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Abstract

We consider Schmidt’s game on the space of compact subsets of a given metric
space equipped with the Hausdorff metric, and the space of continuous functions
equipped with the supremum norm. We are interested in determining the generic
behaviour of objects in a metric space, mostly in the context of fractal dimensions,
and the notion of ‘generic’ we adopt is that of being winning for Schmidt’s game.
We find properties whose corresponding sets are winning for Schmidt’s game that
are starkly different from previously established, and well-known, properties which
are generic in other contexts, such as being residual or of full measure.
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1 Schmidt’s game and winning sets

We consider Schmidt’s game introduced by Schmidt in [S66]. The game is played in a
complete metric space (X, d) and it has some similarities to the Banach–Mazur game.
The game is played by two players, Alice and Bob, and the rules are described below.
Given 0 < α, β < 1, Alice and Bob play the (α, β)-game as follows:

1. Bob begins by choosing r0 > 0 and x0 ∈ X. Write B0 = B (x0, r0) for the closed
ball of radius r0 centered at x0 and rn = (αβ)n r0 for all n ∈ N.

2. On Alice’s nth turn (n ≥ 1), she chooses yn such that d (xn−1, yn) + αrn−1 ≤ rn−1.

3. On Bob’s nth turn (n ≥ 1), he chooses xn such that d (yn, xn) + αβrn−1 ≤ αrn−1.
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4. The inequalities above ensure that the closed balls {Bn = B (xn, rn)}
∞

n=0 and
{An = B (yn, αrn−1)}

∞

n=1 form a decreasing sequence that satisfies

B0 ⊇ A1 ⊇ B1 ⊇ A2 ⊇ · · · ⊇ Bn ⊇ An+1 ⊇ Bn+1 ⊇ · · · , (1)

and hence intersect at a unique point which is called the outcome of the game.

Given a set S ⊆ X, if Alice has a strategy guaranteeing that the outcome lies in S,
then S is called (α, β)-winning. If for some fixed α, the set S is (α, β)-winning for all
0 < β < 1, then S is called α-winning. If S is α-winning for some 0 < α < 1, then S is
called winning. Sets which are winning should be thought of as being ‘big’ (cf. Theorem
1.1 below). A property is generic with respect to Schmidt’s game if the set of points with
that property is winning. The Banach–Mazur game is played similarly, but without any
restriction on the size of the nested sequence of balls (1), that is, the Banach–Mazur game
is a topological game, whereas Schmidt’s game is metric. A fundamental fact which is
important to keep in mind throughout this paper is that the winning sets for the Banach–
Mazur game are precisely the residual sets, that is, sets whose complement is a countable
union of nowhere dense sets. We refer the reader to [O57] for a precise definition of the
Banach–Mazur game and more on its properties.

A common application of the Banach–Mazur game is that if a countable collection of
properties are winning for the Banach–Mazur game then it is also winning that all of them
are satisfied at once. Schmidt’s game can be applied similarly as the following theorem
shows. We list some well-known properties of Schmidt’s game. For reference see [S66].

Theorem 1.1. Winning sets have the following properties:

1. If S ⊆ X is winning, then S is dense. If S is α-winning for α > 1
2
, then S = X.

2. If S ⊆ X is α-winning and 0 < α′ ≤ α, then S is α′-winning.

3. If S ⊆ Rd is winning, then the Hausdorff dimension of S is d.

4. If Sk ⊆ X is α-winning for every k ∈ N, then S =
⋂

∞

k=1 Sk is α-winning.

5. If S1, . . . , SN ⊆ X are winning sets (N finite) then S =
⋂N

k=1 Sk is winning.

6. If S ⊆ X is winning, then X \ S is not winning.

The property of being winning is subtle and how it relates to other notions of being
generic is of particular interest and a key theme of this paper. For example, the set of
badly approximable numbers

BA =

{
x ∈ R : inf

q∈N, p∈Z
q |qx− p| > 0

}

is well-known to be of first category (co-residual) and have zero Lebesgue measure, but
nevertheless be winning. Also, the set of numbers which are not normal to some fixed
base is well-known to have zero Lebesgue measure, and nevertheless to be residual and
winning, see [B09, S66, V59].
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2 Results

2.1 Dimensions of sets in a metric space

Let (X, d) be a complete separable metric space. Let K(X) be the set of nonempty
compact subsets of X equipped with the Hausdorff metric, denoted by dH. It is well-known
that (K(X), dH) is complete. Schmidt’s game will be played on K(X) and the winning
properties of subsets of K(X) defined according to dimension will be considered. Five
standard notions of dimension will be used: the lower, Hausdorff, lower box, upper box,
and Assouad dimensions, denoted by dimL, dimH , dimB, dimB, and dimA, respectively.
We note that the lower dimension is sometimes referred to as the lower Assouad dimension
in the literature.

We recall the definitions here for convenience. Fix a non-empty subset K ⊆ X and
write diam(A) ∈ [0,∞] for the diameter of a set A. Given s ≥ 0, the s-dimensional
Hausdorff (outer) measure of K is defined by

Hs(K) = lim
r→0

inf

{
∑

i

diam(Ui)
s : {Ui}i is a countable r-cover of K

}
,

where the r-cover of a set K is a family of sets with diameter at most r such that the
family is a cover of K. The Hausdorff dimension of K is then

dimH K = inf {s ≥ 0 : Hs(K) = 0} = sup {s ≥ 0 : Hs(K) = ∞} .

The lower and upper box dimensions of K are defined by

dimBK = lim inf
r→0

logNr(K)

− log r
and dimBK = lim sup

r→0

logNr(K)

− log r
,

respectively, where Nr(K) denotes the minimal number of open sets of diameter at most
r required to cover K. If dim

B
K = dimBK, then we call the common value the box

dimension of K and denote it by dimB K. The Assouad dimension of K is defined by

dimA K = inf

{
α : there exists a constant C > 0 such that,

for all 0 < r < R and x ∈ K,

Nr (B(x,R) ∩K) ≤ C

(
R

r

)α
}
.

The lower dimension of K is defined by

dimLK = sup

{
α : there exists a constant C > 0 such that,

for all 0 < r < R ≤ max{|K|, 1} and x ∈ K,

3



Nr (B(x,R) ∩K) ≥ C

(
R

r

)α
}
.

The reader is referred to [F03, R11, KLV13] for more discussion of these dimensions
and their basic properties. It is of particular importance in the subsequent analysis that
for any compact set K in a metric space the following inequalities hold:

dimL K ≤ dimH K ≤ dimBK ≤ dimBK ≤ dimAK .

Although these inequalities are straightforward to establish, we refer the reader to [L67]
for the first inequality, [F03] for the middle two, and [R11] for the final inquality.

Recall that a metric space is doubling if and only if dimA X < ∞, see [R11, Lemma
9.4], and uniformly perfect if and only if dimL X > 0, see [KLV13, Lemma 2.1]. We say
that X is Assouad sharp if it is doubling and there exists C > 0 such that all x ∈ X and
0 < r < R satisfy

Nr (B(x,R)) ≤ C

(
R

r

)dimA X

.

Examples of Assouad sharp spaces include Ahlfors regular metric spaces, in particular Rd.
Note that for Ahlfors regular spaces all of the above dimensions coincide, see [BG00].

Remark 2.1. If {B (xi, r)}
N
i=1 is a maximal collection of disjoint balls of radius r with

centers in K then K ⊆
⋃N

i=1 B (xi, 2r). On the other hand any cover of K with balls
of radius r must contain at least N balls. Hence if dimA(K) < ∞ then the minimum
number of balls of radius r needed to cover K and the maximum number of disjoint balls
of radius r centered in K are comparable up to constant factor. This constant factor could
be included in the constant C above. Throughout the paper we might switch back and
forth between disjoint balls and covering balls, which is a common strategy in dimension
theory.

Theorem 2.2.

(i) If X is uniformly perfect, then the set {K ∈ K(X) : dimL K > 0} is winning.

(ii) For all ε > 0, the set {K ∈ K(X) : dimLK < dimL X − ε} is not winning.

(iii) If X is Assouad sharp, then the set {K ∈ K(X) : dimAK < dimA X} is winning.

(iv) If X is doubling, then for all ε > 0 the set {K ∈ K(X) : dimAK > ε} is not win-
ning.

Remark 2.3. Assume that 0 < a < b < c = dimL X = dimAX < ∞. Without proof we
note that Bob, while choosing β small enough depending on α, can use a modification
of his strategies in the proof of Theorem 2.2 (ii) and (iv) to ensure that a < dimLK ≤
dimA K < b for the outcome of the game, K. This implies that if for sets A,B ⊆ (0, c),
the set

{K ∈ K(X) : dimL K ∈ A, dimAK ∈ B, dimL K < dimA K} (2)
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is winning, then both A and B are dense in the interval (a, b). We don’t know if the
converse holds, nor if there exists any other characterisation of the winning property of
the set in (2) in terms of A and B both being ‘big’ subsets of (0, c), where ‘big’ is chosen
appropriately, for example ‘big’ might mean full Lebesgue measure, winning, co-meager,
or uncountable. This is not clear even for X = Rd. It is even less clear in the case when X
is uniformly perfect and doubling but satisfies dimL X < dimA X. We also do not know
whether the property dimL K < dimAK is winning even in the X = Rd case. However,
we suspect that once α and β are fixed then Alice has enough impact to force the lower
and Assuad dimensions to be distinct for the outcome K.

Part (iii) of Theorem 2.2 has the weakness that we assumed X to be Assouad sharp
which is often not the case. It is possible to drop the Assouad sharpness by assuming
instead that X is uniformly perfect, though the proof becomes more complicated.

Theorem 2.4. Let X be a doubling uniformly perfect space. Then:

(i) {K ∈ K (X) : dimAK < dimA X} is winning.

(ii) If furthermore dimBX < ∞, then
{
K ∈ K (X) : dimBK < dimBX

}
is winning.

Part (i) of Theorem 2.2 is sharp in the sense that the statement is not true if the
‘uniformly perfect’ assumption is dropped. For example, if X has an isolated point, then
the collection of sets with positive dimension cannot be winning because Bob can choose
the initial set to be the singleton consisting of the isolated point and the initial radius
to be so small that the outcome of the game is already forced to be the isolated point.
However, one can construct a perfect set which also behaves similarly.

Example 2.5. Let X be the disjoint union of the unit ball in Rd and a perfect compact
set A of Hausdorff dimension 0 (or even of Assouad dimension 0). Then Bob can choose
the initial set to be contained in A and choose r0 to be small enough to make sure that
every step stays inside A. Hence the outcome of the game is in A and so of 0 dimension.
On the other hand, having 0 dimension is not winning because Bob can also make sure
that the game is played only inside the unit ball after the initial step (where Theorem 2.2
applies). The example shows that assuming that, for example, dimH X > 0 is not enough
to conclude that dimH K > 0 is a winning property.

The converse of part (i) of Theorem 2.2 is not true, as can be seen from the following
example of a set which is not uniformly perfect, but yet the conclusion of part (i) holds.

Example 2.6. Let

X = {0} ∪
∞⋃

n=1

[
1/n− 2−n, 1/n+ 2−n

]

equipped with the Euclidean distance. It follows from [F14, Example 2.5] that dimL X = 0
and so X is not uniformly perfect. However, no matter which initial set K0 ⊆ X and
radius r0 Bob picks, as long as α < 1/2, eventually the radius rn = (αβ)n r0 will be
small enough such that Alice can choose a set K ′

n such that elements of BH (K ′

n, αrn) are
uniformly bounded away from 0. Thus the problem reduces to the case when X = [0, 1]
(more accurately, a finite collection of intervals) and it follows from Theorem 2.2 (i) that
{K ∈ K(X) : dimL K > 0} is winning.
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Part (i) of Theorem 2.2 is also sharp in another sense, since part (iv) shows that (in
the doubling case) we cannot replace dimL K > 0 with dimLK > ε for any positive ε > 0.

Part (iii) of Theorem 2.2 is sharp, since part (ii) shows that (provided dimLX =
dimA X, e.g. if X is Ahlfors regular) the assumption dimA K < dimA X cannot be
replaced with dimAK < dimA X − ε for any positive ε > 0.

To emphasise an important setting where our results are complete, we state the spe-
cialisation of Theorem 2.2 to Euclidean space, noting that the same results also hold in
any Ahlfors regular space, where d is replaced by the Hausdorff dimension of the space.

Corollary 2.7. The set

{
K ∈ K

(
Rd

)
: 0 < dimL K ≤ dimA K < d

}

is winning, but for all ε > 0 the sets
{
K ∈ K

(
Rd

)
: dimA K > ε

}
and{

K ∈ K
(
Rd

)
: dimL K < d− ε

}
are not winning.

This should be compared with the well-known result of Feng and Wu [FW97], which
considers the Banach–Mazur game instead of Schmidt’s game. One can see that the
results are rather different.

Theorem 2.8 (Feng–Wu, 1997). The set

{
K ∈ K

(
Rd

)
: dimLK = dimBK = 0 and dimBK = dimA K = d

}

is winning for the Banach–Mazur game.

Remark 2.9. McMullen [M10] introduced the concept of absolute winning in Rn, which
can be extended to any complete metric space (see, e.g., [BHNS18]). In the absolute game
in (X, d), Bob chooses an initial closed ball B0 of radius r0 > 0 and β ∈ (0, 1). Alice then
chooses a closed ball A1 of radius at most βr0, Bob chooses, if possible, a ball B1 of radius
at least βr0 inside B0 \A1 and so on. If at some turn Bob has no legal move or if the radii
of Bob’s balls do not shrink to zero we say that Alice wins by default. Otherwise, we see

B0 ⊇ B0 \ A1 ⊇ B1 ⊇ B1 \ A2 ⊇ B2 . . .

and the outcome of the game is {x} = ∩i∈NBi. A set S ⊆ X is called absolute winning
if Alice has a strategy to make sure that either she wins by default or x ∈ S. McMullen
[M10] showed that in Rd absolute winning sets are winning. Let us consider the absolute
game in K

(
Rd

)
. Assume β < 1/3, r0 > 0 and K ∈ K

(
Rd

)
. Then Bob can play according

to the strategy that at every step he chooses a translate of K to be the center of his
ball. It is easy to see that since β < 1/3 no matter what Alice chooses Bob can always
make a legal choice according to his strategy (worst thing Alice can do against Bob is to
choose the same center as Bob and maximal possible radius). Hence the outcome of the
game is a translate of K. This means that every absolute winning set in K

(
Rd

)
contains

a translate of every compact set. Therefore absolute winning is not the right notion to
consider when talking about generic properties of K

(
Rd

)
.
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One of the most common applications of Schmidt games is to show existence of objects
with certain properties. For example, if there are countably many properties which are all
α-winning with a common α, then it is also winning to satisfy all these properties at once,
just like for the Banach–Mazur game. In this paper we investigate the winning properties
in terms of fractal dimensions, but many other properties could be studied. For the
Banach–Mazur game there is an extensive literature studying winning properties for sets
in the context of the Hausdorff metric. However, to the best of our knowledge Schmidt’s
game has not yet been considered in that context. Therefore we hope to stimulate future
activity in this area.

We mention one simple application of our work, mostly as motivation. Given a notion
of dimension dim, one may wonder whether given any K ⊂ Rd and s ∈ [0, dimK] one can
find a set E ⊂ K such that dimE = s. For example, this is known to hold for upper box
dimension, but not to hold for lower box dimension, see [FWW99]. In fact, it is proved
in [FWW99] that there exists a compact set K ⊂ [0, 1] with the surprising property that
dimBK > 0 but that dimBE ∈ {0, dimBK} for all E ⊂ K. It follows from our Theorem
2.2 (i) and Theorem 2.4 (ii) that, for any uniformly perfect compact set K ⊂ [0, 1], there
exists a subset E ⊂ K with 0 < dimLE ≤ dimBE < dimBK. This proves that any set K
satisfying the surprising property demonstrated in [FWW99] necessarily satisfies either
dimL K = 0 or dimBK < dimBK.

2.2 Dimensions of continuous images

Let K be a compact metric space. Fix d ∈ N, and let F = F(K, d) be the space of
continuous functions from K to Rd, endowed with the metric induced by the supremum
norm which is denoted by | · |. Write dimT (K) to denote the topological dimension of K.
Recall that dimT (K) is the minimal integer n ≥ 0 such that for every r > 0 there exists
an r-cover of K by open sets such that every point x ∈ K lies in at most n + 1 of the
covering sets.

Theorem 2.10.

(i) If dimT (K) ≥ d, then {f ∈ F : f(K) has nonempty interior} is winning.

(ii) If dimT (K) < d, then the set {f ∈ F : dimA(f(K)) < d} is winning.

(iii) If K is uncountable, then the set {f ∈ F : dimH(f(K)) > 0} is winning.

(iv) If dimT (K) ≤ d, then the set {f ∈ F : HdimT (K)(f(K)) > 0} is winning. In
particular, the set {f ∈ F : dimH(f(K)) ≥ dimT (K)} is winning.

Remark 2.11. In the proof of Theorem 2.10 we show that the conclusion of part (iii) holds
for every perfect set K. Every uncountable compact set K contains a perfect set F . In
the more general case, Alice plays her strategy for the restriction of the functions to F .
It follows from the general version of Tietze’s extension theorem that Alice can extend
her choice to the whole set K to be able to play a legal move.

7



Remark 2.12. The conclusion of part (iv) of Theorem 2.10 can be deduced from part (i).
Alice can play her strategy in the first dimT (K) coordinates completely ignoring the other
coordinates, just leaving them as Bob’s choice. Then they end up with a function whose
image projected onto the first dimT (K) coordinates is of nonempty interior. Hence the
conclusion of part (iv) follows.

Again, this result can be compared with the analogous results in the Banach–Mazur
setting, which are due to Balka–Farkas–Fraser–Hyde [BFFH13].

Theorem 2.13 (Balka–Farkas–Fraser–Hyde, 2013). The set

{
f ∈ F : dimH(f(K)) = dimB(f(K)) = min{d, dimT (K)}, dimB(f(K)) = dimA(f(K)) = d

}

is winning for the Banach–Mazur game.

In case dimT (K) ≥ d, these properties are similar for both Schmidt winning and
Banach–Mazur winning; however, in the other case they are rather different.

Remark 2.14. We can again consider the absolute game in F . Assume β < 1/3, r0 > 0
and f ∈ F . Then Bob can play that at every step he chooses the center of his ball on
the line

{
f + λ : λ ∈ Rd

}
. It is easy to see that Bob can always make a legal choice like

that since β < 1/3 (again the worst thing Alice can do against Bob is to choose the same
center as Bob and maximal possible radius). The outcome of the game is f + λ for some
λ ∈ Rd. This means that an absolute winning set contains a constant translate of every
function in F . Hence, just like in the case of K

(
Rd

)
, the absolute game does not seem to

be the right notion to consider in F .

2.3 Digit frequencies

Finally, we consider analogous questions concerning the frequencies of digits in expansions
of real numbers. Although this is somewhat incongruous with our other results, frequen-
cies are inherently related to densities and therefore dimension. There are also direct
connections between digit frequencies and dimension in many well-studied settings, such
as random fractals or Moran constructions, see below for a simple example. Moreover,
questions regarding the generic behaviour of digit frequencies are among the simplest
and most widely studied and therefore it is useful to see how our approach fits in here.
However, the most important reason that the results in this section fit with the rest
of the paper is that the same phenomenon occurs: the Schmidt winning properties are
starkly different from the properties which are winning for the Banach–Mazur game and,
moreover, the differences are similar in spirit.

For simplicity, we consider binary expansions of numbers x = x0.x1x2 · · · ∈ R where
x0 is an integer and xi ∈ {0, 1} are the digits in the binary expansion of the fractional
part of x. For definiteness take the lexicographically maximal expansion in the situations
where x does not have a unique expansion and assume that all expansions are infinite,
for example 1 = 1.000 . . . . For x ∈ R and j ∈ {0, 1} write

d+(x, j) = lim sup
k→∞

# {1 ≤ i ≤ k : xi = j}

k

8



and d−(x, j) for the same expression with lim sup replaced by lim inf, where if S is a finite
set then #S stands for the number of elements in S.

Theorem 2.15. The set
{
x ∈ R : 0 < d−(x, j) ≤ d+(x, j) < 1 for j ∈ {0, 1}

}

is winning, but for all ε > 0 and j ∈ {0, 1} the sets {x ∈ R : ε < d+(x, j)} and
{x ∈ R : d−(x, j) < 1− ε} are not winning.

This theorem is sharp in the sense that we cannot replace 0 by any ε > 0.

Remark 2.16. Similarly to Remark 2.3, we can ask if for sets A,B ⊆ (0, 1), the set
{
x ∈ R : d−(x, j) ∈ A, d+(x, j) ∈ B, d−(x, j) < d+(x, j)

}

is winning if and only if A and B are both ‘big’ subsets of (0, 1), where ‘big’ may stand
for either full Lebesgue measure, winning or co-meager.

There are obvious parallels between Theorem 2.15 and the results in the previous
sections, namely Theorem 2.2 and Corollary 2.7. Moreover, there is a stark comparison
between this result and other results concerning generic behaviour of digit frequencies.

Theorem 2.17 (Borel 1909, Volkmann 1959). The set
{
x ∈ R : d−(x, j) = d+(x, j) = 1/2 for j ∈ {0, 1}

}

has full Lebesgue measure and the set
{
x ∈ R : 0 = d−(x, j) and d+(x, j) = 1 for j ∈ {0, 1}

}

is winning for the Banach–Mazur game.

The Lebesgue measure part of this theorem was proven by Borel in 1909 as an applic-
ation of what became known as the Borel–Cantelli lemma [B09] and the Banach–Mazur
part was proven by Volkmann in 1959 [V59].

As mentioned above there is a simple (well-known) direct connection between dimen-
sion and digit frequencies. We associate a set F ⊂ [0, 1] with the binary expansion of
some x ∈ [0, 1] by an iterative procedure where we begin with one level 1 interval [0, 1]
and then at level i ≥ 1 we replace all level i intervals with two abutting intervals of half
the size, or with just one interval of half the size, according to whether the ith digit xi

in the expansion of x is 0 or 1. Then the Hausdorff and lower box dimensions of F are
given by d−(x, 0) and the packing and upper box dimensions of F are given by d+(x, 0).

3 Proofs

3.1 Proof of Theorem 2.2(i)

Since dimLX > 0, for all N ≥ 2 there exists an α ∈ (0, 1/5) (depending on X and N) such
that for every y ∈ X and 0 < r ≤ 1 there exist x1, . . . , xN such that

⋃N
i=1 B(xi, 2αr) ⊆

B(y, r) is a disjoint union. In what follows fixing N = 2 is sufficient.

9



Let β ∈ (0, 1) be arbitrary. The game begins by Bob choosing a starting set
KB

0 ∈ K(X) and a radius r0 > 0. Alice’s move is then as follows. Take x1, . . . , xM ∈ KB
0 ,

where M ≥ N , such that
⋃M

i=1 B (xi, 2αr0) is a disjoint union, and
⋃M

i=1 B (xi, 4αr0)
covers KB

0 . Alice then chooses the set KA
0 = {x1, . . . , xM}. This choice is legal since

dH
(
KA

0 , K
B
0

)
< (1 − α)r0. Then Bob will have to choose a set KB

1 which is contained
in

⋃M
i=1 B (xi, (1− β)αr0) and contains at least one point in every B (xi, (1− β)αr0) be-

cause the balls are αr0-separated. Alice then repeats her strategy in each of the balls
B (xi, (1− β)αr0) simultaneously. At every step n in each of the balls of the previous
step of the constuction Alice finds at least N more new balls of radius (1−β)α(αβ)n−1r0.
Let K be the outcome of the game, x ∈ K and 0 < R ≤ r0. Let m ∈ N such that
(αβ)m(1 − β)αr0 < R ≤ (αβ)m−1(1 − β)αr0. Then B(x, 2R) contains at least one of the
balls of step m+ 1. Hence

N(1−β)α(αβ)nr0(K ∩ B(x, 2R)) ≥ Nn−m ≥ (αβ)−(n−m)ε ≥ αβ2−1

(
2R

(1− β)α(αβ)nr0

)ε

if 0 < ε < 1 is small enough that N ≥ (αβ)−ε. In particular, dimL K ≥ ε > 0, which
proves the result.

3.2 Proof of Theorem 2.2(ii)

Let ε > 0 and fix α ∈ (0, 1/2]. We need to show that there exists β ∈ (0, 1) such that

{K ∈ K(X) : dimL K < dimL X − ε}

is not (α, β)-winning. If dimL X = 0 then the statement is trivial, so assume that
dimL X > 0. It follows that for

dimL X > t > max {dimLX − ε, 0}

there exist C > 0 and r0 such that for all β ∈ (0, 1), for all 0 < r < r0 and all x ∈ X there
are y1, . . . , yN such that

⋃N
i=1 B (yi, 2βr) ⊆ B(x, r) is a disjoint union, where N ≥ Cβ−t.

Let t > s > dimL X − ε. Let β > 0 be small enough that 4β < 1 − β and Cαs ≥ βt−s,
i.e. Cβ−t ≥ (αβ)−s. Bob starts by choosing KB

0 to be a single point and r0 was chosen
above. Then Bob adopts Alice’s strategy from part (i). Similarly it can be shown that

N(1−α)(αβ)nr0(K ∩ B(x,R)) ≥ (Cβ−t)n−m ≥ (αβ)−(n−m)s ≥ αsβs2−s

(
2R

(1− α)(αβ)nr0

)s

and therefore the outcome of the game satisfies dimL K ≥ s > dimL X − ε, proving the
result.

3.3 Proof of Theorem 2.2(iii)

Let α ∈ (0, 1/2) and β ∈ (0, 1) and let d = dimA X < ∞. Since by assumption X
is Assouad sharp, it follows that there exists C > 0 such that every bounded set B of
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diameter 2R can be covered by fewer than C(R/r)d balls of radius r ∈ (0, R) which
are centered in B, moreover we can assume that the balls with the same centers and
of radius r/2 are disjoint. For now, assume that Bob starts the game by choosing KB

0

to be a subset of the ball B(y, (1 − β)r) and a starting radius r0 = βr. Playing as
Alice, choose x1, . . . , xN ∈ KB

0 such that KB
0 ⊆

⋃N
i=1 B(xi, βr) where N ≤ C((1 −

β)/β)d and
⋃N

i=1 B(xi, αβr) ⊆
⋃N

i=1 B (xi, 2
−1βr) is a disjoint union (since that α < 1/2).

Moreover, if α < 1/4 then the distinct balls are αβr-separated. Alice then chooses
KA

0 = {x1, . . . , xN}. For his next move, Bob will have to choose a set KB
1 that is contained

in
⋃N

i=1 B (xi, (1− β)αβr) and the radius of the step is βαβr. Alice in her next move
repeats the previous strategy in all of the smaller balls B(xi, (1− β)αβr) simultaneously
and proceeds similarly at every step.

Let us denote the outcome of the game by K. Let x ∈ K and 0 < R ≤ r0 be fixed. Let
m ∈ N be such that r(αβ)m+1 < R ≤ r(αβ)m. Let’s say Alice’s mth move was {yi}

Mm
i=1 .

Then it follows from the strategy that K is contained in
⋃Mm

i=1 B (yi, (1− β)(αβ)mr) and
these balls are (αβ)mr-separated. Then the number M of these balls that intersects
B(x,R) is at most the number of these balls that are contained in B (x, 2α−1β−1R)

which is at most C
(

2α−1β−1R
(αβ)mr

)d

≤ C
(

2
αβ

)d

because these are disjoint balls centered

in B(x, 2R). Let n > m and observe that by the nth step of the game we have that

each of these M balls of radius (αβ)mr contain at most

(
C
(

1−β
β

)d
)n−m

balls of ra-

dius (1 − β)(αβ)nr such that K ∩ B(x,R) is contained in the union of these at most

M

(
C
(

1−β
β

)d
)n−m

≤ C
(

2
αβ

)d (
Cβ−d

)n−m
balls of radius (1 − β)(αβ)nr ≤ (αβ)nr.

Hence, noting that (αβ)m−n ≤ α−1β−2 R
r(αβ)n

, it follows that

N(αβ)nr (K ∩ B(x,R)) ≤ C

(
2

αβ

)d (
Cβ−d

)n−m
≤ C

(
2

αβ

)d

(αβ)−(d−ε)(n−m)

≤ C2dα−2dβ−3d

(
R

r(αβ)n

)(d−ε)

provided 0 < α < 1/4 is small enough that C < α−d/4 < α−(d−ε)/2 and 0 < ε < d/2
is small enough that αd/2 <

(
βα1/2

)ε
. Therefore we can choose small enough α such that

for every β we can choose a small enough ε that dimA K ≤ d− ε.
Finally, suppose Bob does not begin by choosing a set inside B (y, (1− β)r), but rather

an arbitrary compact set KB
0 , as he is of course permitted to do. In this case, on her first

move, Alice plays her strategy with the only exception that on the first level we have no
control on the number of balls N . However, this is not an issue because it is just some
fixed number and on the latter levels we have exactly the same control over the balls. It
follows that for some α > 0 the set

{K ∈ K(X) : dimA K < dimAX}

is (α, β)-winning for all β ∈ (0, 1) and therefore winning.
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3.4 Proof of Theorem 2.2(iv)

Let ε > 0 and fix α ∈ (0, 1/2). We need to show that there exists β ∈ (0, 1) such that

{K ∈ K(X) : dimAK > ε}

is not (α, β)-winning. To achieve this, Bob will adopt a similar strategy to Alice’s strategy
in the proof of Part (iii). Since X is doubling, it follows that there exist C, d > 0 such that
every ball of radius R can be covered by fewer than C(R/r)d balls of radius r ∈ (0, R).
Note that d may be strictly greater then dimAX in case X is not Assouad sharp, but
this is not an issue. Bob begins by choosing KB

0 = {y}, where y ∈ X is arbitrary, and
r0 = 1. Alice is then forced to choose a set KA

0 ⊆ B(y, 1 − α). Bob covers KA
0 by

balls of radius αr with centers in y1, . . . , yN ∈ K where N ≤ C((1 − α)/α)d is such
that

⋃N
i=1B(yi, βαr) ⊆

⋃N
i=1 B (yi, 2

−1αr) is a disjoint union, provided since β < 1/2.
Moreover if β < 1/4 then the balls are βα-separated. Alice’s next choice must be contained
in

⋃N
i=1 B(yi, (1 − α)βαr). Bob repeats his strategy in each of these balls. Let K be the

outcome of the game. Via a similar argument to that in the proof of Part (iii) one can
deduce that for (αβ)m+1 < R ≤ (αβ)m and n > m

N(αβ)n(K ∩ B(x,R)) ≤ C

(
2

αβ

)d (
Cα−d

)n−m
≤ C

(
2

αβ

)d

(αβ)−ε(n−m)

≤ C2dα−2dβ−2d

(
R

(αβ)n

)ε

if 0 < β < 1/4 is small enough such that Cα−d < β−ε < (αβ)−ε. Therefore dimAK ≤
ε, as required.

3.5 Proof of Theorem 2.4 (i)

Since X is uniformly perfect, i.e. dimLX > 0, we can find a small enough 0 < α < 1/4
such that inside every ball B of radius r/8 we can find two disjoint balls of radius αr such
that they are αr-separated from each other and from the boundary of B. Let β ∈ (0, 1)
be arbitrary and choose ε > 0 small enough that

(αβ)−2ε ≤ 21/2 . (3)

Write s = dimA X < ∞, and therefore there exists Cε > 0 such that

Nr(B(x,R)) ≤ Cε(R/r)s+ε (4)

for every x ∈ X and 0 < r < R. Fix k ∈ N such that

Cε ≤ 2k/2 (5)

and let ρn = (αβ)knr where r0 = βr.
First assume that Bob starts by choosing KB

0 ⊆ B(y, (1 − β)r) ⊆ B(y, r) for some
y ∈ X. Then Alice can find x1, . . . , xN ∈ KB

0 such that KB
0 ⊆

⋃N
i=1 B(xi, βr/2)
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and
⋃N

i=1B(xi, βr/4) is a disjoint union. Then the balls B(xi, βr/8) are disjoint and
βr/8-separated. By the choice of α, inside every ball B(xi, βr/8) there exists two
balls B (y1i , αβr) and B (y2i , αβr) which are disjoint and αβr-separated from each other
and from the boundary of B(xi, βr/8). Without loss of generality we can assume that
Ñρ1 (B (y1i , αβr)) ≤ Ñρ1 (B (y2i , αβr)) where Ñρ(B) denotes the maximum number of dis-
joint balls of radius ρ inside B for a ball B. Alice’s move then is KA

1 =
⋃N

i=1 {y
1
i }. Bob’s

next move KB
1 must be contained in

⋃N
i=1 B (y1i , (1− β)αβr) ⊆

⋃N
i=1 B (y1i , αβr) and the

radius of the step is βα(βr), noting that KB
1 also contains at least 1 point from each of

these balls. Assume that on the mth round of the game Bob plays KB
m which, by Alice’s

strategy, is contained in
⋃Nm

i=1 B
(
y1i,m, (1− β)(αβ)mr

)
⊆

⋃Nm

i=1 B
(
y1i,m, (αβ)

mr
)

where
these balls are (αβ)mr-separated. Let m = kn+ l where n ≥ 0, l = 0, . . . , k − 1. Then in
each of these balls similarly to the first step of the game Alice can find xm,i

1 , . . . , xm,i
N i

m
∈

KB
0 ∩B

(
y1i,m, (αβ)

mr
)

such that KB
0 ∩B

(
y1i,m, (αβ)

mr
)
⊆

⋃N
i=1 B

(
xm,i
j , β(αβ)mr/2

)
and

⋃N i
m

i=1 B
(
xm,i
j , β(αβ)mr/4

)
is a disjoint union. Then the balls B

(
xm,i
j , β(αβ)mr/8

)
are dis-

joint and β(αβ)mr/8-separated. By the choice of α inside every ball B
(
xm,i
j , β(αβ)mr/8

)

there exist two balls B
(
y1,m,i
j , (αβ)m+1r

)
and B

(
y2,m,i
j , (αβ)m+1r

)
which are disjoint and

(αβ)m+1r-separated from each other and from the boundary of B(xi, βr/8). Without loss
of generality we can assume that

Ñρn+1

(
B
(
y1,m,i
j , (αβ)m+1r

))
≤ Ñρn+1

(
B
(
y2,m,i
j , (αβ)m+1r

))
. (6)

Alice’s move is then KA
m+1 =

⋃Nm

i=1

⋃N i
m

j=1

{
y1,m,i
j

}
=
⋃Nm+1

i=1

{
y1i,m+1

}
and Bob’s next move

must be contained in
⋃Nm+1

i=1 B
(
y1i,m+1, (1− β)(αβ)m+1r

)
.

Now let us consider what happens inside one ball of the nkth level of the con-
struction B = B

(
y1i,nk, (αβ)

nkr
)

at the (n + 1)kth level of the construction. The ball

B
(
y1i,nk, (αβ)

nkr
)

contains some M balls from the collection B
(
y1i,(n+1)k, (αβ)

(n+1)kr
)
.

On the ((n+ 1)k− 1)th level we kept the balls B
(
y
1,(n+1)k−1
j , (αβ)(n+1)k−1r

)
and elimin-

ated the balls B
(
y
2,(n+1)k−1
j , (αβ)(n+1)k−1r

)
and by (6) it follows that inside the balls at

the ((n + 1)k − 1)th level that are contained in B there are at least 2M balls of radius
(αβ)(n+1)kr. Similarly inside the balls at the ((n + 1)k − 2)the level of the construction
that are contained in B there are at least 4M balls of radius (αβ)(n+1)kr. Continuing this
through k steps we get that inside B there are 2kM balls of radius (αβ)(n+1)kr. Hence

M ≤ 2−kN(αβ)(n+1)kr(B) ≤ 2−kCε(R/r)s+ε = 2−kCε(αβ)
−2εk(αβ)−(s−ε)k ≤ (αβ)−(s−ε)k

(7)
by (3), (4) and (5). So inside each ball at the nkth level of the construction there are at
most (αβ)−(s−ε)k balls from the (n+1)k level of the construction while the ratio between
the radii are (αβ)k. Hence for the outcome of the game K

dimA K ≤ s− ε .

Now let us consider the situation when Bob does not start by choosing KB
0 ⊆ B(y, (1−

β)r). Then Alice plays her strategy exactly the same way. The only difference is that
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now on the first level, and so on the first k levels, we have no control over the number
of balls of the construction. However, from then on inside each ball we have exactly the
same control over the number of the balls. Hence this has no effect on dimA K and the
proof is finished. Note that

Nρn(K) ≤ N(αβ)nkr

(
B
(
KA

nk, ρn
))

≤ (αβ)−(s−ε)nkNβr/2

(
KB

0

)
= ρ−(s−ε)

n Nβr/2

(
KB

0

)
. (8)

3.6 Proof of Theorem 2.4 (ii)

We prove (ii) similarly to (i). We apply a trick to replace dimA X with dimBX, but the
price is that we cannot keep k fixed and therefore only get estimates for the lower box
dimension of the outcome. The Assouad spectrum, introduced by Fraser and Yu [FY18b],
of a compact set X is the function θ 7→ dimθ

A X, where θ varies in (0, 1) and

dimθ
AX := inf

{
α : there exists C > 0 such that all 0 < R < 1 and x ∈ X satisfy

NR1/θ (B(x,R)) ≤ C

(
R

R1/θ

)α}
.

It was shown in [FY18b] that dimθ
A X is continuous in θ and satisfies

dimθ
AX ≤

dimBX

1− θ

and therefore dimθ
AX → dimBX as θ → 0. Therefore, in the above proof we can replace

(4) with the statement that there exist a small θ ∈ (0, 1) and a constant Cε,θ > 0 such
that

NR1/θ (B(z, R)) ≤ Cε,θ

(
R/R1/θ

)s+ε
(9)

for all z ∈ X and R ∈ (0, 1) where s is now the upper box dimension of X, that is,
s = dimBX (note that we choose θ to be less than 1/2 which ensures that 1/θ − 1 ≥ 1).
The only place this estimate is needed in the proof of (i) is (7) but to make (9) work here
we would ideally choose

ρn+1 = ρ1/θn

which means that k needs to change at every step of the strategy. That is, at step n we
group the turns in Schmidt’s game into groups of length kn defined inductively as follows.
Let k ∈ N be such that

Cε,θ ≤ 2k/2 .

We need to make sure that kn ≥ k for every n. Choose k1 = k and, given k1, . . . , kn ≥ k,
choose kn+1 to be the largest integer satisfying

ρn+1 := (αβ)
∑n+1

i=1 kir ≥
(
(αβ)

∑n
i=1 kir

)1/θ

= ρ1/θn .
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It is easy to see that if r ≤ 1 (which can be assumed because otherwise Alice just plays
randomly until rm/β ≤ 1 and starts playing her strategy then), then

kn+1 ≥ (1/θ − 1)
n∑

i=1

ki ≥ nk ≥ k .

Clearly this forces kn to grow very quickly and, moreover,

ρ1/θn (αβ)−1 ≥ ρn+1 ≥ ρ1/θn .

This is enough to apply (9) to make an estimation like in (7) for all n up to a constant
factor which can be absorbed into the constant Cε,θ.

The proof then works as before leading to the estimate (similar to (8))

N(αβ)S(n)r (K) ≤ (αβ)−S(n)(s−ε)Nβr/2

(
KB

0

)

for all n ∈ N where S(n) =
∑n

i=1 ki. Therefore we conclude that dimBK ≤ s−ε < dimBX
completing the proof.

3.7 Proof of Theorem 2.10(i)

The following notation is used in this section: vectors in Rd and functions to Rd are
denoted by boldface letters and their coordinates by a normal font with a subscript, e.g.,
for f : K → Rd, the functions f1, . . . , fd : K → R are such that f = (f1, . . . , fd).

Fix any α ∈ (0, 1/3) and β ∈ (0, 1), and let f ∈ F and r0 > 0 be Bob’s first move and
starting radius. Write r = (1− α)r0, and for each m ∈ Zd let

K
m

=

d⋂

i=1

f−1
i ([mir, (mi + 1)r]) .

Then K =
⋃

m∈Zd Km
, so by the sum theorem [E89, Theorem 1.5.3], there exists m ∈ Zd

for which
dimT (Km

) ≥ d .

Therefore, by [N83, Corollary of Theorem II.8], there exist closed sets F1, . . . , Fd ⊆ K
m

and relatively open sets U1, . . . , Ud ⊆ K
m

such that Fi ⊆ Ui for each 1 ≤ i ≤ d, and such
that if Fi ⊆ Wi ⊆ Ui for some relatively open sets W1, . . . ,Wd ⊆ K

m
, then

⋂d
1 ∂Wi 6= ∅.

Now Alice’s strategy is as follows: on the first move, choose g ∈ B (f , (1− α)r0) so that
gi = mir on Fi and gi = (mi + 1)r on K

m
\ Ui for some m ∈ Zd for every 1 ≤ i ≤ d, and

play arbitrarily on later moves. The outcome function h must lie in B (g, αr0), hence it
satisfies

hi ≤

(
mi +

α

1− α

)
r on Fi ,

hi ≥

(
mi +

1− 2α

1− α

)
r on K

m
\ Ui ,
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for every 1 ≤ i ≤ d. It follows that h (K
m
) has a nonempty interior as it contains the

cube

P :=
d∏

i=1

((
mi +

α

1− α

)
r,

(
mi +

1− 2α

1− α

)
r

)
.

Indeed, if p ∈ P , then for each i the set Wi = {hi < pi} is open and satisfies Fi ⊆ Wi ⊆ Ui.
Thus by our hypothesis there exists x ∈

⋂d
1 ∂Wi, and it follows that h(x) = p.

3.8 Proof of Theorem 2.10(ii)

Fix any α ∈ (0, 1/4) and β ∈ (0, 1), and let r0 > 0 be Bob’s initial radius. Let S ⊆ Rd be
the set of all points with at least one integer coordinate, i.e.

S =

d⋃

i=1

{
x ∈ Rd : xi ∈ Z

}
.

Alice’s strategy is as follows: On turn n, choose a ball with center f such that f(K) ⊆ rn
2
S.

Such a choice is possible because dimT (K) < d. Indeed, dimT (K) < d implies that the set
{f ∈ F : f(K) is nowhere dense} is dense in F . This follows from [BFFH13, Theorem
2.4] since if f(K) is not nowhere dense, then dimBf(K) = d. If Bob’s nth move is a ball
with center g, let h ∈ F be such that h(K) is nowhere dense and |h− g| < (1/2− α) rn.
Let P be the collection of cubes whose boundaries form rn

2
S. For each P ∈ P, choose

x ∈ P \ h(K), and let πP : P \ {x} → ∂P be the radial projection from x. Finally, let
f = π ◦ h, where π(y) = πP (y) for all y ∈ P . Alice can choose a ball with center f as her
next move since

|f − g| ≤ |f − h|+ |h− g| ≤ (1− α)rn .

Using this strategy Alice guarantees that the outcome of the game is a function whose
image is a subset of

Fd =

∞⋂

n=1

B
(rn
2
S, αrn

)
. (10)

The set Fd is porous, i.e., there exists ε > 0 such that for all x ∈ Rd and r > 0, there
exists y ∈ Rd such that B(y, εr) ⊆ B(x, r) and B(y, εr) ∩ Fd = ∅. First we show that F1

is porous. Set
ε = αβ(1/2− 2α)

and assume r > 0. Fix n ≥ 1 to be the unique integer that satisfies rn ≤ r < rn−1.
By (10), F1 is contained in B

(
rn
2
Z, αrn

)
which is a union of intervals of length αrn for

which the centers are at a distance of rn/2 apart. Hence, the length of the gap between
consecutive intervals is (1/2 − 2α)rn. Since r ≥ rn, any ball of radius r contains such a
gap. Since r < rn−1 we get that

(1/2− 2α)rn
r

≥
(1/2− 2α)rn

rn−1

= ε ,

which finishes the proof of the one-dimensional case. So we showed that for the scale r
there is a hole of size εr in F1 ∩ B(x, r). If we take the product of d holes of F1 then it
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forms a hole in Fd. Hence in every ball we can find a hole of comparable size (the constant
ε depends on α, β and d). This shows the porosity of Fd.

It follows from [FY18a, Theorem 2.4] that dimA(Fd) < d, so the image of the outcome
has Assouad dimension strictly smaller than d. Specifically, it follows from [FY18a, The-
orem 2.4] that if the Assouad dimension of a set E ⊂ Rd is d, then the unit ball is a weak
tangent to E. Having the unit ball as a weak tangent clearly prevents the set E from
being porous.

3.9 Proof of Theorem 2.10(iii)

Fix α < 1/8 small enough and let S ⊆ Rd be a 5α-separated subset of the Euclidean ball
of radius 1/4 around zero in Rd. Set N = #S. We can assume that N ≥ 2 by choosing
α small enough. Alice’s strategy will involve constructing a sequence of sets En ⊆ K,
such that #En = Nn. The set E0 is any singleton. Suppose that the set En has been
constructed, and that the game has been played up until turn n, with g ∈ F being the
center of the current ball, i.e. Bob’s last move. Also suppose that

|g(y)− g(x)| > 2αrn−1 for all x, y ∈ En distinct . (11)

For each x ∈ En, let Fn,x ⊆ K be a set of cardinality N such that for all y ∈ Fn,x,

|g(y)− g(x)| ≤ rn/4 .

Such a set exists because K is perfect and g is continuous. By Tietze’s extension theorem
there exists g0 ∈ F such that g0(y) = g(x) for every y ∈ Fn,x and x ∈ En and

|g(y)− g0(y)| ≤ rn/4

for every y ∈ K. Now let En+1 =
⋃

x∈En
Fn,x. By (11), the sets {Fn,x}x∈En

are disjoint,
so #Ek+1 = Nk+1. Alice will choose the center f ∈ F of her next ball so as to guarantee
that

{f(y) : y ∈ Fn,x} = g(x) + rnS (12)

for all x ∈ En. Namely, for each x ∈ En, let σx : Fn,x → S be any bijection, let {φy}y∈En+1

be any family of continuous real valued functions with disjoint supports such that |φy| ≤ 1
and φy(y) = 1. Then the function

f := g0 + rn
∑

x∈En

∑

y∈Fn,x

φyσx(y) (13)

satisfies (12). Now (13) implies that

|f − g| ≤ |f − g0|+ |g0 − g| ≤
rn
4

+
rn
4

≤ (1− α)rn

so f is a legal move. If h is the center of Bob’s next ball, then h must satisfy |h − g| <
(1− β)αrn < αrn. Since S is 5α-separated it follows that

|h(y)− h(x)| ≥ |f(y)− f(x)| − 2αrn > 2αrn
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for all x, y ∈ Fn,z distinct and z ∈ En. If x ∈ Fn,z1 and y ∈ Fn,z2 for distinct z1, z2 ∈ En

then
|h(y)− h(x)| ≥ |f(y)− f(x)| − 2αrn ≥ αrn−1 − 2rn/4− 2αrn

≥ (1− 1/2− 2α)αrn−1 ≥ αrn−1/4 > 2αrn

by (11), (12) and that α < 1/8. Thus (11) is satisfied for n+1, allowing Alice to complete
the game by induction.

Alice’s strategy results in a branching construction. Namely, if gn is Bob’s nth
move and En has been constructed then the collection of balls in the branching is⋃

x∈En
B(g(x), rn). The balls in the construction are clearly disjoint by (11). Then Alice

chooses f such that f(Fn,x) ⊆ B(g(x), rn/4) and for his next move Bob can only change
the values by (1 − β)αrn hence the values stay inside B(g(x), rn/2). Thus the balls
of radius rn+1 around these modified values are contained in B(g(x), rn). So indeed⋃

x∈En
B(g(x), rn) is a branching construction with limit set contained in the image of the

outcome of the game. Hence by the mass distribution principle the image of the outcome
of the game has Hausdorff dimension at least

logN

− logαβ
> 0 .

3.10 Proof of Theorem 2.15

We first prove that the set

X :=
{
x ∈ R : 0 < d−(x, 0)

}

is winning. Fix α ∈ (0, 1/8), β ∈ (0, 1). Bob starts the game by choosing x0 ∈ R and
r0 > 0. As usual, we can assume r0 < 1/2 since if it was not, Alice could play arbitrarily
until rn < 1/2. Let I0 be a dyadic interval at level k0 := ⌈− log r0/ log 2⌉ which is
completely contained inside B(x0, r0). Let

l0 = max
{
k ∈ N : 2−k0−k > 2αr0

}

and let y0 be the centre of the leftmost level (k0+l0) dyadic interval inside I0. In particular,
B(y0, αr0) ⊆ I0 ⊆ B(x0, r0) and for all numbers in B(y0, αr0) all of the binary digits from
the (k0 + 1)th position to the (k0 + l0)th position are equal to 0.

This argument is then repeated. Assuming Bob has chosen xn as the center of his
nth ball, let In be a dyadic interval at level kn := ⌈− log rn/ log 2⌉ which is completely
contained inside B(xn, rn). Let

ln = max
{
k ∈ N : 2−kn−k > 2αrn

}

and let yn be the centre of the leftmost level (kn + ln) dyadic interval inside In. In
particular, B(yn, αrn) ⊆ In ⊆ B(xn, rn) and for all numbers in B(yn, αrn) all of the
binary digits from the (kn + 1)th position to the (kn + ln)th position are equal to 0.
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Let x be the outcome of the game and note that ln ≥ − log(8α)/ log 2 > 0. It follows
that

d−(x, 0) = lim inf
k→∞

# {1 ≤ i ≤ k : xi = 0}

k
≥ lim inf

n→∞

# {1 ≤ i ≤ kn : xi = 0}

kn+1

≥ lim inf
n→∞

∑n−1
i=0 li
kn+1

≥ lim inf
n→∞

−n log(8α)/ log 2

1− log((αβ)n+1r0)/ log 2

=
log(8α)

log(αβ)
> 0

which proves that X is (α, β)-winning and therefore winning. Proving that the other sets
from the theorem are winning is very similar and so we omit the proofs.

Let ε > 0. We now prove that the set

Y :=
{
x ∈ R : ε < d+(x, 0)

}

is not winning. However, this is also very similar to the above proof, but with Bob
adopting Alice’s strategy and therefore we only point out the differences.

Fix α ∈ (0, 1/2) and choose β ∈ (0, 1) such that

1−
log 8β

− log(αβ)
≤ ε .

Bob starts the game by choosing x0 = 1 ∈ R and r0 = 1. Alice then chooses y1 ∈ R such
that B(y1, α) ⊆ B(x0, 1). Let I ′1 be a dyadic interval at level k′

1 := ⌈− logα/ log 2⌉ which
is completely contained inside B(y1, α). Let

l′1 = max
{
k ∈ N : 2−k′1−k > 2αβ

}

and Bob then chooses x1 to be the centre of the rightmost level (k′

1 + l′1) dyadic interval
inside I ′1. In particular, B(x1, αβ) ⊆ I ′1 ⊆ B(y1, α) and for all numbers in B(x1, αβ), all
of the binary digits from the (k′

1+1)th position to the (k′

1+ l′1)th position are equal to 1.
This argument is then repeated. When Alice chooses yn as the center of her nth ball,

let I ′n be a dyadic interval of level k′

n := ⌈− log(αrn)/ log 2⌉ which is completely contained
inside B(yn, αrn). Let

l′n = max
{
k ∈ N : 2−k′n−k > 2αβrn

}

and let xn be the centre of the rightmost level (k′

n + l′n) dyadic interval inside I ′n. In
particular, B(xn, αβrn) ⊆ I ′n ⊆ B(yn, αrn) and for all numbers in B(xn, αβrn) all of the
binary digits from the (k′

n + 1)th position to the (k′

n + l′n)th position are equal to 1.
Let x be the outcome of the game and note that l′n ≥ − log(8β)/ log 2 > 0. It follows

that

d+(x, 0) = lim sup
k→∞

# {1 ≤ i ≤ k : xi = 0}

k
≤ lim sup

n→∞

# {1 ≤ i ≤ k′

n : xi = 0}

k′

n−1
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≤ lim sup
n→∞

k′

n −
∑n−1

i=0 l′n
k′

n−1

≤ 1− lim inf
n→∞

−n log(8β)/ log 2

− log(α(αβ)n−1)/ log 2

= 1−
log 8β

− log(αβ)
≤ ε

which proves that Y is not (α, β)-winning and therefore not winning.
Proving that the other sets from the theorem are not winning is very similar and so

we omit the proofs.
We note that Alice’s and Bob’s strategy in the above proofs ensure that the outcome is

as desired for at least one valid binary expansion. The proof so far did not pay attention
to the fact that a number may have two valid binary expansions: if eventually there
are only 1s in the binary expansion then it has another expansion where it has only 0s
eventually. However, it is easy to modify the proofs above so that no outcome has two
different valid expansions. For example, every now and then (but rarely) the players play
a round with the opposite digit than they usually play for. We exclude the exact details.
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