sizes of school classes.

In general, given a single observation of dependent random variables (e.g., a

single observation of a population graph with dependent edges), it is challenging to

learn the conditional independence structure of models from data. In special cases,

one can learn the conditional independence structure provided that the conditional

independence structure satisfies strong restrictions, as demonstrated by the work on

Csiszár and Talata (2006) concerned with Markov random fields on lattices and the

work of Schweinberger (2020) concerned with random graphs satisfying local

dependence assumptions. That said, estimating the conditional independence graph

based on a single observation of a population graph with dependent edges is non-

trivial in many other cases.
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