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ABSTRACT: Cytokine storm, known as an exaggerated hyperactive
immune response characterized by elevated release of cytokines, has been
described as a feature associated with life-threatening complications in
COVID-19 patients. A critical evaluation of a cytokine storm and its
mechanistic linkage to COVID-19 requires innovative immunoassay
technology capable of rapid, sensitive, selective detection of multiple
cytokines across a wide dynamic range at high-throughput. In this study,
we report a machine-learning-assisted microfluidic nanoplasmonic digital
immunoassay to meet the rising demand for cytokine storm monitoring in
COVID-19 patients. Specifically, the assay was carried out using a facile
one-step sandwich immunoassay format with three notable features: (i) a
microfluidic microarray patterning technique for high-throughput, multi-
antibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive
nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid
and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows
simultaneous detection of six cytokines in a single run with wide working ranges of 1−10,000 pg mL−1 and ultralow detection
limits down to 0.46−1.36 pg mL−1 using a minimum of 3 μL serum samples. The whole chip can afford a 6-plex assay of 8
different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing
method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much
simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The
immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum
cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a
promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an
intelligent immunoassay for next generation immune monitoring.
KEYWORDS: microfluidic immunoassay, digital/single-molecule detection, nanoplasmonics, machine learning, cytokine storm,
coronavirus disease 2019

INTRODUCTION

Coronavirus disease 2019 (COVID-19), an infectious disease
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has emerged as a mounting threat to global
health since December 2019.1,2 COVID-19 infection is
accompanied by an aggressive inflammatory response, known
as a “cytokine storm”, resulting from complex interplays between
lymphocytes and myeloid cells.1,3,4 Excessive production of
proinflammatory cytokines in COVID-19 patients can further
lead to acute respiratory distress syndrome (ARDS), multiple
organ failures (MOFs), and death.1,3,4 Hence, early detection
and close monitoring of cytokine storms are critical for rapid

identification of high-risk COVID-19 patients and the develop-
ment of prompt guidelines for anti-inflammatory therapies to
improve survival rates. Due to the dynamic and time-sensitive
clinical features of COVID-19, characterization of cytokine
storms requires fast analysis of cytokines across a wide dynamic
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range in a small amount of patient serum with high sensitivity,
selectivity, throughput, and multiplex capacity. Current gold-
standard clinical tools to test blood circulating cytokines are
based primarily on enzyme-linked immunosorbent assay
(ELISA). The laborious and lengthy procedures, large sample
consumption, and required centralized facility greatly impede its
practical usage for monitoring cytokine storms in COVID-19
patients. As such, there is an urgent need for effective cytokine
detection strategies that satisfy the stringent requirements to
provide rapid and informative insights for COVID-19 diagnosis,
monitoring, and treatment.
Over the past two decades, the microfluidic immunoassay has

become an emerging technology for rapid analysis of
biomolecules in complex biological samples.5−7 Microfluidics
offer significant advantages in controllable fluid handling, low
reagent consumption, and confined microenvironment anal-
ysis.5−8 The integration of immunoassays to the microfluidic
scale shows greatly improved analytical performance at point-of-
care, such as reduced assay time, small sample volume, high
throughput and multiplexity, and semi-automation.5−8 Recent
advancements in a variety of microfluidic immunoassays have
demonstrated promising features for cytokine detection,
including a sample-to-answer time shortened to ∼30 min, a
sample volume reduced to a few μL, a throughput improved to
hundreds of parallel tests, a multiplex capacity up to dozens of
targets, and so on.9−12 However, accumulating evidence
suggests that the cytokine concentrations in plasma of
COVID-19 patients span across a wide dynamic range (1−
40,000 pg mL−1) with a few key inflammatory cytokines at the

sub-pg mL−1 level.1 Current microfluidic immunoassays rely
mainly on conventional signal transduction technologies based
on measurement of ensemble average signals, which often
require numerous captured signaling molecules to generate a
detectable signal over background noise. Hence, the majority of
these platforms could not afford sufficient sensitivity in a
multiplex, high-throughput scheme to accurately detect
cytokines at ultralow levels and across a wide concentration
range.
The ever-increasing demand for ultrasensitive and accurate

detection has driven the development of advanced bioanalytical
methods such as the digital (or single-molecule) imaging assay,
where the binding of a single biomolecule to the corresponding
affinity biomolecule can be individually visualized via a single
signal label.13−17 In contrast to the conventional ensemble
average measurements, digital imaging approaches enable the
measurement of individual biomolecule binding events with
extremely high signal-to-noise ratio, resulting in the highest class
of sensitivity down to single-molecule level.13−17 Up to this time,
various digital imaging technologies have been exploited based
on different labeling agents (i.e., enzymes, fluorescent dyes,
upconversion nanoparticles (NPs), and plasmonic metal
NPs).13,16−23 Among them, nanoplasmonic digital imaging has
received considerable attention owing to the superior
physicochemical properties of plasmonic metal NPs.20−33 The
strong Rayleigh scattering of individual plasmonic NPs allows
subdiffraction imaging with extremely high spatial resolution
under dark-field microscope.20−30 The scattering intensity and
the extinction spectra of the NPs can be tuned at will via precise

Scheme 1. Schematic Illustration of the Machine-Learning-AssistedMicrofluidic Nanoplasmonic Digital Immunoassay for High-
Throughput, Multiplex Cytokine Detection (Including IL-1β, IL-2, IL-6, IL-10, TNF-α, and IFN-γ)a

aThe immunoassay involves three key components: the microfluidic immunoassay platform (a), the nanoplasmonic digital imaging technology (b),
and the machine-learning-based image processing method (c).
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control over NPs’ size, shape, and dielectric properties.32−34

Since signal transduction is based on light scattering, plasmonic
NPs display excellent photophysical stability, allowing con-
tinuous, intermittence-free measurement.20−33 While a few
recent studies have demonstrated the use of nanoplasmonic
imaging for digital biomarker detection,21−28 the sensing
performance has been greatly limited by conventional imaging
analysis and manual particle counting methods. When
integrating nanoplasmonic digital imaging with microfluidic
immunoassays, the inability to perform rapid and accurate
digital signal processing for a large amount of image data has
thereby become a major challenge for sensitive high-throughput
multiplex detection of cytokines in clinical settings.
Herein, we developed a nanoplasmonic digital immunoassay

by integrating a machine learning assisted nanoplasmonic
imaging method with a microfluidic immunoassay platform
that overcomes major constraints for cytokine profiling in real
patient samples (Scheme 1). The immunoassay exploits a one-
step sandwich microarray format utilizing anticytokine capture
antibody (CAb) arrays as the primary capture layer, and Ag

nanocubes (AgNCs) conjugated with paired detection antibod-
ies (DAbs) as the signal transducers for massive parallel
detection of multiple cytokines in a small sample volume. The
formed sandwich immunocomplex can be imaged individually
under a dark-field microscope due to the strong plasmonic
scattering of the AgNCs. The generated highly sensitive and
selective digital signals can be readily counted by a customized
machine-learning-based image processing method. By establish-
ing the correlation between digital signal count and the cytokine
concentration, our immunoassay allows simultaneous detection
of six cytokines across a wide dynamic range of 1−10,000 pg
mL−1 with a limit of detection down to subpg mL−1. The
integrated microfluidic platform enables high-throughput
analysis of 8 different samples per chip with a total of 288
tests using only 3 μL serum samples. Using ELISA as a
benchmarkmethod, the immunoassay was validated for practical
application in serum cytokine measurement with excellent
accuracy and reliability and was successfully applied for profiling
cytokine storms in COVID-19 patients.

Figure 1. Characterization of the microfluidic nanoplasmonic digital immunoassay. (a−d) AFM topographic (a, b) and phase (c, d) images of
the surfaces of glass substrates before (a, c) and after (b, d) the immobilization of capture antibodies. Insets in a−d show the corresponding
images in three-dimensional (3D) models. (e) TEM image of AgNCs with an average edge length of 100 nm. (f, g) Dark-field image (f) and
scattering spectrum (g) of 100 nm AgNCs deposited on a glass substrate. In (f), insets (i) and (ii) show the SEM images taken on the region
marked by a yellow box in (f) and in inset (i), respectively. (h) DLS size distribution of 100 nm AgNCs (dashed curve) and AgNC-DAb
conjugates (solid curve) dispersed in ultrapure water. (i) Dark-field images of antibody microarrays taken before the detection of cytokines (i)
and after the detection of 100 pgmL−1 (ii) and 0 pgmL−1 (iii) cytokines. (j) Bar graph showing the intensity of the detection signal (i.e., particle
number of AgNCs) obtained from (i).
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RESULTS AND DISCUSSION

Design and Principle of Machine-Learning-Assisted
Microfluidic Nanoplasmonic Digital Immunoassay.
Scheme 1 illustrates the sensing principle of the machine-
learning-assisted microfluidic nanoplasmonic digital immuno-
assay for multiplex cytokine detection. Interleukin-1 beta (IL-
1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-10
(IL-10), tumor-necrosis-factor alpha (TNF-α), and interferon-
gamma (IFN-γ) are selected as the target cytokines due to their
abnormal expression levels in the serum of COVID-19
patients.1,3,4 The proposed immunoassay consists of three
main components: a multicapture-antibody microarray chip for
the microfluidic immunoassay (Scheme 1a), detection-anti-
body-conjugated 100 nm AgNCs (AgNC-DAb conjugates) for
nanoplasmonic digital imaging (Scheme 1b), and a machine-
learning-based image processing method for digital signal
counting (Scheme 1c). The antibody microarray chip contains
8 parallel microfluidic sample channels (300 nL sample volume
for each channel), which lie perpendicular to the 6 meandering
capture antibody stripes with 6 turns on a glass substrate. This
chip is thus designed to allow a 6-plex cytokine detection with 6
segments of parallel collocating antibody arrays in each channel
and a total array of 288 square immunosensing areas (200 μm ×
200 μm) for the entire chip. It should be noted that a reference
stripe of pristine 100 nm AgNCs is added in parallel to the
capture antibody stripes for easy localization of the antibody
microarrays under dark-field imaging and provision of reference
signals. The microfluidic immunoassay is carried out using a
rapid one-step sandwich format. The AgNC-DAb conjugates
with the six cytokine detection antibodies are mixed with the
target samples and then introduced into the microfluidic
immunoassay system, forming six types of sandwiched
immunocomplexes (i.e., capture antibody/cytokine/detection-
antibody-AgNC) on their corresponding capture antibody
arrays (Scheme 1a). The 100 nm AgNCs are selected as the
labeling reagent to provide the light-scattering signal for
nanoplasmonic digital imaging (Scheme 1b) owing to the
following four advantages: (i) they can be readily produced with
ultrahigh purity and uniformity, ensuring good reproducibility of
the immunoassay;35,36 (ii) they show excellent stability in assay
buffers during the functionalization, reaction, and imaging
processes, offering high robustness for the immunoassay;22,37

(iii) they can be readily modified with functional groups like
−COOH through Ag-thiol bonding for antibody conjugations
with tunable configurations;37 (iv)most importantly, they could
provide extremely intense light-scattering signals under dark-
field imaging with superior signal-to-noise ratio, enabling record
high sensitivity for the nanoplasmonic cytokine immunoassay.33

The image of every capture antibody array (288 images in total)
is taken using an electron-multiplying charge-coupled device
(EMCCD) camera under a dark-field microscope, and the
number of the captured AgNCs on the surface of each antibody
array is counted using the machine-learning-based image
processing method, which can be converted to the concen-
trations of target cytokines accordingly (Scheme 1c). The
machine-learning-based image processing method is a custom-
ized MATLAB code developed using convolutional neural
network (CNN) algorithm. The CNN method can process the
dark-field image data automatically, distinguish the detection
signals (i.e., the scattering spots of AgNCs) from background
noise precisely, and provide rapid analysis of the particle number
of AgNCs with high statistical accuracy and throughput. Such an

efficient image processing method dramatically reduces the time
required for data analysis and thus enables the practical
application of the nanoplasmonic digital imaging technology
for cytokine profiling.

Fabrication and Characterization of Microfluidic
Nanoplasmonic Digital Immunoassay. The multicapture-
antibody microarray chip was fabricated using a microfluidic
flow-patterning technique.9 Briefly, an amino-modified glass
substrate was patterned with 6 different meandering capture
antibody stripes using a polydimethylsiloxane (PDMS) mask
layer via a glutaraldehyde-mediated conjugation protocol.38

Subsequently, a sample-flow PDMS layer was attached onto the
glass substrate perpendicularly to the 6 capture antibody stripes,
resulting in a micromosaic immunoassay for the multicapture-
antibody microarray chip (see Methods for details). Figure 1
panels a and b show the atomic force microscopy (AFM)
topographic images of the surfaces of the glass substrate before
and after the antibody microarray fabrication. It can be observed
that the surface of the glass substrate became rougher after the
immobilization of capture antibodies, suggesting the presence of
antibodies on the microarray surface. We also acquired the AFM
phase images of the same region of the antibody microarray to
further verify the surface functionalization. As shown in Figure
1c,d, the texture of the antibody microarray surface presented a
uniformly distributed needle-like texture with a higher phase
angle compared to that of a clean glass substrate, due to the
much softer feature of antibodies compared with the glass.39,40

These results confirm the successful immobilization of
uniformly distributed antibodies on the surface of the glass
substrate for the multicapture-antibody microarray chip.
We then synthesized 100 nm AgNCs using a seed-mediated

growth method (see Methods for details)35 and functionalized
them with the six different detection antibodies to produce the
AgNC-DAb conjugates as the signal transducers. As shown by
the transmission electron microscopy (TEM) images of the 100
nm AgNCs obtained from a batch of the standard synthesis
(Figure 1e and Figure S1 in Supporting Information), the
AgNCs displayed a uniform size distribution and well-defined
cubic shapes. The edge length of the AgNCs synthesized from
this batch was measured to be 100.3± 4.8 nm by analysis of 300
randomly selected nanoparticles. Meanwhile, the edge length of
the AgNCs synthesized from three different batches were
analyzed to be 100.6± 5.4 nm (Figures S1 and S2 in Supporting
Information). The coefficient of variation of the edge length for
the interbatch measurement (n = 3) was calculated to be as low
as 5.4%, indicating that the AgNCs can be readily reproduced
with high uniformity. In addition, the amount (4 mL at 0.4 nM)
of 100 nm AgNCs obtained per batch of the standard synthesis
could allow up to 5333 microfluidic nanoplasmonic digital
immunoassays (3 μL of 0.1 nM per assay) as proposed ((4 mL×
0.4 nM)/(3 μL × 0.1 nM) = 5333). The synthesis process could
be scaled up by 10 times to produce amuch larger quantity of the
AgNCs per batch without compromising the sample quality
(Figure S3 in Supporting Information), making it possible for
large-scale production of the digital immunoassay. The 100 nm
AgNCs were deposited on a glass substrate for characterization
under dark-field imaging, and their representative dark-field
images and scattering spectra were taken and recorded as shown
in Figure 1f,g, respectively. The AgNCs exhibited extremely
strong light scattering with a major plasmonic scattering peak at
∼568 nm. The scattering cross-section was calculated to be as
high as 1.04 × 105 nm2 according to the finite element method
(FEM) simulation (Figure S4 in Supporting Information),
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which is the highest among various nanoscale optical materials
with dimensions smaller than 100 nm.41 More importantly, each
of the scattering spots under dark-field imaging (Figure 1f)
represented one isolated AgNC, confirmed by the scanning
electron microscopy (SEM) image of the same region (insets in
Figure 1f). The AgNCs displayed similar scattering intensity and
resonance spectra, indicating the successful synthesis of high-
quality AgNCs with extremely intense and highly uniform
single-particle scattering characteristics. Furthermore, the
synthesized AgNCs can be stored in DI water at room
temperature for at least 18 months without significant changes
to the size, shape, and the plasmonic properties (Figure S5 in
Supporting Information), revealing the high storage stability of
our AgNCs. Following that, the as-synthesized AgNCs were
modified with HS-PEG3400-COOH on their surfaces and then
conjugated with anticytokine detection antibodies via EDC/
NHS chemistry (see Methods for details).38,42 To verify the
successful conjugation of the AgNC-DAb, we performed
dynamic light scattering (DLS) to measure the hydrodynamic
sizes of the AgNCs before and after the antibody functionaliza-
tion, showing an evident increase from 136.7 to 157.9 nm
(Figure 1h). The size increase suggests the presence of
antibodies on the surface of the AgNCs as the mean size of
common immunoglobulin antibodies is ∼11 nm.43 It is worth
noting that the light-scattering behavior of AgNCs was very well
preserved after the conjugation of detection antibodies (Figure
S6 in Supporting Information) and can be stored for more than 6
months (Figure S7 in Supporting Information), devising the
AgNC-DAb conjugates as the labeling reagent for the nano-

plasmonic immunoassay. Here, the 100 nm Ag nanocubes were
intentionally employed in our sandwich nanoplasmonic digital
biosensor instead of Au nanorods, which have been widely
utilized in many previous reported label-free nanoplasmonic
digital biosensors.24−29 This is mainly because of the completely
two different sensing principles between these nanoplasmonic
digital biosensors. Label-free nanoplasmonic biosensors rely
primarily on the refractive index change surrounding the
plasmonic nanomaterials before and after target binding. Au
nanorods with an anisotropic shape exhibit a localized surface
plasmon resonance (LSPR) that is highly sensitive to the local
refractive index and thus are more suitable for label-free sensing.
While our sandwich nanoplasmonic digital biosensor requires
strong single-particle scattering signals from the captured
plasmonic nanomaterials after the formation of the sandwich
immune complexes. The 100 nm Ag nanocubes with a
symmetric geometry and much larger scattering cross-section
provide highly stable and intense scattering signals, rendering
them the ideal plasmonic nanomaterials for high-quality single-
particle imaging in our sandwich nanoplasmonic digital sensing.
To demonstrate the feasibility of the as-proposed microfluidic

nanoplasmonic digital immunoassay, we evaluated the platform
in response to a mixed cytokine solution containing IL-1β, IL-2,
IL-6, IL-10, TNF-α, and IFN-γ at a concentration of 100 pg
mL−1. The cytokine solution was mixed with the AgNC-DAb
conjugates and then injected into the microfluidic sample
channel for 60 min incubation. The images of the multiantibody
arrays before and after the assay were obtained using a dark-field
microscope. The antibody arrays showed a very clean back-

Figure 2. Evaluation of CNN method for counting particle numbers of AgNCs. (a) Schematics showing the algorithm architecture of the CNN
method, where Img-input is the image input layer, Conv2D is the convolution 2D layer, ReLU is the rectified linear unit layer, Max pool is the
max pooling 2D layer, Trans conv2D is the transposed convolution 2D layer, Softmax is the softmax layer, and Pixel class is the pixel
classification layer. (b) Three representative images obtained from our digital immunoassay with AgNC spot number ranging from low to high
and their corresponding image processing results obtained by Image-Pro Plus, GTS, and CNN methods. Note that (i) when the AgNC spot
number was low, the spots were monodispersed on the image; (ii) with the increase of the AgNC spot number, some of the spots became
aggregated; and (iii) at very high number of AgNCs, some of the spots became dim in addition to aggregated. (c) Correlation analysis between
the CNN method and standard Image-Pro-Plus-assisted manual counting method in counting AgNC number in the ranges of 0−2,000 (i) and
0−800 (ii) from 288 test images.
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groundwith no scattering signals detected before sample loading
(Figure 1i(i)). After the detection, numerous bright spots were
observed on the surface of the multiantibody microarrays
(Figure 1i(ii)), which originated from the single-particle light-
scattering of the AgNCs due to the sandwich immunocomplex
formation. The number of the scattering spots (i.e., particle
numbers of AgNCs) on the antibody microarrays of IL-1β, IL-2,
IL-6, IL-10, TNF-α, and IFN-γwere counted to be 251.0± 10.8,
482.0± 19.1, 490.2± 15.7, 189.0± 7.3, 361.8± 14.7, and 221.2
± 7.7 (n = 6), respectively (Figure 1j(ii)). In contrast, the spot
numbers on the microarrays for the detection of blank cytokine
solution (0 pgmL−1) were counted to be 2.0± 0.9, 2.8± 0.8, 2.5
± 0.5, 2.0 ± 0.6, 2.3 ± 0.8, and 2.2 ± 0.4 (n = 6), respectively
(Figure 1i(iii),j(iii)), suggesting negligible nonspecific signals
for the immunoassay.
Machine-Learning-Based Image Processing Method

for Nanoplasmonic Digital Counting. To achieve rapid and
high-throughput cytokine detection for real sample measure-
ment, the nanoplasmonic digital immunoassay ultimately
requires a simple, accurate, and ultrafast image processing

method that can automatically identify and count the captured
AgNCs on the 288 multiantibody microarrays per chip. More
importantly, the signal counting process needs to clearly
distinguish the detection signals (i.e., the scattering spots of
AgNCs) from false signals/background noise (including
aggregated/neighboring spots) and acquire the desired readout
in a large scattering intensity variance (including bright and dim
spots). Manual counting of the particle number of AgNCs on
each image by human eyes is cumbersome and time-consuming,
apparently impractical for high-throughput imaging analysis.
Commercial software (e.g., ImageJ and Image-Pro Plus) and
conventional image processing methods (e.g., global thresh-
olding and segmentation (GTS)) are limited mainly by poor
accuracy in recognizing the aggregated/neighboring and dim
spots on the dark-field images, yielding a low signal-to-noise
ratio in the immunoassay. To address this issue, we developed a
machine-learning-based image processing method using con-
volutional neural network (CNN) visualization for particle
counting (named “CNN method”).44−46 Figure 2a shows the
algorithm architecture of the CNN method. It involves dark-

Figure 3. Detection ofmulticytokine standards using themachine-learning-assistedmicrofluidic nanoplasmonic digital immunoassay. (a)Dark-
field images of antibodymicroarrays taken from the detection of multicytokine standards containing IL-1β, IL-2, IL-6, IL-10, TNF-α, and IFN-γ
with various concentrations in the range of 0−10,000 pg mL−1. (b−g) Calibration curves of IL-1β (b), IL-2 (c), IL-6 (d), IL-10 (e), TNF-α (f),
and IFN-γ (g) generated by plotting the particle number of AgNCs against corresponding cytokine concentration. Insets show the
corresponding linear regions of the calibration curves. Note that six images (six replicated sensing areas in one channel) were used for each
concentration of each cytokine to establish the calibration curves.
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field image data read-in/preprocessing (including noise filtering
and contrast enhancement), detection signal/background image
segmentation by pretrained CNN, postprocessing, and result
output. CNN as the key component was pretrained to classify
and segment image pixels by labels of the detection and
background signals (see Methods for details). Figure 2b shows
three representative images acquired by our digital immuno-
assay with AgNC spot numbers ranging from low to high levels,
and the corresponding image processing results obtained by
Image-Pro Plus, GTS, and CNN methods. As indicated by
Figure 2b, all the three methods could accurately count the
detection signals for the monodispersed bright spots at a low
AgNC count. However, Image-Pro Plus and GTS methods fall
short in precise image labeling and accurate signal counting for
the aggregated/neighboring and dim spots compared to the
CNNmethod, especially at high AgNC counts. To further verify
the accuracy of our CNN method, we analyzed 288 test images
containing different particle numbers of AgNCs in the range of
0−2,000. It should be noted that these images were different
from those used for CNN training. The obtained counting
results were compared with those analyzed by Image-Pro-Plus-
assisted manual counting as the benchmark. As shown in Figure
2c(i), the AgNC counts from the two methods display an
excellent linear regression with a slope of 0.9902, a small
intercept of 3.1140, and a coefficient of determination of R2 =
0.9972. It is worth pointing out that the accuracy of our CNN-
based method could be further improved with the AgNC
number in the range of 0−800 (Slope = 1.0004, Intercept =
−0.2588, and R2 = 0.9998; Figure 2c(ii)), which was later
determined to be the linear range of detection for our digital
immunoassay. Moreover, the CNN image processing shows
excellent accuracy and consistency for analysis of images
acquired from different experiments performed on different
days (Figure S8), indicating the high robustness of our CNN
method. Notably, it only took ∼30 s to process a total of 288
images obtained from one immunoassay chip and produce the
corresponding detection results (CPU: AMD Ryzen 5 1600 Six-
Core Processor) using the customized MATLAB code. In
contrast, the Image-Pro-Plus-assisted manual counting method
requires up to ∼6,000 times as long (∼50 h) to accomplish the
same task with much more complicated procedures.
In addition, as seen from the dark-field images in Figure 2b

and many other dark-field images in this study (especially those
with high densities of AgNC scattering spots), the spots in
certain regions were much bigger and brighter than other
“normal” spots (spots in average), and some of them were in
irregular shapes in comparison to those with rounded shapes.
These phenomena could be ascribed to the known Abbe
diffraction limit, where a diffuse spot can be formed when two
objects are in close proximity (distance shorter than ∼200
nm).47,48 Therefore, those bigger, brighter, and noncircular
spots might consist of multiple AgNC particles, resulting in
underestimation of the AgNC counting in the images. With the
advancement in super-resolution nanoplasmonic imaging30 and
enhanced CNN algorithm for in-depth information on spot
brightness and size, we believe the CNN image processing
method could break the fundamental limit and become an
enabling method for simple, rapid, accurate, robust, and high-
throughput digital counting in nanoplasmonic digital immuno-
assay and many other imaging analysis applications.
Analytical Performance of Machine-Learning-Assis-

ted Microfluidic Nanoplasmonic Digital Immunoassay.
Prior to evaluation of the analytical performance of the

immunoassay, the experimental procedures were optimized to
inject a concentration of 0.1 nM for AgNC-DAb conjugates and
incubate with target analytes for 60 min for thorough antigen−
antibody reaction (Figure S9 in Supporting Information). The
evaluation was then carried out using the following standard
detection procedures: (i) the multiantibody microarray chip was
incubated with amixture containingmulticytokine standards (or
samples) and AgNC-DAb conjugates at room temperature for
60 min; (ii) after the incubation and washing, the images of
multiantibody microarrays were recorded using a dark-field
microscope and then analyzed by the CNN-based image-
processing algorithm (see Methods for details). We evaluated
the analytical performance including the sensitivity, sensing
dynamic range, reproducibility, specificity, and cross-reactivity
for the nanoplasmonic digital immunoassay.
We first determined the sensitivity and dynamic range of the

immunoassay by analyzing multicytokine standards containing
IL-1β, IL-2, IL-6, IL-10, TNF-α, and IFN-γ at different
concentrations. Figure 3a shows the dark-field images of the
final multiantibody microarrays for detection of multicytokine
standards ranging in concentration from 0 to 10,000 pg mL−1. It
can be seen that for each type of cytokine, the number of
scattering spots of AgNCs on the multiantibody microarray
increased as the cytokine concentration increased. By plotting
the particle number of AgNCs as the detection signal against the
cytokine concentration, calibration curves for the six target
cytokines were established (Figure 3b−g). We can clearly and
distinctly differentiate positive detection signals for all six
cytokines in the concentration range of 1−10,000 pg mL−1 (4
orders of magnitude), suggesting a wide response range of the
immunoassay for multiplex cytokine detection. As indicated by
the insets of Figure 3b−g, high-quality linear relationships were
observed in the ranges of 1−200 pgmL−1 for IL-1β (R2 = 0.998),
1−100 pg mL−1 for IL-2 (R2 = 0.999), 1−100 pg mL−1 for IL-6
(R2 = 0.999), 1−200 pg mL−1 for IL-10 (R2 = 0.995), 1−200 pg
mL−1 for TNF-α (R2 = 0.998), and 1−200 pg mL−1 for IFN-γ
(R2 = 0.998). Here, different slopes of the calibration linear
curves (insets in Figure 3b−g, 2.489 mL pg−1 for IL-1β, 4.768
mL pg−1 for IL-2, 4.916 mL pg−1 for IL-6, 1.805 mL pg−1 for IL-
10, 3.462 mL pg−1 for TNF-α, and 2.274 mL pg−1 for IFN-γ)
were obtained that could be explained by the difference in
cytokine-antibody binding affinities and the cytokines’ molar
masses. The higher cytokine-antibody affinities could allow
more binding for the immune sandwich formation, leading to
more AgNC scattering spots on the sensing arrays and thus
steeper slopes in the calibration linear curves, while for cytokines
with lower molar masses, larger binding possibilities driven by
the higher molar concentrations (under the same mass
concentration) are anticipated, resulting in more AgNC
counting and corresponding slope difference. By comparing
the slopes of the calibration curves (SlopeIL‑6 > SlopeIL‑2 >
SlopeTNF‑α > SlopeIL‑1β > SlopeIFN‑γ > SlopeIL‑10) and the molar
masses of the cytokines (MIL‑2 (15.5 kDa) <MIFN‑γ (16.7 kDa) <
MIL‑1β (17.3 kDa) < MTNF‑α (17.4 kDa) < MIL‑10 (18.6 kDa) <
MIL‑6 (20.9 kDa), we did not observe a strong correlation
between these two factors, indicating the cytokine molar mass
effect on the calibration slope values could be ruled out.
The limits of detection (LODs) for the six cytokines were

determined to be 0.91 pg mL−1 (IL-1β), 0.47 pg mL−1 (IL-2),
0.46 pg mL−1 (IL-6), 1.36 pg mL−1 (IL-10), 0.71 pg mL−1

(TNF-α), and 1.08 pg mL−1 (IFN-γ) based on the 3σ/kslope,
where σ and kslope are the standard deviation of background
signal acquired from a blank control (n = 6) and the regression
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slope of each linear curve, respectively. The determined sensing
dynamic ranges for the target cytokines by our multiplex
immunoassay are one order magnitude wider than the standard
single-plex cytokine ELISA method (dynamic ranges: 5−5,000
pg mL−1 for all six cyokines, Figure S10 in Supporting
Information). The achieved LODs down to the sub pg mL−1

represent the highest class of sensitivity in nanoplasmonic
biosensors for multiplex cytokine detection without signal
amplification. Since the serum cytokine concentrations in
COVID-19 severe patients span across the dynamic ranges of
1−10,000 pg mL−1 including 0.5−130 pg mL−1 for IL-1β, 1−18
pg mL−1 for IL-2, 1−10,000 pg mL−1 for IL-6, 1−20 pg mL−1 for
IL-10, 1−1,000 pgmL−1 for TNF-α, and 4−80 pgmL−1 for IFN-
γ,1,49 our immunoassay provides a well suitable sensing dynamic
range and LODs for profiling the serum cytokines in COVID-19
patients.
To highlight the advantages of our CNN method on digital

counting in the immunoassay, we compared the sensing
dynamic ranges and LODs of the immunoassay using the
CNN method and the Image-Pro Plus method. Figure S11
shows the calibration curves of the immunoassay for the six
target cytokines obtained from the Image-Pro Plus method. The

sensing dynamic ranges of the immunoassay using Image-Pro
Plus method were determined to be 1−5,000 pg mL−1 for IL-1β,
1−1,000 pg mL−1 for IL-2, 1−2,000 pg mL−1 for IL-6, 1−5,000
pg mL−1 for IL-10, 1−2,000 pg mL−1 for TNF-α, and 1−5,000
pg mL−1 for IFN-γ, which were 2−10-fold narrower than those
using the CNN method. The calculated LODs of the
immunoassays by Image-Pro Plus method (1.01 pg mL−1 for
IL-1β, 0.51 pg mL−1 for IL-2, 0.50 pg mL−1 for IL-6, 1.44 pg
mL−1 for IL-10, 0.83 pg mL−1 for TNF-α, and 1.16 pg mL−1 for
IFN-γ) were also compromised as the Image-Pro Plus method
cannot provide accurate counting on the aggregated/neighbor-
ing and dim spots, leading to the underestimation and
miscounting of the AgNCs, especially at high AgNC counts.
These results further demonstrate the advantages of our CNN
method in accurate and robust digital counting that enhances
the analytical performance of the nanoplasmonic digital
immunoassay.
The reproducibility of our digital immunoassay was studied

by replicate determinations on three different multicytokine
standards with low, medium, and high concentrations (10, 100,
and 1,000 pg mL−1) using the same and different batches of
multiantibody microarray chips and AgNC-DAb conjugates.

Figure 4. Detection of multicytokines spiked in negative human serummatrix using the machine-learning-assisted microfluidic nanoplasmonic
digital immunoassay. (a) Dark-field images of antibody microarrays taken from the detection of human serum matrix spiked with different
mixtures of cytokines. The concentration of each cytokine spiked in the human serum matrix is 100 pg mL−1. (b) Bar graph showing the
intensity of the detection signal (i.e., particle number of AgNCs) obtained from (a). (c, d) Correlation analysis between the developedmachine-
learning-assisted microfluidic nanoplasmonic digital immunoassay and commercial ELISA kit in quantifying cytokines from human serum
matrix spiked with different concentrations of cytokines in the ranges of 5−5,000 pg mL−1 (c) and 5−100 pg mL−1 (d).
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The evaluation was based on the calculation of intra- and
interbatch coefficients of variation (CVs, n = 6). Experimental
results show that the intra- and interbatch CVs using the same
and different batches of the chips and conjugates were in the
ranges of 3.27−8.87% and 5.14−10.8%, respectively, for all six
cytokines at 10, 100, and 1,000 pg mL−1. The low CVs suggest
excellent reproducibility and repeatability of the nanoplasmonic
digital immunoassay for large scale production toward clinical
usage.
From a clinical perspective, another key issue for practical

application of a multiplex cytokine immunoassay is the
specificity and cross-reactivity, considering that human serum
is an inherently complex, multicomponent mixture. To evaluate
the specificity and cross-reactivity of our multiplex cytokine
immunoassay, we conducted three control tests as follows: (i) a
negative human serum sample without target cytokines (i.e.,
heat-inactivated and sterile-filtered human serum); (ii) positive
serum samples containing only single analyte (negative human

serum spiked with IL-1β, IL-2, IL-6, IL-10, TNF-α, or IFN-γ at a
concentration of 100 pg mL−1); (iii) positive serum samples
containing all six target cytokines (negative human serum spiked
with all the six cytokines at a concentration of 100 pg mL−1). In
all three control tests, only with the presence of target cytokines
in the serum samples can we observe a noticeable number of
AgNCs on the corresponding microarrays (Figure 4a,b). The
measured particle numbers of AgNCs were further converted to
analyte concentrations according to the calibration curves in
Figure 3. As seen in Figure S12 in Supporting Information, the
back-calculated cytokine concentrations correlated very well
with their corresponding values (100 pg mL−1), showing
negligible cross-reactivity of the nanoplasmonic immunoassay
for multiplex detection of six cytokines. The minimal cross-
reactivity and background noise further confirm that other
biocomponents coexisting in the human serum did not interfere
with the immune sandwich formation, suggesting high

Figure 5. Application of the machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for profiling the serum cytokines from
COVID-19 patients. (a) Heatmap showing the detection results of cytokines from 40 COVID-19 patient serum samples. Each of the six
cytokines in the specimens was detected simultaneously in six repeats with a total of 1440 tests over 5 microfluidic immunochips. (b) Heatmap
showing the summary of the serum cytokine profiles obtained from 40 COVID-19 patient serum specimens. The cytokine levels were based on
the average value of six replicate tests. Scales indicate value of cytokine concentration. Symbol “×” as “not applicable” represents that the
cytokine concentration is lower than the LOD of our immunoassay.
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specificity of the multiplex immunoassay for target cytokine
determination.
It should be emphasized that such excellent analytical

performance is attributed to the seamless integration of the
microfluidic immunoassay platform, the nanoplasmonic digital
imaging technology, and the machine-learning-based image
processing method. The synergistic combination of the three
techniques into an integrated biosensor allows highly sensitive,
accurate cytokine profiling in a high-throughput, multiplex
manner, showing significant advantages over many existing
cytokine biosensing techniques developed toward clinical
applications.50

Analysis of Human Serum Samples and Method
Validation. Wide acceptance of an immunoassay requires its
full validation in real sample detection scenarios. To
demonstrate the potential practical application of our immuno-
assay in clinical diagnosis, we utilized our immunoassay to
analyze 16 cytokine-spiked human serum samples and validated
the results with the existing gold-standard method, i.e., ELISA.
These human serum samples were prepared by spiking a
negative human serum sample with a mixture of all the six
cytokines at 16 different concentrations ranging across the entire
dynamic range of our immunoassay. Cytokines in each sample
were quantified based on the calibration curves shown in Figure
3, and the obtained results were compared with references
measured by commercially available cytokine ELISA kits. The
comparison was performed using linear regression analysis
between the two methods (Figure 4c,d). A strong positive
correlation (R2 = 0.996) was found between the measured
cytokine concentrations by the developed immunoassay and the
reference ELISA with a slope of 1.006 and an intercept of 2.531
(Figure 4c). It is worth mentioning that in a lower cytokine
concentration range (5−100 pg mL−1), the measured cytokine
concentrations by the developed immunoassay still showed
excellent agreement with those by ELISA (Slope = 0.991,
Intercept = −0.072, and R2 = 0.995; Figure 4d). These results
further demonstrated the high accuracy and reliability of our
immunoassay in analyzing complex human serum samples even
at low cytokine concentrations, implying its great potential in
cytokine storm profiling in COVID-19 patients.
Application in Serum Cytokine Profiles and Cytokine

Storm Monitoring for COVID-19 Patients. Finally, we
applied the developed immunoassay for measuring serum
cytokines in COVID-19 patients and utilized the cytokine
profiles to assist the screening of high-risk patients with cytokine
storms. To demonstrate the clinical usage of the nanoplasmonic
digital immunoassay, we conducted simultaneous detection of
40 human serum specimens of COVID-19 severe patients
collected from the University of Michigan Hospital (patients or
their authorized representatives provided informed consent for
the use of biospecimens, as approved by the Institutional Review
Board of the University ofMichigan (HUM000179668)). These
COVID-19 patients were determined to be critically ill as they
were experiencing respiratory failure symptoms and receiving
hospitalization in the intensive care unit (ICU) for either
mechanical ventilation or extracorporeal membrane oxygen-
ation (ECMO). Within only 5 h, we completed six replicate
detections of the six target cytokines in the 40 human serum
specimens by performing a total of 1440 tests on 5 microfluidic
immunochips. The detection results obtained from the 1440
tests were shown in Figure 5a, manifesting the simplicity, speed,
high multiplex, and high-throughput features of our immuno-
assay in performing such massively parallel testing. The

concentrations of the six cytokines in these COVID-19 patient
serum samples were calculated by averaging the detection results
of the six replicate tests, and their serum cytokine profiles were
summarized in Figure 5b accordingly. The serum cytokine
profiles for the COVID-19 patients show a highly diverse range
of 0.57−5,497.25 pg mL−1 with a few abnormally elevated
cytokine secretions. Specifically, the serum sample Nos. 1−25
were collected from the COVID-19 patients without any
treatments, showing serum cytokine concentrations of 1.32−
42.23 pg mL−1 for IL-1β, 0.57−514.27 pg mL−1 for IL-2, 10.71−
1,732.71 pgmL−1 for IL-6, 1.43−11.95 pgmL−1 for IL-10, 1.11−
48.92 pg mL−1 for TNF-α, and 1.73−16.60 pg mL−1 for IFN-γ.
According to the previously reported average cytokine levels in
healthy donors (IL-1β,∼0.4 pg mL−1; IL-2,∼1.1 pg mL−1; IL-6,
∼1.7 pg mL−1; IL-10, ∼1.7 pg mL−1; TNF-α, ∼7.4 pg mL−1;
IFN-γ,∼0.5 pgmL−1),1,49 we observed that all 25 serum samples
from the COVID-19 severe patients contained abnormally high
levels of IL-6, while 52%, 60%, 64%, 52%, and 80% of the
patients showed elevated secretion of IL-1β, IL-2, IL-10, TNF-α,
and IFN-γ, respectively. The observed elevated expressions of
pro-inflammatory cytokines (e.g., IL-6, IL-1β, IL-2, TNF-α, and
IFN-γ) and anti-inflammatory cytokines (e.g., IL-10) in these
COVID-19 patients were broadly consistent with recent
studies.1,4,49,51,52 The elevated serum cytokine levels indicate
that the majority of these COVID-19 patients were likely
experiencing cytokine storms,1,4,49 who would be at high risk for
developing acute respiratory distress and require guided
therapies to alleviate this inflammatory state and improve
prognosis.51,52 The serum sample Nos. 26−35 and Nos. 36−40
were collected from the COVID-19 patients with treatments of
tocilizumab and a selective cytopheretic device, respectively.
Significantly higher cytokine expressions (e.g., IL-6 (206.60−
5,497.25 pg mL−1)) were observed especially in patients right
after receiving the immunomodulatory treatment of tocilizumab
(sample Nos. 26−35). The elevated serum IL-6 could be mainly
attributed to the initial binding of tocilizumab to the IL-6
receptor that inhibits the receptor-mediated clearance, suggest-
ing the importance of dynamic observation of cytokine profiles
in understanding the patient response to the immunomodula-
tory treatment.53,54 The measured diverse serum cytokine
profiles (from sub pg mL−1 to several ng mL−1) in different
patients further demonstrated the high sensitivity, accuracy,
multiplexity, and wide dynamic range of our immunoassay in
complicated serum cytokine analysis. Such an enabling
technology would allow precise and timely monitoring of
inflammatory response to reveal the cytokine storm features and
immune status in COVID-19 patients, which could facilitate the
therapeutic stratification and guide clinicians to treat COVID-19
patients more effectively.

CONCLUSIONS
In conclusion, we have demonstrated a high-performance
machine-learning-assisted microfluidic nanoplasmonic digital
immunoassay that enables high-throughput detection of multi-
ple immune biomarkers in a rapid, sensitive, selective, accurate,
and easy-to-implement manner. The key to the success of our
strategy can be primarily ascribed to the systematic combination
of the high-throughput and multiplex microfluidic immunoassay
platform, ultrasensitive nanoplasmonic digital imaging technol-
ogy, and rapid and accurate machine-learning-based image
processing method. Owing to the synergistic effects of the
advantages of these technologies, our one-step immunoassay
allows simultaneous detection of six cytokines in sextuplicate of
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8 different samples (3 μL each) per chip, with a record high
detection limit of sub pg mL−1, a wide linear dynamic range of 4
orders of magnitude, and a total assay time under 100 min. The
clinical application of such a high-performance immunoassay
has been successfully demonstrated in analysis of cytokine
profiles using serum samples from COVID-19 patients, showing
high accuracy and reliability in comparison to the commercial
gold-standard ELISA. We believe that the presented immuno-
assay is a promising approach to allow continuous character-
ization of cytokine storms and thus provides timely and reliable
information to optimize care for COVID-19 patients. The
developed immunoassay can be readily expanded to a highly
multiplex (>20) cytokine detection platform for comprehensive
immune status analysis of patients in a clinical setting. Through
integration with hand-held imaging systems and/or paper
testing strips, the nanoplasmonic digital immunoassay can be
further exploited as a point-of-care (POC) detection platform
for cytokines and provide clinical significance in disease early
diagnosis, management, and prevention.

METHODS
Fabrication of Multi-Capture-AntibodyMicroarray Chip. The

multicapture-antibody microarray chip was fabricated using a micro-
fluidic patterning technique9 through a glutaraldehyde-mediated
conjugation protocol.38 Briefly, a cleaned glass substrate was first
functionalized with (3-aminopropyl)triethoxysilane (APTES) by a
concentrated vapor-phase deposition method55 to generate an amino-
terminated silane monolayer on the glass surface. Subsequently, the
amino-silanized glass substrate was temporarily bonded with an
antibody-patterning PDMS mask layer containing six parallel meander-
ing microfluidic channels. The amino-silanized glass surfaces in the six
microfluidic channels were modified with six different types of
anticytokine capture antibodies using glutaraldehyde-mediated con-
jugation chemistry.38 Finally, the antibody-patterning microfluidic
PDMS mask layer was replaced with a sample-flow PDMS mask layer
with 8 microfluidic channels. The microfluidic channels of the sample-
flow PDMS layer were placed perpendicularly to the capture antibody
stripes. This fabrication process generated 288 sensing arrays (200 μm
× 200 μm) on the surface of the chip, including 8 sample channels and 6
segments of 6 collocating parallel multiplex antibody arrays in each
channel (detailed fabrication procedures can be found in Supporting
Information).
Synthesis of the 100 nmAgNCs.The AgNCs of∼100 nm in edge

length were synthesized using a reported seed-mediated growth
procedure with minor modifications,35 where AgNCs of ∼42 nm in
edge length served as the seeds. Initially, the∼42 nm AgNC seeds were
prepared by the reduction of AgNO3 with ethylene glycol (EG) in the
presence of poly(vinylpyrrolidone) (PVP) using a one-pot synthesis
method36 and stored in 4.0 mL EG (∼8.1 nM in particle concentration,
detailed preparation procedures can be found in Supporting
Information). Then, 3.0 mL of EG was added into a glass vial and
preheated to 150 °C under magnetic stirring. After 25 min of
preheating, 0.9 mL of 20 mg mL−1 PVP solution in EG, 0.2 mL of the
∼42 nm AgNC seeds in EG, and 0.6 mL of 36 mg mL−1 AgNO3
solution in EG were pipetted into the vial sequentially. The ∼100 nm
AgNCs were obtained by cooling the reaction solution with an ice−
water bath after the reaction had proceeded for∼90 min with the major
extinction peak of the reaction solution reaching ∼585 nm.56 After
being washed once with acetone and then ultrapure water via
centrifugation, the∼100 nm AgNCs were stored in 4.0 mL of ultrapure
water for future use (∼0.4 nM in particle concentration).
Preparation of Anti-Cytokine Detection Antibody Conju-

gated 100 nm AgNCs (AgNC-DAb Conjugates). The six AgNC-
DAb conjugates were prepared by conjugating 100 nm AgNCs with six
types of anticytokine detection antibodies using HS-PEG3400-COOH
and EDC/NHS as the linker and the coupling agents, respectively.38,42

In brief, 400 μL of 10 mg mL−1 HS-PEG3400-COOH aqueous solution

was mixed with 100 μL of the as-synthesized 100 nm AgNCs (0.4 nM),
followed by incubation at room temperature for 5 h under gentle
shaking. The mixture was then centrifuged at 1,000 rpm for 10 min, and
the obtained precipitates (i.e., AgNC-S-PEG3400-COOH) were washed
twice with ultrapure water and dispersed in 300 μL of 10 mM
phosphate-buffered saline (PBS, pH 7.4). Subsequently, 100 μL of 25
mM EDC aqueous solution and 100 μL of 50 mM NHS aqueous
solution were simultaneously added into the AgNC-S-PEG3400-COOH
suspension. After incubation at room temperature for 20 min under
gentle shaking, the nanoparticles (i.e., EDC/NHS-activated AgNC-S-
PEG3400-COOH) were washed three times with ultrapure water and
dispersed in 400 μL of PBS. 100 μL of anticytokine detection antibody
solution (at a concentration of 200 μg mL−1) was added into the
nanoparticle suspension and incubated at 4 °C overnight with gentle
shaking. Thereafter, 200 μL of 10% BSA in PBS was added into the
nanoparticle suspension and incubated at room temperature for 60min.
After centrifugation, the products (i.e., AgNC-DAb conjugates) were
dispersed in 100 μL of PBS containing 0.05% Tween 20, 1% BSA, and
0.02% NaN3 and were finally stored at 4 °C for future use (0.4 nM).

Training of the Convolutional Neural Network (CNN). The
architecture of the CNN contains a downsampling process from a 512
× 512 dark-field AgNC image for category classification (nanoparticles
as class “1”, background as class “0”) and an upsampling process for
nanoparticle segmentation. The downsampling process consists of 6
layers, including an image input layer, two convolution 2D layers
(Conv2D, 6 filters, kernel of 3 × 3), two rectified linear unit layers
(ReLU), and one max-pooling layer (stride of 2). The upsampling
process consists of 5 layers, including one transposed convolution 2D
layer (Trans Conv2D), one ReLu layer, one Conv2D layer, one softmax
layer, and one pixel classification layer which contains class weight
balance.

The training of the CNN involves data set labeling, class weight
balance, network training, and result evaluation. Figure S13 shows the
schematic of the data annotation workflow for training data set labeling.
For the training data set, we selected 252 representative dark-field
images that covered a wide range of cytokine concentrations from assay
blank to 0 pg mL−1 to 10,000 pg mL−1. To enhance the data set labeling
speed, we wrote a thresholding algorithm that computed a global
threshold T from a grayscale image, using Otsu’s method.57 Using this
global threshold together with the standard image erosions and
dilations, we labeled the recognized AgNC spot pixel as class “1” and the
background pixel as class “0” to generate a binary image mask called
“Labeled image”. Note that this labeled image was still preliminary and
failed to detect the AgNC spots that had large intensity variance or that
were aggregated. We then used several correction algorithms to
manually add or remove the falsely recognized area. We used a 5 × 5
pixel unit size for normalizing the labeling of all the recognized AgNC
spots including individual, aggregated, bright, and dim spots. In
addition to the average individual spots, this normalization labeling
process would not only help the neutral network to recognize the very
deem spots but also be able to separate the aggregated spots with strong
intensity comparing to the global thresholding method (Otsu’s
method). The human corrected “Labeled image” was later used to
train the neural network. In addition, we considered the class weight
balance using the inverse frequency weighting method which gives
more weight to less frequently appearing classes (AgNC class). The
class weight was defined as

N

N
class weight

image total pixels

class pixels
=

whereNimage total pixels is the number of total image pixels of 512 × 512 =
262,144, and the Nclass pixels is the number of pixels for each class. This
class weighting strategy was added into the neural network training
process to enhance the pixel identification accuracy because the number
of AgNC class pixels was significantly smaller than the number of
background pixels. For the network training options, we used the
stochastic gradient descent with momentum (SGDM) algorithm to
minimize the loss function and set the total epoch number to be 200
with 20 samples for each mini-batch. We then selected four candidate
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networks with training accuracy above 98% and further evaluated their
performance using 126 well-selected test images and then finalized the
currently used CNN. Finally, the pretrained CNN algorithm was
integrated into the developed CNN-based image processing method
and applied to recognize the entire area of AgNC spots in an image. The
AgNC spot number (i.e., particle number) in the image as the final
output result was simply calculated by area-size sorting, which is equal
to the recognized AgNC spot area divided by the 5 × 5 pixel unit size.
Standard Procedure for the Detection of Multiple Cytokines

Using Machine Learning-Assisted Microfluidic Nanoplasmonic
Digital Immunoassay. Prior to detection, multicytokine standards
with various concentrations (ranging from 0 to 10,000 pg mL−1) were
prepared by dissolving IL-1β, IL-2, IL-6, IL-10, TNF-α, and IFN-γ
together in PBS containing 0.05% Tween 20 and 1% BSA (dilution
buffer), and a mixed AgNC-DAb conjugate solution (0.1 nM) was
prepared by dissolving the same amounts of the as-prepared six types of
AgNC-DAb conjugates together in dilution buffer. In a standard
detection procedure, 3 μL of the multicytokine standards or human
serum samples was mixed with 3 μL of the AgNC-DAb conjugate
mixture (0.1 nM) and loaded into the multiantibody microarray chip.
After incubation at room temperature for 60 min, the channels were
washed with PBST. The images of the antibody arrays in each channel
were semiautomatically taken using a dark-field LSPR microscope for
∼25 min to complete the acquisition of the 288 images (please see the
Supporting Information for the detailed microscope configuration).
Note that 100 nm AgNC reference arrays in each channel were used to
locate the regions of antibody arrays. The number of AgNCs on each
image was recorded as the detection signal using the CNN-based image
processing method and took ∼30 s to process the 288 images. A view
area of 138 μm × 138 μm (center part) from the 200 μm × 200 μm
antibody arrays was captured as the detection results for analysis to
ensure a high quality of obtained single-particle nanoplasmonic
scattering images and to avoid the background scattering signals and
interference from the PDMS layer along the edge of the microfluidic
channel.

ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsnano.1c06623.

Detailed experimental description; TEM images, dark-
field image, and simulated scattering cross-section
spectrum of 100 nm AgNCs; dark-field images, SEM
images, and scattering spectrum of 100 nm AgNC-DAb
conjugates; correlation analyses between the CNN
method and Image-Pro-Plus-assisted manual counting
method; optimization of experimental conditions; cali-
bration curves of cytokines using commercial ELISA kits;
calibration curves of cytokines for the developed
immunoassay using Image-Pro Plus method for AgNC
number counting; quantification of cytokine concen-
trations in human serum samples; data annotation
workflow for labeling training images; and 3D models
and photographs of the antibody-patterning PDMS mask
layer and sample-flow PDMS mask layer (PDF)

AUTHOR INFORMATION
Corresponding Authors
Katsuo Kurabayashi − Department of Mechanical Engineering,
Department of Electrical Engineering and Computer Science,
and Michigan Center for Integrative Research in Critical Care,
University of Michigan, Ann Arbor, Michigan 48109, United
States; orcid.org/0000-0002-9613-3590;
Email: katsuo@umich.edu

Pengyu Chen − Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,

Auburn University, Auburn, Alabama 36849, United States;
orcid.org/0000-0003-3380-872X; Email: pengyuc@

auburn.edu

Authors
Zhuangqiang Gao−Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849, United States;
orcid.org/0000-0001-9097-1799

Yujing Song − Department of Mechanical Engineering,
University of Michigan, Ann Arbor, Michigan 48109, United
States

Te Yi Hsiao − Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849, United States

Jiacheng He − Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849, United States

Chuanyu Wang − Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849, United States

Jialiang Shen − Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849, United States

AlanaMacLachlan−Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849, United States

Siyuan Dai − Materials Research and Education Center,
Materials Engineering, Department of Mechanical Engineering,
Auburn University, Auburn, Alabama 36849, United States;
orcid.org/0000-0001-7259-7182

Benjamin H. Singer − Department of Internal Medicine,
Division of Pulmonary and Critical Care Medicine, University
of Michigan, Ann Arbor, Michigan 48109, United States;
orcid.org/0000-0002-4721-6920

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsnano.1c06623

Author Contributions
Z. Gao conducted all the experiments and wrote the manuscript.
Y. Song contributed to the development of machine-learning-
based image processing method. T. Y. Hsiao assisted in all the
experiments. J. He assisted in the preparation of microfluidic
chips. C.Wang performed the SEM characterization. J. Shen and
S. Dai performed the AFM characterization. A. MacLachlan
assisted in the manuscript writing. B. H. Singer provided
guidance for detection of human serum specimens. K.
Kurabayashi and P. Chen provided constructive guidance for
the overall design and direction of the experiments and edited
the manuscript. All authors contributed to the data analysis and
reviewed the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health
(NIH) MIRA R35GM133795 and National Science Founda-
tion (NSF) CAREER CBET-1943302 (P. Chen), NSF CBET-
1931905 and CBET-2030551 (K. Kurabayashi), NIH
K08NS101054 and University of Michigan COVID-19
Response Innovation Grant (B. H. Singer), and NSF OIA-

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c06623
ACS Nano 2021, 15, 18023−18036

18034

https://pubs.acs.org/doi/suppl/10.1021/acsnano.1c06623/suppl_file/nn1c06623_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c06623?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsnano.1c06623/suppl_file/nn1c06623_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katsuo+Kurabayashi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9613-3590
mailto:katsuo@umich.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pengyu+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3380-872X
https://orcid.org/0000-0003-3380-872X
mailto:pengyuc@auburn.edu
mailto:pengyuc@auburn.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhuangqiang+Gao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9097-1799
https://orcid.org/0000-0001-9097-1799
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yujing+Song"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Te+Yi+Hsiao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiacheng+He"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chuanyu+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jialiang+Shen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alana+MacLachlan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Siyuan+Dai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7259-7182
https://orcid.org/0000-0001-7259-7182
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+H.+Singer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4721-6920
https://orcid.org/0000-0002-4721-6920
https://pubs.acs.org/doi/10.1021/acsnano.1c06623?ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c06623?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2033454 and Auburn University Intramural Grants Program
200913 (S. Dai).

REFERENCES
(1) Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.;
Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie,
X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; et al. Clinical Features of Patients
Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020,
395, 497−506.
(2) World Health Organization, Coronavirus Disease (COVID-19).
Weekly Epidemiological Update and Weekly Operational Update.
2021, https://www.who.int/Emergencies/Diseases/Novel-
Coronavirus-2019/Situation-Reports (Date of Access: January 18,
2021).
(3) Moore, J. B.; June, C. H. Cytokine Release Syndrome in Severe
COVID-19. Science 2020, 368, 473−474.
(4) Ye, Q.; Wang, B.; Mao, J. The Pathogenesis and Treatment of the
’Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607−613.
(5) Mou, L.; Jiang, X. Materials for Microfluidic Immunoassays: A
Review. Adv. Healthcare Mater. 2017, 6, 1601403.
(6) Han, K. N.; Li, C. A.; Seong, G. H. Microfluidic Chips for
Immunoassays. Annu. Rev. Anal. Chem. 2013, 6, 119−141.
(7) Song, Y.; Lin, B.; Tian, T.; Xu, X.; Wang, W.; Ruan, Q.; Guo, J.;
Zhu, Z.; Yang, C. Recent Progress in Microfluidics-Based Biosensing.
Anal. Chem. 2019, 91, 388−404.
(8) Nge, P. N.; Rogers, C. I.; Woolley, A. T. Advances in Microfluidic
Materials, Functions, Integration, and Applications. Chem. Rev. 2013,
113, 2550−2583.
(9) Chen, P.; Chung, M. T.; McHugh, W.; Nidetz, R.; Li, Y.; Fu, J.;
Cornell, T. T.; Shanley, T. P.; Kurabayashi, K. Multiplex Serum
Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays.
ACS Nano 2015, 9, 4173−4181.
(10) Song, Y.; Sandford, E.; Tian, Y.; Yin, Q.; Kozminski, A. G.; Su, S.-
H.; Cai, T.; Ye, Y.; Chung, M. T.; Lindstrom, R.; Goicochea, A.;
Barabas, J.; Olesnavich, M.; Rozwadowski, M.; Li, Y.; Alam, H. B.;
Singer, B. H.; Ghosh, M.; Choi, S. W.; Tewari, M.; et al. Rapid Single-
Molecule Digital Detection of Protein Biomarkers for Continuous
Monitoring of Systemic Immune Disorders. Blood 2021, 137, 1591−
1602.
(11) He, Z.; Huffman, J.; Curtin, K.; Garner, K. L.; Bowdridge, E. C.;
Li, X.; Nurkiewicz, T. R.; Li, P. Composable Microfluidic Plates
(cPlate): A Simple and Scalable Fluid Manipulation System for
Multiplexed Enzyme-Linked Immunosorbent Assay (ELISA). Anal.
Chem. 2021, 93, 1489−1497.
(12) Hsu, M. N.; Wei, S.-C.; Guo, S.; Phan, D.-T.; Zhang, Y.; Chen,
C.-H. Smart Hydrogel Microfluidics for Single-Cell Multiplexed
Secretomic Analysis with High Sensitivity. Small 2018, 14, 1802918.
(13) Rissin, D. M.; Kan, C. W.; Campbell, T. G.; Howes, S. C.;
Fournier, D. R.; Song, L.; Piech, T.; Patel, P. P.; Chang, L.; Rivnak, A. J.;
Ferrell, E. P.; Randall, J. D.; Provuncher, G. K.; Walt, D. R.; Duffy, D. C.
Single-Molecule Enzyme-Linked Immunosorbent Assay Detects Serum
Proteins at Subfemtomolar Concentrations. Nat. Biotechnol. 2010, 28,
595−599.
(14) Walt, D. R. Optical Methods for Single Molecule Detection and
Analysis. Anal. Chem. 2013, 85, 1258−1263.
(15) Wu, Y.; Bennett, D.; Tilley, R. D.; Gooding, J. J. How
Nanoparticles Transform Single Molecule Measurements into
Quantitative Sensors. Adv. Mater. 2020, 32, 1904339.
(16) Farka, Z.; Mickert, M. J.; Pastucha, M.; Mikus  ová, Z.; Skládal, P.;
Gorris, H. H. Advances in Optical Single-Molecule Detection: En
Route to Supersensitive Bioaffinity Assays. Angew. Chem., Int. Ed. 2020,
59, 10746−10773.
(17) Ma, F.; Li, Y.; Tang, B.; Zhang, C.-Y. Fluorescent Biosensors
Based on Single-Molecule Counting. Acc. Chem. Res. 2016, 49, 1722−
1730.
(18) Song, Y.; Ye, Y.; Su, S.-H.; Stephens, A.; Cai, T.; Chung, M.-T.;
Han, M. K.; Newstead, M. W.; Yessayan, L.; Frame, D.; Humes, H. D.;
Singer, B. H.; Kurabayashi, K. ADigital ProteinMicroarray for COVID-
19 Cytokine Storm Monitoring. Lab Chip 2021, 21, 331−343.

(19) Farka, Z.; Mickert, M. J.; Hlavác  ek, A.; Skládal, P.; Gorris, H. H.
Single Molecule Upconversion-Linked Immunosorbent Assay with
Extended Dynamic Range for the Sensitive Detection of Diagnostic
Biomarkers. Anal. Chem. 2017, 89, 11825−11830.
(20) Peng, Y.; Xiong, B.; Peng, L.; Li, H.; He, Y.; Yeung, E. S. Recent
Advances in Optical Imaging with Anisotropic Plasmonic Nano-
particles. Anal. Chem. 2015, 87, 200−215.
(21) Sriram, M.; Markhali, B. P.; Nicovich, P. R.; Bennett, D. T.;
Reece, P. J.; Brynn Hibbert, D.; Tilley, R. D.; Gaus, K.; Vivekchand, S.
R. C.; Gooding, J. J. A Rapid Readout for Many Single Plasmonic
Nanoparticles Using Dark-Field Microscopy and Digital Color
Analysis. Biosens. Bioelectron. 2018, 117, 530−536.
(22) Poon, C.-Y.; Wei, L.; Xu, Y.; Chen, B.; Xiao, L.; Li, H.-W.
Quantification of Cancer Biomarkers in Serum Using Scattering-Based
Quantitative Single Particle Intensity Measurement with a Dark-Field
Microscope. Anal. Chem. 2016, 88, 8849−8856.
(23) Li, G.; Zhu, L.; Wu, Z.; He, Y.; Tan, H.; Sun, S. Digital
Concentration Readout of DNA by Absolute Quantification of
Optically Countable Gold Nanorods. Anal. Chem. 2016, 88, 10994−
11000.
(24) Ahijado-Guzmán, R.; Prasad, J.; Rosman, C.; Henkel, A.; Tome,
L.; Schneider, D.; Rivas, G.; Sönnichsen, C. Plasmonic Nanosensors for
Simultaneous Quantification of Multiple Protein−Protein Binding
Affinities. Nano Lett. 2014, 14, 5528−5532.
(25) Rosman, C.; Prasad, J.; Neiser, A.; Henkel, A.; Edgar, J.;
Sönnichsen, C. Multiplexed Plasmon Sensor for Rapid Label-Free
Analyte Detection. Nano Lett. 2013, 13, 3243−3247.
(26) Ament, I.; Prasad, J.; Henkel, A.; Schmachtel, S.; Sönnichsen, C.
Single Unlabeled Protein Detection on Individual Plasmonic Nano-
particles. Nano Lett. 2012, 12, 1092−1095.
(27) Beuwer, M. A.; Prins, M. W. J.; Zijlstra, P. Stochastic Protein
Interactions Monitored by Hundreds of Single-Molecule Plasmonic
Biosensors. Nano Lett. 2015, 15, 3507−3511.
(28) Zijlstra, P.; Paulo, P. M. R.; Orrit, M. Optical Detection of Single
Non-Absorbing Molecules Using the Surface Plasmon Resonance of a
Gold Nanorod. Nat. Nanotechnol. 2012, 7, 379−382.
(29) Taylor, A. B.; Zijlstra, P. Single-Molecule Plasmon Sensing:
Current Status and Future Prospects. ACS Sens. 2017, 2, 1103−1122.
(30) Willets, K. A.; Wilson, A. J.; Sundaresan, V.; Joshi, P. B. Super-
Resolution Imaging and Plasmonics. Chem. Rev. 2017, 117, 7538−
7582.
(31) Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold Nanoparticles for in
Vitro Diagnostics. Chem. Rev. 2015, 115, 10575−10636.
(32) Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-
Sayed, M. A. The Golden Age: Gold Nanoparticles for Biomedicine.
Chem. Soc. Rev. 2012, 41, 2740−2779.
(33) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.;
Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of
Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011,
111, 3669−3712.
(34) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical
Properties of Metal Nanoparticles: The Influence of Size, Shape, and
Dielectric Environment. J. Phys. Chem. B 2003, 107, 668−677.
(35) Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.-P.; Xia,
Y. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge
Lengths in the Range of 30−200 nm and Comparison of Their Optical
Properties. J. Am. Chem. Soc. 2010, 132, 11372−11378.
(36) Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile Synthesis of Ag
Nanocubes and Au Nanocages. Nat. Protoc. 2007, 2, 2182−2190.
(37) Moran, C. H.; Rycenga, M.; Zhang, Q.; Xia, Y. Replacement of
Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube
Functionalization by Surface-Enhanced Raman Scattering. J. Phys.
Chem. C 2011, 115, 21852−21857.
(38) Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic
Press: Amsterdam, The Netherlands, 2008.
(39) Nehilla, B. J.; Vu, T. Q.; Desai, T. A. Stoichiometry-Dependent
Formation of Quantum Dot−Antibody Bioconjugates: A Comple-
mentary Atomic Force Microscopy and Agarose Gel Electrophoresis
Study. J. Phys. Chem. B 2005, 109, 20724−20730.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c06623
ACS Nano 2021, 15, 18023−18036

18035

https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1016/S0140-6736(20)30183-5
https://www.who.int/Emergencies/Diseases/Novel-Coronavirus-2019/Situation-Reports
https://www.who.int/Emergencies/Diseases/Novel-Coronavirus-2019/Situation-Reports
https://doi.org/10.1126/science.abb8925
https://doi.org/10.1126/science.abb8925
https://doi.org/10.1016/j.jinf.2020.03.037
https://doi.org/10.1016/j.jinf.2020.03.037
https://doi.org/10.1002/adhm.201601403
https://doi.org/10.1002/adhm.201601403
https://doi.org/10.1146/annurev-anchem-062012-092616
https://doi.org/10.1146/annurev-anchem-062012-092616
https://doi.org/10.1021/acs.analchem.8b05007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr300337x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr300337x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b00396?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b00396?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1182/blood.2019004399
https://doi.org/10.1182/blood.2019004399
https://doi.org/10.1182/blood.2019004399
https://doi.org/10.1021/acs.analchem.0c03651?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c03651?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c03651?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/smll.201802918
https://doi.org/10.1002/smll.201802918
https://doi.org/10.1038/nbt.1641
https://doi.org/10.1038/nbt.1641
https://doi.org/10.1021/ac3027178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac3027178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adma.201904339
https://doi.org/10.1002/adma.201904339
https://doi.org/10.1002/adma.201904339
https://doi.org/10.1002/anie.201913924
https://doi.org/10.1002/anie.201913924
https://doi.org/10.1021/acs.accounts.6b00237?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.6b00237?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0LC00678E
https://doi.org/10.1039/D0LC00678E
https://doi.org/10.1021/acs.analchem.7b03542?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b03542?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b03542?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac504061p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac504061p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac504061p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bios.2018.06.066
https://doi.org/10.1016/j.bios.2018.06.066
https://doi.org/10.1016/j.bios.2018.06.066
https://doi.org/10.1021/acs.analchem.6b02429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b02429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b02429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b02712?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b02712?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.6b02712?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl501865p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl501865p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl501865p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl401354f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl401354f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl204496g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl204496g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.5b00872?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.5b00872?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.5b00872?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nnano.2012.51
https://doi.org/10.1038/nnano.2012.51
https://doi.org/10.1038/nnano.2012.51
https://doi.org/10.1021/acssensors.7b00382?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.7b00382?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00547?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00547?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.5b00100?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.5b00100?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C1CS15237H
https://doi.org/10.1021/cr100275d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr100275d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp026731y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp026731y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp026731y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja104931h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja104931h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja104931h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nprot.2007.326
https://doi.org/10.1038/nprot.2007.326
https://doi.org/10.1021/jp207868a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp207868a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp207868a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp052613+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp052613+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp052613+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp052613+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c06623?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(40) Xia, Y.; Ramgopal, Y.; Li, H.; Shang, L.; Srinivas, P.; Kickhoefer,
V. A.; Rome, L. H.; Preiser, P. R.; Boey, F.; Zhang, H.; Venkatraman, S.
S. Immobilization of Recombinant Vault Nanoparticles on Solid
Substrates. ACS Nano 2010, 4, 1417−1424.
(41) Ming, T.; Chen, H.; Jiang, R.; Li, Q.; Wang, J. Plasmon-
Controlled Fluorescence: Beyond the Intensity Enhancement. J. Phys.
Chem. Lett. 2012, 3, 191−202.
(42) Gao, Z.; Lv, S.; Xu, M.; Tang, D. High-Index {hk0} Faceted
Platinum Concave Nanocubes with Enhanced Peroxidase-Like Activity
for an Ultrasensitive Colorimetric Immunoassay of the Human
Prostate-Specific Antigen. Analyst 2017, 142, 911−917.
(43) Thomas, G. D. Effect of Dose, Molecular Size, and Binding
Affinity on Uptake of Antibodies. In Drug Targeting: Strategies,
Principles, and Applications; Francis, G. E., Delgado, C., Eds.; Humana
Press: Totowa, NJ, 2000; pp 115−132.
(44) He, H.; Yan, S.; Lyu, D.; Xu, M.; Ye, R.; Zheng, P.; Lu, X.; Wang,
L.; Ren, B. Deep Learning for Biospectroscopy and Biospectral
Imaging: State-of-the-Art and Perspectives. Anal. Chem. 2021, 93,
3653−3665.
(45) Wu, G.; Zhang, D.; Zhou, L. Machine Learning in Medical
Imaging; Springer: Heidelberg, Germany, 2014.
(46) Song, Y.; Zhao, J.; Cai, T.; Stephens, A.; Su, S.-H.; Sandford, E.;
Flora, C.; Singer, B. H.; Ghosh, M.; Choi, S. W.; Tewari, M.;
Kurabayashi, K. Machine Learning-Based Cytokine Microarray Digital
Immunoassay Analysis. Biosens. Bioelectron. 2021, 180, 113088.
(47) Zhang, X.; Liu, Z. Superlenses to Overcome the Diffraction
Limit. Nat. Mater. 2008, 7, 435−441.
(48) Wen, S.; Liu, Y.; Wang, F.; Lin, G.; Zhou, J.; Shi, B.; Suh, Y. D.;
Jin, D. Nanorods with Multidimensional Optical Information beyond
the Diffraction Limit. Nat. Commun. 2020, 11, 6047.
(49) Del Valle, D. M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.
D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T. H.; Madduri, D.;
Stock, A.; Marron, T. U.; Xie, H.; Patel, M.; Tuballes, K.; Van Oekelen,
O.; Rahman, A.; Kovatch, P.; Aberg, J. A.; Schadt, E.; Jagannath, S.; et al.
An Inflammatory Cytokine Signature Predicts COVID-19 Severity and
Survival. Nat. Med. 2020, 26, 1636−1643.
(50) Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H. A.;
Liu, G. Cytokines: From Clinical Significance to Quantification. Adv.
Sci. 2021, 8, 2004433.
(51) Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B. J.; Hellmuth,
J. C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated
Levels of IL-6 and CRP Predict the Need for Mechanical Ventilation in
COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128−136.
(52) Yessayan, L.; Szamosfalvi, B.; Napolitano, L.; Singer, B.;
Kurabayashi, K.; Song, Y.; Westover, A.; Humes, H. D. Treatment of
Cytokine Storm in COVID-19 Patients with Immunomodulatory
Therapy. ASAIO J. 2020, 66, 1079−1083.
(53) Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab
Treatment in COVID-19: A Single Center Experience. J. Med. Virol.
2020, 92, 814−818.
(54) Alzghari, S. K.; Acuña, V. S. Supportive Treatment with
Tocilizumab for COVID-19: A Systematic Review. J. Clin. Virol. 2020,
127, 104380.
(55) Wang, W.; Vaughn, M. W. Morphology and Amine Accessibility
of (3-Aminopropyl) Triethoxysilane Films on Glass Surfaces. Scanning
2008, 30, 65−77.
(56) Xia, X.; Zeng, J.; Oetjen, L. K.; Li, Q.; Xia, Y. Quantitative
Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-
Mediated Growth of Ag Nanocrystals. J. Am. Chem. Soc. 2012, 134,
1793−1801.
(57) Otsu, N. A Threshold Selection Method from Gray-Level
Histograms. IEEE Trans. Syst. Man Cybern.: Syst. 1979, 9, 62−66.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c06623
ACS Nano 2021, 15, 18023−18036

18036

https://doi.org/10.1021/nn901167s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn901167s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz201392k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz201392k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C6AN02722A
https://doi.org/10.1039/C6AN02722A
https://doi.org/10.1039/C6AN02722A
https://doi.org/10.1039/C6AN02722A
https://doi.org/10.1021/acs.analchem.0c04671?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04671?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bios.2021.113088
https://doi.org/10.1016/j.bios.2021.113088
https://doi.org/10.1038/nmat2141
https://doi.org/10.1038/nmat2141
https://doi.org/10.1038/s41467-020-19952-x
https://doi.org/10.1038/s41467-020-19952-x
https://doi.org/10.1038/s41591-020-1051-9
https://doi.org/10.1038/s41591-020-1051-9
https://doi.org/10.1002/advs.202004433
https://doi.org/10.1016/j.jaci.2020.05.008
https://doi.org/10.1016/j.jaci.2020.05.008
https://doi.org/10.1016/j.jaci.2020.05.008
https://doi.org/10.1097/MAT.0000000000001239
https://doi.org/10.1097/MAT.0000000000001239
https://doi.org/10.1097/MAT.0000000000001239
https://doi.org/10.1002/jmv.25801
https://doi.org/10.1002/jmv.25801
https://doi.org/10.1016/j.jcv.2020.104380
https://doi.org/10.1016/j.jcv.2020.104380
https://doi.org/10.1002/sca.20097
https://doi.org/10.1002/sca.20097
https://doi.org/10.1021/ja210047e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja210047e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja210047e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c06623?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

