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Abstract

It is a pleasure to congratulate Ni et al. (Stat Methods Appl 490:1-32, 2021) on the
recent advances in Bayesian graphical models reviewed in Ni et al. (Stat Methods
Appl 490:1-32, 2021). The authors have given considerable thought to the con-
struction and estimation of Bayesian graphical models that capture salient features
of biological networks. My discussion focuses on computational challenges and
opportunities along with priors, pointing out limitations of the Markov random field
priors reviewed in Ni et al. (Stat Methods Appl 490:1-32, 2021) and exploring
possible generalizations that capture additional features of conditional independence
graphs, such as hub structure and clustering. I conclude with a short discussion of
the intersection of graphical models and random graph models.

Keywords Graphical models - Random graphs - Random graph priors - Nodewise
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1 Priors: generalizations of Markov random graph priors

I agree with Ni et al. (2021) that two important advantages of a Bayesian approach
are the ability to incorporate prior knowledge and provide a natural measure of
uncertainty about unknown quantities of interest, including the conditional
independence graphs of graphical models (Lauritzen 1996; Maathuis et al. 2019).
Having said that, the Markov random field priors reviewed in Ni et al. (2021) have
limitations. I single out two of them and explore possible generalizations that
capture additional features of conditional independence graphs, such as hub
structure and clustering.
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1.1 Markov random graph priors

The Markov random field priors reviewed in Ni et al. (2021), proposed by Peterson
et al. (2015) and others, assume that the prior probability of the conditional

independence graphs G, ..., G of groups of subjects 1, ..., K is proportional to
p K K K
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While Ni et al. (2021)—in line with Peterson et al. (2015)—call such priors Markov
random field priors, it would be more appropriate to call them Markov random
graph priors, because such priors are distributions on sets of graphs with Markov
properties (Frank and Strauss 1986; Lauritzen et al. 2018). To be sure, Markov
random fields and Markov random graphs have common ancestors in the form of
Markov random fields in spatial statistics (Bartlett 1955; Whittle 1963; Besag 1974),
but linking such priors to Markov random graphs opens the door to constructing
more sophisticated priors that capture additional features of conditional indepen-
dence graphs, such as hub structure and clustering. To explore Markov random
graph priors and possible generalizations in more depth, let me first point out two
implicit assumptions made by the Markov random graph priors reviewed in Ni et al.
(2021).

1.2 Assumption 1: between-group dependence and within-group
independence

While accomplishing the stated goal of encouraging a connection between two
variables i and j in the conditional independence graph of group k if the same
connection is present in the conditional independence graphs of related groups
| # k, the Markov random graph priors reviewed in Ni et al. (2021) assume that the
conditional probability of the event that there exists an edge between two variables i
and j in group k, given everything else, does not depend on the absence or presence
of edges between other pairs of variables:

K
P(gkij = 1| everything else) oc exp (V[J + Z O g,,,'j>. (2)
17k

The assumption of within-group independence is restrictive, because data on net-
works have revealed that connections tend to depend on other connections. As a
case in point, it is not credible that connections between regions of the human brain
are independent, because complex tasks such as walking, writing, and performing
mathematical operations may require the coordination of multiple brain regions.

1.3 Assumption 2: short-tailed degree distributions

The assumption of within-group independence and the absence of model
components that encourage other relevant features of conditional independence
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graphs suggests that the model does not capture many relevant features of
conditional independence graphs, such as hub structure. If conditional independence
graphs contain hubs, their degree distributions are long-tailed rather than short-
tailed. Therefore, priors should accommodate both short- and long-tailed degree
distributions.

1.4 Generalizations of Markov random graph priors I: hub structure
and clustering

Markov random graph priors are special cases of exponential-family random graph
priors, which provide a large and flexible class of priors on sets of graphs with
convenient properties (Schweinberger et al. 2020). The class of exponential-family
random graph priors constitutes a natural class of priors, because graphical models
and exponential-family random graph priors have common ancestors in the form of
Markov random fields in spatial statistics (Besag 1974) and share the same
mathematical platform: the statistical exponential-family platform (Sundberg 2019).

One of the greatest advantages of exponential-family random graph priors is the
fact that within-group dependence can be captured along with addititional features
of conditional independence graphs, such as hub structure and clustering. For
example, using an exponential-family model with the degrees of nodes as sufficient
statistics along with Dirichlet process priors, Schweinberger et al. (2021) con-
structed a flexible semiparametric Bayesian model that allows some of the nodes to
have many connections while others have few connections. Exponential-family
random graph priors capturing hub structure along with between- and within-group
dependence can be constructed along similar lines, and provide a Bayesian
alternative to the non-Bayesian approach of Mohan et al. (2014). An additional
feature of many networks is clustering, which can likewise be captured by
exponential-family random graph priors. The literature on exponential-family
random graphs provides valuable lessons on how to capture such features of
conditional independence graphs through exponential-family random graph priors
(Hunter et al. 2012; Lusher et al. 2013; Schweinberger et al. 2020).

1.5 Generalizations of Markov random graph priors ll: groups of different
sizes

Exponential-family random priors open the door to weakening other assumptions
made in Ni et al. (2021), e.g., the assumption that the number of variables p is
constant across all groups of subjects. If the groups of subjects correspond to
patients in various stages of a disease and different stages of the disease are driven
by different genes, the assumption that the number of variables is constant across all
stages of the disease may be restrictive. Constructing models that allow the number
of variables to vary according to the stage of the disease would be interesting, but
gives rise to additional challenges: e.g., if edges are assumed to be independent
Bernoulli(u) random variables and u € (0, 1) does not depend on the number of
nodes, the expected degrees of nodes grow with the number of nodes. In the
applications considered in Ni et al. (2021), the expected degrees of nodes in the
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conditional independence graph of group k would depend on the number of nodes in
the conditional independence graph of group k, which may be an untenable
assumption. It would be more reasonable to assume that the expected degrees of
nodes are invariant to the number of nodes in the conditional independence graphs
of the groups. Exponential-family random graph priors with such invariance
properties have been proposed in the literature on exponential-family random
graphs (Krivitsky et al. 2011; Krivitsky and Kolaczyk 2015; Butts and Almquist
2015). Exponential-family random graph priors with other invariance properties can
likewise be constructed.

2 Computational challenges and opportunities

While some scalable approaches to Bayesian inference for graphical models have
been explored (e.g., Tan et al. 2017; Li et al. 2020), scalable Bayesian inference
remains an open problem. I highlight two interesting directions for future research.

The first one is a Bayesian approach adapting the main ideas of the ¢;-penalized
nodewise regression approach of Meinshausen and Biihlmann (2006), without
losing the Bayesian advantage of capturing uncertainty. The ¢;-penalized nodewise
regression approach of Meinshausen and Biihlmann (2006) reduces the estimation
of Gaussian graphical models to ¢;-penalized regressions of each variable on all
other variables. The ¢;-penalized regressions help estimate the neighborhood of
each node in the conditional independence graph, and combining the estimated
neighborhoods gives rise to an estimate of the entire conditional independence
graph. The /;-penalized regression approach has at least three advantages:

— Computational advantages: ¢;-penalized nodewise regression reduces the
estimation of Gaussian graphical models to ¢;-penalized linear regressions,
which can be performed on multi-core computers and computing clusters in
parallel, facilitating large-scale computing.

— Theoretical advantages: Since ¢-penalized nodewise regression reduces the
estimation of Gaussian graphical models to ¢;-penalized regressions and the
properties of ¢;-penalized regressions have been studied, one can conclude that
the neighborhoods of all nodes in the conditional independence graph can be
recovered with high probability and, by a union bound, the entire conditional
independence graph can be recovered with high probability (provided strong
assumptions are satisfied).

— The ¢,-penalized nodewise regression approach is simple and can be adapted to
non-Gaussian graphical models (e.g., Ravikumar et al. 2010).

It would be worthwhile to explore whether a form of Bayesian nodewise regression
helps scale up Bayesian inference for graphical models, without losing the Bayesian
advantage of capturing uncertainty.

The second one is a Bayesian approach based on pseudo-likelihoods (Besag
1974) or composite-likelihoods (Lindsay 1988; Lindsay et al. 2011). Despite
scepticism in the statistical literature concerned with spatial data (e.g., Besag 2001)
and network data (e.g., Corander et al. 2002; van Duijn et al. 2009), the
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pseudolikelihood-based approach of Besag (1974) seems to undergo a renaissance,
both in the Bayesian literature (e.g., Ghosh et al. 2021) and the non-Bayesian
literature (e.g., Amini et al. 2013; Ghosal and Mukherjee 2020; Stewart and
Schweinberger 2021). Indeed, while pseudo- and composite-likelihoods may not
perform well when the dependence induced by the model is too strong (as Besag
pointed out in 2001), such approaches are scalable and can perform well when the
dependence is not too strong. It would be interesting to explore Bayesian pseudo- or
composite-likelihood approaches to graphical models with a view to scaling up
Bayesian inference for graphical models.

3 Graphical models and random graph models

In the discussion of Ni et al. (2021), the authors bring up an interesting connection
with a related branch of literature: models of network data (Kolaczyk 2009).

3.1 Graphs representing data structure, model structure, and mathematical
operations

To discuss the connection between models of network data and graphical models in
more depth, it is useful to distinguish three streams of data science involving graphs:

— Graphs that represent data structure: random graph models (e.g., Holland and
Leinhardt 1981; Frank and Strauss 1986; Lauritzen et al. 2018; Schweinberger
et al. 2020; Hoff 2021).

— Graphs that represent model structure: graphical models (e.g., Pearl 1988;
Lauritzen 1996; Maathuis et al. 2019).

— Graphs that represent mathematical operations: e.g., neural networks (e.g.,
Goodfellow et al. 2016; Schmidt-Hieber 2020; Fan et al. 2021).

These three streams intersect: e.g., graphical models and random graph models
intersect (e.g., Frank and Strauss 1986; Lauritzen et al. 2018) and have common
ancestors in the form of Markov random fields in spatial statistics (Bartlett 1955;
Whittle 1963; Besag 1974); and graphical models and neural networks intersect,
because some generative neural network models have representations as graphical
models (e.g., restricted Boltzmann machines, MacKay 2003).

3.2 Learning dependence structure

Ni et al. (2021) suggest that random graph models and graphical models are
distinguished by whether networks are observed or unobserved, in which case the
networks are learned from data.

The relationship between these two model classes is more complicated. First of
all, it is helpful to keep in mind that every distribution P—including every random
graph distribution—factorizes with respect to some graph (e.g., the complete graph
with all possible edges), although the graph may not be sparse and may not be able
to represent all conditional independencies of P. Indeed, many random graph
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models possess conditional independencies and, in most applications, the condi-
tional independence structure of random graph models is unknown and specifying
the conditional independence structure is challenging. Worse, some of the earliest
attempts to specify the conditional independence structure of random graph models
turned out to be problematic (e.g., Handcock 2003; Schweinberger 2011; Chatterjee
and Diaconis 2013). While models with more reasonable assumptions and
properties have been developed (Schweinberger et al. 2020) and some of them
have been equipped with provable statistical guarantees (Schweinberger and
Stewart 2020; Mukherjee 2020), it would be preferable to learn the conditional
independence structure of random graph models from data rather than specifying the
conditional independence structure. In the literature on graphical models, consid-
erable progress has been made on learning the conditional independence structure of
models from data (e.g., Meinshausen and Bithlmann 2006; Maathuis et al. 2019),
but most of those advances require independent replications from the same source
(in a well-defined sense). In studies involving network data, independent
replications from the same source are hard to obtain, and even when independent
replications are available (e.g., in multilevel network data sets, Lazega and Snijders
2016), the replications may not have the same size: e.g., if networks of friendships
within school classes can be assumed to be independent across school classes, then
independent replications of within-school-class networks are available, but the
school classes may not have the same size, because researchers do not have control
over the sizes of school classes.

In general, given a single observation of dependent random variables (e.g., a
single observation of a population graph with dependent edges), it is challenging to
learn the conditional independence structure of models from data. In special cases,
one can learn the conditional independence structure provided that the conditional
independence structure satisfies strong restrictions, as demonstrated by the work on
Csiszar and Talata (2006) concerned with Markov random fields on lattices and the
work of Schweinberger (2020) concerned with random graphs satisfying local
dependence assumptions. That said, estimating the conditional independence graph
based on a single observation of a population graph with dependent edges is non-
trivial in many other cases.
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