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A B S T R A C T   

Asymmetric thin-walled sections such as steel angles and tees are widely used in a range of steel structures. To 
address extreme limit states that these structures encounter due to extreme events such as hurricanes and 
earthquakes, it is important to capture their response due to large deformations caused by static or dynamic 
loading. In the nonlinear large deformation regime, these members have coupled axial-flexural–torsional 
deformation due to the so-called Wagner effect and the noncoincident shear center and centroid. A three- 
dimensional corotational total Lagrangian beam element is formulated and implemented in the OpenSees 
corotational framework to account for these coupling effects by invoking Green-Lagrange strains referenced to a 
basic system. In the basic system, shear forces and torque are defined with respect to the shear center, axial force 
is referred to the centroid, and flexure is defined around the section principle axes but in the planes containing 
the shear center. The element tangent stiffness matrix is derived through linearization of the governing equation 
obtained from the principle of virtual work. Cubic Hermitian functions for the transverse displacements and a 
linear shape function for the axial and torsional deformation are adopted in the development. Before conducting 
the corotational transformation, all element end forces and displacements are transformed to act about the shear 
center. In order to remedy membrane locking in the inextensional bending mode, the high order bending terms in 
the axial strain are replaced by a constant effective strain. Cyclic material nonlinearity is considered by dis
cretizing the cross section into a grid of fibers, tracking the steel uniaxial stress–strain constitutive at each fiber, 
and performing numerical integration over the cross section to obtain the section stiffness matrix. The formu
lation is compared against a set of experimental and numerical results to validate that the element can model 
geometric and material nonlinearities accurately and efficiently.   

1. Introduction 

The conventional approaches developed to address the mechanics of 
structural beam elements are often based on the assumption that 
different deformation modes (axial, bending and torsion) are indepen
dent. However, for a three-dimensional structural member, this 
assumption is only acceptable for small deformations and only if the 
member has a doubly symmetric cross section. For nonlinear large de
formations, this assumption breaks down even for members with doubly 
symmetric sections, because different modes of deformation may be 
coupled. To consider these coupling effects accurately, several phe
nomena need to be taken into account, such as the so-called Wagner 
effect, and the coupling caused by the noncoincident shear center and 
centroid of asymmetric cross sections. In finite element analysis, these 
coupling effects usually are modeled through including of the geometric 

stiffness matrix, which is usually obtained using three approaches: a 
total Lagrangian formulation, an updated Lagrangian formulation and a 
corotational formulation [1–5]. In the total Lagrangian formulation, the 
initial undeformed configuration is selected as the reference state, 
whereas in the updated Lagrangian formulation, the last calculated 
configuration is adopted for the same purpose [6]. In the corotational 
formulation, a basic coordinate system is lined up with each element 
chord and continuously translates and rotates with the element as the 
deformations proceed [7]. The element is formulated in the basic system 
then transformed to the global system through the corotational 
transformation. 

For members with thin-walled sections, the geometric nonlinear 
behavior is more complex than the coupling of axial, bending and 
torsional deformations. This is because other effects, such as local 
buckling, section distortional buckling, and variable warping are 
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present. Buckling analysis of members with thin-walled sections has 
been studied extensively in the literature with consideration of the 
warping effect [8–13]. The local and distortional buckling effects can be 
included in beam elements by employing generalized beam theory 
(GBT) models [14–18] or using deformation-specific tangent rigidities to 
account for loss of stiffness as proposed by Rasmussen et al. [19–21]. 
Since the present element is developed for analyzing steel structures 
made of hot-rolled steel angles and tees, this paper only focuses on 
coupled axial, flexural and torsional buckling. 

Kitipornchai and Chan [22] and Chan and Kitipornchai [23] derived 
element geometric stiffness matrices for angle and tee beam-columns, as 
well as for generic asymmetric thin-walled beam-columns. An updated 
Lagrangian formulation, coupled with the arc-length technique for 
iterative solution at each step, was adopted to trace the nonlinear load- 
deformation relationship. The effectiveness and accuracy of this 
formulation was demonstrated using different examples, for which the 
buckling loads and the load-deformation relationships were developed. 
The material was assumed to be linear elastic. In later work, they 
introduced a lumped plasticity approach, coupled with the concept of a 
yield surface in stress-resultant space, to model the material nonlinearity 
of thin-walled structures [24]. 

Lee and McClure [25] developed a three-dimensional L-section beam 
finite element for elastoplastic large deformation analysis. They pro
posed a generalized interpolation scheme for the isoparametric formu
lation of a three-dimensional thin-walled beam element. The updated 
Lagrangian formulation was adopted considering large deformation 
behavior. The axial, bending and shearing actions were included and the 
‘mixed interpolation of tensorial components’ (MITC) technique was 
used for the locking removal. In order to address eccentricities in the 
element for loading and displacement, the longitudinal reference line 
can be positioned arbitrarily on the beam section. However, the eccen
tricities were implemented in the element derivation, which means the 
users cannot specify the eccentricities by themselves. 

Recently, Liu et al. [26] developed an efficient beam element 
implementation within the educational structural analysis software 
MASTAN2 [27], which is capable of doing large-deformation analysis of 
thin-walled members with asymmetric sections and modeling the 
Wagner effects. The updated Lagrangian method was adopted for the 
large deflection analysis. Then, they improved derivations and valida
tions for the element linear and geometric stiffness matrices [28]. This 
work also showed the calculation details of a refined cross-section 
analysis algorithm for arbitrarily-shaped open sections. Linear elastic 
material is assumed throughout their work. 

There are other researchers who developed beam-column elements 
with asymmetric sections under the corotational framework. Hsiao and 
Lin [29] and Chen et al. [30] derived a corotational total Lagrangian 
element formulation for geometric nonlinear analysis of thin-walled 
members with monosymmetric and asymmetric cross sections and 
linear elastic materials. Battini and Pacoste [31,32] proposed the 
formulation of three-dimensional corotational beam elements for 
buckling and post-buckling analysis of frame structures, where the 
centroid and shear center of the cross section are not necessarily coin
cident. More recently, Rinchen et al. [33,34] derived a displacement- 
based beam element formulation for asymmetric thin-walled mem
bers, which was implemented in the OpenSees corotational framework 
[35]. In the work of Rinchen et al. [33,34], membrane locking occurs 
because linear and cubic shape functions are used for axial and lateral 
displacements, respectively, which may cause the element to over
estimate the bending stiffness when the beam section is thin or the 
element geometry becomes curved [4,36]. In addition to the conven
tional corotational approach, which is applied to a whole finite element, 
Garcea et al. [37,38] proposed the Implicit Corotational Method (ICM), 
in which a corotational frame is introduced for each point on the beam 
axis. Genoese et al. [39] then utilized the ICM in a geometrically 
nonlinear beam element for members with generic sections. 

In this paper, a displacement-based beam element is developed 

following the corotational total Lagrangian formulation. Rigid body 
motions are considered in the corotational transformation, while 
element deformations with geometric nonlinear effects are modeled in 
the basic system through the total Lagrangian approach. The basic sys
tem and beam section kinematics used in the original OpenSees coro
tational framework is modified to consider the noncoincident centroid 
and shear center. The fiber section method with uniaxial constitutive 
laws for each fiber is utilized to model the distributed inelastic behavior. 
Compared to the work of Battini and Pacoste [31,32], this research 
adopts a different kinematic model, which decouples axial, flexural and 
torsional deformations in the basic system [22,23] and follows the 
classical beam theory where bending is referred to the centroid and 
torsion is defined with respect to the shear center. On the contrary, 
deformations are coupled for the kinematic model used by Battini and 
Pacoste [31,32], which is not considered in the interpolations of de
formations. Thus, a more accurate displacement field can be obtained if 
the proposed kinematic model with the same interpolation functions is 
used. As shown in Section 4, fewer of the elements developed in this 
work are needed to obtain comparable accuracy with the element 
developed by Battini and Pacoste [31,32]. Due to this kinematic model, 
a cross-section transformation matrix is utilized in advance of the 
corotational transformation to move all degrees-of-freedom (DOFs) to 
act about the member reference axis. Compared to the work of Rinchen 
et al. [34], in this research membrane locking is remedied through a 
special treatment of the higher order terms in the Green-Lagrange strain; 
in addition, the cross-section transformation matrix and the shape 
functions are improved. Finally, a number of members and systems are 
analyzed to validate the accuracy of the results from the implementation 
within the OpenSees software. 

2. Geometric nonlinear analysis formulation 

The corotational transformation decomposes the motion of the 
element into rigid body movements and pure deformations, through the 
use of a basic coordinate system attached to the current deformed 
configuration as the reference system, which continuously rotates and 
translates with the element. Within the basic system, a geometric linear 
formulation, a total Lagrangian formulation or an updated Lagrangian 
formulation can be adopted [29,30,40]. OpenSees employs the corota
tional transformation with a geometric linear formulation in the basic 
system for developing nonlinear displacement-based beam elements. 
Consequently, the high order terms in the strain displacement rela
tionship are neglected in the basic system, which means that the axial, 
flexural and torsional deformations are independent of each other in the 
basic system. The axial-flexural interaction can be captured in the global 
system by the corotational transformation; however, the axial–torsional 
and flexural–torsional interaction cannot be recovered in the global 
system. Therefore, the torsional behavior is independent to axial and 
flexural deformations for the original displacement-based beam element 
in OpenSees, which leads to the inability of this element to simulate 
torsional and flexural–torsional buckling behavior of members. In this 
research, the high order terms in the strain displacement compatibility 
equation are included through the total Lagrangian formulation in the 
basic system of the corotational transformation formulation. A brief 
introduction of this total Lagrangian corotational formulation is pre
sented in this section. 

2.1. Total Lagrangian formulation 

Fig. 1 shows the concept of the total Lagrangian method applied to a 
3D beam element. In the total Lagrangian formulation, when describing 
strains and displacements, the reference configuration is the initial 
configuration at time 0. The element is formulated in the 12-DOF local 
system of the initial configuration, then transformed to the global system 
using the transformation matrix of the initial configuration. The trans
formation matrix is constant for each element. There are 12 DOFs in the 
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local system because element ends have lateral displacements and 
rotations. 

Theoretically, the principle of virtual work at time t + Δt is 
∫

t+∆t V

t+∆tτijδt+∆teij
t+∆tdV =

t+∆t
R (1) 

where t+∆tV is the volume at time t + Δt; t+∆t
R is the virtual work 

done by external loads; t+∆tτij is the Cauchy stress tensor at time t + Δt, 
and δt+∆teij is the variation in the small strains referred to the configu
ration at time t + Δt [1,2]. Since the configuration at time t + Δt is 
unknown and directly working with increments of Cauchy stresses is 
unreasonable, this equation cannot be used to derive a beam element. By 
employing the Green-Lagrange strains and 2nd Piola-Kirchhoff stresses, 
the above principle of virtual work at time t + Δt can be replaced by 
∫

0V

t+Δt
0 σijδ t+Δt

0 εij
0dV = t+∆t

R (2) 

where 0V is the volume at time 0; t+Δt
0 σij is the 2nd Piola-Kirchhoff 

stress tensor and t+Δt
0 εij is the Green-Lagrange strain tensor [6]. Equa

tion (2) takes the initial configuration at time 0 as the reference 
configuration, from which the element formulations can be developed. 

2.2. Corotational transformation 

In the corotational transformation, when describing displacements 
and strains at any time point, the reference system is the basic system at 
the same time point (Fig. 2). The element is formulated in the 6-DOF 
basic system at this time, then transformed to the global system using 
the corotational transformation matrix at this time. The transformation 
matrix is different at different time points because the basic system 
continuously rotates and translates with the element. The deformational 
response is considered at the level of the basic coordinate system, 
whereas the rigid body motion is captured by the transformation 
matrices relating the basic and global systems. There are 6 DOFs in the 
basic system because rigid body motion is separated from the defor
mation and only rotations and an elongation remain in the basic system. 
In the corotational transformation, the 6x6 element stiffness matrix is 
derived in the basic system at t + Δt, then transformed to the global 
system using the corotational transformation matrix of the current 

configuration. 
The displacements, forces and stiffnesses transformations between 

the basic and global systems that were implemented in OpenSees are 
introduced here briefly. The tangential relation between the displace
ments Db in the basic system and the displacements D̂ in the global 
systems can be defined as 

δDb = TδD̂ (3)  

where T is a transformation matrix connecting the global and basic 
systems. In geometric linear analysis T is a constant matrix, while in 
geometric nonlinear analysis T is a function of displacements D̂. 
Equating the internal virtual work in both the basic and global systems, 
the relationship between element end forces in the basic and global 
systems can be obtained as 

P̂ = TT Pb (4)  

where P̂ and Pb are the element end forces at the global system and basic 
system, respectively. The element tangent stiffness matrix in the global 
system is obtained from the linearization of Eq. (4), such that 

δP̂=δ
(
TT Pb

)
=TT δPb +δTT Pb =TT KbδDb +δTT Pb =

(
TT KbT+KG

)
δD̂= K̂δD̂

(5)  

where Kb is the tangent stiffness matrix in the basic system, and δPb =

KbδDb is used in the above equation. Here, 

K̂ = TT KbT + KG (6)  

is the tangent stiffness matrix in the global system. On the right hand 
side of Eq. (6), the second term KG is called the external geometric 
stiffness matrix. The parameterization of 3D finite rotations and detailed 
derivations of T and KG are described by Crisfield [5] and de Souza [41]. 
The element formulation in the basic system is independent to the 
corotational transformation; therefore, this research uses the current 
corotational transformation in OpenSees with the element formulation 
in the basic system modified. 

2.3. Corotational total Lagrangian formulation 

The corotational total Lagrangian formulation is utilized in the pre
sent research to consider geometric nonlinearity in the basic system so 

Fig. 1. Illustration of the total Lagrangian formulation (after Mattiasson 
et al. [7]). 

Fig. 2. Illustration of the corotational total Lagrangian formulation (after 
Mattiasson et al. [7]). 
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that the torsional DOF will be coupled with the axial and flexural DOFs. 
In the corotational total Lagrangian formulation, the reference config
uration is taken as the initial undeformed configuration but translates 
and rotates in accordance with the motion of the corotating basic system 
(see Fig. 2). When deriving the stiffness matrix and force recovery in the 
basic system, we can assume that the basic system is fixed and apply the 
total Lagrangian formulation in the basic system as shown in Fig. 3. This 
means that the Green-Lagrange strain tensor, the 2nd Piola-Kirchhoff 
stress tensor and Eq. (2) will be adopted to describe the element re
sponses with respect to the reference configuration illustrated in Fig. 3. 

3. Displacement-based beam element in the basic system 

This section presents the development of a new displacement-based 
beam element in OpenSees, which can be used to simulate the nonlinear 
behavior of members with asymmetric cross sections. The new 
displacement-based element can address inelastic behavior through the 
use of fiber-based cross-section formulations. Small strains, large rota
tions, and large displacements are assumed in this formulation. 

3.1. Coordinate systems of the original OpenSees elements 

OpenSees has two coordinate systems: the basic system with 6 DOFs 
per element, and the global system with 12 DOFs per element. The basic 
system and global system are represented in Fig. 4. The element ends 
node I and node J in Fig. 4 are centroids of the cross section. The element 
stiffness matrix is formulated in the basic system which has the 6 DOFs: 
one relative axial displacement uJ, two rotations relative to the chord θIz 
and θJz, about the z axis, two rotations relative to the chord θIy and θJy, 
about the y axis, and one relative angle of twist ϕJ. Note that OpenSees 
assumes the cross section is doubly symmetric and all the 6 DOFs are 
defined with respect to the centroid of the cross section. These relative 
displacement DOFs in the basic system are the minimum number of 
geometric variables required to describe the deformation modes of the 
element in 3D space, which also make sure there are no rigid body 
modes in the basic system. The six statically independent element end 
forces corresponding to these displacement DOFs are the axial force NJ, 
the two bending moments in the xy plane,MIz and MJz, the two bending 
moments in the xz plane, MIy and MJy, and the torque TJ. These element 
end forces and displacements are gathered into vectors 

Db = [ uJ θIz θJz θIy θJy ϕJ ]
T (7)  

and 

Pb = [ NJ MIz MJz MIy MJy TJ ]
T (8) 

The OpenSees element has 12 DOFs in the global system, i.e., three 
translational displacements and three rotations at each node. These 
DOFs are grouped into a vector 

D̂ =
[

UT
I γT

I UT
J γT

J

]T (9)  

where UT
I and UT

J are 3x1 vectors with the translational displacements, 
and γT

I and γT
J are 3x1 pseudo-vectors that define the rotations of nodes I 

and J, respectively. In the absolute sense, these rotations can be arbi
trarily large, although it is assumed that the relative rotation of two 
element ends is small. As such, the OpenSees element can experience 
finite displacements and rigid body rotations; however, the de
formations along the element are considered to be moderate. The cor
responding work conjugate forces in the global system are 

P̂ =
[

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 P̂7 P̂8 P̂9 P̂10 P̂11 P̂12

]T
(10)  

3.2. Coordinate systems for asymmetric sections 

Since the new element is implemented in the OpenSees corotational 
framework, the original OpenSees coordinate systems described in 
Section 3.1 are adopted with some modifications for the basic coordi
nate system. The same global system with the original OpenSees element 
is used here; however, due to the noncoincident shear center and 
centroid of the beam element with asymmetric sections, its basic system 
is slightly different as shown in Fig. 5. The modified basic system is 
defined by two set of coordinates: x, y, z and x, y, z. The coordinate 
system x, y, z is chosen such that x passes through the end cross-section 
centroids C and C’, and y and z are the section principal axes. A parallel 
set of coordinates x, y, z is chosen such that x passes through the end 
cross-section shear centers S and S’, and y and z are parallel to the 
principal y and z axes of the cross section. Let v and w denote the dis
placements of the shear center in the y and z directions, u the axial 
displacement along the centroidal axis CC’, and ϕ the angle of twist 

Fig. 3. Total Lagrangian method in the basic system.  

Fig. 4. Basic and global coordinate systems in space (after de Souza [41]).  

Fig. 5. Basic and global coordinate systems in space for asymmetric sections.  
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about the shear center axis SS’. Such a coordinate system will uncouple 
displacements and rotations in the sense of the first order effect [22,23]. 

The element stiffness matrix is formulated in the basic system with 
the 6 DOFs presented in Eqs. (7) and (8). However, the definitions of the 
DOFs are different as follows: one relative axial displacement uJ of the 
centroids, two rotations relative to the chord θIz and θJz, about the z axis, 
two rotations relative to the chord θIy and θJy, about the y axis, and one 
relative angle of twist ϕJ about the x axis. The six statically independent 
element end forces corresponding to these displacements are: the axial 
force NJ acting along the centroidal axis CC’; the two bending moments 
acting about the principle axis z and in the xy plane, MIz and MJz; the two 
bending moments acting about the principle axis y and in the xz plane, 
MIy and MJy; and the torsional moment TJ about the shear center axis SS’ 
[42]. 

Following the corotational transformation procedure, the forces, 
displacements and stiffness matrix need to be transformed to the global 
system. However, in the current definition of the basic system, some 
DOFs are defined with respect to the centroid, while others are defined 
with respect to the shear center, which makes the corotational trans
formation cannot be applied directly [34]. Consequently, all DOFs (end 
forces and displacements) need to be transformed to one reference point 
in advance of the corotational transformation. Note that in the basic 
system, the axial force is referred to the centroid, the shear forces and 
torque are defined with respect to the shear center, and the moments act 
in the planes containing the shear center. Thus, it is straightforward to 
transform all DOFs to the shear center, because only the axial force 
needs to be transformed. If other points (e.g., the centroid) are selected 
as the reference point, the shear forces need to be transformed, which is 
more difficult because the shear forces are only recovered after the 
corotational transformation. Therefore, it is proper to choose the shear 
center as the reference point and the shear center axis as the member 
reference axis before the corotational transformation. The coordinate 
system x, y, z is referred as the element basic reference system with the 
element end forces Pr and displacements Dr act through the shear center. 
The following equations are used to transform all DOFs to the shear 
center 

Pr = TT
r Pb (11)  

Db = TrDr (12)  

where the cross-section transformation matrix is [34] 

TT
r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
ys 1 0 0 0 0

− ys 0 1 0 0 0
− zs 0 0 1 0 0
zs 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)  

and ys and zs are coordinates of the shear center relative to the centroid. 
Consequently, the stiffness matrix in the element basic reference system 
is 

Kr = TT
r KbTr (14) 

With this consideration, the coordinate system x, y, z in Fig. 5 is the 
same with the basic system in Fig. 4 in the sense of corotational trans
formation, but the displacement and force DOFs should be replaced by 
Dr and Pr. The corotational transformation will remain the same as in 
the original OpenSees with the Eqs. (3), (4) and (6) being modified as 

δDr = TδD̂ (15)  

P̂ = TT Pr (16)  

K̂ = TT KrT + KG (17)  

3.3. Beam section kinematics 

With the commonly used kinematic assumption of the Euler- 
Bernoulli beam theory and disregarding the in-plane distortion 
behavior of the cross section, the motion of a material point P (x, y, z) (P 
is expressed in the coordinate system x, y, z shown in Fig. 5) in the beam 
section is expressed in terms of the displacement components [43,44] 

up = u − yv’ − zw’ + zϕv’ − yϕw’  

vp = v − ϕ(z − zs)

wp = w + ϕ(y − ys) (18)  

where ys and zs are defined in Eq. (13); in addition, u, v, w and ϕ are 
defined in Section 3.2. In the derivation of Eq. (18), small rotation as
sumptions are enforced, which is appropriate since the corotational 
transformation addresses the rigid body motions. The nonlinear con
tributions in up are used to consider the combined effects of torsion and 
bending. The longitudinal/axial component of the Green-Lagrange 
strain is expressed as 

ε =
∂up

∂x
+

1
2

(
∂up

∂x

)2

+
1
2

(
∂vp

∂x

)2

+
1
2

(
∂wp

∂x

)2

(19) 

The high-order term 1
2

(
∂up/∂x

)2 is negligible compared to ∂up/∂x 
because it is assumed that the term ∂up/∂x is small compared to unity. 
Hence, the Green-Lagrange strain becomes 

ε =
∂up

∂x
+

1
2

(
∂vp

∂x

)2

+
1
2

(
∂wp

∂x

)2

(20) 

Taking derivatives of the displacement field in Eq. (18) with respect 
to x and substituting the results into Eq. (20) gives 

ε = u’ − yv’’ − zw’’ +
1
2

[
(v’)

2
+ (w’)

2 ]
+

1
2

[
(y − ys)

2
+ (z − zs)

2 ]
(ϕ’)

2

+ (zsv’ − ysw’)ϕ’ + (zv’’ − yw’’)ϕ
(21) 

Compared with the strain term ε = u’ − yv’’ − zw’’ used for the 
original OpenSees displacement-based element, Eq. (21) has the 
following extra terms  

1
2

[
(v’)

2
+ (w’)

2
] : geometric nonlinear term (coupling between the 

axial tension/compression and bending) 
1
2

[(
y − ys

)2
+ (z − zs)

2
]
(ϕ’)

2  : Wagner term (coupling between the axial strain 
and torsion) 

(
zsv’ − ysw’)ϕ’ + (zv’’ −

yw’’)ϕ  

: coupling term between bending and torsion (effect 
of this coupling on the axial strain)  

The shear strain at P resulting from uniform twisting ϕ’ of a thin-walled 
open section member is approximated by [21] 

γ = 2nϕ’ (22)  

in which n is the perpendicular distance of point P (x, y, z) from the mid- 
thickness line of the cross section. Shear strains due to bending are 
neglected. 

3.4. Displacement-based element formulation 

In this section, the element governing equilibrium equation is 
derived from the principle of virtual work with the aid of the kinematic 
assumptions and the displacement shape functions. Linearization of the 
governing equation leads to the element tangent stiffness and the 
equation for force recovery. To start, the axial strain and shear strain can 
be put together in vector form as 
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∊ =

[
ε
γ

]

(23) 

The terms in the strain vector can be expressed in matrix form as 

∊ = Yd (24)  

where 

Y =

[
1 − y z
0 0 0

(y − ys)
2

+ (z − zs)
2 0

0 2n

]

(25)  

and 

d =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u’ +
1
2

[
(v’)

2
+ (w’)

2 ]
+ (zsv’ − ysw’)ϕ’

v’’ + w’’ϕ

− w’’ + v’’ϕ
1
2
(ϕ’)

2

ϕ’

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26) 

Vector d is the section deformation vector. Matrix Y relates strains on 
a material point and the section deformations on the corresponding 
section. The variation of the strain vector is obtained as 

δ∊ = Yδd (27) 

in which 

δd =

⎡

⎢
⎢
⎢
⎣

δu’ + v’δv’ + w’δw’ + (zsδv’ − ysδw’)ϕ’ + (zsv’ − ysw’)δϕ’

δv’’ + ϕδw’’ + w’’δϕ
− δw’’ + ϕδv’’ + v’’δϕ

ϕ’δϕ’

δϕ’

⎤

⎥
⎥
⎥
⎦

(28) 

And δd can be expressed as 

δd = Nδd1δv (29)  

where 

Nδd1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 v’ + zsϕ’ w’ − ysϕ’

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
1 ϕ w’’

ϕ − 1 v’’

0 0 0
0 0 0

zsv’ − ysw’

0
0
ϕ’

1

⎤

⎥
⎥
⎥
⎥
⎦

(30)  

δv = [ δu’ δv’ δw’ δv’’ δw’’ δϕ δϕ’ ]
T (31) 

Thus, Eq. (27) becomes 

δ∊ = YNδd1δv (32) 

In the basic system, the axial elongation field, the transverse 
displacement field and the twist displacement field along the element 
can be interpolated between the element DOFs with the help of shape 
functions 

u = NT
u Db = [ Nu1 0 0 0 0 0 ]Db  

v = NT
v Db = [ 0 Nv1 Nv2 0 0 0 ]Db  

w = NT
wDb = [ 0 0 0 Nw1 Nw2 0 ]Db  

ϕ = NT
ϕDb = [ 0 0 0 0 0 Nϕ1 ]Db (33) 

The shape functions in Eq. (33) are chosen as follows: cubic Hermi
tian functions for the transverse displacements, and a linear function for 

the axial deformation and twist. Specifically, the shape functions uti
lized in the current development are 

Nu1 = Nϕ1 =
x
l0  

Nv1 = − Nw1 = x
(

1 −
x
l0

)2  

Nv2 = − Nw2 = x
(

x
l0

)(
x
l0

− 1
)

(34)  

where l0 is the length of the undeformed element. With the help of shape 
functions, δv can be written in terms of the element DOFs, as shown 

δv = Nδd2δDb (35)  

in which 

Nδd2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N’
u1 0 0 0 0 0
0 N’

v1 N’
v2 0 0 0

0 0 0 N’
w1 N’

w2 0
0 N’’

v1 N’’
v2 0 0 0

0 0 0 N’’
w1 N’’

w2 0
0 0 0 0 0 Nϕ1

0 0 0 0 0 N’
ϕ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36) 

Therefore, Eq. (32) becomes 

δ∊ = YNδd1Nδd2δDb (37) 

Here, the Total Lagrangian formulation is used for the virtual work 
principle. In the basic system, the stresses and strains are referred to the 
undeformed configuration of the beam element. The principle of virtual 
work can be written in a general form as 
∫

V0

δ∊T σdV − δDT
b Pext = 0 (38)  

where σ = [ σ τ ]
T is the corresponding stress vector, V0 is the volume of 

the undeformed element, and Pext is a vector of external forces. After 
substituting Eq. (37) into Eq. (38) and rearranging, we have 

δDT
b

{ ∫

l0
NT

δd2NT
δd1

( ∫

A0

YT σdA
)

dx − Pext

}

= 0 (39)  

and 

δDT
b

{ ∫

l0
NT

δd2NT
δd1Sdx − Pext

}

= 0 (40)  

where A0 is the cross-section area of the undeformed element; and S is 
the vector of section forces expressed as 

S =

∫

A0

YT σdA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫

A0

σdA

−

∫

A0

yσdA

∫

A0

zσdA
∫

A0

[
(y − ys)

2
+ (z − zs)

2 ]
σdA

∫

A0

2nτdA

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

N
Mz
My
W
T

⎤

⎥
⎥
⎥
⎥
⎦

(41) 
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where N is the axial force, Mz is the bending moment about the z-axis, My 

is the bending moment about the y-axis, W is the Wagner stress resultant, 
and T is the St. Venant torque. The governing equilibrium equation can 
be rewritten as 

g =

∫

l0
NT

δd2NT
δd1Sdx − Pext = 0 (42) 

The governing equation is in general a nonlinear function of the 
unknown displacement increment. It should be linearized to obtain the 
element tangent stiffness matrix. Such a linearization process can be 
achieved by expanding the governing equation at (i + 1)th iteration 
based on previous configuration at ith iteration. The details of the line
arization process are shown in Appendix A, from which the following 
iteration equation can be obtained 

KbΔDb = Pi+1
ext − Pi

int (43)  

where 

Kb =

∫

l0
NT

δd2GNδd2dx +

∫

l0
NT

δd2NT
δd1KsNδd1Nδd2dx (44)  

Pi
int =

∫

l0
NT

δd2NT
δd1Sidx (45)  

Pi+1
ext = Pi

ext + ΔPext (46) 

Kb is the element tangent stiffness matrix in the basic system, the first 
integral in which is the element internal geometric stiffness matrix and 
the second integral is the element material stiffness matrix. The defini
tion of the auxiliary matrix G and the section stiffness matrix Ks can be 
found in Appendix A. In addition, Pi+1

ext and Pi
int are the external load 

vector in (i + 1)th iteration and the element internal resisting forces in ith 

iteration, respectively. The vector Si represents section forces in ith 

iteration. 

3.5. Fiber section and material nonlinearity 

In order to consider material nonlinearity, the beam section is dis
cretized into a set of fibers so that the section stiffness matrix Ks can be 
obtained through numerical integration. In this element, it is assumed 
that the uniform torsion behavior is linear elastic so that shear strain is 
always elastic, and GJ is used as the rigidity of uniform torsion. Thus, the 
uniaxial constitutive law is used to check the yielding of the material. 
Note that the tangent Young’s modulus E can be updated for each fiber 
as it reaches plastic stage. The calculation of Ks through numerical 
integration is shown as 

Ks =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑n1

j=1
EjAj −

∑n1

j=1
yjEjAj

∑n1

j=1
zjEjAj

∑n1

j=1
p2

j EjAj 0

−
∑n1

j=1
yjEjAj

∑n1

j=1
y2

j EjAj −
∑n1

j=1
yjzjEjAj −

∑n1

j=1
p2

j yjEjAj 0
∑n1

j=1
zjEjAj −

∑n1

j=1
yjzjEjAj

∑n1

j=1
z2

j EjAj

∑n1

j=1
p2

j zjEjAj 0
∑n1

j=1
p2

j EjAj −
∑n1

j=1
p2

j yjEjAj

∑n1

j=1
p2

j zjEjAj

∑n1

j=1
p4

j EjAj 0

0 0 0 0 GJ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(47)  

where Ej, Aj,yj, and zj and pj are the tangent Young’s modulus, area, y 
coordinate, z coordinate and p value (see Eq. (A.8) in Appendix A for 

definition) of the jth fiber, respectively; n1 is the number of fibers on the 
section. Similarly, the section forces can be calculated numerically as 
shown in Eq. (48). Here the torque due to uniform torsion is achieved 
directly from the first derivative of the twist rotation ϕ’ and the equiv
alent section torsional rigidity GJ because of the assumption of linear 
elastic St. Venant torsional behavior. Note that the nonlinear torsional 
behavior is considered through including the Wanger stress resultant W 
[45]. 

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑n1

j=1
σjAj

−
∑n1

j=1
yjσjAj

∑n1

j=1
zjσjAj

∑n1

j=1

[(
yj − ys

)2
+

(
zj − zs

)2
]
σjAj

GJϕ’

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(48) 

Thus, the matrix G in Eq. (44) can be obtained from results of the 
numerical calculation of section forces S. Numerical integration 
methods like Gaussian quadrature are used to calculate Kb and Pi

int. 

3.6. Membrane locking 

In order to avoid membrane locking, as recommended by Crisfield 

[4,5,43], the high order term 1
2

[
(v’)

2
+ (w’)

2
]

in Eq. (21) can be 

replaced by an effective membrane strain 1
l0

∫ l0
0

1
2

[
(v’)

2
+ (w’)

2
]
dx. This 

integral can be obtained by assuming cubic shape functions for v and w; 
thus, Eq. (21) should be substituted by 

ε = u’ − yv’’ − zw’’ +
1

60
θT

b Xθb +
1
2

[
(y − ys)

2
+ (z − zs)

2 ]
(ϕ’)

2

+ (zsv’ − ysw’)ϕ’ + (zv’’ − yw’’)ϕ (49)  

in which the vector θb =
[

θIz θIy θJz θJy
]T holds the local slopes in 

the basic system, and the matrix X is defined as 

X =

⎡

⎢
⎢
⎣

4 0 − 1 0
0 4 0 − 1

− 1 0 4 0
0 − 1 0 4

⎤

⎥
⎥
⎦ (50) 

Thus, the modified d is 

d =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u’ +
1
60

θT
b Xθb + (zsv’ − ysw’)ϕ’

v’’ + w’’ϕ

− w’’ + v’’ϕ

1
2

(ϕ’)
2

ϕ’

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(51) 

The variation of strain vector is obtained as 

δ∊ = Yδd (52)  

in which 
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δd =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δu’ +
1
30

θT
b Xδθb + (zsδv’ − ysδw’)ϕ’ + (zsv’ − ysw’)δϕ’

δv’’ + ϕδw’’ + w’’δϕ

− δw’’ + ϕδv’’ + v’’δϕ

ϕ’δϕ’

δϕ’

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(53) 

And δd can be expressed as 

δd = Nδd1δv (54)  

where   

δv = [ δu’ δθIz δθIy δ θJz δθJy δv’ δw’ δv’’ δw’’ δϕ δϕ’ ]
T

(56) 

So 

δ∊ = YNδd1δv (57)  

with the aid of shape functions, δv can be written in terms of the element 
DOFs 

δv = Nδd2δDb (58)  

in which Nδd2 is rederived as 

Nδd2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N’
u1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 N’

v1 N’
v2 0 0 0

0 0 0 N’
w1 N’

w2 0
0 N’’

v1 N’’
v2 0 0 0

0 0 0 N’’
w1 N’’

w2 0
0 0 0 0 0 Nϕ1

0 0 0 0 0 N’
ϕ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(59) 

Therefore, Eq. (57) becomes 

δ∊ = YNδd1Nδd2δDb (60) 

The same linearization process for Eq. (42) is adopted as in Appendix 
A with the new matrices Nδd1 and Nδd2 in the present section. The same 
element formulation (Eqs. (43)-(46)) is obtained and the only change is 

for the matrix G that takes the following form 

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0

0
4
30

N 0 −
1
30

N 0 0 0 0 0 0 0

0 0
4
30

N 0 −
1
30

N 0 0 0 0 0 0

0 −
1
30

N 0
4
30

N 0 0 0 0 0 0 0

0 0 −
1
30

N 0
4
30

N 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Nzs

0 0 0 0 0 0 0 0 0 0 − Nys

0 0 0 0 0 0 0 0 0 My 0

0 0 0 0 0 0 0 0 0 Mz 0

0 0 0 0 0 0 0 My Mz 0 0

0 0 0 0 0 Nzs − Nys 0 0 0 W

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(61)  

3.7. Rigid offsets 

Generally, thin-walled asymmetric members are connected eccen
trically and sometimes structural joints should be considered as being of 
a finite size. Therefore, the element reference ends should be offset to 
the connecting point from the shear center, as shown in Fig. 6. Nodes I 
and J are shear centers, while nodes 1 and 2 are the connecting points of 
the element (element reference ends). Here, dXI, dYI and dZI are the off
sets specified with respect to the global coordinate system for element 
end node I, and they are designated to be the coordinates of node I minus 
the coordinates of node 1. Similarly, dXJ, dYJ and dZJ are the coordinates 
of node J minus the coordinates of node 2. 

This phenomenon can be considered systematically by utilizing a 
transformation matrix to model the rigid offsets [26,28,46]. The rela
tionship between end forces of the element reference ends (1 and 2 in 
Fig. 6) and the shear centers (I and J in Fig. 6) can be derived with the 
help of equilibriums of rigid offsets. The details of this transformation 
are shown in Appendix B. 

3.8. Element state determination 

The following algorithm is utilized for element state determination 
of the displacement-based element. Once the incremental displacements 
and rotations are retrieved from the global solution, the element state 
determination process is as follows  

1. Update the nodal translational displacements and rotations in the 
global system.  

2. Compute the rotations and the axial displacement in the basic system 
through corotational transformation. 

Nδd1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4θIz − θJz

30
4θIy − θJy

30
− θIz + 4θJz

30
− θIy + 4θJy

30
zsϕ’ − ysϕ’ 0 0 0 zsv’ − ysw’

0 0 0 0 0 0 0 1 ϕ w’’ 0

0 0 0 0 0 0 0 ϕ − 1 v’’ 0

0 0 0 0 0 0 0 0 0 0 ϕ’

0 0 0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(55)   
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3. Compute axial strain at each fiber according to Eq. (24), and then 
update the stresses and fiber stiffnesses through constitutive models.  

4. Compute section stiffnesses and forces according to Eqs. (47) and 
(48) using the updated stresses and fiber stiffnesses through nu
merical integration across each section. Note that the torsional ri
gidity and the St. Venant torque are calculate separately from the 
section numerical integration.  

5. Compute the element tangent stiffness matrix and the internal force 
vector in the basic system according to Eqs. (44) and (45).  

6. Compute the global tangent stiffness matrix and global internal force 
vector through corotational transformation according to Eqs. (4) and 
(6). The transformation in Appendix B should be applied if rigid 
offsets need to be included.  

7. Conduct the convergence test. If the residual is smaller than the 
threshold, then commence the next increment. Otherwise go back to 
step 1 and continue the iteration. 

4. Validation of formulation 

Eleven examples are shown here to validate the accuracy of this new 
element. In examples 1–4 and 6–8, the material is assumed to be linear 
elastic. Examples 5, 9, 10 and 11 address both elastic and inelastic 
materials. These validations show that the new element can simulate 
both geometric and material nonlinearity accurately. In the following, 
“DBxx” means using xx number of the new displacement-based elements 
with membrane locking remedied; while “DBxx-with locking” means 

using xx number of the new displacement-based element elements with 
membrane locking. 

4.1. Inextensional bending 

This example compares the simulations of inextensional bending of a 
cantilever (see Fig. 7) using the original OpenSees displacement-based 
element (which is appropriate only for symmetric cross sections) [35], 
the new element with membrane locking, and the new element with 
membrane locking remedied. Through this example, the accuracy of the 
element with membrane locking remedied is validated. When a beam 
element cannot bend without stretching, the energy is incorrectly shifted 
to membrane energy, resulting in underprediction of displacements and 
strains. In this structure, a concentrated lateral force P in the global Z 
direction is applied to the tip of the cantilever. 

Fig. 8 compares the force–displacement relationship using the orig
inal OpenSees element and the new element with membrane locking. 
With the increase of elements, both results converge to the same answer. 
However, the new element with membrane locking converges too slowly 
compared with the original OpenSees element. As seen in Figs. 8, 5 

Fig. 6. Element with rigid offsets.  

Fig. 7. Inextensional bending of a cantilever.  
Fig. 8. Comparison of original OpenSees element and new element with 
membrane locking. 
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original OpenSees elements and 20 new elements with membrane 
locking can have comparable accuracy. Fig. 9 shows the results of the 
new element with membrane locking remedied. It can be seen that when 
membrane locking is alleviated, the new element can give more accurate 
answers compared with the original OpenSees element. Five new ele
ments with membrane locking remedied are enough to simulate this 
phenomenon. 

4.2. Nonlinear torsion 

This example considers a cantilever beam of rectangular cross sec
tion (see Fig. 10) subjected to end torque T. The size of the rectangular 
cross section is 200x10 mm. The beam properties are Young’s modulus 
E = 200,000 MPa and G = 80,000 MPa, and length L = 1,000 mm. The 
results obtained using 1 and 20 new elements are shown in Fig. 11 and 
compared with the theoretical solution of Trahair [45]. It is shown that 
the new element can consider the Wagner effect, which induced the 
nonlinear phenomenon. The cantilever has axial shortening deformation 
due to the applied torque. Since the results of using 20 displacement- 
based elements coincide with the results of using 1 element, it can be 
accepted that only 1 element is enough to model the nonlinear torsion 
behavior by adopting the newly developed displacement-based element. 
In addition, Battini and Pacoste [31] also presented a similar example of 
nonlinear torsion of a rectangular section, where 20 elements were used 
to get the results in their work. 

4.3. Torsion of a cantilever beam with an angle section 

This example considers a cantilever beam with an angle section 
subjected to an end torque acting on its shear center. As shown in 
Fig. 12, the geometric and material properties of the cantilever are: L =
177.8 mm, α = 90◦, b = 14.605 mm, t = 0.9601 mm, Young’s modulus E 
= 89,632 MPa and shear modulus G = 33,445 MPa. The example was 
experimentally and numerically studied by different researchers 
[29,47]. Fig. 13 compares the path of shear center B of the end cross 
section obtained by the present study, the experimental results from 
Gregory [47], and the numerical results from Hsiao and Lin [29] using 
20 elastic beam elements. This work uses 20 displacement-based ele
ments, whose results match with the experimental and numerical results 
very well. 

4.4. Flexural-torsional interaction 

This example investigates the influence of bending moments on the 
torsional stiffness of a simply supported beam. The experiments were 
conducted by Engel and Goodier [48] on simply supported angle bars 
(see Fig. 14). The material was 61 S-T aluminum with Young’s modulus 
E = 10,000 ksi and shear modulus G = 3,750 ksi. The properties of the 
monosymmetric angle section are: L = 36.8 in., α = 90◦, b = 1 in., and t 
= 0.030 in. Bending moments acting in the plane of symmetry were 
applied to the ends of the angle bar to produce constant bending 
moment between supports. A torque is applied to the mid-span of the 
member. Fig. 15 shows the comparison of torque-twist lines from 

Fig. 9. Comparison of original OpenSees element and new element with 
membrane locking remedied. 

Fig. 10. Nonlinear torsion of a cantilever.  

Fig. 11. Moment end-rotation relationship for nonlinear torsion.  Fig. 12. Torsion of a cantilever beam of angle section.  
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experiments and simulations using 20 elements in the present study. The 

results indicate that the new element can successfully model the flex
ural–torsional interaction of beams. 

4.5. Flexural-torsional buckling of concentrically loaded angle struts 

This example, analyzed theoretically and numerically by Kitiporn
chai and Chan [22] and Kitipornchai and Lee [49], studies the elastic 
and inelastic flexural–torsional buckling load of concentrically loaded, 
pin-ended unequal-leg angle struts (L76x51x5 mm). The material 
properties are: Young’s modulus of elasticity E = 200,000 MPa, Pois
son’s ratio ν = 0.3, and yielding stress Fy = 312 MPa. Fig. 16 shows the 
elastic buckling factors for members with different modified slender
ness. The definition of modified slenderness is λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Fy/(π2E)

√
L/rmin, 

where L is the length of the angle bar and rmin is the minimum radius of 
gyration. In the figure, Pc is the applied axial load and Py is the section 
yielding load (squash load). Twenty new displacement-based elements 
are used to simulate this flexural–torsional buckling behavior. It is 
shown that the buckling loads computed form the newly developed 
element coincide well with the theoretical values. Since the default 
reference line of the new element is the shear center axis, the rigid 
offsets developed in Section 3.7 are utilized to move the element 
reference line to centroidal axis so that the concentric loading condition 

Fig. 13. Path of point B during torsional behavior.  

Fig. 14. Simply supported angle bar subjected to end moments and mid- 
span torque. 

Fig. 15. Twist per unit length versus applied.  

Fig. 16. Flexural-torsional buckling of concentrically loaded angle 
struts (elastic). 

Fig. 17. Assumed residual stress distribution for angle sections.  
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is satisfied. 
For the inelastic buckling case, the idealized residual stress distri

bution shown in Fig. 17 is used both in the research of Kitipornchai and 
Lee [49] and in the present simulation. An elastic-perfectly plastic 
stress–strain curve is employed, while in the plastic region the shear 
modulus is assumed to remain unchanged. In the calculation of inelastic 
buckling loads, Kitipornchai and Lee [49] utilized a simplified mathe
matical model similar to that proposed by Trahair and Kitipornchai [50] 
for inelastic buckling of steel I-beams. Using the new displacement- 
based and mixed elements, the inelastic buckling loads of the angle 
struts with different slenderness are calculated and then compared with 
the results of Kitipornchai and Lee [49] in Fig. 18. 

4.6. Cantilever with angle section subjected to an eccentric axial force 

This example, studied numerically by several researchers [23,30,51], 
addresses a cantilever beam with asymmetric cross section subjected to 
an eccentric axial force P. The cantilever is fixed at the left end in Fig. 19. 
The axial force P is applied to the shear center of the free end. As shown 
in Fig. 19, the geometric and material properties of the cantilever are: L 
= 1,400 mm, a = 76 mm, b = 51 mm, t = 6.5 mm, Young’s modulus E =

193.05 GPa and Poisson’s ratio ν = 0.3. The load–deflection curves of 
the present study together with the results of Alsafadie et al. [51] are 
plotted in Fig. 20, in which the axial displacement u and lateral 
displacement v in Y direction are presented. As seen in this figure, three 
new displacement-based elements in the present study are enough to 
obtain relatively accurate results, while Alsafadie et al. [51] utilized 30 
displacement-based elements to get similar results. 

4.7. Lateral-torsional buckling of a cantilever with tee section 

This example is part of the buckling studies on cantilever beams 
subjected to an end force conducted by several researchers [29,52–55]. 
Two cases, 4Ba65 and 4Ba50, in their research are simulated using the 
element developed in the present study. Here, 4Ba65 means that a tee 
section is used, a larger flange is at the top, the load acts at the upper 
face, and the length of the cantilever is L = 65 in; while 4Ba50 means the 
same as 4Ba65 except for the length is L = 50 in. The loading and ge
ometry properties are shown in Fig. 21 with b = 1.239 in., tf = 0.1236 
in., h = 2.8292 in., and tw = 0.0863 in. The buckling loads obtained 
using 5 elements developed in the present study are shown in Table 1 

Fig. 18. Flexural-torsional buckling of concentrically loaded angle 
struts (inelastic). 

Fig. 19. Cantilever with asymmetric angle section subjected to an eccentric 
axial force. 

Fig. 20. Cantilever with asymmetric angle section: load–deflection u and 
v curves. 

Fig. 21. Cantilever beam subjected to an end force.  
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together with the results from other researchers for comparison, which 
proves the accuracy of the new element in the prediction of buckling 
loads. 

4.8. Buckling of a right-angled frame subjected to an end load 

The right-angled frame shown in Fig. 22 was analyzed by many 

authors [3,41,43,56]. The load P is applied in the X-direction at the 
member tip with a very small perturbation load of 0.0002 N in the Z- 
direction at the tip to induce buckling artificially. At first, the problem is 
solved using the new element with membrane locking, the computed 
response of the applied load P and the tip deflection in the Z-direction is 
plotted in Fig. 23 together with other results of this work. It is shown 
that due to membrane locking, more than 20 elements in total are 
needed for the two members to get comparable results with other work. 
If fewer elements are used, the post-buckling stiffness is overestimated 
dramatically. 

However, if the new element with membrane locking remedied is 
used, only 10 elements in total are enough to obtain an accurate 
response (see Fig. 24). Thus, it may be accepted that the adopted 
methodology can remove membrane locking and improve the results 
significantly. 

4.9. Flexural-torsional buckling of a tee beam 

This example addresses flexural–torsional buckling of a tee beam 
under axial load considering both elastic and inelastic material. Battini 
and Pacoste [32] conducted numerical study of this example as shown in 

Table 1 
Buckling loads of cantilever beams subjected to an end force.  

Case Buckling loads (lb) 

Exp. 
[55] 

Theory 
[55] 

FEM 
[54] 

FEM 
[52,53] 

Present 

4Ba65 21.2 21.4 21.1 21.6 21.2 
4Ba50 33.6 32.7 32.1 33.2 32.4  

Fig. 22. Right-angled frame subjected to an end load.  

Fig. 23. Load/tip Z-displacement for right-angled frame (with mem
brane locking). 

Fig. 24. Load/tip Z-displacement for right-angled frame (with membrane 
locking remedied). 

Fig. 25. Flexural-torsional buckling of a tee beam.  
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Fig. 25 with the following geometric material properties: L = 1,800, h =
b = 60, t = 6, Young’s modulus E = 70,000, Poisson’s ratio ν = 0.33, 
yielding stress Fy = 20, and post-yield strain hardening modulus Et = E/ 
5. For the inelastic case, a bilinear plastic constitutive relation is 
assumed. The left end of the beam is fixed and only the axial displace
ment is allowed at the right end. A compressive axial force P is applied at 
the shear center of the right end. In addition, a small perturbation force 
F = P/1000 is introduced at the midspan point in the Z-direction. In the 
present research, 4 and 8 elements with 304 fibers in the cross section 
are used to simulate the buckling and yielding behavior. Note that 
Battini and Pacoste [32] used 40 displacement-based elements in their 
simulation. 

The load/Z-displacement curves of point O in both elastic and in
elastic cases are shown in Fig. 26 and Fig. 27, respectively. The agree
ment between the present simulation results and the results of Battini 
and Pacoste [32] is very good, but fewer elements are needed for the 
element in this work. 

4.10. Lee’s frame 

Lee et al. [57] investigated a structural frame represented in Fig. 28, 
using a linear elastic material and neglecting axial deformations. Several 
other researchers numerically studied this structure also assuming linear 
elastic material [56,58,59]. de Souza [41] and Cichoń [60] analyzed this 
example for both elastic and inelastic materials. In the present study, the 
bilinear elasto-plastic material model with kinematic hardening pre
sented in de Souza [41] is adopted for the inelastic case (see Fig. 28 for 
the material properties). Weak axis bending is used for both the hori
zontal and vertical members. 

The frame is first analyzed using the new displacement-based 
element with membrane locking for both elastic and inelastic cases. 
Fig. 29 and Fig. 30 compare the load displacement curves for the elastic 
case and inelastic case, respectively. It can be seen that 20 elements (10 
elements per member) with membrane locking still produce over stiff 
results, while 40 elements can give results with sufficient accuracy. If 
only 10 elements with membrane locking are used, the results will be 
severely inaccurate (too stiff), so they are not shown in the figures. This 
example shows that for the displacement-based element considering 
high order strain terms, the membrane locking problem must be 
addressed, otherwise more elements are needed to obtain accurate 
results. 

The frame is then analyzed using the displacement-based element 
with membrane locking remedied. Fig. 31 and Fig. 32 illustrate the re
sults from the present study and those from de Souza [41]. It can be 

concluded that the displacement-based element with membrane locking 
remedied can reduce the required elements amount to only 5, compared 
with the displacement-based element with membrane locking. For 
“DB5” in Fig. 31 and Fig. 32, three elements are used for the horizontal 
member and two elements are used for the vertical member. For “DB4”, 
three elements are used for the horizontal member and one element is 
used for the vertical member. 

4.11. Buckling of unequal-leg angles with fixed ends 

This example studies the buckling behavior of four unequal-leg an
gles. An experimental investigation of the angles was conducted by Dinis 
et al. [61]. Dinis et al. [61] and Liu et al. [28] also analyzed this example 
numerically using shell elements and beam elements, respectively. Ac
cording to Dinis et al. [61], the steel angles were made of dual grade 
A36-Grade50 steel with the following material properties: Young’s 
modulus E = 207 GPa, Poisson’s ratio ν = 0.3, and yielding stress Fy =Fig. 26. Load/Z-displacement of point O curve (elastic case).  

Fig. 27. Load/Z-displacement of point O curve (inelastic case).  

Fig. 28. Lee’s frame.  
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379 MPa. The measurements of the cross section dimensions and 
member lengths are listed in Table 2, where BL and BS are lengths of the 
long leg and short leg, respectively; tL and tS are thicknesses of the long 
led and short leg, respectively; and L is the member length. The member 
ends are fixed and only the axial translation of the loaded end is possible. 
Note that the angle members are loaded concentrically, which means the 
axial load is applied to the centroid of the cross section. 

The comparison of load–displacement curves of the four specimens 
obtained from experimental and numerical studies is shown in Figs. 33 
to 36. It is seen that the buckling loads can be estimated accurately using 
the displacement-based element in this work. In addition, this element 
can give a better estimation of the post-buckling behavior for the longer 
specimens (L72 and L60) than the shorter specimens. This may be 
because the shear deformation is significant for shorter specimens and 
section distortion may happen at large deformation, which are not 
considered in this element. 

5. Conclusions 

A geometrically and materially nonlinear displacement-based 

element for structural members with angle and tee sections has been 
developed and validated in this work. The geometric nonlinear phe
nomenon is simulated by using the corotational transformation, and by 
adopting the total Lagrangian formulation in the basic system through 
employing Green-Lagrange strains. Consequently, the newly developed 
element is able to take into account the axial-flexural–torsional inter
action behavior of structural members in large deformation. In order to 
model members with asymmetric sections, the element DOFs are defined 
with respect to both centroid and shear center in the basic system, and 
then transformed to the shear center in advance of the corotational 

Fig. 29. Equilibrium path for Lee’s frame (element with membrane lock
ing, elastic). 

Fig. 30. Equilibrium path for Lee’s frame (element with membrane lock
ing, inelastic). 

Fig. 31. Equilibrium path for Lee’s frame (element with membrane locking 
remedied, elastic). 

Fig. 32. Equilibrium path for Lee’s frame (element with membrane locking 
remedied, inelastic). 

Table 2 
Specimen geometries of unequal-leg angles.  

Specimen BL (mm) tL (mm) BS (mm) tS (mm) L (mm) 

L48A 126.6 6.5 76.9 6.5 1224.0 
L48B 126.6 6.6 76.7 6.5 1219.2 
L60 126.5 6.6 76.7 6.6 1525.6 
L72 126.5 6.6 76.8 6.5 1828.8  
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transformation. The material nonlinearity is considered by discretizing 
the member cross section into fibers and applying the uniaxial consti
tutive law and numerical integration to calculate cross-section forces. 
Examples show that nonlinear torsion, elastic and inelastic flexur
al–torsional buckling, and lateral-torsional buckling can be modeled 
accurately with only a small number of elements. The displacement- 
based element yields overestimated stiffness for both elastic and in
elastic inextensional bending modes unless the membrane locking 
phenomenon is remedied. With the approach adopted in this work to 
alleviate membrane locking, the improved version of the displacement- 
based element presents excellent performance for a comprehensive set 
of structural members and frames. 

CRediT authorship contribution statement 

Xinlong Du: Methodology, Software, Validation, Writing - original 
draft. Jerome Hajjar: Conceptualization, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This research is supported by the National Science Foundation under 
Grant No. CRISP-1638234 and Northeastern University. This support is 
gratefully acknowledged.  

Appendix A. Linearization of the governing equation 

This appendix shows details of the linearization process of the gov
erning equation to derive the tangent stiffness matrix and internal 
forces, which are used in Section 3.4. Using a Taylor series expansion to 
Eq. (42) and neglecting the high order terms, the following equation is 
obtained 

gi+1 ≈ gi +
d

dα|α,β=0g
(
Di

b + αΔDb
)

+
d

dβ
|α,β=0g

(
Pi

ext + βΔPext
)

= 0 (A.1)  

where α and β are scalers used to scale vectors ΔDb and ΔPext . Variables 

Fig. 33. Load-displacement curves of unequal-leg angles (L48A).  

Fig. 34. Load-displacement curves of unequal-leg angles (L48B).  

Fig. 35. Load-displacement curves of unequal-leg angles (L60).  

Fig. 36. Load-displacement curves of unequal-leg angles (L72).  
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with a superscript i or (i + 1) represent their values in the ith or (i + 1)th iteration. The terms in the above equation are obtained as shown below 

d
dα|α,β=0g

(
Di

b + αΔDb
)

=

∫

l0

d
dα|α,β=0

(
NT

δd2

)
NT

δd1Sdx +

∫

l0
NT

δd2
d

dα|α,β=0

(
NT

δd1

)
Sdx +

∫

l0
NT

δd2NT
δd1

d
dα|α,β=0(S)dx

=

∫

l0
NT

δd2GNδd2dxΔDb +

∫

l0
NT

δd2NT
δd1KsNδd1Nδd2dxΔDb (A.2)  

where the following relations are used 

d
dα|α,β=0

(
NT

δd2

)
= 0 (A.3)  

d
dα|α,β=0

(
NT

δd1

)
S =

dNT
δd1

d(αΔDb)

d(αΔDb)

dα S = G
dv

d(αΔDb)
ΔDb = GNδd2ΔDb (A.4)  

d
dα|α,β=0(S) =

dS
d(αΔDb)

d(αΔDb)

dα =

∫

A0

YT dσ
d(αΔDb)

dAΔDb =

∫

A0

YT E
d∊

d(αΔDb)
dAΔDb =

∫

A0

YT EYNδd1Nδd2dAΔDb =

∫

A0

YT EYdANδd1Nδd2ΔDb

= KsNδd1Nδd2ΔDb (A.5)  

in which 

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 N 0 0 0 0 Nzs
0 0 N 0 0 0 − Nys
0 0 0 0 0 My 0
0 0 0 0 0 Mz 0
0 0 0 My Mz 0 0
0 Nzs − Nys 0 0 0 W

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.6)  

Ks =

∫

A0

YT EYdA =

∫

A0

⎡

⎢
⎢
⎢
⎢
⎣

E − yE zE p2E 0
− yE y2E − yzE − p2yE 0
zE − yzE z2E p2zE 0
p2E − p2yE p2zE p4E 0

0 0 0 0 4n2G

⎤

⎥
⎥
⎥
⎥
⎦

dA (A.7)  

in which 

p2 = (y − ys)
2

+ (z − zs)
2 (A.8) 

Here, Ks is the section stiffness matrix. The matrix E sets the constitutive relation between the stresses and strains. Here 

E =

[
E 0
0 G

]

(A.9)  

where E is the tangent Young’s modulus and G is the shear modulus. 
In addition, 

d
dβ

|α,β=0g
(
Qi

ext + βΔPext
)

=
dg

d(βΔPext)

d(βΔPext)

dβ
= − ΔPext (A.10) 

Therefore, the following relation is obtained 

gi +

∫

l0
NT

δd2GNδd2dxΔDb +

∫

l0
NT

δd2NT
δd1KsNδd1Nδd2dxΔDb − ΔPext = 0 (A.11)  

which can be expressed as the following equation with the help of Eq. (42) 
( ∫

l0
NT

δd2GNδd2dx +

∫

l0
NT

δd2NT
δd1KsNδd1Nδd2dx

)

ΔDb = ΔPext + Pi
ext −

∫

l0
NT

δd2NT
δd1Sidx (A.12) 

This iteration equation can be expressed in short as shown in Eq. (43). 

Appendix B. The transformation for rigid offsets 

This appendix shows details of the transformation used to consider eccentricities as discussed in Section 3.7. From the equilibriums on rigid offsets 
1-I and 2-J (see Fig. 6), the following transformation for the end forces of the element reference ends P and the end forces at the shear centers P̂ is 
obtained 

P = TT
off P̂ (B.1) 
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where the transformation matrix is given by 

TT
off =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 − dZI dYI 0 1 0 0 0 0 0 0 0

dZI 0 − dXI 0 0 1 0 0 0 0 0 0
− dYI dXI 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 − dZJ dYJ 1 0 0
0 0 0 0 0 0 dZJ 0 − dXJ 0 1 0
0 0 0 0 0 0 − dYJ dXJ 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.2) 

According to the principle of virtual work, the contragredient transformation of the end displacements is obtained as this tangential relationship 

δD̂ = Toff δD (B.3)  

where D denotes the end displacements of the element reference ends. Small rotations are assumed in the derivations in this section. With δP̂ = K̂δD̂, 
as developed in Section 2.2, we have 

δP = TT
off δP̂ = TT

off K̂δD̂ = TT
off K̂Toff δD = KδD (B.4)  

where K = TT
off K̂Toff is the tangent stiffness matrix in the global system considering rigid offsets. 
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[15] Gonçalves R, Ritto-Corrêa M, Camotim D. A new approach to the calculation of 
cross-section deformation modes in the framework of generalized beam theory. 
Comput Mech 2010;46:759–81. 

[16] Martins AD, Camotim D, Dinis PB. Distortional-global interaction in lipped channel 
and zed-section beams: Strength, relevance and DSM design. Thin-Walled 
Structures. 2018;129:289–308. 

[17] Martins AD, Camotim D, Gonçalves R, Dinis PB. On the mechanics of local- 
distortional interaction in thin-walled lipped channel beams. Thin-Walled 
Structures. 2018;128:108–25. 

[18] Schardt R. Generalized beam theory—an adequate method for coupled stability 
problems. Thin-walled structures. 1994;19:161–80. 

[19] Zhang X, Rasmussen KJ, Zhang H. Beam-element-based analysis of locally and/or 
distortionally buckled members: Application. Thin-Walled Structures. 2015;95: 
127–37. 

[20] Rasmussen KJ, Zhang X, Zhang H. Beam-element-based analysis of locally and/or 
distortionally buckled members: Theory. Thin-Walled Struct 2016;98:285–92. 

[21] Rasmussen K. Bifurcation of locally buckled members. Thin-Walled Struct 1997;28: 
117–54. 

[22] Kitipornchai S, Chan S. Nonlinear finite element analysis of angle and tee beam- 
columns. J Struct Eng 1987;113:721–39. 

[23] Chan S, Kitipornchai S. Geometric nonlinear analysis of asymmetric thin-walled 
beam-columns. Eng Struct 1987;9:243–54. 

[24] Al-Bermani FG, Kitipornchai S. Elasto-plastic large deformation analysis of thin- 
walled structures. Eng Struct 1990;12:28–36. 

[25] Lee P-S, McClure G. A general three-dimensional L-section beam finite element for 
elastoplastic large deformation analysis. Comput Struct 2006;84:215–29. 

[26] Liu S-W, Ziemian RD, Chen L, Chan S-L. Bifurcation and large-deflection analyses 
of thin-walled beam-columns with non-symmetric open-sections. Thin-Walled 
Struct 2018;132:287–301. 

[27] Ziemian RD, McGuire W, Liu SW. MASTAN2 v4.0. 2019. 
[28] Liu S-W, Gao W-L, Ziemian RD. Improved line-element formulations for the 

stability analysis of arbitrarily-shaped open-section beam-columns. Thin-Walled 
Struct 2019;144:106290. 

[29] Hsiao KM, Lin WY. A co-rotational formulation for thin-walled beams with 
monosymmetric open section. Comput Meth Appl Mech Eng 2000;190:1163–85. 

[30] Chen HH, Lin WY, Hsiao KM. Co-rotational finite element formulation for thin- 
walled beams with generic open section. Comput Methods Appl Mech Eng 2006; 
195:2334–70. 

[31] Battini J-M, Pacoste C. Co-rotational beam elements with warping effects in 
instability problems. Comput Meth Appl Mech Eng 2002;191:1755–89. 

[32] Battini J-M, Pacoste C. Plastic instability of beam structures using co-rotational 
elements. Comput Methods Appl Mech Eng 2002;191:5811–31. 

[33] Rinchen, Hancock GJ, Rasmussen KJ. Formulation and implementation of general 
thin-walled open-section beam-column elements in OpenSees. Research Report 
R961: The University of Sydney, Australia; 2016. 

[34] Rinchen, Hancock GJ, Rasmussen KJ. Geometric and material nonlinear analysis of 
thin-walled members with arbitrary open cross-section. Thin-Walled Struct 2020; 
153:106783. 

[35] McKenna F, Scott MH, Fenves GL. Nonlinear finite-element analysis software 
architecture using object composition. J Comput Civil Eng 2010;24:95–107. 

[36] Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for 
continua and structures. John wiley & sons; 2013. 

[37] Garcea G, Madeo A, Casciaro R. The implicit corotational method and its use in the 
derivation of nonlinear structural models for beams and plates. J Mech Mater 
Struct 2012;7:509–38. 

[38] Garcea G, Madeo A, Casciaro R. Nonlinear FEM analysis for beams and plate 
assemblages based on the implicit corotational method. J Mech Mater Struct 2012; 
7:539–74. 

[39] Genoese A, Genoese A, Bilotta A, Garcea G. A geometrically exact beam model with 
non-uniform warping coherently derived from the Saint Venant rod. Eng Struct 
2014;68:33–46. 

[40] Mattiasson K. On the co-rotational finite element formulation for large deformation 
problems: Department of Structural Mechanics. Chalmers University of 
Technology; 1983. 

[41] de Souza RM. Force-based finite element for large displacement inelastic analysis 
of frames [PhD Thesis]. USA: University of California, Berkeley; 2000. 

X. Du and J. Hajjar                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0141-0296(21)00389-8/h0005
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0010
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0010
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0015
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0015
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0020
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0020
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0025
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0025
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0030
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0030
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0035
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0035
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0035
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0035
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0035
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0040
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0040
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0045
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0045
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0045
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0050
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0050
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0055
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0055
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0060
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0060
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0065
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0065
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0070
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0070
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0070
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0075
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0075
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0075
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0080
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0080
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0080
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0085
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0085
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0085
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0090
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0090
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0095
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0095
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0095
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0100
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0100
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0105
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0105
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0110
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0110
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0115
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0115
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0120
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0120
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0125
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0125
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0130
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0130
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0130
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0140
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0140
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0140
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0145
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0145
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0150
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0150
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0150
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0155
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0155
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0160
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0160
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0170
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0170
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0170
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0175
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0175
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0180
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0180
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0185
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0185
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0185
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0190
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0190
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0190
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0195
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0195
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0195
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0200
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0200
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0200
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0205
http://refhub.elsevier.com/S0141-0296(21)00389-8/h0205


Engineering Structures 239 (2021) 112239

19

[42] Hancock G. Portal frames composed of cold-formed channel-and Z-sections. Steel 
Framed Structures - Stability and Strength. England: Taylor & Francis; 2005. 
p. 230–64. 

[43] Alemdar BN. Distributed plasticity analysis of steel building structural systems. 
USA: Georgia Institute of Technology; 2001 [PhD Thesis]. 

[44] Trahair NS. Flexural-torsional buckling of structures. first ed. Boca Raton: CRC 
Press; 1993. 

[45] Trahair NS. Nonlinear elastic nonuniform torsion. J Struct Eng 2005;131:1135–42. 
[46] McGuire W, Gallagher RH, Ziemian RD. Matrix Structural Analysis. John Wiley & 

Sons; 2000. 
[47] Gregory M. A nonlinear bending effect when certain unsymmetrical sections are 

subjected to a pure torque: Department of Civil Engineering. University of 
Tasmania; 1960. 

[48] Engel H, Goodier J. Measurements of torsional stiffness changes and instability due 
to tension, compression, and bending. J Appl Mech-Trans ASME. 1953;20:553–60. 

[49] Kitipornchai S, Lee H. Inelastic buckling of single-angle, tee and double-angle 
struts. J Constr Steel Res 1986;6:3–20. 

[50] Trahair NS, Kitipornchai S. Buckling of inelastic I-beams under uniform moment. 
J Struct Div 1972;98. 

[51] Alsafadie R, Hjiaj M, Battini J-M. Corotational mixed finite element formulation for 
thin-walled beams with generic cross-section. Comput Methods Appl Mech Eng 
2010;199:3197–212. 

[52] Pi YL, Trahair NS. Prebuckling deflections and lateral buckling. II: applications. 
J Struct Eng 1992;118:2967–85. 

[53] Pi YL, Trahair NS. Prebuckling deflections and lateral buckling. I: theory. J Struct 
Eng 1992;118:2949–66. 

[54] Attard MM. Lateral buckling analysis of beams by the FEM. Comput Struct 1986; 
23:217–31. 

[55] Anderson JM, Trahair NS. Stability of monosymmetric beams and cantilevers. 
J Struct Div 1972. 

[56] Simo JC, Vu-Quoc L. A three-dimensional finite-strain rod model. Part II: 
Computational aspects. Comput Meth Appl Mech Eng 1986;58:79–116. 

[57] Lee S-L, Manuel FS, Rossow EC. Large deflections and stability of elastic frame. 
J Eng Mech Div 1968;94:521–48. 

[58] Pacoste C, Eriksson A. Beam elements in instability problems. Comput Methods 
Appl Mech Eng 1997;144:163–97. 

[59] Chen H, Blandford GE. Work-increment-control method for non-linear analysis. Int 
J Numer Meth Eng 1993;36:909–30. 
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