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Asymmetric thin-walled sections such as steel angles and tees are widely used in a range of steel structures. To
address extreme limit states that these structures encounter due to extreme events such as hurricanes and
earthquakes, it is important to capture their response due to large deformations caused by static or dynamic
loading. In the nonlinear large deformation regime, these members have coupled axial-flexural-torsional
deformation due to the so-called Wagner effect and the noncoincident shear center and centroid. A three-
dimensional corotational total Lagrangian beam element is formulated and implemented in the OpenSees
corotational framework to account for these coupling effects by invoking Green-Lagrange strains referenced to a
basic system. In the basic system, shear forces and torque are defined with respect to the shear center, axial force
is referred to the centroid, and flexure is defined around the section principle axes but in the planes containing
the shear center. The element tangent stiffness matrix is derived through linearization of the governing equation
obtained from the principle of virtual work. Cubic Hermitian functions for the transverse displacements and a
linear shape function for the axial and torsional deformation are adopted in the development. Before conducting
the corotational transformation, all element end forces and displacements are transformed to act about the shear
center. In order to remedy membrane locking in the inextensional bending mode, the high order bending terms in
the axial strain are replaced by a constant effective strain. Cyclic material nonlinearity is considered by dis-
cretizing the cross section into a grid of fibers, tracking the steel uniaxial stress—strain constitutive at each fiber,
and performing numerical integration over the cross section to obtain the section stiffness matrix. The formu-
lation is compared against a set of experimental and numerical results to validate that the element can model
geometric and material nonlinearities accurately and efficiently.

1. Introduction stiffness matrix, which is usually obtained using three approaches: a

total Lagrangian formulation, an updated Lagrangian formulation and a

The conventional approaches developed to address the mechanics of
structural beam elements are often based on the assumption that
different deformation modes (axial, bending and torsion) are indepen-
dent. However, for a three-dimensional structural member, this
assumption is only acceptable for small deformations and only if the
member has a doubly symmetric cross section. For nonlinear large de-
formations, this assumption breaks down even for members with doubly
symmetric sections, because different modes of deformation may be
coupled. To consider these coupling effects accurately, several phe-
nomena need to be taken into account, such as the so-called Wagner
effect, and the coupling caused by the noncoincident shear center and
centroid of asymmetric cross sections. In finite element analysis, these
coupling effects usually are modeled through including of the geometric

corotational formulation [1-5]. In the total Lagrangian formulation, the
initial undeformed configuration is selected as the reference state,
whereas in the updated Lagrangian formulation, the last calculated
configuration is adopted for the same purpose [6]. In the corotational
formulation, a basic coordinate system is lined up with each element
chord and continuously translates and rotates with the element as the
deformations proceed [7]. The element is formulated in the basic system
then transformed to the global system through the corotational
transformation.

For members with thin-walled sections, the geometric nonlinear
behavior is more complex than the coupling of axial, bending and
torsional deformations. This is because other effects, such as local
buckling, section distortional buckling, and variable warping are
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present. Buckling analysis of members with thin-walled sections has
been studied extensively in the literature with consideration of the
warping effect [8-13]. The local and distortional buckling effects can be
included in beam elements by employing generalized beam theory
(GBT) models [14-18] or using deformation-specific tangent rigidities to
account for loss of stiffness as proposed by Rasmussen et al. [19-21].
Since the present element is developed for analyzing steel structures
made of hot-rolled steel angles and tees, this paper only focuses on
coupled axial, flexural and torsional buckling.

Kitipornchai and Chan [22] and Chan and Kitipornchai [23] derived
element geometric stiffness matrices for angle and tee beam-columns, as
well as for generic asymmetric thin-walled beam-columns. An updated
Lagrangian formulation, coupled with the arc-length technique for
iterative solution at each step, was adopted to trace the nonlinear load-
deformation relationship. The effectiveness and accuracy of this
formulation was demonstrated using different examples, for which the
buckling loads and the load-deformation relationships were developed.
The material was assumed to be linear elastic. In later work, they
introduced a lumped plasticity approach, coupled with the concept of a
yield surface in stress-resultant space, to model the material nonlinearity
of thin-walled structures [24].

Lee and McClure [25] developed a three-dimensional L-section beam
finite element for elastoplastic large deformation analysis. They pro-
posed a generalized interpolation scheme for the isoparametric formu-
lation of a three-dimensional thin-walled beam element. The updated
Lagrangian formulation was adopted considering large deformation
behavior. The axial, bending and shearing actions were included and the
‘mixed interpolation of tensorial components’ (MITC) technique was
used for the locking removal. In order to address eccentricities in the
element for loading and displacement, the longitudinal reference line
can be positioned arbitrarily on the beam section. However, the eccen-
tricities were implemented in the element derivation, which means the
users cannot specify the eccentricities by themselves.

Recently, Liu et al. [26] developed an efficient beam element
implementation within the educational structural analysis software
MASTAN?2 [27], which is capable of doing large-deformation analysis of
thin-walled members with asymmetric sections and modeling the
Wagner effects. The updated Lagrangian method was adopted for the
large deflection analysis. Then, they improved derivations and valida-
tions for the element linear and geometric stiffness matrices [28]. This
work also showed the calculation details of a refined cross-section
analysis algorithm for arbitrarily-shaped open sections. Linear elastic
material is assumed throughout their work.

There are other researchers who developed beam-column elements
with asymmetric sections under the corotational framework. Hsiao and
Lin [29] and Chen et al. [30] derived a corotational total Lagrangian
element formulation for geometric nonlinear analysis of thin-walled
members with monosymmetric and asymmetric cross sections and
linear elastic materials. Battini and Pacoste [31,32] proposed the
formulation of three-dimensional corotational beam elements for
buckling and post-buckling analysis of frame structures, where the
centroid and shear center of the cross section are not necessarily coin-
cident. More recently, Rinchen et al. [33,34] derived a displacement-
based beam element formulation for asymmetric thin-walled mem-
bers, which was implemented in the OpenSees corotational framework
[35]. In the work of Rinchen et al. [33,34], membrane locking occurs
because linear and cubic shape functions are used for axial and lateral
displacements, respectively, which may cause the element to over-
estimate the bending stiffness when the beam section is thin or the
element geometry becomes curved [4,36]. In addition to the conven-
tional corotational approach, which is applied to a whole finite element,
Garcea et al. [37,38] proposed the Implicit Corotational Method (ICM),
in which a corotational frame is introduced for each point on the beam
axis. Genoese et al. [39] then utilized the ICM in a geometrically
nonlinear beam element for members with generic sections.

In this paper, a displacement-based beam element is developed
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following the corotational total Lagrangian formulation. Rigid body
motions are considered in the corotational transformation, while
element deformations with geometric nonlinear effects are modeled in
the basic system through the total Lagrangian approach. The basic sys-
tem and beam section kinematics used in the original OpenSees coro-
tational framework is modified to consider the noncoincident centroid
and shear center. The fiber section method with uniaxial constitutive
laws for each fiber is utilized to model the distributed inelastic behavior.
Compared to the work of Battini and Pacoste [31,32], this research
adopts a different kinematic model, which decouples axial, flexural and
torsional deformations in the basic system [22,23] and follows the
classical beam theory where bending is referred to the centroid and
torsion is defined with respect to the shear center. On the contrary,
deformations are coupled for the kinematic model used by Battini and
Pacoste [31,32], which is not considered in the interpolations of de-
formations. Thus, a more accurate displacement field can be obtained if
the proposed kinematic model with the same interpolation functions is
used. As shown in Section 4, fewer of the elements developed in this
work are needed to obtain comparable accuracy with the element
developed by Battini and Pacoste [31,32]. Due to this kinematic model,
a cross-section transformation matrix is utilized in advance of the
corotational transformation to move all degrees-of-freedom (DOFs) to
act about the member reference axis. Compared to the work of Rinchen
et al. [34], in this research membrane locking is remedied through a
special treatment of the higher order terms in the Green-Lagrange strain;
in addition, the cross-section transformation matrix and the shape
functions are improved. Finally, a number of members and systems are
analyzed to validate the accuracy of the results from the implementation
within the OpenSees software.

2. Geometric nonlinear analysis formulation

The corotational transformation decomposes the motion of the
element into rigid body movements and pure deformations, through the
use of a basic coordinate system attached to the current deformed
configuration as the reference system, which continuously rotates and
translates with the element. Within the basic system, a geometric linear
formulation, a total Lagrangian formulation or an updated Lagrangian
formulation can be adopted [29,30,40]. OpenSees employs the corota-
tional transformation with a geometric linear formulation in the basic
system for developing nonlinear displacement-based beam elements.
Consequently, the high order terms in the strain displacement rela-
tionship are neglected in the basic system, which means that the axial,
flexural and torsional deformations are independent of each other in the
basic system. The axial-flexural interaction can be captured in the global
system by the corotational transformation; however, the axial-torsional
and flexural-torsional interaction cannot be recovered in the global
system. Therefore, the torsional behavior is independent to axial and
flexural deformations for the original displacement-based beam element
in OpenSees, which leads to the inability of this element to simulate
torsional and flexural-torsional buckling behavior of members. In this
research, the high order terms in the strain displacement compatibility
equation are included through the total Lagrangian formulation in the
basic system of the corotational transformation formulation. A brief
introduction of this total Lagrangian corotational formulation is pre-
sented in this section.

2.1. Total Lagrangian formulation

Fig. 1 shows the concept of the total Lagrangian method applied to a
3D beam element. In the total Lagrangian formulation, when describing
strains and displacements, the reference configuration is the initial
configuration at time 0. The element is formulated in the 12-DOF local
system of the initial configuration, then transformed to the global system
using the transformation matrix of the initial configuration. The trans-
formation matrix is constant for each element. There are 12 DOFs in the
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initial configuration at time 0
reference configuration

last known configuration at time t

current configuration at time t+At

Fig. 1. Illustration of the total Lagrangian formulation (after Mattiasson
et al. [7]).

local system because element ends have lateral displacements and
rotations.
Theoretically, the principle of virtual work at time t 4+ At is

AL AL _ AL o
/ T, e AV =""F (@D)]
oty

where 2V is the volume at time t + At; "™.% is the virtual work
done by external loads; “"*'z; is the Cauchy stress tensor at time t + At,
and &, ,,.e; is the variation in the small strains referred to the configu-
ration at time t + At [1,2]. Since the configuration at time t + At is
unknown and directly working with increments of Cauchy stresses is
unreasonable, this equation cannot be used to derive a beam element. By
employing the Green-Lagrange strains and 274 pipla-Kirchhoff stresses,
the above principle of virtual work at time t + At can be replaced by

/ {)ergijﬁ 6+Ar€l_deV — 1+Atf%, (2)
oy

where °V is the volume at time 0; 5'c; is the 2™ Piola-Kirchhoff
stress tensor and 5*“8,-}- is the Green-Lagrange strain tensor [6]. Equa-
tion (2) takes the initial configuration at time O as the reference
configuration, from which the element formulations can be developed.

2.2. Corotational transformation

In the corotational transformation, when describing displacements
and strains at any time point, the reference system is the basic system at
the same time point (Fig. 2). The element is formulated in the 6-DOF
basic system at this time, then transformed to the global system using
the corotational transformation matrix at this time. The transformation
matrix is different at different time points because the basic system
continuously rotates and translates with the element. The deformational
response is considered at the level of the basic coordinate system,
whereas the rigid body motion is captured by the transformation
matrices relating the basic and global systems. There are 6 DOFs in the
basic system because rigid body motion is separated from the defor-
mation and only rotations and an elongation remain in the basic system.
In the corotational transformation, the 6x6 element stiffness matrix is
derived in the basic system at t + At, then transformed to the global
system using the corotational transformation matrix of the current
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initial configuration at time O

\  last known configuration at time t

/X & reference configuration at time t

( . .
\ current configuration at time t+At
reference configuration at time t+At

Fig. 2. Illustration of the corotational total Lagrangian formulation (after
Mattiasson et al. [7]).

configuration.

The displacements, forces and stiffnesses transformations between
the basic and global systems that were implemented in OpenSees are
introduced here briefly. The tangential relation between the displace-
ments Dy in the basic system and the displacements D in the global
systems can be defined as

8D, = TSD 3

where T is a transformation matrix connecting the global and basic
systems. In geometric linear analysis T is a constant matrix, while in
geometric nonlinear analysis T is a function of displacements D.
Equating the internal virtual work in both the basic and global systems,
the relationship between element end forces in the basic and global
systems can be obtained as

P=T1"P, @)

where P and P, are the element end forces at the global system and basic
system, respectively. The element tangent stiffness matrix in the global
system is obtained from the linearization of Eq. (4), such that

6P=5(T"P,) =T"6P,+5T" P,=T"K,6D;,+5T" P, = (T"K,T+K)6D=K&D
(5)

where Kj, is the tangent stiffness matrix in the basic system, and 6P, =
KDy, is used in the above equation. Here,

K =T'K,T +K; (6)

is the tangent stiffness matrix in the global system. On the right hand
side of Eq. (6), the second term K is called the external geometric
stiffness matrix. The parameterization of 3D finite rotations and detailed
derivations of T and K are described by Crisfield [5] and de Souza [41].
The element formulation in the basic system is independent to the
corotational transformation; therefore, this research uses the current
corotational transformation in OpenSees with the element formulation
in the basic system modified.

2.3. Corotational total Lagrangian formulation

The corotational total Lagrangian formulation is utilized in the pre-
sent research to consider geometric nonlinearity in the basic system so
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that the torsional DOF will be coupled with the axial and flexural DOFs.
In the corotational total Lagrangian formulation, the reference config-
uration is taken as the initial undeformed configuration but translates
and rotates in accordance with the motion of the corotating basic system
(see Fig. 2). When deriving the stiffness matrix and force recovery in the
basic system, we can assume that the basic system is fixed and apply the
total Lagrangian formulation in the basic system as shown in Fig. 3. This
means that the Green-Lagrange strain tensor, the 2" piola-Kirchhoff
stress tensor and Eq. (2) will be adopted to describe the element re-
sponses with respect to the reference configuration illustrated in Fig. 3.

3. Displacement-based beam element in the basic system

This section presents the development of a new displacement-based
beam element in OpenSees, which can be used to simulate the nonlinear
behavior of members with asymmetric cross sections. The new
displacement-based element can address inelastic behavior through the
use of fiber-based cross-section formulations. Small strains, large rota-
tions, and large displacements are assumed in this formulation.

3.1. Coordinate systems of the original OpenSees elements

OpenSees has two coordinate systems: the basic system with 6 DOFs
per element, and the global system with 12 DOFs per element. The basic
system and global system are represented in Fig. 4. The element ends
node I and node J in Fig. 4 are centroids of the cross section. The element
stiffness matrix is formulated in the basic system which has the 6 DOFs:
one relative axial displacement u;, two rotations relative to the chord 6,
and 6y, about the z axis, two rotations relative to the chord 6y, and 6,
about the y axis, and one relative angle of twist ¢;. Note that OpenSees
assumes the cross section is doubly symmetric and all the 6 DOFs are
defined with respect to the centroid of the cross section. These relative
displacement DOFs in the basic system are the minimum number of
geometric variables required to describe the deformation modes of the
element in 3D space, which also make sure there are no rigid body
modes in the basic system. The six statically independent element end
forces corresponding to these displacement DOFs are the axial force Ny,
the two bending moments in the xy plane,M, and M,, the two bending
moments in the xz plane, My, and My, and the torque T;. These element
end forces and displacements are gathered into vectors

Dy=[u 0o 0. 6, 05 ¢,] @)
and
P,=[N, M, M, My, M, T,| 8)

The OpenSees element has 12 DOFs in the global system, i.e., three
translational displacements and three rotations at each node. These
DOFs are grouped into a vector

p=[uvl s U 7] ©

last known configuration at time t
A

/ initial configuration at time 0
/ reference configuration

P

v

current configuration at time t+At

Fig. 3. Total Lagrangian method in the basic system.
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deformed configuration

?zﬁ;l? \z

twist restrained

Fig. 4. Basic and global coordinate systems in space (after de Souza [41]).

where UT and U7 are 3x1 vectors with the translational displacements,
and y! and yT are 3x1 pseudo-vectors that define the rotations of nodes I
and J, respectively. In the absolute sense, these rotations can be arbi-
trarily large, although it is assumed that the relative rotation of two
element ends is small. As such, the OpenSees element can experience
finite displacements and rigid body rotations; however, the de-
formations along the element are considered to be moderate. The cor-
responding work conjugate forces in the global system are

D
P:[Pl Py P3; Py Ps Ps P; Ps Py Pig Pu P2 (10)

3.2. Coordinate systems for asymmetric sections

Since the new element is implemented in the OpenSees corotational
framework, the original OpenSees coordinate systems described in
Section 3.1 are adopted with some modifications for the basic coordi-
nate system. The same global system with the original OpenSees element
is used here; however, due to the noncoincident shear center and
centroid of the beam element with asymmetric sections, its basic system
is slightly different as shown in Fig. 5. The modified basic system is
defined by two set of coordinates: x, y, z and x, y, 2. The coordinate
system X, y, z is chosen such that x passes through the end cross-section
centroids C and C’, and y and z are the section principal axes. A parallel
set of coordinates x, y, z is chosen such that x passes through the end
cross-section shear centers S and S’, and y and z are parallel to the
principal y and z axes of the cross section. Let v and w denote the dis-
placements of the shear center in the y and z directions, u the axial
displacement along the centroidal axis CC’, and ¢ the angle of twist

Fig. 5. Basic and global coordinate systems in space for asymmetric sections.
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about the shear center axis SS’. Such a coordinate system will uncouple
displacements and rotations in the sense of the first order effect [22,23].

The element stiffness matrix is formulated in the basic system with
the 6 DOFs presented in Egs. (7) and (8). However, the definitions of the
DOFs are different as follows: one relative axial displacement u; of the
centroids, two rotations relative to the chord 0 and 05, about the z axis,
two rotations relative to the chord 6y, and 6, about the y axis, and one
relative angle of twist ¢; about the x axis. The six statically independent
element end forces corresponding to these displacements are: the axial
force N; acting along the centroidal axis CC’; the two bending moments
acting about the principle axis z and in the xy plane, M}, and M,;,; the two
bending moments acting about the principle axis y and in the xz plane,
My, and Mjy; and the torsional moment T; about the shear center axis SS’
[42].

Following the corotational transformation procedure, the forces,
displacements and stiffness matrix need to be transformed to the global
system. However, in the current definition of the basic system, some
DOFs are defined with respect to the centroid, while others are defined
with respect to the shear center, which makes the corotational trans-
formation cannot be applied directly [34]. Consequently, all DOFs (end
forces and displacements) need to be transformed to one reference point
in advance of the corotational transformation. Note that in the basic
system, the axial force is referred to the centroid, the shear forces and
torque are defined with respect to the shear center, and the moments act
in the planes containing the shear center. Thus, it is straightforward to
transform all DOFs to the shear center, because only the axial force
needs to be transformed. If other points (e.g., the centroid) are selected
as the reference point, the shear forces need to be transformed, which is
more difficult because the shear forces are only recovered after the
corotational transformation. Therefore, it is proper to choose the shear
center as the reference point and the shear center axis as the member
reference axis before the corotational transformation. The coordinate
system X, y, 2 is referred as the element basic reference system with the
element end forces P, and displacements D, act through the shear center.
The following equations are used to transform all DOFs to the shear
center

P.=T'P, 1
D, =T,D, (12)

where the cross-section transformation matrix is [34]

1 00000
y, 1.0 0 0 0
r =y 01000
L=l 00100 as
z 00 0 10
0 000 0 1

and y; and z; are coordinates of the shear center relative to the centroid.
Consequently, the stiffness matrix in the element basic reference system
is

K, =T'K,T, a4

With this consideration, the coordinate system x, y, z in Fig. 5 is the
same with the basic system in Fig. 4 in the sense of corotational trans-
formation, but the displacement and force DOFs should be replaced by
D, and P,. The corotational transformation will remain the same as in
the original OpenSees with the Egs. (3), (4) and (6) being modified as

oD, = TsD (15)
P=T1"P, (16)
K =T'K,T +K; a”n

Engineering Structures 239 (2021) 112239
3.3. Beam section kinematics

With the commonly used kinematic assumption of the Euler-
Bernoulli beam theory and disregarding the in-plane distortion
behavior of the cross section, the motion of a material point P (x, y, 2) (P
is expressed in the coordinate system X, y, z shown in Fig. 5) in the beam
section is expressed in terms of the displacement components [43,44]

U, =u — W o—w 2y —yhw
vy =v—(z—2z)
Wp :W+¢(y_y¥) (18)

where y; and z; are defined in Eq. (13); in addition, u, v, w and ¢ are
defined in Section 3.2. In the derivation of Eq. (18), small rotation as-
sumptions are enforced, which is appropriate since the corotational
transformation addresses the rigid body motions. The nonlinear con-
tributions in u, are used to consider the combined effects of torsion and
bending. The longitudinal/axial component of the Green-Lagrange
strain is expressed as

_ Ou, 1 (0w, 1w\ 1w,
€= 5 §<ax) tala) F2 e (19)
The high-order term 1(ou, /dx)2 is negligible compared to du,/dx

because it is assumed that the term du,/dx is small compared to unity.
Hence, the Green-Lagrange strain becomes

_ Ou, 1[0y, 1 fow,)?
€= 5 z(ax> 3 (20)
Taking derivatives of the displacement field in Eq. (18) with respect
to x and substituting the results into Eq. (20) gives

, . ool . 1 ,
e=u =y =o'+ [0)+ W) ] +5 [0 -2+ - 2)'] (@)
+ (& — ysW')¢’ + (v =)o
@D
Compared with the strain term e=u —yv" —2zw’ used for the

original OpenSees displacement-based element, Eq. (21) has the
following extra terms

: geometric nonlinear term (coupling between the
axial tension/compression and bending)

: Wagner term (coupling between the axial strain
and torsion)

: coupling term between bending and torsion (effect
of this coupling on the axial strain)

S0+ w2
o-wrE-w2]wy

(zv —ysw)p + (v —
w)e

The shear strain at P resulting from uniform twisting ¢ of a thin-walled
open section member is approximated by [21]

y =2n¢ (22)

in which n is the perpendicular distance of point P (x, y, ) from the mid-
thickness line of the cross section. Shear strains due to bending are
neglected.

3.4. Displacement-based element formulation

In this section, the element governing equilibrium equation is
derived from the principle of virtual work with the aid of the kinematic
assumptions and the displacement shape functions. Linearization of the
governing equation leads to the element tangent stiffness and the
equation for force recovery. To start, the axial strain and shear strain can
be put together in vector form as
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. H (23)
14
The terms in the strain vector can be expressed in matrix form as
c=vd (24)
where
_[1 -y 2=+ -2 0
Y=1lo 0 o 0 2n 5
and
— , A
Wty [(v Y+ (w )2} + (zv —y,w)ep
v o+w'p
d= W (26)
1, .
5@’
L ¢ ]

Vector d is the section deformation vector. Matrix Y relates strains on
a material point and the section deformations on the corresponding
section. The variation of the strain vector is obtained as

Se = Yéd 27)
in which

U+ +wow + (z,6V' f_yséw')qf + (zv —y,w )6
v+ psw’ +w p

&od = —w’ + (/)5\/‘_’ +v' 8¢ (28)
¢5p
o
And &d can be expressed as
od = N5d15V (29)
where
L vidzg w—y¢ 0 0 0 zv-—yw
0 0 0 1 ¢ w. 0
Nsat = | 0 0 0 ¢ -1 v 0 (30)
0 0 0 0 0 0 ¢
0 0 0 0 0 0 1
v=[ou & ow & ow op op " (31)
Thus, Eq. (27) becomes
Se = YNy 6v (32)

In the basic system, the axial elongation field, the transverse
displacement field and the twist displacement field along the element
can be interpolated between the element DOFs with the help of shape
functions

u=N'D,=[N, 0 0 0 0 0]D,

V= N‘TDb = [ 0 N‘,-l N,,z 0 0 O]Db
w=N'D,=[0 0 0 N, N, 0D,

¢=ND,=[0 0 0 0 0 NyulD, (33)

The shape functions in Eq. (33) are chosen as follows: cubic Hermi-
tian functions for the transverse displacements, and a linear function for
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the axial deformation and twist. Specifically, the shape functions uti-
lized in the current development are

X
Ny =Ny = A
0

X 2
Nyi = =N, :x(l —*>
lo
Ny =Ny = x(f) (f - 1) (34)
lo lo

where [ is the length of the undeformed element. With the help of shape
functions, év can be written in terms of the element DOFs, as shown

o = NMQ(SDb (35)
in which
N, O 0 0 0 0
0 N, N, 0 0 0
0 0 0 N, N, 0
Nep=|0 N, N, 0 0 0 (36)
0 0 0 N, N, 0
0 0 0 0 0 Ny
0 0 O 0 Ny
Therefore, Eq. (32) becomes
6€ = YNs11N;s020D, (37)

Here, the Total Lagrangian formulation is used for the virtual work
principle. In the basic system, the stresses and strains are referred to the
undeformed configuration of the beam element. The principle of virtual
work can be written in a general form as

/ 6e’6dV — D[P,y =0 (38)
Vo
wheres = [o  7]" is the corresponding stress vector, Vj is the volume of

the undeformed element, and P,,; is a vector of external forces. After
substituting Eq. (37) into Eq. (38) and rearranging, we have

51);{ NEONL, ( / YTO'dA>dx — P,y } =0 (39)
Ip Ao
and
51)[{ / N} ,N7, Sdx — Pm} =0 (40)
lo

where Ay is the cross-section area of the undeformed element; and S is
the vector of section forces expressed as

/ odA

Ag

- / yodA
Ao

/ z0dA =
Ao

/ [V =) + (z—2,)" ] odA

Ao
/ 2ntdA
Ag

S :/ Y'6dA = (41)
Ao

~sEKX=z
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where N is the axial force, M, is the bending moment about the z-axis, M,
is the bending moment about the y-axis, W is the Wagner stress resultant,
and T is the St. Venant torque. The governing equilibrium equation can
be rewritten as

§= | NopNonSdr—Poy =0 (42)
0

The governing equation is in general a nonlinear function of the
unknown displacement increment. It should be linearized to obtain the
element tangent stiffness matrix. Such a linearization process can be
achieved by expanding the governing equation at (i + 1)™ iteration
based on previous configuration at i iteration. The details of the line-
arization process are shown in Appendix A, from which the following
iteration equation can be obtained

K,AD, =P} — P, 43)
where
Kh = NgdZGN§d2dx + / N(QiZN;d]K“Néd]Nﬁdde (44)
I I
P = [ NGNS (45)
0
P! =Pl + AP, (46)

K, is the element tangent stiffness matrix in the basic system, the first
integral in which is the element internal geometric stiffness matrix and
the second integral is the element material stiffness matrix. The defini-
tion of the auxiliary matrix G and the section stiffness matrix K; can be
found in Appendix A. In addition, P! and P., are the external load
vector in (i + 1)th iteration and the element internal resisting forces in ith
iteration, respectively. The vector S' represents section forces in ith
iteration.

3.5. Fiber section and material nonlinearity

In order to consider material nonlinearity, the beam section is dis-
cretized into a set of fibers so that the section stiffness matrix K can be
obtained through numerical integration. In this element, it is assumed
that the uniform torsion behavior is linear elastic so that shear strain is
always elastic, and GJ is used as the rigidity of uniform torsion. Thus, the
uniaxial constitutive law is used to check the yielding of the material.
Note that the tangent Young’s modulus E can be updated for each fiber
as it reaches plastic stage. The calculation of K; through numerical
integration is shown as

ni ni o9
j:lijjAj Ej:leEjAj Zj:lijjAj 0
ni ) n n 9
- j:lijjAf Zj:lij}Af _ijlijijAj _ijlpjy/EfA/ 0
_ n m mo mo
K, Z]‘:]Z/E/Aj _Zj:lijjEjAj Zj:]ZJ'EjAf Zj:]ijfEfAf 0

ny

" " "
j:,prfAj —ZF PIYiEA; Z,-: PiGEA; > j:leEfAf 0
0 0 0 0 GJ

n
1 B

(‘;7)

where Ej, A;,yj, and z; and p; are the tangent Young’s modulus, area, y
coordinate, z coordinate and p value (see Eq. (A.8) in Appendix A for
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definition) of the jth fiber, respectively; n; is the number of fibers on the
section. Similarly, the section forces can be calculated numerically as
shown in Eq. (48). Here the torque due to uniform torsion is achieved
directly from the first derivative of the twist rotation ¢ and the equiv-
alent section torsional rigidity GJ because of the assumption of linear
elastic St. Venant torsional behavior. Note that the nonlinear torsional
behavior is considered through including the Wanger stress resultant W
[45].

ny

1O

1y
*Z 1Yo

S = S g0 (48)

j=1

Z,il [(y,- —3) + (- ZJ)Z]U./A/

GIp

Thus, the matrix G in Eq. (44) can be obtained from results of the
numerical calculation of section forces S. Numerical integration

methods like Gaussian quadrature are used to calculate K, and P..

3.6. Membrane locking

In order to avoid membrane locking, as recommended by Crisfield

[4,5,43], the high order term %{(v’)z + (w')2] in Eq. (21) can be

replaced by an effective membrane strain 2 b1 [(v‘)2 + (w)? ] dx. This
integral can be obtained by assuming cubic shape functions for v and w;
thus, Eq. (21) should be substituted by
. - " 1 1 .
e=u =y —aw + OX0+ o[- y) + - 2) ()
+ @y —yw)e + (v —yw ) (49)

in which the vector 6 = [ 6; 65, 6 6y, ] holds the local slopes in
the basic system, and the matrix X is defined as

4 0o -1 0
0 4 0 -1
X=11 0 4 o (50)
0O -1 0 4
Thus, the modified d is
R 1 R NN
ru + @GZXO;, +(zv —yw )P T
vVi+weg
d= —w v Gh
o
z(lﬁ )
L " J
The variation of strain vector is obtained as
de =Yod (52)
in which
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réu + EOZX‘S‘% + (2,6v —yow )P + (zv —yw )6 T

o+ pow +w s

od = (53)
—ow 4 v +v 8¢
»5p
L 5¢ .
And &d can be expressed as
od = N&”&V (54)
where
Sv=[ou 6. 86, 56, 86, S ow & ow op op 1"
(56)
So
[ 1 401, — 0;, 40, — 0,  —0,+40,, —0, + 40, b v
30 30 30 30 “p T
0 0 0 0 0 0 0
Nan=19 o 0 0 0 0o 0
0 0 0 0 0 0 0
10 0 0 0 0 0 0
de = YN(;,”EV (57)

with the aid of shape functions, év can be written in terms of the element
DOFs

v = N;si6D,, (58)
in which N4, is rederived as
N, O 0 0 0 0
0 1 0 0 0 O
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
Nep=|0 N, N, 0 0 0 (59)
0 0 O N, N, O
0O N, N, 0 0 0
0 0 0 N, N, 0
0 0 0 0 0 Ny
0 0 0 0 0 N
Therefore, Eq. (57) becomes
e = YNy 1Ns20D,, (60)

The same linearization process for Eq. (42) is adopted as in Appendix
A with the new matrices Nsg; and Ny, in the present section. The same
element formulation (Egs. (43)-(46)) is obtained and the only change is

o o
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for the matrix G that takes the following form

0 0 0 0 0 0 0 0 0 0 O
4 1
0N 0 —N 0 0 0 000 0
0 0 AN 0 'v o 0o 00 0 o0
30 30
0N o N 0 0 0 00 0 o0
30 30
0 0 Ly o YN 0 0 00 0 o
G= 30 30
0 0 0 0 0 0 0 0 0 0 Nz
0 0 0 0 0 0 0 0 0 0 —Ny,
0 0 0 0 0 0 0 0 0 M O
0 0 0 0 0 0 0 0 0 M O
0 0 0 0 0 0 0 MyM 0 O
0 0 0 0 0 Nz Ny, 0 0 0 W
(61)
0 0 zv —yw
¢ w 0
-1 v 0 (55)
0 0 ¢
0 0 1

3.7. Rigid offsets

Generally, thin-walled asymmetric members are connected eccen-
trically and sometimes structural joints should be considered as being of
a finite size. Therefore, the element reference ends should be offset to
the connecting point from the shear center, as shown in Fig. 6. Nodes I
and J are shear centers, while nodes 1 and 2 are the connecting points of
the element (element reference ends). Here, dx;, dy; and dz; are the off-
sets specified with respect to the global coordinate system for element
end node I, and they are designated to be the coordinates of node I minus
the coordinates of node 1. Similarly, dx;, dyy and dz; are the coordinates
of node J minus the coordinates of node 2.

This phenomenon can be considered systematically by utilizing a
transformation matrix to model the rigid offsets [26,28,46]. The rela-
tionship between end forces of the element reference ends (1 and 2 in
Fig. 6) and the shear centers (I and J in Fig. 6) can be derived with the
help of equilibriums of rigid offsets. The details of this transformation
are shown in Appendix B.

3.8. Element state determination

The following algorithm is utilized for element state determination
of the displacement-based element. Once the incremental displacements
and rotations are retrieved from the global solution, the element state
determination process is as follows

1. Update the nodal translational displacements and rotations in the
global system.

2. Compute the rotations and the axial displacement in the basic system
through corotational transformation.
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Fig. 6. Element with rigid offsets.

3. Compute axial strain at each fiber according to Eq. (24), and then
update the stresses and fiber stiffnesses through constitutive models.

4. Compute section stiffnesses and forces according to Egs. (47) and
(48) using the updated stresses and fiber stiffnesses through nu-
merical integration across each section. Note that the torsional ri-
gidity and the St. Venant torque are calculate separately from the
section numerical integration.

5. Compute the element tangent stiffness matrix and the internal force
vector in the basic system according to Eqgs. (44) and (45).

6. Compute the global tangent stiffness matrix and global internal force
vector through corotational transformation according to Egs. (4) and
(6). The transformation in Appendix B should be applied if rigid
offsets need to be included.

7. Conduct the convergence test. If the residual is smaller than the
threshold, then commence the next increment. Otherwise go back to

step 1 and continue the iteration.

4. Validation of formulation

Eleven examples are shown here to validate the accuracy of this new
element. In examples 1-4 and 6-8, the material is assumed to be linear
elastic. Examples 5, 9, 10 and 11 address both elastic and inelastic
materials. These validations show that the new element can simulate
both geometric and material nonlinearity accurately. In the following,
“DBxx” means using xx number of the new displacement-based elements
with membrane locking remedied; while “DBxx-with locking” means

240 mm

30 mm

0.6 mm

E=71240MPa
v=0.31

P

Fig. 7. Inextensional bending of a cantilever.

using xx number of the new displacement-based element elements with

membrane locking.

4.1. Inextensional bending

This example compares the simulations of inextensional bending of a
cantilever (see Fig. 7) using the original OpenSees displacement-based
element (which is appropriate only for symmetric cross sections) [35],
the new element with membrane locking, and the new element with
membrane locking remedied. Through this example, the accuracy of the
element with membrane locking remedied is validated. When a beam
element cannot bend without stretching, the energy is incorrectly shifted
to membrane energy, resulting in underprediction of displacements and
strains. In this structure, a concentrated lateral force P in the global Z

direction is applied to the tip of the cantilever.

Fig. 8 compares the force-displacement relationship using the orig-
inal OpenSees element and the new element with membrane locking.
With the increase of elements, both results converge to the same answer.
However, the new element with membrane locking converges too slowly
compared with the original OpenSees element. As seen in Figs. 8, 5

100 ' ' ' R

I

N
751 ' i

N —-mmm DB5-original element E :

z ——— DB40-original element i
& 50| |= = DB5-with locking .

e DB20-with locking i

- - - - - DB40-with locking f
25| i

fi

-
0 - ' '
0 50 100 150 200 250

Lateral displacement (mm)

Fig. 8. Comparison of original OpenSees element and new element with

membrane locking.
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Fig. 9. Comparison of original OpenSees element and new element with
membrane locking remedied.

E =200,000Mpa
G = 80,000 MPa

T
]~

200 mm
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L |
|

Fig. 10. Nonlinear torsion of a cantilever.

10 mm

original OpenSees elements and 20 new elements with membrane
locking can have comparable accuracy. Fig. 9 shows the results of the
new element with membrane locking remedied. It can be seen that when
membrane locking is alleviated, the new element can give more accurate
answers compared with the original OpenSees element. Five new ele-
ments with membrane locking remedied are enough to simulate this
phenomenon.

14 x10°% | ' | | ,
121 O  Trahair [45]-nonlinear
- = = = Trahair [45]-linear
’E\ 10 L - DB1 i
§ ----DB20
- 8 - 4
© -
> P
<2 -
56 T
i 2
w 4 77 1
2t ! :
0G : : . - : :
0 02 04 06 08 1 12 14

End rotation (rad)

Fig. 11. Moment end-rotation relationship for nonlinear torsion.
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4.2. Nonlinear torsion

This example considers a cantilever beam of rectangular cross sec-
tion (see Fig. 10) subjected to end torque T. The size of the rectangular
cross section is 200x10 mm. The beam properties are Young’s modulus
E = 200,000 MPa and G = 80,000 MPa, and length L = 1,000 mm. The
results obtained using 1 and 20 new elements are shown in Fig. 11 and
compared with the theoretical solution of Trahair [45]. It is shown that
the new element can consider the Wagner effect, which induced the
nonlinear phenomenon. The cantilever has axial shortening deformation
due to the applied torque. Since the results of using 20 displacement-
based elements coincide with the results of using 1 element, it can be
accepted that only 1 element is enough to model the nonlinear torsion
behavior by adopting the newly developed displacement-based element.
In addition, Battini and Pacoste [31] also presented a similar example of
nonlinear torsion of a rectangular section, where 20 elements were used
to get the results in their work.

4.3. Torsion of a cantilever beam with an angle section

This example considers a cantilever beam with an angle section
subjected to an end torque acting on its shear center. As shown in
Fig. 12, the geometric and material properties of the cantilever are: L =
177.8 mm, a = 90°, b = 14.605 mm, t = 0.9601 mm, Young’s modulus E
= 89,632 MPa and shear modulus G = 33,445 MPa. The example was
experimentally and numerically studied by different researchers
[29,47]. Fig. 13 compares the path of shear center B of the end cross
section obtained by the present study, the experimental results from
Gregory [47], and the numerical results from Hsiao and Lin [29] using
20 elastic beam elements. This work uses 20 displacement-based ele-
ments, whose results match with the experimental and numerical results
very well.

4.4. Flexural-torsional interaction

This example investigates the influence of bending moments on the
torsional stiffness of a simply supported beam. The experiments were
conducted by Engel and Goodier [48] on simply supported angle bars
(see Fig. 14). The material was 61 S-T aluminum with Young’s modulus
E = 10,000 ksi and shear modulus G = 3,750 ksi. The properties of the
monosymmetric angle section are: L = 36.8 in., a =90°,b=11in., and t
= 0.030 in. Bending moments acting in the plane of symmetry were
applied to the ends of the angle bar to produce constant bending
moment between supports. A torque is applied to the mid-span of the
member. Fig. 15 shows the comparison of torque-twist lines from

T X
<— —>

A
v

o
2

vZ

Fig. 12. Torsion of a cantilever beam of angle section.
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Fig. 13. Path of point B during torsional behavior.

r Z

Fig. 14. Simply supported angle bar subjected to end moments and mid-

span torque.
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Fig. 15. Twist per unit length versus applied.

experiments and simulations using 20 elements in the present study. The
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Fig. 16. Flexural-torsional buckling of concentrically loaded angle
struts (elastic).

results indicate that the new element can successfully model the flex-
ural-torsional interaction of beams.

4.5. Flexural-torsional buckling of concentrically loaded angle struts

This example, analyzed theoretically and numerically by Kitiporn-
chai and Chan [22] and Kitipornchai and Lee [49], studies the elastic
and inelastic flexural-torsional buckling load of concentrically loaded,
pin-ended unequal-leg angle struts (L76x51x5 mm). The material
properties are: Young’s modulus of elasticity E = 200,000 MPa, Pois-
son’s ratio v = 0.3, and yielding stress Fy, = 312 MPa. Fig. 16 shows the
elastic buckling factors for members with different modified slender-
ness. The definition of modified slenderness is A = \/F,/(7?E)L /Tin,
where L is the length of the angle bar and ry, is the minimum radius of
gyration. In the figure, P. is the applied axial load and Py is the section
yielding load (squash load). Twenty new displacement-based elements
are used to simulate this flexural-torsional buckling behavior. It is
shown that the buckling loads computed form the newly developed
element coincide well with the theoretical values. Since the default
reference line of the new element is the shear center axis, the rigid
offsets developed in Section 3.7 are utilized to move the element
reference line to centroidal axis so that the concentric loading condition

0.3F, - —
¢
T >
03F,
Cl—7—
0.3F," =7 NG
0.3F, 0.3F,

Fig. 17. Assumed residual stress distribution for angle sections.
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Fig. 18. Flexural-torsional buckling of concentrically loaded angle

struts (inelastic).

is satisfied.

For the inelastic buckling case, the idealized residual stress distri-
bution shown in Fig. 17 is used both in the research of Kitipornchai and
Lee [49] and in the present simulation. An elastic-perfectly plastic
stress-strain curve is employed, while in the plastic region the shear
modulus is assumed to remain unchanged. In the calculation of inelastic
buckling loads, Kitipornchai and Lee [49] utilized a simplified mathe-
matical model similar to that proposed by Trahair and Kitipornchai [50]
for inelastic buckling of steel I-beams. Using the new displacement-
based and mixed elements, the inelastic buckling loads of the angle
struts with different slenderness are calculated and then compared with
the results of Kitipornchai and Lee [49] in Fig. 18.

4.6. Cantilever with angle section subjected to an eccentric axial force

This example, studied numerically by several researchers [23,30,51],
addresses a cantilever beam with asymmetric cross section subjected to
an eccentric axial force P. The cantilever is fixed at the left end in Fig. 19.
The axial force P is applied to the shear center of the free end. As shown
in Fig. 19, the geometric and material properties of the cantilever are: L
= 1,400 mm, a = 76 mm, b = 51 mm, t = 6.5 mm, Young’s modulus E =

P X
L - - —_—_——- - - = = |

A
v

Fig. 19. Cantilever with asymmetric angle section subjected to an eccentric
axial force.
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Fig. 20. Cantilever with asymmetric angle section: load-deflection u and
Vv curves.

193.05 GPa and Poisson’s ratio v = 0.3. The load-deflection curves of
the present study together with the results of Alsafadie et al. [51] are
plotted in Fig. 20, in which the axial displacement u and lateral
displacement v in Y direction are presented. As seen in this figure, three
new displacement-based elements in the present study are enough to
obtain relatively accurate results, while Alsafadie et al. [51] utilized 30
displacement-based elements to get similar results.

4.7. Lateral-torsional buckling of a cantilever with tee section

This example is part of the buckling studies on cantilever beams
subjected to an end force conducted by several researchers [29,52-55].
Two cases, 4Ba65 and 4Ba50, in their research are simulated using the
element developed in the present study. Here, 4Ba65 means that a tee
section is used, a larger flange is at the top, the load acts at the upper
face, and the length of the cantilever is L = 65 in; while 4Ba50 means the
same as 4Ba65 except for the length is L = 50 in. The loading and ge-
ometry properties are shown in Fig. 21 with b = 1.239 in., tf = 0.1236
in., h = 2.8292 in., and t, = 0.0863 in. The buckling loads obtained
using 5 elements developed in the present study are shown in Table 1

Pv X
—
L

h

Fig. 21. Cantilever beam subjected to an end force.
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Table 1
Buckling loads of cantilever beams subjected to an end force.

Case Buckling loads (Ib)
Exp. Theory FEM FEM Present
[55] [55] [54] [52,53]
4Ba65 21.2 21.4 21.1 21.6 21.2
4Ba50 33.6 32.7 32.1 33.2 32.4
240 mm
N
A~
30 mm
0.6 mm
=
=
E=71.240MPa 8
v=0.31 S
P
\'QV
~

Fig. 22. Right-angled frame subjected to an end load.
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Fig. 23. Load/tip Z-displacement for right-angled frame (with mem-

brane locking).
together with the results from other researchers for comparison, which

proves the accuracy of the new element in the prediction of buckling
loads.

4.8. Buckling of a right-angled frame subjected to an end load

The right-angled frame shown in Fig. 22 was analyzed by many
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Fig. 24. Load/tip Z-displacement for right-angled frame (with membrane
locking remedied).

authors [3,41,43,56]. The load P is applied in the X-direction at the
member tip with a very small perturbation load of 0.0002 N in the Z-
direction at the tip to induce buckling artificially. At first, the problem is
solved using the new element with membrane locking, the computed
response of the applied load P and the tip deflection in the Z-direction is
plotted in Fig. 23 together with other results of this work. It is shown
that due to membrane locking, more than 20 elements in total are
needed for the two members to get comparable results with other work.
If fewer elements are used, the post-buckling stiffness is overestimated
dramatically.

However, if the new element with membrane locking remedied is
used, only 10 elements in total are enough to obtain an accurate
response (see Fig. 24). Thus, it may be accepted that the adopted
methodology can remove membrane locking and improve the results
significantly.

4.9. Flexural-torsional buckling of a tee beam

This example addresses flexural-torsional buckling of a tee beam
under axial load considering both elastic and inelastic material. Battini
and Pacoste [32] conducted numerical study of this example as shown in

0 P X
v — —
L i
b
—== |_Lf—>
F |[o E z
h
—»| |
t
Y

Fig. 25. Flexural-torsional buckling of a tee beam.
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Fig. 25 with the following geometric material properties: L = 1,800, h =
b =60, t = 6, Young’s modulus E = 70,000, Poisson’s ratio v = 0.33,
yielding stress Fy, = 20, and post-yield strain hardening modulus E; = E/
5. For the inelastic case, a bilinear plastic constitutive relation is
assumed. The left end of the beam is fixed and only the axial displace-
ment is allowed at the right end. A compressive axial force P is applied at
the shear center of the right end. In addition, a small perturbation force
F = P/1000 is introduced at the midspan point in the Z-direction. In the
present research, 4 and 8 elements with 304 fibers in the cross section
are used to simulate the buckling and yielding behavior. Note that
Battini and Pacoste [32] used 40 displacement-based elements in their
simulation.

The load/Z-displacement curves of point O in both elastic and in-
elastic cases are shown in Fig. 26 and Fig. 27, respectively. The agree-
ment between the present simulation results and the results of Battini
and Pacoste [32] is very good, but fewer elements are needed for the
element in this work.

4.10. Lee’s frame

Lee et al. [57] investigated a structural frame represented in Fig. 28,
using a linear elastic material and neglecting axial deformations. Several
other researchers numerically studied this structure also assuming linear
elastic material [56,58,59]. de Souza [41] and Cichon [60] analyzed this
example for both elastic and inelastic materials. In the present study, the
bilinear elasto-plastic material model with kinematic hardening pre-
sented in de Souza [41] is adopted for the inelastic case (see Fig. 28 for
the material properties). Weak axis bending is used for both the hori-
zontal and vertical members.

The frame is first analyzed using the new displacement-based
element with membrane locking for both elastic and inelastic cases.
Fig. 29 and Fig. 30 compare the load displacement curves for the elastic
case and inelastic case, respectively. It can be seen that 20 elements (10
elements per member) with membrane locking still produce over stiff
results, while 40 elements can give results with sufficient accuracy. If
only 10 elements with membrane locking are used, the results will be
severely inaccurate (too stiff), so they are not shown in the figures. This
example shows that for the displacement-based element considering
high order strain terms, the membrane locking problem must be
addressed, otherwise more elements are needed to obtain accurate
results.

The frame is then analyzed using the displacement-based element
with membrane locking remedied. Fig. 31 and Fig. 32 illustrate the re-
sults from the present study and those from de Souza [41]. It can be

10 - : : ; .

Load P/10000

O Battini and Pacoste [32]

75 - - - - DB4 ]
——DB8
78 : : : ‘
0 50 100 150 200 250 300

Z-displacement of point O

Fig. 26. Load/Z-displacement of point O curve (elastic case).
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Fig. 27. Load/Z-displacement of point O curve (inelastic case).
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Fig. 28. Lee’s frame.

concluded that the displacement-based element with membrane locking
remedied can reduce the required elements amount to only 5, compared
with the displacement-based element with membrane locking. For
“DB5” in Fig. 31 and Fig. 32, three elements are used for the horizontal
member and two elements are used for the vertical member. For “DB4”,
three elements are used for the horizontal member and one element is
used for the vertical member.

4.11. Buckling of unequal-leg angles with fixed ends

This example studies the buckling behavior of four unequal-leg an-
gles. An experimental investigation of the angles was conducted by Dinis
etal. [61]. Dinisetal. [61] and Liu et al. [28] also analyzed this example
numerically using shell elements and beam elements, respectively. Ac-
cording to Dinis et al. [61], the steel angles were made of dual grade
A36-Grade50 steel with the following material properties: Young’s
modulus E = 207 GPa, Poisson’s ratio v = 0.3, and yielding stress F, =
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379 MPa. The measurements of the cross section dimensions and
member lengths are listed in Table 2, where Bj, and Bg are lengths of the
long leg and short leg, respectively; t; and ts are thicknesses of the long
led and short leg, respectively; and L is the member length. The member
ends are fixed and only the axial translation of the loaded end is possible.
Note that the angle members are loaded concentrically, which means the
axial load is applied to the centroid of the cross section.

The comparison of load-displacement curves of the four specimens
obtained from experimental and numerical studies is shown in Figs. 33
to 36. It is seen that the buckling loads can be estimated accurately using
the displacement-based element in this work. In addition, this element
can give a better estimation of the post-buckling behavior for the longer
specimens (L72 and L60) than the shorter specimens. This may be
because the shear deformation is significant for shorter specimens and
section distortion may happen at large deformation, which are not
considered in this element.

5. Conclusions

A geometrically and materially nonlinear displacement-based

15
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Table 2

Specimen geometries of unequal-leg angles.
Specimen B; (mm) t; (mm) Bs (mm) ts (mm) L (mm)
L48A 126.6 6.5 76.9 6.5 1224.0
L48B 126.6 6.6 76.7 6.5 1219.2
L60 126.5 6.6 76.7 6.6 1525.6
L72 126.5 6.6 76.8 6.5 1828.8

element for structural members with angle and tee sections has been
developed and validated in this work. The geometric nonlinear phe-
nomenon is simulated by using the corotational transformation, and by
adopting the total Lagrangian formulation in the basic system through
employing Green-Lagrange strains. Consequently, the newly developed
element is able to take into account the axial-flexural-torsional inter-
action behavior of structural members in large deformation. In order to
model members with asymmetric sections, the element DOFs are defined
with respect to both centroid and shear center in the basic system, and
then transformed to the shear center in advance of the corotational
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transformation. The material nonlinearity is considered by discretizing
the member cross section into fibers and applying the uniaxial consti-
tutive law and numerical integration to calculate cross-section forces.
Examples show that nonlinear torsion, elastic and inelastic flexur-
al-torsional buckling, and lateral-torsional buckling can be modeled
accurately with only a small number of elements. The displacement-
based element yields overestimated stiffness for both elastic and in-
elastic inextensional bending modes unless the membrane locking
phenomenon is remedied. With the approach adopted in this work to
alleviate membrane locking, the improved version of the displacement-
based element presents excellent performance for a comprehensive set
of structural members and frames.
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Appendix A. Linearization of the governing equation

This appendix shows details of the linearization process of the gov-
erning equation to derive the tangent stiffness matrix and internal
forces, which are used in Section 3.4. Using a Taylor series expansion to
Eq. (42) and neglecting the high order terms, the following equation is
obtained

, . d . d ;
g ~g + ., 08D} +aAD,) + d—ﬂ|aﬁ,0g(P;X, +pAP,) =0 A1)

da

where « and f are scalers used to scale vectors AD;, and AP,,,. Variables
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with a superscript i or (i + 1) represent their values in the it or i+ 1)th iteration. The terms in the above equation are obtained as shown below

d ; d d d
%|a.ﬂ:og(Db+aADb) :/z;, %'a.ﬂ:O(NgdZ)Nngde-i_A Ngdz%b./;:o(]vgdl)‘gdx"'/lu NgdZNgdl%la./}:O(S)dx

= /1 N;JzGNaudeADb + /1 NZs;JzNLlK:Ndle&ideADb
0 0

where the following relations are used

d
%Lz.ﬁ:o (Ngdz) =0
d . dNT . d(aAD,) dv
— )8 = ol S=G AD), = GN;s;, AD,
da'a.ﬂzo( ()1[1) d(aADb) da d((XADb) b 6d2 b
d dS  d(aAD,) / r do / '1' de / r / r
— S)=——"—"—""= Y ———dAAD, = Y'E———dAAD, = Y'EYN;sy1NspndAAD,, = Y'EYdAN;;Nsqs AD,
da'a.ﬁ:o( ) (aAD,,) da " d(aADb) b 1o d(aAD,,) b " 8d14Y 5d2! b » 8d14N 5d2 b
= K;NsaiNsxx AD),
in which
0 0 0 0O 0 O 0
0 N 0 0o 0 O Nz,
0 0 N 0 0 0 —Ny
G=(0 0 0 0 0 M, 0
00 0 0 0 M 0
00 0 M, M, 0 0
0 Nz;g =Ny, 0 O O w
E —yE  zE PE 0
) —yE Y'E —yzE —p’YE 0
K, :/ Y'EYdA :/ E  —yzE 7E pzE 0 |dA
Ao Y| pE —pE pE  p'E 0
0 0 0 0 4n’G

in which
P=0-»'+G-z)

Here, K; is the section stiffness matrix. The matrix E sets the constitutive relation between the stresses and strains
E O

where E is the tangent Young’s modulus and G is the shear modulus.

In addition,
' dg  d(BAP,,)
i AP” = TaoAp N a2 7APEX
‘uﬁ:Og (Qexl + ﬂ 't) d(ﬂAPerr) dﬂ ’

Therefore, the following relation is obtained

a

ap

g+ | NipGN;pdxAD, Jr/ N3 N3 K N5y Ny dxADy — AP = 0
lo

lo

which can be expressed as the following equation with the help of Eq. (42)

( Ngdedex + / N§d2Ngd1K¥No‘d1N6d2dx) AD, = AP, +Pixl - / N§d2N§d1Sidx
Iy Iy lo
This iteration equation can be expressed in short as shown in Eq. (43).

Appendix B. The transformation for rigid offsets

. Here

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A11)

(A.12)

This appendix shows details of the transformation used to consider eccentricities as discussed in Section 3.7. From the equilibriums on rigid offsets

1-I and 2-J (see Fig. 6), the following transformation for the end forces of the element reference ends P and the end forces at the shear centers Pis

obtained
_ 7T P
P=T,P

17

(B.1)
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where the transformation matrix is given by

T =

off

1 0 0 000 O O 0 00O
0 I 0 000 O O O 000
0 0 1 000 0O O 0 000
0 0 0 100 0O O 0 000
0 —dy dy 010 0O 0O 0 000
dg 0 —dy 001 0 0 0 000
~dy dg 0 0 0 0 1 0 0 000
0 0 0 000 0 1 0 000
0 0 0 000 0O © 1 000
0 0 0 000 0 —dy dy 100
0 0 0 000 dy 0 —dy 0 10
L0 0 0 000 —dy dy O 0 0 1]
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(B.2)

According to the principle of virtual work, the contragredient transformation of the end displacements is obtained as this tangential relationship

6D = T,;6D

(B.3)

where D denotes the end displacements of the element reference ends. Small rotations are assumed in the derivations in this section. With 6P = KéD,
as developed in Section 2.2, we have

T <P T ®sD T
6P = TqﬁéP = ToijéD = TQﬁKToﬂzSD = KéD

(B.4)

where K = Tgﬂf( Ty is the tangent stiffness matrix in the global system considering rigid offsets.
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