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A B S T R A C T

This paper presents a three-dimensional mixed beam element formulation for fully nonlinear distributed
plasticity analysis of members composed of sections with no significant torsional warping such as steel angles
and tees. This formulation is presented using a corotational total Lagrangian approach and implemented in the
OpenSees corotational framework. In this context, a basic coordinate system is lined up with the element chord
and translates and rotates as the element deforms. The element tangent stiffness matrix and resisting forces in
the basic system are derived through linearization of the two-field Hellinger-Reissner variational principle. The
displacement shape functions are cubic Hermitian functions for the transverse displacements and a linear shape
function for the axial and torsional deformation. The generalized stress resultant shape functions are linear
for moments and constant for axial force and torque with the P - 𝛿 effect considered, which are developed
from equilibrium equations. The fiber section method with uniaxial constitutive laws is adopted to account for
material nonlinearity. Since the degrees-of-freedom in the basic system are defined with respect to different
reference points, all element responses are transformed to acting about the shear center before conducting the
corotational transformation. The mixed element is validated through a number of experimental and numerical
examples.
1. Introduction

The corotational framework has been widely used to address the ge-
ometric nonlinearity of three-dimensional beam elements [1–8]. Within
the basic system that continuously translates and rotates with the
element, the number of degrees-of-freedom (DOFs) are reduced since
the rigid-body motions are separated and considered through the coro-
tational transformation. The corotational transformation is independent
of the element formulation in the basic system; therefore, for elements
with the same number of nodes and DOFs, the mapping between the ba-
sic and global systems is the same. For the element development in the
basic system, a geometrically linear formulation, a total Lagrangian for-
mulation or an updated Lagrangian formulation can be employed [9];
however, the geometrically linear formulation cannot be used when the
coupled flexural-torsional and axial-torsional deformations need to be
considered.

Depending on what variables are regarded as the primary un-
knowns, the element formulations are classified as displacement-based,
force-based, or mixed elements. Although the displacement-based ele-
ment is considered the most straightforward to implement and efficient
in computation, it has a significant limitation, in that the assumed
shape functions can only represent a linear curvature distribution along
the element length. In particular, a large number of displacement-based
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elements are needed where highly nonlinear curvature occurs in plastic
hinge regions [10,11]. In addition, if geometric nonlinearity is included
in the basic system, displacement-based elements have a membrane
locking problem when the element geometry becomes curved due to
deformations. Force-based elements consider element end forces as
primary unknowns, from which stress resultants along the element
are obtained with the use of shape functions [7,12,13]. Equilibrium is
strictly enforced, while compatibility is satisfied merely in a weighted
average sense. As compared with displacement-based elements, force-
based elements often demand state determination procedures that are
more computationally intensive [3]. Two-field mixed elements treat
both displacements and element end forces as primary unknowns,
which require shape functions for both internal stress resultants and
deformations [14–16]. Both equilibrium and compatibility are satisfied
in a weighted average sense. Despite the relative complexity of the state
determination procedure, mixed elements can be used to model nonlin-
ear curvature efficiently, and they can avoid membrane locking when
high-order finite strain terms are included in the element formulation.

In the context of nonlinear analysis of members with generic cross
sections, displacement-based elements have been developed using the
updated Lagrangian formulation [17–21] and corotational total La-
grangian formulation [2–4,8,22]. Alsafadie et al. [23,24] published a
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Fig. 1. Illustration of the corotational total Lagrangian formulation (after Mattiasson
et al. [9]).

corotational mixed finite element formulation for thin-walled beams
with generic cross sections. In this paper, a mixed beam element is
developed within the corotational total Lagrangian framework. The
proposed element adopts a different kinematic model from the one used
by Alsafadie et al. [23,24], so that classical beam theory, where torsion
is defined with respect to the shear center and bending is referred to
the centroid, is satisfied. This kinematic model ensures that the axial,
flexural and torsional deformations in the basic system are decoupled if
the geometric nonlinear effects are not considered. Since in the present
research bending and torsion are defined with respect to different
reference points, all element responses are transformed to act about
the shear center in order to conduct the corotational transformation.
In addition, this element is developed to model a range of structures
composed of sections with no significant torsional warping such as
steel angles and tees. The in-plane cross section distortion and local
buckling effects are also neglected. This means that this paper only
focuses on coupled axial, flexural and torsional buckling for geometric
nonlinear analysis. For material nonlinearity, a fiber section approach
with uniaxial constitutive laws for the fibers is used.

2. Corotational total Lagrangian framework

In order to capture flexural-torsional, axial-torsional, and axial-
flexural interaction behavior of members with asymmetric sections, the
high-order terms in the Green-Lagrange strain are included through the
total Lagrangian formulation in the basic system of the corotational
transformation formulation. In the corotational transformation, when
describing displacements and strains at time t+𝛥t, the reference system
is the basic system at time t+𝛥t (see Fig. 1). The element is formulated
in the 6-DOF basic system at time t+𝛥t, and then transformed to the
global system using the corotational transformation matrix at this time.
The transformation matrix is different at different time points because
the basic system continuously rotates and translates with the element.
The deformational response is considered at the level of the basic sys-
tem, whereas the rigid body motion is captured by the transformation
matrix relating the basic and global systems. Therefore, there are only
6 DOFs in the basic system.

The displacements, forces and stiffnesses transformations between

the basic and global systems that were implemented in OpenSees [25]

2

are introduced here briefly. The tangential relation between the dis-
placements 𝑫𝑏 in the basic system and the displacements 𝑫̂ in the
global systems can be defined as

𝛿𝑫𝑏 = 𝑻 𝛿𝑫̂ (1)

where T is a transformation matrix connecting the global and basic
systems. Equating the internal virtual work in both the basic and global
systems, the relationship between element end forces in the basic and
global systems can be obtained as

𝑷̂ = 𝑻 𝑇𝑷 𝑏 (2)

where 𝑷̂ and 𝑷 𝑏 are the element end forces at the global system and
basic system, respectively. The element tangent stiffness matrix in the
global system is obtained from the linearization of Eq. (2), such that

𝛿𝑷̂ = 𝛿
(

𝑻 𝑇𝑷 𝑏
)

= 𝑻 𝑇 𝛿𝑷 𝑏 + 𝛿𝑻 𝑇𝑷 𝑏 = 𝑻 𝑇𝑲𝑏𝛿𝑫𝑏 + 𝛿𝑻 𝑇𝑷 𝑏

=
(

𝑻 𝑇𝑲𝑏𝑻 +𝑲𝐺
)

𝛿𝑫̂ (3)
= 𝑲̂𝛿𝑫̂

where 𝑲𝑏 is the tangent stiffness matrix in the basic system, and 𝛿𝑷 𝑏 =
𝑲𝑏𝛿𝑫𝑏 is used in the above equation. Here,

𝑲̂ = 𝑻 𝑇𝑲𝑏𝑻 +𝑲𝐺 (4)

is the tangent stiffness matrix in the global system. The first term on
the right hand side of Eq. (4) includes the contributions of the material
stiffness matrix and the internal geometric stiffness matrix since in this
research the total Lagrangian formulation is used to develop 𝑲𝑏, while
the second term 𝑲𝐺 is called the external geometric stiffness matrix.
The detailed derivation of T and 𝑲𝐺 is described by Crisfield [6] and
de Souza [7]. When deriving the stiffness matrix and force recovery
equation in the basic system, we can assume that the basic system
is fixed and apply the total Lagrangian formulation in the basic sys-
tem. This means that the Green-Lagrange strain tensor and the 2nd
Piola-Kirchhoff stress tensor will be adopted to describe the element
responses with respect to the reference configuration.

3. Mixed beam element in the basic system

This section presents the development of a new mixed beam el-
ement in the OpenSees framework, which can be used to simulate
the geometrically and materially nonlinear behavior of members with
asymmetric cross sections. The use of a mixed element results in a
reduction of the number of elements required for nonlinear curvature
problems with a comparable level of accuracy as compared to common
displacement-based elements.

3.1. Coordinate systems for asymmetric sections

A thin-walled prismatic element with an asymmetric section is
shown in Fig. 2. The basic system is defined by two set of coordinates:
x, y, z and x, y , z. The coordinate system x, y, z is chosen such that
x passes through the end cross section centroids C and C’, and y and
z are the section principal axes. A parallel set of coordinates x, y , z is
chosen such that x passes through the end cross section shear centers
S and S’, and y and z are parallel to the principal y and z axes of the
cross section. In this formulation, v and w denote the displacements
of the shear center in the y and z directions, u the axial displacement
along the centroidal axis CC’, and 𝜙 the angle of twist about the shear
center axis SS’. Such a coordinate system will uncouple axial, flexural
and torsional deformations if the geometric nonlinear effects are not
considered [18,19].

The element stiffness matrix is formulated in the basic system with
6 DOFs. The definitions of the DOFs are as follows: one relative axial
displacement 𝑢𝐽 of the centroids, two rotations relative to the chord
𝜃𝐼𝑦 and 𝜃𝐽𝑦, about the y axis, two rotations relative to the chord 𝜃𝐼𝑧

and 𝜃𝐽𝑧, about the z axis, and one relative angle of twist 𝜙𝐽 about the
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Fig. 2. Basic and global coordinate systems in space for asymmetric sections.

x axis. The statically independent element end forces corresponding to
these displacements are: the axial force 𝑁𝐽 acting along the centroidal
axis CC’; the two bending moments acting about the principle axis z
and in the xy plane, 𝑀𝐼𝑧 and 𝑀𝐽𝑧; the two bending moments acting
about the principle axis y and in the xz plane, 𝑀𝐼𝑦 and 𝑀𝐽𝑦; and the
orsional moment 𝑇𝐽 acting about the shear center axis SS’ [26]. These
lement end displacements and forces are gathered into vectors

𝑏 =
[

𝑢𝐽 𝜃𝐼𝑧 𝜃𝐽𝑧 𝜃𝐼𝑦 𝜃𝐽𝑦 𝜙𝐽
]𝑇 (5)

and

𝑷 𝑏 =
[

𝑁𝐽 𝑀𝐼𝑧 𝑀𝐽𝑧 𝑀𝐼𝑦 𝑀𝐽𝑦 𝑇𝐽
]𝑇 (6)

Following the corotational transformation procedure, the forces,
isplacements and stiffness matrix need to be transformed to the global
ystem. However, in the current definition of the basic system, some
OFs are defined with respect to the centroid, while others are defined
ith respect to the shear center, which means that the corotational

ransformation cannot be applied directly [22]. Consequently, all DOFs
end forces and displacements) need to be transformed to one reference
oint in advance of the corotational transformation. Note that in the
asic system, the axial force is referred to the centroid, the lateral
orces and torque are defined with respect to the shear center, and
he moments act in the planes containing the shear center. Thus, it
s straightforward to transform all DOFs to the shear center because
nly the axial force needs to be transformed. If other points (e.g., the
entroid) are selected as the reference point, the lateral forces will
eed to be transformed, which is more difficult because the lateral
orces will only be recovered after the corotational transformation.
herefore, it is appropriate to choose the shear center as the reference
oint and the shear center axis as the member reference axis before the
orotational transformation. The coordinate system x, y , z is referred as
he element basic reference system with the element end forces 𝑷 𝑟 and
isplacements 𝑫𝑟 act through the shear center. The following equations
re used to transform all DOFs to the shear center

𝑷 𝑟 = 𝑻 𝑇
𝑟 𝑷 𝑏 (7)

𝑏 = 𝑻 𝑟𝑫𝑟 (8)
3

here the cross-sectional transformation matrix is [22]

𝑇
𝑟 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0

𝑦𝑠 1 0 0 0 0

−𝑦𝑠 0 1 0 0 0

−𝑧𝑠 0 0 1 0 0

𝑧𝑠 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

and 𝑦𝑠 and 𝑧𝑠 are coordinates of the shear center relative to the cen-
troid. Consequently, the stiffness matrix in the element basic reference
system is

𝑲𝑟 = 𝑻 𝑇
𝑟 𝑲𝑏𝑻 𝑟 (10)

The corotational transformation will remain the same as in the original
OpenSees with the Eqs. (1), (2) and (4) being modified as

𝛿𝑫𝑟 = 𝑻 𝛿𝑫̂ (11)

𝑷̂ = 𝑻 𝑇𝑷 𝑟 (12)

𝑲̂ = 𝑻 𝑇𝑲𝑟𝑻 +𝑲𝐺 (13)

3.2. Beam section kinematics

With the widely used kinematic assumption of the Euler-Bernoulli
beam theory and ignoring the in-plane distortion behavior of the cross
section, the motion of a material point P (x, y, z) (P is expressed in
the coordinate system x, y, z shown in Fig. 2) on the beam section
is expressed in terms of the displacements of the centroid and shear
center [1,27]

𝑢𝑝 = 𝑢 − 𝑦𝑣′ − 𝑧𝑤′ + 𝑧𝜙𝑣′ − 𝑦𝜙𝑤′

𝑣𝑝 = 𝑣 − 𝜙
(

𝑧 − 𝑧𝑠
)

𝑤𝑝 = 𝑤 + 𝜙
(

𝑦 − 𝑦𝑠
)

(14)

where 𝑦𝑠 and 𝑧𝑠 are defined in Eq. (9); u, v, w and 𝜙 are defined in
Section 3.1. The longitudinal/axial component of the Green-Lagrange
strain is expressed as

𝜀 =
𝜕𝑢𝑝
𝜕𝑥

+ 1
2

( 𝜕𝑢𝑝
𝜕𝑥

)2

+ 1
2

( 𝜕𝑣𝑝
𝜕𝑥

)2

+ 1
2

( 𝜕𝑤𝑝

𝜕𝑥

)2

(15)

The high-order term 1
2

(

𝜕𝑢𝑝∕𝜕𝑥
)2 is negligible compared to 𝜕𝑢𝑝∕𝜕𝑥

because it is assumed that the term 𝜕𝑢𝑝∕𝜕𝑥 is small compared to unity.
Hence, the Green-Lagrange strain becomes

𝜀 =
𝜕𝑢𝑝
𝜕𝑥

+ 1
2

( 𝜕𝑣𝑝
𝜕𝑥

)2

+ 1
2

( 𝜕𝑤𝑝

𝜕𝑥

)2

(16)

Taking derivatives of the displacement field in Eq. (14) with respect to
x and substituting the results into Eq. (16) gives

= 𝑢′ − 𝑦𝑣′′ − 𝑧𝑤′′ + 1
2

[

(

𝑣′
)2 +

(

𝑤′)2
]

+ 1
2

[

(

𝑦 − 𝑦𝑠
)2 +

(

𝑧 − 𝑧𝑠
)2
]

(

𝜙′)2

+
(

𝑧𝑠𝑣
′ − 𝑦𝑠𝑤

′)𝜙′ +
(

𝑧𝑣′′ − 𝑦𝑤′′)𝜙

(17)

Compared with the strain term 𝜀 = 𝑢′ − 𝑦𝑣′′ − 𝑧𝑤′′ used for the original
OpenSees displacement-based element, Eq. (17) has the following extra
terms
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𝑵

H
a

1
2

[

(

𝑣′
)2 +

(

𝑤′)2
]

: geometric nonlinear term
(coupling between the axial
tension/compression and
bending)

1
2

[

(

𝑦 − 𝑦𝑠
)2 +

(

𝑧 − 𝑧𝑠
)2
]

(

𝜙′)2 : Wagner term (coupling
between the axial strain
and torsion)

(

𝑧𝑠𝑣′ − 𝑦𝑠𝑤′)𝜙′ +
(

𝑧𝑣′′ − 𝑦𝑤′′)𝜙 : coupling term between
bending and torsion (effect
of this coupling on the
axial strain)

The shear strain at P resulting from uniform twisting 𝜙′ of a thin-
walled open section member is approximated by [28]

𝛾 = 2𝑛𝜙′ (18)

in which n is the perpendicular distance of point P (x, y, z) from the
mid-thickness line of the cross section. Shear strains due to bending are
neglected.

3.3. Displacement shape functions

In this formulation, the strain field is deduced from the nodal
displacements 𝑫𝑏 in the basic system with the use of shape functions.
Here all components of the stain vector obtained from displacement
field 𝑫𝑏 are designated with a superposed hat. Thus, the combined
strain vector as derived in Section 3.2 is shown as

𝝐̂ =

[

𝜀̂

𝛾̂

]

= 𝒀 𝒅̂ (19)

where

𝒀 =

[

1 −𝑦 𝑧

0 0 0

(

𝑦 − 𝑦𝑠
)2 +

(

𝑧 − 𝑧𝑠
)2 0

0 2𝑛

]

(20)

and

𝒅̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢′ + 1
2

[

(

𝑣′
)2 +

(

𝑤′)2
]

+
(

𝑧𝑠𝑣
′ − 𝑦𝑠𝑤

′)𝜙′

𝑣′′ +𝑤′′𝜙

−𝑤′′ + 𝑣′′𝜙
1
2
(

𝜙′)2

𝜙′

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

Vector 𝒅̂ is the cross section deformation vector. An infinitesimal
change in 𝝐̂ can be written as

𝛿𝝐̂ = 𝒀 𝛿𝒅̂ = 𝒀 𝑵𝛿𝑑1
𝑵𝛿𝑑2

𝛿𝑫𝑏 (22)

where the matrices 𝑵𝛿𝑑1
and 𝑵𝛿𝑑2

are

𝛿𝑑1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

1 𝑣′ + 𝑧𝑠𝜙
′ 𝑤′ − 𝑦𝑠𝜙

′ 0 0 0 𝑧𝑠𝑣
′ − 𝑦𝑠𝑤

′

0 0 0 1 𝜙 𝑤′′ 0

0 0 0 𝜙 −1 𝑣′′ 0

0 0 0 0 0 0 𝜙′

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(23)
⎣0 0 0 0 0 0 1 ⎦

4

and

𝑵𝛿𝑑2
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁 ′
𝑢1 0 0 0 0 0

0 𝑁 ′
𝑣1 𝑁 ′

𝑣2 0 0 0

0 0 0 𝑁 ′
𝑤1 𝑁 ′

𝑤2 0

0 𝑁 ′′
𝑣1 𝑁 ′′

𝑣2 0 0 0

0 0 0 𝑁 ′′
𝑤1 𝑁 ′′

𝑤2 0

0 0 0 0 0 𝑁𝜙1

0 0 0 0 0 𝑁 ′
𝜙1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

ere the shape functions are adopted to express the displacement field
s the function of nodal displacements.

𝑢 = 𝑵𝑇
𝑢 𝑫𝑏 =

[

𝑁𝑢1 0 0 0 0 0
]

𝑫𝑏

𝑣 = 𝑵𝑇
𝑣𝑫𝑏 =

[

0 𝑁𝑣1 𝑁𝑣2 0 0 0
]

𝑫𝑏

𝑤 = 𝑵𝑇
𝑤𝑫𝑏 =

[

0 0 0 𝑁𝑤1 𝑁𝑤2 0
]

𝑫𝑏

𝜙 = 𝑵𝑇
𝜙𝑫𝑏 =

[

0 0 0 0 0 𝑁𝜙1
]

𝑫𝑏

(25)

The shape functions in Eq. (25) are chosen as follows: cubic Hermi-
tian functions for the transverse displacements, and a linear function
for the axial and twist deformation. Specifically, the following shape
functions are utilized in the current development

𝑁𝑢1 =
𝑥
𝑙0

𝑁𝑣1 = −𝑁𝑤1 = 𝑥
(

1 − 𝑥
𝑙0

)2

𝑁𝑣2 = −𝑁𝑤2 = 𝑥
(

𝑥
𝑙0

)(

𝑥
𝑙0

− 1
)

𝑁𝜙1 =
𝑥
𝑙0

(26)

where 𝑙0 is the length of the undeformed element.

3.4. Generalized stress resultant shape functions

The generalized stress resultant shape functions should be devel-
oped from the equilibrium equations, where the effects of torsion on
the axial strains are neglected. Therefore, the strains at a material point
P (x, y, z) on the beam section can be written in matrix form as

𝝐̃ =

[

𝜀̃

𝛾̃

]

= 𝒀̃ 𝒅̃ (27)

where

𝒅̃ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢′ + 1
2

[

(

𝑣′
)2 +

(

𝑤′)2
]

𝑣′′

−𝑤′′

𝜙′

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(28)

and

𝒀̃ =

[

1 −𝑦 𝑧 0

0 0 0 2𝑛

]

(29)

In this section, variables with a superscript tilde mean that they are
used to derive generalized stress resultant shape functions, and the
other variables have the same meanings as defined in other sections.
The principle of virtual work can be expressed as

𝑺̃𝑇 𝛿𝒅̃𝑑𝑥 − 𝑷 𝑇
𝑏 𝛿𝑫𝑏 = 0 (30)
∫𝑙0
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where the generalized stress resultant vector is

𝑺̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁

𝑀𝑧

𝑀𝑦

𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(31)

and N, 𝑀z, 𝑀y and T are the axial force, the bending moment about
z axis, the bending moment about y axis, and the St. Venant torque,
espectively. The expanded form of the principle of virtual work is

𝑙0

[

𝑁
(

𝛿𝑢′ + 𝑣′𝛿𝑣′ +𝑤′𝛿𝑤′) +𝑀𝑧𝛿𝑣
′′ −𝑀𝑦𝛿𝑤

′′ + 𝑇 𝛿𝜙′] 𝑑𝑥 −𝑁𝐽 𝛿𝑢𝐽

−𝑀𝐼𝑧𝛿𝜃𝐼𝑧 −𝑀𝐽𝑧𝛿𝜃𝐽𝑧 −𝑀𝐼𝑦𝛿𝜃𝐼𝑦 −𝑀𝐽𝑦𝛿𝜃𝐽𝑦 − 𝑇𝐽 𝛿𝜙𝐽 = 0

(32)

Eq. (32) is valid for all virtual displacements 𝛿u, 𝛿v, 𝛿w and 𝛿𝜙 that
satisfy the following essential boundary conditions [7]

𝛿𝑢 (0) = 𝛿𝑣 (0) = 𝛿𝑤 (0) = 𝛿𝜙 (0) = 𝛿𝑣
(

𝑙0
)

= 𝛿𝑤
(

𝑙0
)

= 0 (33)

Applying integration by parts and the essential boundary conditions to
Eq. (32) gives

∫𝑙0

{

𝑁 ′𝛿𝑢 +
[

(𝑁𝑣′)′ −𝑀 ′′
𝑧
]

𝛿𝑣 +
[

(𝑁𝑤′)′ +𝑀 ′′
𝑦

]

𝛿𝑤 + 𝑇 ′𝛿𝜙
}

𝑑𝑥

+
[

−𝑁
(

𝑙0
)

+𝑁𝐽
]

𝛿𝑢𝐽 +
[

𝑀𝑧(0) +𝑀𝐼𝑧
]

𝛿𝜃𝐼𝑧

+
[

−𝑀𝑧
(

𝑙0
)

+𝑀𝐽𝑧
]

𝛿𝜃𝐽𝑧 +
[

𝑀𝑦(0) +𝑀𝐼𝑦
]

𝛿𝜃𝐼𝑦

+
[

−𝑀𝑦
(

𝑙0
)

+𝑀𝐽𝑦
]

𝛿𝜃𝐽𝑦 +
[

−𝑇
(

𝑙0
)

+ 𝑇𝐽
]

𝛿𝜙𝐽 = 0

(34)

During the derivation, the following relationships are used

𝑢
(

𝑙0
)

= 𝑢𝐽 , 𝑣
′ (0) = 𝜃𝐼𝑧, 𝑣

′ (𝑙0
)

= 𝜃𝐽𝑧, 𝑤
′ (0) = −𝜃𝐼𝑦, 𝑤′ (𝑙0

)

= −𝜃𝐽𝑦, 𝜙
(

𝑙0
)

= 𝜙𝐽

(35)

ince Eq. (34) is satisfied for all admissible virtual displacements, the
trong form of the governing equation can be obtained as [7]

𝑑𝑁
𝑑𝑥

= 0

−
𝑑2𝑀𝑧
𝑑𝑥

+ 𝑑
𝑑𝑥

(

𝑁 𝑑𝑣
𝑑𝑥

)

= 0
𝑑2𝑀𝑦

𝑑𝑥
+ 𝑑

𝑑𝑥

(

𝑁 𝑑𝑤
𝑑𝑥

)

= 0

𝑑𝑇
𝑑𝑥

= 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝑖𝑛 [0, 𝑙0] (36)

with the natural boundary conditions as below

𝑁
(

𝑙0
)

= 𝑁𝐽 ,𝑀𝑧 (0) = −𝑀𝐼𝑧,𝑀𝑧
(

𝑙0
)

= 𝑀𝐽𝑧,𝑀𝑦 (0)

= −𝑀𝐼𝑦,𝑀𝑦
(

𝑙0
)

= 𝑀𝐽𝑦, 𝑇
(

𝑙0
)

= 𝑇𝐽

(37)

he differential equations can be solved by integration with the natural
oundary conditions. As such, the generalized stress resultant fields
hen the torsional deformation is uncoupled with flexural and axial
eformations can be shown as

𝑁 (𝑥) = 𝑁𝐽

𝑀𝑧 (𝑥) = 𝑣 (𝑥)𝑁𝐽 +
(

𝑥
𝑙0

− 1
)

𝑀𝐼𝑧 +
𝑥
𝑙0
𝑀𝐽𝑧

𝑦 (𝑥) = −𝑤 (𝑥)𝑁𝐽 +
(

𝑥
𝑙0

− 1
)

𝑀𝐼𝑦 +
𝑥
𝑙0
𝑀𝐽𝑦

𝑇 (𝑥) = 𝑇𝐽

(38)

This stress resultant field can be used as shape functions for the mixed
element developed in this work. As for the Wagner stress resultant, a
constant shape function is adopted [1,15]. Note that the P - 𝛿 effects
are considered in the moment fields as 𝑣 (𝑥)𝑁𝐽 and −𝑤 (𝑥)𝑁𝐽 . This
s because the geometric nonlinear term 1

[

(

𝑣′
)2 +

(

𝑤′)2
]

is included
2

5

in the axial strain. Consequently, in the mixed element formulation in
this work, when the beam element is subjected to end forces only, the
generalized stress resultant internal force field within the element can
be expressed as functions of end forces

𝑺 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁

𝑀𝑧

𝑀𝑦

𝑊

𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁𝐴 0 0 0 0 0 0

𝑣 𝑁𝑧1 𝑁𝑧2 0 0 0 0

−𝑤 0 0 𝑁𝑦1 𝑁𝑦2 0 0

0 0 0 0 0 0 𝑁𝑊

0 0 0 0 0 𝑁𝑇 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁𝐽

𝑀𝐼𝑧

𝑀𝐽𝑧

𝑀𝐼𝑦

𝑀𝐽𝑦

𝑇

𝑊

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(39)

or

𝑺 = 𝑵𝐷1𝑷 𝑠 (40)

where W is the Wagner stress resultant. 𝑷𝑠 is the generalized force
degrees-of-freedom, in which both the nodal St. Venant torque T and
the nodal Wagner stress resultantW contribute to the total nodal torque
𝑇𝐽 [29]. For the stress resultant fields, a linear shape function for
the moments and a constant shape for the axial force, torque and the
Wagner field are adopted as

𝑁𝑧1 = 𝑁𝑦1 =
𝑥
𝑙0

− 1

𝑁𝑧2 = 𝑁𝑦2 =
𝑥
𝑙0

𝑁𝐴 = 𝑁𝑊 = 𝑁𝑇 = 1

(41)

Note that the P - 𝛿 effects are included in the element internal
moment fields with the use of the interpolated lateral displacements
v and w. These high order moments have significant impact on the
moment distribution within an element because the assumption of a
linear moment field is not accurate when the axial loads are relatively
large. The variation of S is needed for the following derivations; thus,
we have

𝛿𝑺 = 𝛿𝑵𝐷1𝑷 𝑠 +𝑵𝐷1𝛿𝑷 𝑠 = 𝑵𝐷1𝛿𝑷 𝑠 +𝑵𝐷2𝛿𝑫𝑏 (42)

where the matrix 𝑵D2 is defined as

𝑵𝐷2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0

0 𝑁𝑁𝑣1 𝑁𝑁𝑣2 0 0 0

0 0 0 −𝑁𝑁𝑤1 −𝑁𝑁𝑤2 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(43)

3.5. Cross section constitutive relations

Unlike the stress resultant vector S obtained from element end
forces, the stress resultant vector 𝑺𝛴 is derived from the strain vector
𝝐 = [𝜖 𝛾]𝑇 through the constitutive law at the cross-sectional level.
The nonlinear relationship between cross section resultants and cross
section deformations can be obtained by taking integration of the
constitutive laws over the cross section. Thus

𝑺𝛴 = ∫𝐴0

𝒀 𝑇 𝝈(𝝐)𝑑𝐴 (44)

where 𝝈 =
[

𝜎 𝜏
]𝑇 is the corresponding stress vector, and 𝐴0 is the

cross section area of the undeformed element. The section tangent
stiffness matrix is obtained by linearization of the cross-sectional con-
stitutive relations with the use of 𝝐 = 𝒀 𝒅, where 𝒅 is the cross section
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deformation vector, as shown below
𝑲𝑠 =

𝜕𝑺𝛴
𝜕𝒅

= ∫𝐴0

𝒀 𝑇𝑬𝒀 𝑑𝐴

= ∫𝐴0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸 −𝑦𝐸 𝑧𝐸 𝑝2𝐸 0

−𝑦𝐸 𝑦2𝐸 −𝑦𝑧𝐸 −𝑝2𝑦𝐸 0

𝑧𝐸 −𝑦𝑧𝐸 𝑧2𝐸 𝑝2𝑧𝐸 0

𝑝2𝐸 −𝑝2𝑦𝐸 𝑝2𝑧𝐸 𝑝4𝐸 0

0 0 0 0 4𝑛2𝐺

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑑𝐴
(45)

n which
2 =

(

𝑦 − 𝑦𝑠
)2 +

(

𝑧 − 𝑧𝑠
)2 (46)

nd matrix E represents the constitutive relations of stresses and strains
s shown

=

[

𝐸 0

0 𝐺

]

(47)

here E is the tangent Young’s modulus and G is the shear modulus.
urthermore, at the cross-sectional level, the following equality needs
o be enforced: 𝑺𝛴 = 𝑺, where S is obtained by the force interpolations
hrough Eq. (39). In accounting for the material nonlinearity effects, the
ross section is discretized into a grid of fibers and the section stiffness
atrix 𝑲𝑠 is computed using numerical integration. In this research, it

s assumed that the uniform torsion behavior is linear elastic so that the
hear strain is always elastic. Therefore, a uniaxial constitutive law is
sed to check the yielding of each fiber and update the tangent Young’s
odulus E as the fiber reaches plastic stage, while the shear modulus G

emains constant. This means that the proposed element is only suitable
or slender members with small shear deformations when it is used to
odel material nonlinearity.

.6. Variational formulation

The mixed element formulation can be derived from the Hellinger-
eissner functional, which is a two-field functional of stresses and dis-
lacements. Here only end forces 𝑷 𝑒𝑥𝑡 on the elements are considered.
his principle is expressed as [1,14,15,30]

𝑫𝑇
𝑏

{

∫𝑙0
𝑵𝑇

𝛿𝑑2
𝑵𝑇

𝛿𝑑1
𝑺𝑑𝑥 − 𝑷 𝑒𝑥𝑡

}

+ ∫𝑙0
𝛿𝑺𝑇 (

𝒅̂ − 𝒅
)

𝑑𝑥 = 0 (48)

where 𝒅̂ is the cross section deformation vector derived from displace-
ment, and 𝒅 is the cross section deformation vector derived from the
interpolated generalized stress resultants. The first term of Eq. (48)
represents the weak form of the equilibrium relations, and the second
term represents the weak form of the strain compatibility relations.
After Eq. (42) is substituted to Eq. (48)

𝛿𝑫𝑇
𝑏

{

∫𝑙0
𝑵𝑇

𝛿𝑑2
𝑵𝑇

𝛿𝑑1
𝑺𝑑𝑥 + ∫𝑙0

𝑵𝑇
𝐷2

(

𝒅̂ − 𝒅
)

𝑑𝑥 − 𝑷 𝑒𝑥𝑡

}

+ 𝛿𝑷 𝑇
𝑠

{

∫𝑙0
𝑵𝑇

𝐷1
(

𝒅̂ − 𝒅
)

𝑑𝑥

}

= 0
(49)

Since 𝛿𝑫𝑇
𝑏 and 𝛿𝑷 𝑇

𝑠 are arbitrary variations in corresponding state
variables, Eq. (49) yields two sets of equations

𝒈 = ∫𝑙0
𝑵𝑇

𝛿𝑑2
𝑵𝑇

𝛿𝑑1
𝑺𝑑𝑥 + ∫𝑙0

𝑵𝑇
𝐷2

(

𝒅̂ − 𝒅
)

𝑑𝑥 − 𝑷 𝑒𝑥𝑡 = 𝟎 (50)

𝑽 = ∫𝑙0
𝑵𝑇

𝐷1
(

𝒅̂ − 𝒅
)

𝑑𝑥 = 𝟎 (51)

where 𝒈 and 𝑽 represent the element equilibrium and strain-
displacement compatibility vectors, respectively. In addition, noting the
section equilibrium, a third equation is obtained as

𝑼 = 𝑺𝛴 − 𝑺 = 𝟎 (52)

where 𝑺𝛴 denotes the generalized stress resultant vector obtained
from the strain driven constitutive equations and S represents the

interpolated generalized stress resultant vector.

6

3.7. Consistent linearization

Eq. (50)–(52) should be linearized consistently to obtain the ele-
ment tangent stiffness matrix and other relations used in the element
state determination procedure. Such a linearization process can be
achieved by expanding the governing equations at the (𝑖+1)th iteration
based on the previous configuration at the 𝑖th iteration.

3.7.1. Linearization of the section equilibrium equation
Through expanding the section equilibrium equation U = 0 about

the configuration at the 𝑖th iteration while holding S constant, the
following is obtained

𝑼 𝑖+1 ≈ 𝑼 𝑖 + 𝜕𝑼
𝜕𝒅

𝛥𝒅 = 𝑼 𝑖 +𝑲𝑠𝛥𝒅 = 𝟎 (53)

r

𝒅 = −𝒇𝑼 𝑖 (54)

here the section flexibility matrix f can be obtained by inverting the
ection stiffness matrix, i.e., 𝒇 = 𝑲−1

𝑠 .

.7.2. Linearization of the element compatibility equation
The element compatibility equation 𝑽

(

𝑫𝑏,𝑷 𝑠
)

= 𝟎 should be
xpanded about the configuration at the 𝑖th iteration in the element
angent stiffness formulation and element state determination process.
herefore, the result of a Taylor series expansion is given as follows
𝑖+1 ≈ 𝑽 𝑖 + 𝜕𝑽

𝜕𝑫𝑏
𝛥𝑫𝑏 +

𝜕𝑽
𝜕𝑷 𝑠

𝛥𝑷 𝑠 = 𝟎 (55)

Further expansion of the second term on the right-hand side of Eq. (55)
is written as
𝜕𝑽
𝜕𝑫𝑏

𝛥𝑫𝑏

=

[

∫𝑙0

𝜕𝑵𝑇
𝐷1

𝜕𝑫𝑏

(

𝒅̂ − 𝒅
)

𝑑𝑥 + ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅̂
𝜕𝑫𝑏

𝑑𝑥 − ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅
𝜕𝑫𝑏

𝑑𝑥

]

𝛥𝑫𝑏

=
(

𝑴𝑑 +𝑮1 −𝑯12
)

𝛥𝑫𝑏

(56)

where

𝑮1 = ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅̂
𝜕𝑫𝑏

𝑑𝑥 = ∫𝑙0
𝑵𝑇

𝐷1𝑵𝛿𝑑1𝑵𝛿𝑑2𝑑𝑥 (57)

𝑯12 = ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅
𝜕𝑫𝑏

𝑑𝑥 = ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅
𝜕𝑺𝛴

𝜕𝑺𝛴
𝜕𝑺

𝜕𝑺
𝜕𝑫𝑏

𝑑𝑥 = ∫𝑙0
𝑵𝑇

𝐷1𝒇𝑵𝐷2𝑑𝑥

(58)

𝑴𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 𝑁𝑣1
(

𝒅̂ − 𝒅
)

[2] 𝑁𝑣2
(

𝒅̂ − 𝒅
)

[2] −𝑁𝑤1
(

𝒅̂ − 𝒅
)

[3] −𝑁𝑤2
(

𝒅̂ − 𝒅
)

[3] 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(59)

Here,
(

𝒅̂ − 𝒅
)

[2] and
(

𝒅̂ − 𝒅
)

[3] denote the second and the third
terms of the vector

(

𝒅̂ − 𝒅
)

, respectively. The third term on the right-
hand side of Eq. (55) can be expressed as
𝜕𝑽
𝜕𝑷 𝑠

𝛥𝑷 𝑠

=

[

∫𝑙0

𝜕𝑵𝑇
𝐷1

𝜕𝑷 𝑠

(

𝒅̂ − 𝒅
)

𝑑𝑥 + ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅̂
𝜕𝑷 𝑠

𝑑𝑥 − ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅
𝜕𝑷 𝑠

𝑑𝑥

]

𝛥𝑷 𝑠

= −𝑯11𝛥𝑷 𝑠
(60)
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E

with

𝑯11 = ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅
𝜕𝑷 𝑠

𝑑𝑥 = ∫𝑙0
𝑵𝑇

𝐷1
𝜕𝒅
𝜕𝑺𝛴

𝜕𝑺𝛴
𝜕𝑺

𝜕𝑺
𝜕𝑷 𝑠

𝑑𝑥 = ∫𝑙0
𝑵𝑇

𝐷1𝒇𝑵𝐷1𝑑𝑥

(61)

Hence, Eq. (55) becomes

𝑽 𝑖+1 ≈ 𝑽 𝑖 +
(

𝑴𝑑 +𝑮1 −𝑯12
)

𝛥𝑫𝑏 −𝑯11𝛥𝑷 𝑠 = 𝟎 (62)

and solving this equation for 𝛥𝑷 𝑠 gives

𝛥𝑷 𝑠 = 𝑯−1
11

(

𝑴𝑑 +𝑮1 −𝑯12
)

𝛥𝑫𝑏 +𝑯−1
11 𝑽

𝑖 (63)

3.7.3. Linearization of the element equilibrium equation
A similar process is used for the linearization of the element equi-

librium equation, which gives

𝒈𝑖+1 ≈ 𝒈𝑖 +
𝜕𝒈
𝜕𝑫𝑏

𝛥𝑫𝑏 +
𝜕𝒈
𝜕𝑷 𝑠

𝛥𝑷 𝑠 − 𝛥𝑷 𝑒𝑥𝑡 = 𝟎 (64)

xpansion of the second term on the right-hand side of Eq. (64) gives
𝜕𝒈
𝜕𝑫𝑏

𝛥𝑫𝑏

=

[

∫𝑙0

𝜕𝑵𝑇
𝛿𝑑2

𝜕𝑫𝑏
𝑵𝑇

𝛿𝑑1
𝑺𝑑𝑥 + ∫𝑙0

𝑵𝑇
𝛿𝑑2

𝜕𝑵𝑇
𝛿𝑑1

𝜕𝑫𝑏
𝑺𝑑𝑥 + ∫𝑙0

𝑵𝑇
𝛿𝑑2

𝑵𝑇
𝛿𝑑1

𝜕𝑺
𝜕𝑫𝑏

𝑑𝑥

+ ∫𝑙0

𝜕𝑵𝑇
𝐷2

𝜕𝑫𝑏

(

𝒅̂ − 𝒅
)

𝑑𝑥 + ∫𝑙0
𝑵𝑇

𝐷2
𝜕𝒅̂
𝜕𝑫𝑏

𝑑𝑥 − ∫𝑙0
𝑵𝑇

𝐷2
𝜕𝒅
𝜕𝑫𝑏

𝑑𝑥

]

𝛥𝑫𝑏

=
(

𝑲𝑔 +𝑮𝑇
2 +𝑮2 −𝑯22

)

𝛥𝑫𝑏

(65)

where

𝑮2 = ∫𝑙0
𝑵𝑇

𝐷2𝑵𝛿𝑑1𝑵𝛿𝑑2𝑑𝑥 (66)

𝑯22 = ∫𝑙0
𝑵𝑇

𝐷2𝒇𝑵𝐷2𝑑𝑥 (67)

𝑲𝑔 = ∫𝑙0
𝑵𝑇

𝛿𝑑2
𝑮𝑵𝛿𝑑2𝑑𝑥 (68)

in which

𝑮 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0

0 𝑁 0 0 0 0 𝑁𝑧𝑠

0 0 𝑁 0 0 0 −𝑁𝑦𝑠

0 0 0 0 0 𝑀𝑦 0

0 0 0 0 0 𝑀𝑧 0

0 0 0 𝑀𝑦 𝑀𝑧 0 0

0 𝑁𝑧𝑠 −𝑁𝑦𝑠 0 0 0 𝑊

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(69)

The third term on the right-hand side of Eq. (64) is
𝜕𝒈
𝜕𝑷 𝑠

𝛥𝑷 𝑠

=

[

∫𝑙0

𝜕𝑵𝑇
𝛿𝑑2

𝜕𝑷 𝑠
𝑵𝑇

𝛿𝑑1
𝑺𝑑𝑥 + ∫𝑙0

𝑵𝑇
𝛿𝑑2

𝜕𝑵𝑇
𝛿𝑑1

𝜕𝑷 𝑠
𝑺𝑑𝑥 + ∫𝑙0

𝑵𝑇
𝛿𝑑2

𝑵𝑇
𝛿𝑑1

𝜕𝑺
𝜕𝑷 𝑠

𝑑𝑥

+ ∫𝑙0

𝜕𝑵𝑇
𝐷2

𝜕𝑷 𝑠

(

𝒅̂ − 𝒅
)

𝑑𝑥 + ∫𝑙0
𝑵𝑇

𝐷2
𝜕𝒅̂
𝜕𝑷 𝑠

𝑑𝑥 − ∫𝑙0
𝑵𝑇

𝐷2
𝜕𝒅
𝜕𝑷 𝑠

𝑑𝑥

]

𝛥𝑷 𝑠

=
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝛥𝑷 𝑠

(70)

Hence, Eq. (64) becomes

𝒈𝑖+1 ≈ 𝒈𝑖 +
(

𝑲𝑔 +𝑮𝑇
2 +𝑮2 −𝑯22

)

𝛥𝑫𝑏

+
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝛥𝑷 𝑠 − 𝛥𝑷 𝑒𝑥𝑡 = 𝟎

(71)
7

3.7.4. Consistent element tangent stiffness matrix
Substituting 𝛥𝑷 𝑠 from Eq. (63) to Eq. (71) shows that

𝒈𝑖 +
(

𝑲𝑔 +𝑮𝑇
2 +𝑮2 −𝑯22

)

𝛥𝑫𝑏

+
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11
(

𝑴𝑑 +𝑮1 −𝑯12
)

𝛥𝑫𝑏

+
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11 𝑽
𝑖 − 𝛥𝑷 𝑒𝑥𝑡 = 𝟎

(72)

Solving the above equation for 𝛥𝑫𝑏 and employing the definition of 𝒈
at the 𝑖th iteration give us
[(

𝑲𝑔 +𝑮𝑇
2 +𝑮2 −𝑯22

)

+
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11
(

𝑴𝑑 +𝑮1 −𝑯12
)

]

𝛥𝑫𝑏

= −∫𝑙0
𝑵𝑇

𝛿𝑑2
𝑵𝑇

𝛿𝑑1
𝑺 𝑖𝑑𝑥 − ∫𝑙0

𝑵𝑇
𝐷2

(

𝒅̂𝑖 − 𝒅𝑖
)

𝑑𝑥 + 𝑷 𝑖
𝑒𝑥𝑡

−
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11 𝑽
𝑖 + 𝛥𝑷 𝑒𝑥𝑡

(73)

or in a compact form

𝑲𝑏𝛥𝑫𝑏 = 𝑷 𝑖+1
𝑒𝑥𝑡 − 𝑷 𝑖

𝑖𝑛𝑡 (74)

where the tangent stiffness matrix 𝑲𝑏 and the internal force vector 𝑷 𝑖
𝑖𝑛𝑡

are given as

𝑲𝑏 =
(

𝑲𝑔 +𝑮𝑇
2 +𝑮2 −𝑯22

)

+
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11
(

𝑮1 +𝑴𝑑 −𝑯12
)

(75)

𝑷 𝑖
𝑖𝑛𝑡 = 𝑮𝑇

1 𝑷
𝑖
𝑠 + ∫𝑙0

𝑵𝑇
𝐷2

(

𝒅̂𝑖 − 𝒅𝑖
)

𝑑𝑥 +
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11 𝑽
𝑖 (76)

and we have

𝑷 𝑖+1
𝑒𝑥𝑡 = 𝑷 𝑖

𝑒𝑥𝑡 + 𝛥𝑷 𝑒𝑥𝑡 (77)

Note that the first part of 𝑲𝑏 is the element internal geometric stiffness
matrix and the second part is the element material stiffness matrix.

3.8. Element state determination

Once the incremental displacements and rotations are retrieved
from the global solution, the element state determination process is
started by updating the nodal displacements and rotations in the global
system and then computing the rotations and the axial displacement in
the basic system through the corotational transformation. For the steps
related to calculating the new state for the element in the basic system,
the following descriptions should apply.

Different approaches of element state determination can be adopted
based on the three nonlinear governing equations (Eqs. (50)–(52)).
An iteration method should be used to solve the global equilibrium
equation. As for the section equilibrium and element compatibility,
nonlinear iterations can be performed prior to returning to higher
level, or linearized equations may be used and the residuals at these
levels may be pushed to the global level and then removed by global
iterations [30,31]. Compared to the linearized approximation option,
the nonlinear iteration option commonly needs fewer global itera-
tions at the cost of more intensive computations at the section or
element level and is advantageous for cases in which inelasticity is
concentrated in only a few elements [30]. In this research, as in that
of others [14,31,32], the linearized approximation option is utilized
at both the section and element levels. Once the trial displacements
𝑫𝑖+1

𝑏 in the basic system are obtained from last converged state, the
following element state determination procedure is adopted to calculate
the tangent stiffness matrix and do force recovery in the basic system.

1. Calculate section deformation 𝒅̂𝑖+1 at each Gauss point (use
displacement shape functions) from Eq. (21).

2. Update the generalized force degrees-of-freedom (nodal forces)
using 𝑷 𝑖+1

𝑠 = 𝑷 𝑖
𝑠 + 𝛥𝑷 𝑠 with 𝛥𝑷 𝑠 calculated from Eq. (63).

3. Calculate the generalized stress resultant shape functions from
Eqs. (39), (40) and (43).
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Fig. 3. Eccentrically loaded beam-column..

4. Calculate the generalized stress resultant vector for each Gauss
point (use generalized stress resultant shape functions) as 𝑺 𝑖+1 =
𝑵𝐷1𝑷 𝑖+1

𝑠 .
5. Update section deformation 𝒅𝑖+1 derived from the interpolated

generalized stress resultant vector using Eq. (54) as 𝒅𝑖+1 = 𝒅𝑖 +
𝒇 [𝑺 𝑖+1 − 𝑺 𝑖

𝛴 ].
6. Send section deformation 𝒅𝑖+1 to the fiber section function to

update the uniaxial material properties, section stiffness matrix
and generalized stress resultant vector 𝑺 𝑖+1

𝛴 .
7. Calculate the auxiliary matrices using Gauss quadrature from

Eqs. (51), (57), (58), (59), (61), (66), (67), (68), and (69).
8. Calculate the element internal resisting force vector using 𝑷 𝑖+1

𝑖𝑛𝑡 =
𝑮𝑇

1 𝑷
𝑖+1
𝑠 +∫𝑙0 𝑵

𝑇
𝐷2

(

𝒅̂𝑖+1 − 𝒅𝑖+1
)

𝑑𝑥+
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11 𝑽
𝑖+1.

9. Calculate element tangent stiffness matrix using 𝑲𝑏 =
(

𝑲𝑔 +𝑮𝑇
2 +𝑮2 −𝑯22

)

+
(

𝑮1 +𝑴𝑑 −𝑯12
)𝑇 𝑯−1

11
(

𝑮1 +𝑴𝑑 −𝑯12
)

.

Then the global tangent stiffness matrix and internal force vector may
be obtained through corotational transformation according to Eqs. (12)
and (13). At this time, the global solution can be computed, and a
convergence test should be conducted. If the residual is smaller than
the threshold, then the next increment may be commenced. Otherwise,
the iterations should be continued.

4. Validation of formulation

Ten examples are shown here to demonstrate the ability of the
new mixed elements. In examples 1–6 and 10, the material is as-
sumed to be linear elastic. Examples 7–9 address both elastic and
inelastic materials. Example 4 incorporates nonproportional loading,
while the other examples are proportional load, and example 10 is
a nonlinear dynamic structure, while the other examples incorporate
static loading. These examples show that the new mixed element
can simulate both geometric and material nonlinearity accurately. In
the following examples, ‘‘DBxx’’ indicates using xx number of a new
displacement-based element with membrane locking remedied as pre-
sented in Du and Hajjar [33], while ‘‘MBxx’’ indicates using xx number
of the mixed formulation elements presented in this work. The number
of cross-sectional fibers used in the examples has been selected to
be computationally efficient and sufficient to ensure accuracy in the
results.

4.1. Eccentrically-loaded beam-column

This example is about a problem investigated by Neuenhofer and
Filippou [13] and Alemdar [1], where a simply supported beam-column
is subjected to an eccentric axial load (see Fig. 3). The beam-column
has a length of 𝐿 = 6668.52 mm and the eccentricity is 𝑒 = 20.83 mm.
The beam-column is in strong axis bending with a bending stiffness EI
and the axial load is 𝑃 = 8𝐸𝐼∕𝐿2. The material properties are: Young’s
modulus 𝐸 = 199,948 MPa and Poisson’s ratio 𝜈 = 0.3.

In this example, 1 displacement-based element with membrane
locking remedied and 1 mixed element are used initially to analyze this
8

Fig. 4. Curvature field along the member (1 element).

Fig. 5. Curvature field along the member (2 elements).

problem with elastic material. Fig. 4 compares the exact curvature field
along the member with that at the Gauss integration points calculated
from the displacement-based and mixed elements. It is shown that the
displacement-based element exhibits a linear curvature field due to
the cubic shape functions for transverse deflections. On the contrary,
the mixed element is able to represent a nonlinear curvature field
due to the independently interpolated force fields and displacement
fields. Equilibrium is satisfied in a weighted average sense for the
displacement-based element, while it is satisfied at each Gauss integra-
tion point within the mixed element. This problem is then analyzed
using 2 elements with the results shown in Fig. 5. The curvature
field of the displacement-based element includes two linear sections
with a discontinuity at the connection point, while the mixed element
yields a better approximation for the nonlinear curvature field with
no discontinuity. In the above analysis, a seven-point Gauss-Lobatto
integration rule is used for each element with 24 fibers in the cross
section.
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Fig. 6. Angle cantilever subjected to an eccentric axial load.

Fig. 7. Load-displacements u and v curves of the angle cantilever.

4.2. Angle cantilever subjected to an eccentric axial load

The example, studied numerically by several researchers [4,18,23],
addresses a cantilever with asymmetric angle section subjected to an
eccentrically applied axial load P. The cantilever is fixed at the left
end (see Fig. 6). The axial load P is assumed to act through the shear
center of the free end. As shown in Fig. 6, the geometric and material
properties of the cantilever are: 𝐿 = 1,400 mm, 𝑎 = 76 mm, 𝑏 = 51
mm, 𝑡 = 6.5 mm, Young’s modulus 𝐸 = 193,050 MPa and Poisson’s
ratio 𝜈 = 0.3. The load-deflection curves of the present study together
with the results of Alsafadie et al. [23] are plotted in Fig. 7, in which
the axial displacement u and lateral displacement v in Y direction are
presented. As seen in this figure, five new mixed elements in the present
study are enough to obtain relatively accurate results, while Alsafadie
et al. [23] utilized 10 mixed elements to get similar results. In the
analysis, a two-point Gauss-Lobatto integration rule is used for each
element with 25 fibers in the cross section.
9

Fig. 8. Torsional buckling of a cruciform beam section.

Fig. 9. Torsional buckling: axial load-twist rotation curves.

4.3. Torsional buckling

This example studies the axial-torsional buckling of a beam with a
cruciform cross section. Fig. 8 illustrates the boundaries, the geometry
properties and the material properties of the beam. All DOFs are fixed
at the left end, and only the axial displacement is permitted at the
right end. The axial compressive force P is applied at the centroid of
the right end. This example was studied theoretically and numerically
by Le Corvec [34]. By adopting the theory shown in Timoshenko
and Gere [35], Le Corvec [34] calculated the theoretical buckling
load of the beam as 258. The buckling analysis results in this study
using 2 mixed elements are presented in Fig. 9 with the theoretical
buckling load. It can be concluded that the buckling load of the element
developed in this work agrees well with the theoretical value of 258.
In the analysis, a five-point Gauss-Lobatto integration rule is used for
each element with 25 fibers in the cross section.

4.4. Flexural-torsional interaction

This example investigates the torsional stiffness of an angle section
under different bending moments at the ends. The experiments were
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Fig. 10. Simply supported angle bar subjected to end moments and mid-span torque.

Fig. 11. Torque versus twist in the mid-span.

onducted on simply supported angle bars by Engel and Goodier [36].
he geometrical and material properties are shown in Fig. 10. The
nd moments were applied in the plane perpendicular to the plane
f symmetry. In the present study, this experiment is simulated using
0 mixed elements. The comparison of the torque-twist curves under
ifferent bending moments from the simulations and experiments are
hown in Fig. 11 with very good agreement. In the analysis, a five-point
auss-Lobatto integration rule is used for each element with 25 fibers

n the cross section.
10
Fig. 12. Simply supported tee beam subjected to a uniform moment.

Table 1
Buckling loads of simply supported tee beams subjected to pure bending.

Beam length (L) Buckling loads (kN-m)

Theory [37] Mixed element

6 m 57.8 56.0

9 m 31.4 31.0

12 m 21.1 21.0

4.5. Lateral-torsional buckling of simply supported tee beams

The elastic buckling of simply supported tee beams under a uniform
moment was investigated by Kitipornchai and Wang [37], as shown
in Fig. 12. For this problem, a closed form analytical solution for the
critical buckling moment is given by Kitipornchai and Wang [37]. For
the section properties shown in Fig. 12, buckling loads are obtained
for three different beam lengths using 20 the newly developed mixed
elements. In this example, Young’s modulus and shear modulus of
elasticity are 200,000 MPa and 80,000 MPa, respectively. The compar-
ison of the results from the present study and Kitipornchai’s theoretic
equation are presented in Table 1. It is shown that the lateral-torsional
buckling loads are accurately predicted by the mixed elements. In the
analysis, a five-point Gauss-Lobatto integration rule is used for each
element with 23 fibers in the cross section.

4.6. Buckling of a right-angled frame subjected to an end load

The right-angled frame illustrated in Fig. 13 was studied by many
researchers [1,5,7,38]. The load P is applied in the X-direction at the
member tip with a very small perturbation load of 0.0002 N in the 𝑍-
irection at the tip to induce buckling artificially. The problem is solved
sing both the displacement-based element with membrane locking
emedied and the mixed element. The computed response of the applied
oad P and the tip deflection in 𝑍-direction is plotted in Fig. 14 together

with the results of Alemdar [1] and Simo and Vu-Quoc [38]. It is shown
that only 10 elements (5 for each member) are enough to obtain an
accurate response. As shown in Du and Hajjar [33], more than 20
elements are required to get similar results if the displacement-based
element with membrane locking is used. Since the results from the
mixed element and the displacement-based element with membrane
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Fig. 13. Right-angled frame subjected to an end load.

Fig. 14. Load/tip 𝑍-displacement for the right-angled frame.

locking remedied are almost the same, it can be accepted that the
mixed element is free of membrane locking. In the analysis, a five-point
Gauss-Lobatto integration rule is used for each element with 36 fibers
in the cross section. Six layers of fibers are adopted in the 𝑍-direction
to model the out-of-plane buckling behavior.

4.7. Flexural-torsional buckling of a tee beam

This example studies flexural-torsional buckling of a tee beam under
axial load as shown in Fig. 15 considering both elastic and inelastic ma-
terial. The left end of the beam is fixed and only the axial displacement
is allowed at the right end. A compressive axial force P is applied at
the shear center of the right end with a small perturbation force 𝐹 =
𝑃 /1000 introduced at the midspan point in the 𝑍-direction. Battini and
Pacoste [3] conducted numerical investigation on this example with the
following geometrical and material properties : 𝐿 = 1,800, ℎ = 𝑏 = 60,
 t

11
Fig. 15. Flexural-torsional buckling of a tee beam.

Fig. 16. Load/𝑍-displacement of point O curve (elastic case).

= 6, Young’s modulus 𝐸 = 70,000, Poisson’s ratio 𝜈 = 0.33, and
ielding stress 𝐹𝑦 = 20. For the inelastic case, a bilinear elastic-plastic
onstitutive relation is assumed using a post-yield strain hardening
odulus 𝐸t = E/5. In the present research, 4 and 8 displacement-based

nd mixed elements with 228 fibers in the cross section are used to
imulate the buckling and yielding behavior. Here a five-point Gauss-
obatto integration rule is used for each element. Note that Battini and
acoste [3] used 40 elements and 288 cross-sectional fibers in their
imulation.

A graph of load vs. 𝑍-displacement of point O for the elastic
nd inelastic cases are shown in Fig. 16 and Fig. 17, respectively.
he agreement between the present simulation results and the re-
ults of Battini and Pacoste [3] is very good, but fewer elements
re needed for the present displacement-based and mixed element. In
ddition, the mixed element provides improved results as compared to
he displacement-based element with the same number of elements.
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Fig. 17. Load/𝑍-displacement of point O curve (inelastic case).

Fig. 18. Lee’s frame.

4.8. Lee’s frame

The frame represented in Fig. 18 was investigated by Lee et al. [39]
and other authors. Several authors numerically studied this example
only assuming linear elastic material [38,40,41]. de Souza [7] and
Cichoń [42] analyzed this example for both elastic and inelastic cases.
In the present study, the bilinear elasto-plastic material model with
kinematic hardening proposed by de Souza [7] is adopted (see Fig. 18
for the material properties). Weak axis bending is used for both the
horizontal and vertical members.

The frame is analyzed using both the displacement-based element
with membrane locking remedied and the mixed element. Figs. 19
and 20 illustrate the results from the present study and those from
de Souza [7]. It is shown that with the same number of elements
(e.g. DB4 and MB4 in the figures), the mixed element can produce more
accurate results than the displacement-based element with membrane
locking remedied. This is because that the mixed element can represent
 p

12
Fig. 19. Equilibrium path for Lee’s frame (elastic).

Fig. 20. Equilibrium path for Lee’s frame (inelastic).

onlinear curvature within an element more accurately. Note that for
B4 and MB4, three elements are used for the horizontal member and
ne element is used for the vertical member, while for DB5 and MB5,
hree elements are used for the horizontal member and two elements
re used for the vertical member. In the analysis, a five-point Gauss-
obatto integration rule is used for each element with 16 fibers in the
ross section.

.9. Buckling of single angle columns

This example compares the results of numerical and experimental
nvestigations of the buckling behavior of single angle columns. Equal-
eg (L76 × 76 × 9.5 mm) and unequal-leg (L127 × 76 × 9.5 mm)
ngles, made of ASTM A36 steel, with different slenderness ratios
approximately 50, 100, 150) are used to study elastic and inelastic
uckling responses. Al-Sayed and Bjorhovde [43] conducted experi-
ents on three full-size simply supported columns for each section.
aterial property tests and residual stress measurements were also

erformed before the column tests. The measured yield stresses of
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Fig. 21. Standard residual stress distribution for angle sections (𝐹y is the yielding
tress).

ections L76 × 76 × 9.5 and L127 × 76 × 9.5 are 322 MPa and 311 MPa,
espectively. The measured residual stresses were found to have a lack
f equilibrium due to the coarseness of the discretization of the cross
ection and inaccuracies in the strain measurement; therefore, Al-Sayed
nd Bjorhovde [43] revised the measured residual stresses to obtain the
alanced residual stresses.

In the present study, all the six experiments are simulated using
he new mixed element. Bilinear stress-strain curve is assumed with
he tested yielding stresses. Since Al-Sayed and Bjorhovde [43] did
ot provide strain hardening ratios in the material property tests, the
verage strain hardening modulus of A36 steel provided by Salmon
t al. [44] are adopted in the simulation. Both the balanced residual
tresses provided by Al-Sayed and Bjorhovde [43], the standard resid-
al stresses shown in Fig. 21, and the no residual stress case are used
o see the impact of residual stress pattern on the buckling response.
ig. 22 shows the relationship between twist at mid-length and the axial
oad ratio for the column with section L127 × 76 × 9.5 and slenderness
/𝑟 = 140.29, where P is the applied axial load and 𝑃y is the yield load.
t can be seen that the residual stress pattern has a significant influence
n the buckling response of the column. The buckling loads calculated
rom the numerical models together with those obtained from the
xperiments are listed in Table 2. In general, the numerical results of
he buckling loads have good agreement with the experimental results.
omparison of the buckling loads computed with balanced residual
tress and standard residual stress demonstrates that the residual stress
attern can impact the buckling loads dramatically. Therefore, the
iscrepancies between the experimental and numerical results may
ome from the measurement of residual stress and the digitization of
he residual stress distribution from very poor-quality figures provided
y Al-Sayed and Bjorhovde [43]. Moreover, only one measurement was
erformed for each section, which may not represent the residual stress
atterns for all the three columns with the same section size. In the
nalysis, a five-point Gauss-Lobatto integration rule is used for each
lement with 25 fibers in the cross section.

.10. Nonlinear dynamic analysis of a cantilever with tee section

Le et al. [45] investigated the nonlinear dynamic response of a
antilever with a tee section as given in Fig. 23. The material properties
re: 𝐸 = 210,000 MPa, 𝜈 = 0.3, and 𝜌 = 7850 kg/m3. All DOFs

are fixed at the left end. Two time-variant loads (𝑃y = −50P(t), 𝑃z
= 25P(t)) are applied to point O of the right end section with the
time history of P(t) shown in Fig. 24. Forty mixed elements with the
lumped mass matrix are used to model this cantilever. The tee section is
divided into 18 fibers and 5 Gauss-Lobatto integration points are used
 l
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Fig. 22. Twist at mid-length vs. axial load ratio for a column with section L127 × 76
× 9.5 and slenderness L/𝑟 = 140.29.

Fig. 23. Cantilever with a tee section.

or each element. The time step for this analysis is 0.001 s, and damping
s not considered. The 𝑍-displacement time history of the right end
entroid is plotted in Fig. 25 together with the results provided by
e et al. [45], including the results of 40 corotational beam elements,
0 Abaqus B31OS elements and 2880 Abaqus isoparametric 20-node
olid elements. The displacement time histories obtained from different
lements agree well. The small discrepancies should be induced by the
act that a lumped mass matrix is adopted in this research while a
onsistent mass matrix is used by Le et al. [45].

. Conclusions

A mixed beam element has been developed and implemented in
he OpenSees software for geometric and material nonlinear analysis
f structural members composed of cross sections with no significant
orsional warping. The corotational total Lagrangian framework is uti-
ized to model the geometric nonlinear behavior including flexural,
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Table 2
Comparison of the buckling loads obtained from experiments and numerical simulations.

Section Slenderness L/r 𝑃y (kN) Experimental
buckling load (kN)

Numerical buckling
load with balanced
residual stress (kN)

Numerical buckling
load with standard
residual stress (kN)

76 × 76 × 9.5 49.50 438.02 418.58 394.51 361.51

76 × 76 × 9.5 103.27 438.02 230.42 211.29 193.54

76 × 76 × 9.5 156.30 438.02 103.73 96.62 91.68

127 × 76 × 9.5 44.34 573.78 510.66 509.46 500.16

127 × 76 × 9.5 99.77 573.78 303.37 261.96 291.98

127 × 76 × 9.5 140.29 573.78 161.83 149.59 165.43
Fig. 24. Time history of P(t).

Fig. 25. Time histories of the 𝑍-displacement (Uz) of the right end centroid.

flexural-torsional and axial-torsional buckling. In order to deal with
the noncoincident centroid and shear center for asymmetric sections,
a special basic coordinate system is adopted with displacements and
rotations defined with different reference points, and then all DOFs are
transformed to the shear center. The fiber section method with uniaxial
stress-strain models is used to consider material nonlinearity. In the
basic system, a two-field mixed element is formulated with the help
of the Hellinger-Reissner functional and displacement and generalized
stress resultant shape functions. The generalized stress resultant shape
functions are derived from the nonlinear equilibrium equations so that
the P - 𝛿 effects are considered in the interpolated stress resultants.
Numerical examples show that the mixed element does not have a
membrane locking issue. Furthermore, as demonstrated by the nu-
merical examples, the use of mixed element can reduce the number
of elements needed to model nonlinear curvature problems compared
14
with a comparable displacement-based element with membrane locking
remedied. This is because the displacement-based element can only
represent a linear curvature field exactly within an element, while the
mixed element can model a nonlinear curvature field due to the stress
resultant fields included in the element formulation and the element
state determination which ensure that the equilibrium equations are
satisfied section by section along the element.
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