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TROPICAL CONVEX HULLS OF POLYHEDRAL SETS

CVETELINA HILL, SARA LAMBOGLIA, AND FAYE PASLEY SIMON

ABSTRACT. In this paper we focus on the tropical convex hull of convex sets and polyhedral
complexes. We give a vertex description of the tropical convex hull of a line segment and
a ray. Next we show that tropical convex hull and ordinary convex hull commute in two
dimensions and characterize tropically convex polyhedra in any dimension. Finally we show
that the dimension of a tropically convex fan depends on the coordinates of its rays and
give a lower bound on the degree of a fan tropical curve using only tropical techniques.

INTRODUCTION

Tropical convexity is the analog of classical convexity in the tropical semiring (R, ®,®)
where a ® b = min(a,b), and a © b = a + b. The goal of this paper is to explore the interplay
between tropical convexity and its classical counterpart. Our aim is to describe the tropical
convex hull of polyhedra, polyhedral complexes, and in particular, tropical curves.

The primary focus of tropical convexity is the study of tropical polytopes: the tropi-
cal convex hull of finite sets. These are widely studied [DS04, CGQS05, CGQ04, GS07,
Jos05, GM10, AGG10] and find applications in various areas of mathematics. Recently, tech-
niques from tropical convexity have been applied to mechanism design [CT16], optimization
[AGG12], and maximum likelihood estimation [RSTU18]. Some specific applications are the
resolution of monomial ideals [DY07], and discrete event dynamic systems [BCOQ92]|. More-
over, computational tools exist to aid in further study of tropical polytopes [Jos09, AGG10].

A tropical polytope is not always classically convex, but does have an explicit description
as the finite union of some ordinary polytopes [DS04]. Tropical polytopes which are also
ordinary polytopes are called polytropes as discussed in [JK10]. However, there exist ordinary
polytopes which are tropically convex, but are not finitely generated (for an example, see
Figure 3). Here we further examine this relationship between classical convexity and tropical
convexity by studying the structure of the tropical convex hull of polyhedral sets. Our first
result is the following:

Theorem (Theorems 1.4 and 1.10). If a,b € R" and U C R?, then

(i) tconv conv(a,b) = conv tconv(a, b),
(7i) tconv pos(a) = postconv(0,a);
(i) tconv conv U = conv tconv U.

Ordinary and tropical convex hull do not commute as in part (i) even for small examples
(e.g., triangles) in dimension 3. However, the tropical convex hull of an ordinary poly-
hedron is itself an ordinary polyhedron. We characterize which ordinary polyhedra are
tropically convex.

Theorem (Theorem 2.6). A full-dimensional ordinary polyhedron is tropically convex if and

only if all of its defining halfspaces are tropically convex.
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Many properties and theorems valid in classical convexity are also valid in the tropi-
cal setting; for example, separation of convex sets [CGQ04, GS07], Minkowski-Weyl The-
orem [GK07, GK11, Jos05], Carathéodory and Helly Theorems [DS04, GM10], and Farkas
Lemma [DS04].

Here we consider the classical result in algebraic geometry (see for example [EH87]) which
bounds the degree of a projective variety X from below by

(1) dimspan X —dim X + 1 < deg X.

Our first aforementioned result describing the tropical convex hull of line segments and rays
provides some information on the dimension of tropical convex hulls. Using this result we
study a tropical analogue of (1) in the case of tropical curves. We can substitute span X
either with the tropical convex hull of a tropical curve I' or with a tropical linear space
of smallest dimension containing I'. The latter may not be unique and it is not easy to
determine. Thus, we choose to replace span X with tconvI'. The tropical analogue of (1) we
consider is

(2) dim tconv I’ < degT.

If T is realizable, then this follows immediately from the classical inequality (1). In Section 3
we give a proof of (2) for fan tropical curves that relies entirely on tropical techniques.

The structure of this paper is as follows. In Section 1 we recall basic definitions of tropical
convexity. Then we describe the tropical convex hull of a line segment and a ray as ordinary
polyhedra. Using this result we show the dimensions are easily calculable using coordinates
of the respective endpoints. We also prove that ordinary and tropical convex hull commute
in two dimensions. In Section 2 we prove that convexity and polyhedrality are preserved
after taking the tropical convex hull. Next we classify tropically convex ordinary halfspaces,
linear spaces, and polyhedra. Finally, in Section 3, we use our results to prove the inequality
(2) in the case of fan tropical curves.

1. LINE SEGMENTS, RAYS, AND SETS IN R?

Key definitions from tropical convexity are presented in the first part of this section. A
description of the tropical convex hull of any arbitrary set is given in Proposition 1.1. In
Theorem 1.4 we show that ordinary and tropical convex hull commute in any dimension in
the case of two points. This allows us to find the dimension of the tropical convex hull of a
line segment or a ray using the coordinates of its endpoints in Corollary 1.7. We also prove
ordinary and tropical convex hull always commutes in two dimensions in Theorem 1.10.

A set U C R™ is tropically convex if (a®x) @ (b®y) isin U for any x,y € U and a,b € R
with a ® b = 0. The tropical convex hull of U C R" is the smallest tropically convex set that
contains U. This is defined equivalently in [GKO07] by

(3) tconv U = U tconv V.
VCU:|V|<oo

If V= {vy,...,v} is a finite set, then by [GKO07, Definition 2.1] its tropical convex hull
is given by

k
tcoan:{a1®v1@---@ak®vk|ai€[& @ai:O}.

=1
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Figure 1. Illustration of Proposition 1.1 in PT2. From left to right: The three sectors, a
polytope P, the Minkowski sums P + Sy, P + S1, P + Sz, and tconv P.

Furthermore, points in tconvV can be characterized by types as defined in [DS04]. Let
n] ={1,...,n} and [n]p = {0,1,...,n}. Given a point x € R, the type of = relative to V,
or covector in [FR15, LS19], is the n-tuple T, = (11,...,T,,) such that T; C [k] for all j,
and ¢ € Tj if min(v; — x) is obtained in the jth coordinate. This is equivalent to saying that
i€ T;if x € v; +S;, where S; is a sector of R” spanned by {—e; : ¢ € [n]} for j = 0, and
{eg, —e; : i € [n],1 # j} for j € [n]. Here ey, ..., e, represent the standard unit vectors in R”
with e;; = 1 if 4 = j and e;; = 0 otherwise. We denote the vector >  e; by eg. The cone
S; is the closure of one of the n + 1 connected components of R” \ L,,_;. Here L,_; denotes
the max-standard tropical hyperplane, or the tropicalization of V' (zy +...+z, + 1) with the
max convention, whose cones are pos(—e;,, ..., —€; ).

The proof of the Tropical Farkas Lemma [DS04] states that x € tconv V' if and only if
the jth entry of T, is nonempty for all j, meaning there exists at least one v; such that
xr € v; +§; [JL16, Lemma 28]. As a consequence, we have the following proposition which
also holds true in the case of U C (RU {oo})™ [L.S19, Proposition 7.3]. We give here a proof
for completeness. Figure 1 gives an example of (4) in R2.

Proposition 1.1. If U C R", then the tropical convex hull of U is equal to the intersection
of the Minkowski sums of U with each of the sectors. That is

(4) tconv U = ﬂ(U+Sj).
5=0
Proof. 1f x € tconv U, then (3) implies that z € tconv V for some finite set V C U. By the
Tropical Farkas Lemma [DS04] we obtain x € (;_o(V + S;), hence z € (\_o(U + S;). On
the other hand, if # € (\J_o(U + S;), then there exist uy,...,u, € U such that = € u; + S,
for every j. For V= {uy, ..., u,} it follows that z € (\;_,(V +S;) = tconv V' C tconvU. O
As a direct consequence of Proposition 1.1 we obtain Corollary 1.2. Note that it can also

be proven directly by using the definition of tropical convex hull. Lemma 1.3 shows that
repeatedly taking the convex hull and tropical convex hull of a set stabilizes after one step.

Corollary 1.2. If P C R" is convez, then tconv P is conver.
Corollary 1.3. If U C R", then tconv conv U = tconv(conv tconv U).

Proof. The forward direction is immediate since convU C conv tconv U. The containment
tconv U C tconv conv U and Corollary 1.2 imply conv tconv U C tconv conv U, so its tropical
convex hull is also contained in tconv conv U. U

Let a and b be points in R™. For the remainder of the section we assume that
(5) a=1(0,...,0)and 0 < by < --+ < b,.
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In this case, using [DS04, Proposition 4], the tropical line segment tconv(a,b) is a concate-
nation of line segments with n + 1 pseudovertices in R™ given by pg = a and
(6) p; = (b1,...,bj_1,b;,...,b;) for j € [n].

If @ and b do not satisfy (5), we can apply first a linear transformation which translates a
to the origin and then another that relabels coordinates so that 0 < b, < ... <b,. If b; = b;
for some i # j or b; = 0 for some j, then the pseudovertices of tconv(a, b) lie in the tropically
convex hyperplane z; — x; = 0 or z; = 0 and the same holds for conv tconv(a,b) [DS04,
Theorem 2]. Thus tconv conv(a,b) and conv tconv(a, b) lie in the hyperplane z; — x; = 0 or
z; = 0. Each of these hyperplanes is isomorphic to R"~!. We can repeat this process until
the appropriate projection of b has distinct positive coordinates.

The following theorem shows that the tropical convex hull and convex hull commute for
two points in R™ for all n.

Theorem 1.4. If a,b are points in R", then
(i) tconv conv(a,b) = conv tconv(a, b);
(ii) tconv pos(a) = postconv(0,a).
Corollary 1.2 implies the forward containment of Theorem 1.4(i). For the converse, we use
an explicit description of conv tconv(a,b) given in the following lemma.

Lemma 1.5. Ifa,b € R" satisfy a = (0,...,0) and 0 < by < --- < by, then conv tconv(a, b)
1s a full-dimensional simplex whose H—representation is given by

bl — T Z 0
(7) —(bj41 = b)zjo1 + (bj1 — bj—1)x; — (bj — bj-1)xje1 20 for j € [n—1].
—Tn-1 + Tn 2 0
Proof. Observe that the vertices of convtconv(a,b) are the pseudovertices po,...,p, of
tconv(a,b) as described in (6). These are n + 1 affinely independent points of R™ since
the vectors py —a =p1,...,pn_1—a = pn_1,b—a = b are linearly independent. This implies

conv tconv(a, b) is a simplex. Hence, each of its n + 1 facets is the convex hull of n vertices.
To show that (7) is the H—representation of convtconv(a,b) we will show that the corre-
sponding equation of each one of the n 4 1 inequalities is the hyperplane supporting one of
the facets of conv tconv(a,b).

Let = = (xy1,...,x,) be a point in convtconv(a,b) = conv(a,pi,...,pn—1,b). The jth
coordinate of z is given by

T; = )\1()1 + ... +)\jflbj71 + ()\j +>\j+1 + ... +)\n) bj

where A\ + ...+ A, < 1 and \; > 0 for every i. Substituting the coordinates of x into
the first linear form of (7) we obtain (1 — Ay —--- — X\,)b;. Since A\ + ...+ A, < 1 and
by > 0 it follows that by — z; > 0. Note that equality occurs if and only if = is in the
facet conv(py,...,pn_1,b). Thus, by — x; = 0 defines this facet of convtconv(a,b), that is
{b1 — 1 = 0} N conv tconv(a, b) = conv(py, ..., Pn_1,b).

After substituting into the second linear form of (7) we have that

—(bj1 = bj)aj 1+ (bjy1 — bj1)xj — (bj — bj_1)xj1 = Aj(bj—1 — b;)(bj — bj1).

Since A\; > 0 and b; > bj_; for each j, we know x satisfies the second inequality. Here
equality occurs if and only if z is in the facet conv(a,p1,...,Pj—1,Pj+1,- - -+ Pn—1,b), SO

—(bjy1 — bj)aj 1+ (bjy1 — bj1)x; — (bj — bj_1)x;11 =0
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defines this facet of conv tconv(a,b) for each j € [n — 1].
Lastly, we have that —z, 1 + x, = \,(b, — b,_1) > 0. Equality holds if and only if z is in
the facet conv(a,py,...,pn_1), and hence this facet is defined by —z,, 1 + x, = 0. O

Lemma 1.6. If a,b € R" and V is a finite subset of conv(a,b), then

tconv(V') C conv tconv(a, b).

Proof. Without loss of generality, assume a = (0,...,0) and 0 < b; < ... < b,. Let
Vo= {\b,A\b,...,\b} C conv(a,b) for some parameters \; € [0,1]. Assume the pa-
rameters are ordered 0 < Ay < Ay < ... < )\, < 1. Take x € tconv V and let T, be the type
of z relative to V. By [DS04, Lemma 10], the point x satisfies

(8) xr — x; < N\i(by — b;) for j,k € [n] with i € Tj.

We will show that x satisfies the H-representation of conv tconv(a,b) given in Lemma 1.5.
Since the union of all coordinates Tj of T, covers [r], (8) implies that

Tjp1 —Tj _ Tj—Tjq ,
0< 2t I < I <1 forallj€n—1].
b =by T b —b T et

For j = 1, this implies n <1,s0b; —xy > 0. For 5 € [n — 1], rewriting the inequalit
J b J g y
1

Tit1 7 % ~ I shows that —(bj+1 — bj)xj—l -+ (bj+1 - bj_l)ZEj - (b] - bj—l)xj—s—l Z 0.
bj+1 — bj bj — bj_l

Lastly, if j =n — 1, then 0 <

Tp — Tp—1

bn - bn—l

Proof of Theorem 1.4. For part (i), assume without loss of generality that a = (0,...,0)
and 0 < by < -+ < by,. Corollary 1.2 and the containment tconv(a,b) C tconvconv(a,b)
imply that convtconv(a,b) C tconvconv(a,b). Now take x € tconvconv(a,b). Since the
tropical convex hull of a set is the union of the tropical convex hulls of all its subsets, it
follows that there is a finite set V' C conv(a, b) such that x € tconv(V'). Lemma 1.6 implies
tconv(V') C conv tconv(a, b), so x € conv tconv(a,b).

To show part (ii), take 2 € tconv pos(a). There exist scalars Ag,..., A, > 0 such that
Aja € pos(a) for each j € [n]p and =z € tconv(0, \oa, ..., \,a). Assume the scalars are
ordered \g < A\; < Ay < ... < A\, s0 x € teconv conv(0, A,a). By Theorem 1.4(7) it fol-
lows that * € convtconv(0, A\ a). Furthermore, this means x € postconv(0, A\,a). The
pseudovertices of tconv(0, A,a) and tconv(0,a) are scalar multiples of one another mean-
ing z € postconv(0,a). The other inclusion postconv(0,a) C tconv pos(0,a) follows from
Corollary 1.2. O

, 80 —Tp_1 +x, > 0. [

Corollary 1.7. If a and b are points in R, then

(i) dim tconv conv(a, b) is the number of nonzero distinct coordinates of a — b;
ii) dim tconv pos(a) is the number of nonzero distinct coordinates of a.
ii) dimt s th b distinct dinat

Proof. Part (i) follows from the proof of Lemma 1.5 since tconv conv(a, b) is a full-dimensional
simplex in R? where d is the number of nonzero distinct coordinates in @ — b. For part (ii)
observe that the generators of postconv(0, a) are the pseudovertices of tconv(0, a) which are
vertices of tconv conv (0, a). O

As a consequence of Corollary 1.7 we have the following result for tropically convex fans.
An application of this lemma appears in Section 3.
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Lemma 1.8. If F' is a tropically convex fan in R™, then dim F' is equal to the mazimum
number of nonzero distinct coordinates of a point in F.

Proof. Let d be the maximum number of nonzero distinct coordinates of any point in F
and let = be one such point in F. Since F' is a tropically convex fan it contains tconv pos(x).
Corollary 1.7 implies that dim tconv pos(x) = d, hence dim F' > d. Suppose that dim F' > d.
Let C' be a cone contained in F' such that dim C' = dim F'. By hypothesis, each point in C'
has at most d nonzero distinct coordinates. This implies that C'is contained in the union of
finitely many linear spaces in R™ of dimension at most d. This contradicts the assumption

that dim C' = dim F' > d. U
Now we consider arbitrary sets in R? and give a generalization of Theorem 1.4.
Lemma 1.9. IfV C R? is finite, then tconvconv V = conv tconv V.

Proof. We prove the lemma by showing that each vertex of tconv conv V' is either a point in
V or a pseudovertex of tconv V.

By Proposition 1.1 we know tconv convV = ﬂ?:()(Sj + conv V). A face of a Minkowski
sum of polyhedra is a Minkowski sum of a face from each summand. Since S; has only one
vertex, namely the origin, it follows that the vertices of S; 4 conv V' are precisely the vertices
of conv V. The facets of S; + conv V' arise as either the sum of the vertex of §; and an edge
of conv V', or as the sum of a vertex of conv V" and a ray of §;. In the former case, these are
simply the edges of conv V. In the latter case, these are the unbounded edges parallel to a
ray of §; and the vertex of each of them is a vertex v € V.

From this description of the facets and vertices of §; 4 conv V' we deduce that a vertex of
tconv conv V' is either a vertex of conv V' or it is the intersection of a facet of S; + conv V'
and a facet of S; + convV for some i,j € [2]p. Suppose that neither of the facets is an
edge of conv V' (Otherwise we would get a vertex of conv V'), then the intersection point is
a pseudovertex of tconv(v,w) and a vertex of convtconv V. Suppose that only one of the
facets is an edge of conv V. This intersection point must be a vertex of conv V. Otherwise
it is in the interior of the edge of conv V', which implies that the ray intersecting the edge
also intersects the interior of conv V' and hence is not a facet. 0

Theorem 1.10. If U C R2, then tconvconv U = conv tconv U.

Proof. The forward containment is implied by the fact that tconv conv U is convex by Corol-
lary 1.2.

For backward containment, suppose that = € tconvconvU. Then by (3) it follows that
there exists a finite set V' C conv U, such that x € tconv V. The classical Carathéodory
Theorem implies that each point v; € V can be written as a convex combination of finitely
many points in U. Call this set A; C U. Since V is finite, it follows that A = J; A; is a
finite subset of U and V' C conv A. Now we have x € tconvV C tconvconv A. It follows
x € conv tconv A by Lemma 1.9. Since A C U, this implies x € conv tconv U. U

Theorem 1.10 does not hold in general when n > 3. It is not difficult to find examples for
which conv(tconv V') is not tropically convex.

Example 1.11. Let P C R?® be the triangle in Figure 2 with vertices v; = (0,0,0), vy =
(1,2,3), and v3 = (4,1,7). The convex hull of tconv(vy, vy, v3) has 7 vertices and is not
tropically convex. In fact, it is possible to find a point x in the classical line segment vv3
such that the tropical convex hull of z and the midpoint of the line segment vsvs is not
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Figure 2. Ilustration of Example 1.11. Left: Convex hull of tconv(vy,vs,v3) with P in
bold. Right: Tropical convex hull of P with P in bold. The polytope on the left is strictly
contained in the polytope on the right.

contained in tconv(vy, ve, v3). Using Proposition 1.1 we compute the tropical convex hull of
P which is a polytope with 7 vertices strictly containing conv(tconv(vy, ve, v3)). A

2. POLYHEDRAL SETS

In this section we examine the tropical convex hull of arbitrary polyhedral sets, halfspaces,
and linear spaces. The main result of this section is Theorem 2.6 which classifies all tropically
convex ordinary polyhedra in R".

Lemma 2.1. If P C R" is a polyhedron (resp. cone, polyhedral complez, fan, polytope), then
tconv P is a polyhedron (resp. cone, polyhedral complez, fan, polytope).

Proof. If P is a polyhedron then tconv P is a polyhedron since it is the intersection of the
finitely many polyhedra P + S;. If P is a cone then P 4 S; is a cone for every j and (4)
implies that tconv P is also a cone.

Now let P be a polyhedral complex, so P = UY., P, where each P; is a polyhedron. By (4)

it follows that
N n N
tconv P = tconv (U ) ﬂ U (P +S;)

=1 7=01i=
Observe that by distributing the intersection over the union of Minkowski sums we obtain

the union of N™*! sets. Each set in the union is an intersection of n + 1 Minkowski sums of
the form (P, + So) N ... N (P, + S,), where (ig, ..., i,) € {N}", so

tconv P = U (Py+8o)N---N (P, +Sy)).

(0, nyin)E{N}+1

It follows that tconv P is a polyhedral complex since the finite intersection of polyhedra is a
polyhedron. In fact, the polyhedral structure may be given by a refinement of the polyhedral
complex whose polyhedra are {(Pi, +S8o) NN (P, +Sn) by, inyeqnynn - 1 Pis a fan, the
results on polyhedral complexes and cones 1mp1y tconv P is also a fan.

Lastly, let P be a polytope. To show tconv P is a polytope it suffices to show it is bounded.
Suppose tconv P is not bounded. Hence it contains a ray w + pos(v). Since P is bounded,
again (4) implies that pos(v) is contained in each sector S;. This is not possible since the
intersection of all sectors is the origin. O



8 CVETELINA HILL, SARA LAMBOGLIA, AND FAYE PASLEY SIMON

Using the following lemma, we classify all tropically convex ordinary halfpaces in Propo-
sition 2.3.

Lemma 2.2. Let H be a halfspace in R". If S; is one of the standard sectors in R"™ for
J € [nlo, then either H+S; =H or H+S; = R™.

Proof. Let H be defined by {D>_}_, axzr > 0} and let S; be one of the standard sectors in R”
for j € [n]o. If S; C H, then it follows immediately that H + S; = H.

Suppose that S; ¢ H. This means that at least one of the rays pose;,i # j, generating
S; is contained in H¢ equivalently Y . agey, < 0. We will consider two cases. First,
suppose that ¢ = 0, and recall that e = (1,...,1). It follows that poseq ¢ H, and hence
Yoo ar < 0. Ify € HE then Y aryr < 0. Let A € R such that

2 =1 WYk
D ket T
which implies MY, ar < > 7 agyr. Hence, 0 < Y7, ax(yx — A), implying that for any

y € HE, the point y — Aeg € H for the choice of A specified above.

For the second case let e; be the vector containing a —1 in position ¢ and 0 otherwise.
Suppose that pose; ¢ H and let y € H¢. Then we have that ZZ:l areir, = —a; < 0 and
> or_i agyr < 0. Let A € R be such that

A> > 0,

_Zk:1 QrYk < 0.
a;
Hence, =AY 7 arei+Y p_y aryr > 0and > 7, ar(y—Aes) > 0. It follows that y—Xe; € H.
This shows that if S; ¢ H, then any point in H¢ can be written as (y — Xe;) + Ae;, @ # J,
with y — Ae; € H. Hence, H +S; = R"™. O
Proposition 2.3. If H is a halfspace in R™, then either tconvH = H or tconv’H = R™.

Proof. By Proposition 1.1 we know tconvH = (7_,(S; + H). Using Lemma 2.2, if there
exists j € [n]o such that S; C H, then tconv H = H. Otherwise tconv H = R". O

A

The following proposition shows that a halfspace is tropically convex if and only if either
all of the entries of its inner normal vector are nonpositive, or it contains at most one positive
entry such that the sum of all entries is nonegative.

Proposition 2.4. A halfspace H = {>_,_, arx, > 0} in R™ is tropically convez if and only
if there exists a j € [n]o such that S; C H. This happens if and only if exactly one of the
following conditions is satisfied.

(i) If ax, <0 for every k € [n], then Sy C H.

(i) Ifa; >0, ay <0 for every k # j, and a; + > ap > 0, then S; C H.

Proof. The first statement follows immediately from Proposition 2.3. The sector §; is
contained in #H if and only if the spanning rays e; of S; for i # j satisfy the inequality
> i_i areir > 0. This inequality is satisfied precisely in cases (i) and (ii) listed above. O

Lemma 2.5. A linear space is tropically convex if and only if it is an intersection of hyper-
planes of the form {z; —x; =0|i # j} or {zx = 0}.

Proof. By [DS04, Theorem 2], hyperplanes of the form {z; — z; = 0} and {z; = 0} are
tropically convex. Hence, the intersection of any hyperplanes of this form is also tropically
convex.
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Conversely, let L C R™ be a linear space and suppose L is tropically convex. Consider
conv(0, z) for some x € L. By Corollary 1.7, the dimension of the tropical convex hull of
conv (0, z) is equal to the number of distinct nonzero coordinates of . Since L is tropically
convex, x has at most dim L distinct nonzero coordinates. This implies L is contained in
the union of the intersections of some hyperplanes {z; — z; = 0} and {x; = 0}. Since L is
convex, it follows that L is just an intersection of {z; —x; = 0} and {x; = 0} for some i # j
and k. 0J

The following theorem is the main result of this section.

Theorem 2.6. A full-dimensional ordinary polyhedron is tropically convex if and only if all
of its defining halfspaces are tropically convex.

Proof. Let P C R" be a full-dimensional, ordinary polyhedron. Since P is full-dimensional,
it has a unique, irredundant hyperplane representation. If all defining halfspaces of P are
tropically convex, then P is tropically convex.

Suppose that P is tropically convex and there exists a defining halfspace H of P that
is not tropically convex. Let H be the hyperplane at the boundary of H. Since H is not
tropically convex, it follows that H is not tropically convex. Otherwise, by Lemma 2.5 H
is parallel to one of the facets of the standard tropical hyperplane, so both H and —H
are tropically convex. Let z’,y’ € H such that tconv(2’,y') ¢ H. This implies that there
exist z,y € tconv(z’,y’) N H such that (tconv(z,y) \ {z,y}) C H° Hence, at least one
pseudovertex p of tconv(z,y) is in HC. After relabeling, we assume the coordinates of y — x
are ordered

y1—11 < S Ys —Ts 0 < yoy1 — Toq1 < S Y — T

Generalizing the result [DS04, Proposition 3] there are two forms for the pseudovertices of
tconv(z,y) in R™ based on the signs of the coordinates of the difference y — x. For any
s < j < n the pseudovertex is

P= (Y, Y2 Y Y — TjF Tjp, - Y — T+ Tp)

and for j < s the pseudovertex is (y1 — y; + Zj,...,Yj—1 — Yj + Zj, T, Tjt1, ..., Tn). We
provide the computation for the former and omit it for the latter as the proof is analogous.
Since p € H¢, it follows that >, axpr < 0.

Using a translation T" along H we can translate x and y so that at least one of the points T'x
or Ty is contained in P. Without loss of generality, we may assume that Tx € P. If Ty € P,
then we are done. Suppose that Ty ¢ P. Consider the line segment conv(Tx,Ty) C H,
which must intersect the boundary of P. Let the point of intersection be z, which can be
written as z = \T'x + (1 — \)Ty, for 0 < A < 1. We claim that tconv(Tz, z) ¢ H.

Note that one of the pseudovertices of tconv(Tx,z) is p' = (21, 29,...,25,2; — Tx; +
Txjtq,...,2; — Txj+ Tx,). We will show that p’ € H. Note that

Zakpk = a1Y1 + -t ajyj + CLj_H(yj — l’j + l’j+1) + -+ CLn(’yj — l’j + In)
k=1

J n
:Zakyk—ir Z ap(y; —x;) + Z arxr < 0
k

k=1 k=j+1 =j+1

where the inequality is preserved under the translation 7. That is, >, a;Tpx < 0.
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We compute the following:
n

Z Py = 121 + aszo + -+ + a;z; + aji1(z; — Ty + Txjp) + -+ an(z; — Ty + Txy,)
k=1

7 n n
= E apzE + E ak(zj — T&ZJ) + E akak
k=1 k=j+1 k=j+1

<.

n

ar(NTap + (L= NTyp) + Y ag(ATx;+ (1= NTy; — Tay) + > Ty

k=1 k=j+1 k=j+1
i n n
=(1=X)) aTy+ 1 =X D ap(Ty;—Tr)+ (1= Y aTx.
k=1 k=j+1 k=j+1

Hence, Y, agpl, = (1 = N)>_;_, axTpr, < 0. This implies that there are two points in P,
namely Tz and z, whose tropical convex hull is not in P. This contradicts the assumption
that P is tropically convex. 0

Corollary 2.7. Let P C R™ be a polyhedron of dimension d < n. P is tropically convex
if and only if it is contained in a tropically conver linear space L of dimension d and its
‘H-representation in L is given only by tropically convex halfspaces.

Proof. After translation, we may assume that P contains the origin. Hence, P is contained
in a unique, d-dimensional linear subspace L. If L is tropically convex, then by Lemma 2.5
P is contained in the intersection of finitely many hyperplanes of the form {z; = 0} for
k € [n], and {x; —x; =0 | i # j} for i,j € [n]. Now we can work in L by deleting the
and z; coordinates. Note that the restriction of this projection map to P is an isomorphism.
We now consider P in the d-dimensional linear subspace L. Equivalently, we can work in
R? where P is full-dimensional and has a unique, irredundant halfspace representation. By
Theorem 2.6 it follows that P is tropically convex in L if and only if the halfspaces defining P
in L are tropically convex. Hence, the inner normal vectors of the defining halfspaces satisfy
Proposition 2.4. The lift of each of these hyperplanes to R™ will have the same equation,
hence it still satisfies the conditions of Proposition 2.4. Therefore, each halfspace in L is
tropically convex in L if and only if it is tropically convex in R™.

Suppose that L is not tropically convex. Then there exist two points x,y € L such that
tconv(z,y) ¢ L. Using a translation argument similar to that in the proof of Theorem 2.6,
we can find two points T'x, z € P whose tropical convex hull is not contained in P. Hence,
P is not tropically convex. U

Remark 2.8. The authors of [FK11] characterize distributive polyhedra. Any such polyhe-
dron P has the property that min(x,y) and max(x,y) are contained in P. Note that only
polytropes are distributive polytopes. This is not true for tropically convex polyhedra. For
example, consider the triangle P C R? in Figure 3 whose vertices are the origin, (3, 1), and
(1,3). This is a tropically convex polytope by Theorem 1.10, but not a distributive polytope.
In particular, it is not max-closed since max(B,C) ¢ P.
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Figure 3. A tropically convex triangle that is not distributive since the point max(B, C) is
not contained in it. In black the tropical convex hull of the vertices.

3. LOWER BOUND ON THE DEGREE OF A TROPICAL CURVE

For the remainder of the paper we use an alternative definition of the tropical convex hull
from [DS04, Proposition 4]. We work in the tropical projective torus PT" & R"*!/R1 which
is isomorphic to R™ as follows. Given a set U C R"*!, its tropical convex hull is the set of
all possible tropical linear combinations a1 ©® u; ®...® a ® ug with u; € U and a; € R.
With this definition we have tconv U+R1 = tconv U. Taking the quotient with R1 we obtain

tconv U = tconv {u € R" : (0,u) + R1 C U}

computed using (3). It follows that the results obtained in Section 1 also hold in this case.

Let T" be a tropical curve. This is a weighted balanced rational polyhedral complex of
dimension one in PT™. The degree of I' is defined to be the multiplicity at the origin of the
stable intersection between I' and the standard tropical hyperplane [MS15, Definition 3.6.5].
For realizable curves, this is equal to the degree of any classical curve which tropicalizes to I'
[MS15, Corollary 3.6.16]. Let 11, ..., be the rays of a tropical curve I where r; = w-+pos(v;)
for some w € PT". Since I' C PT"™ we can choose each v; € PT" to be the minimal nonnegative
integer vector representative that generates r;. If the multiplicity of the ray r; in I' is m,,
then by [BGS17, Lemma 2.9] we have

9) (degI)1 = Z m;v;.

i=1
The main result of this section is Theorem 3.4, which states that a tropical ffan curve I"
satisfies the inequality

(2) dim tconv ' < degT'.

The proof relies entirely on tropical and combinatorial techniques and uses results from
Sections 1 and 2. Here we state the following two results we reference within the subsequent
proofs.

Theorem 3.1. [DSS05, Theorem 4.2] The tropical rank of a k x n matriz M is equal to one
plus the dimension of the tropical convex hull of the columns of M in R*¥/R1.

Lemma 3.2. [RGSTO05, Lemma 5.1] An n x n matric M is singular if and only if its rows
lie on a tropical hyperplane in R™/R1.

As a first step towards proving (2), we prove the following lemma.
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Lemma 3.3. If[' C PT" is a fan tropical curve and W C T is finite, then

dimtconv W < degl'.

Proof. Let degl’ = d and I be given by rays r, = pos(vy),...,rr = pos(vx) with minimal
nonnegative vectors vy, ...,vx. Let W C I' be a finite set of points and Supp W denote the
set of minimal nonnegative vectors of rays which contain a point of W. That is,

Supp W = {v; | w € pos(v;) for some w € W}.

First suppose | Supp W| =1, so W C r; for some i € [k] and dim tconv W < dim tconv r;.
Each ray of I" has at most d nonzero distinct entries since degl’ = d. By Lemma 1.8 this
means dim tconv r; < d for all ¢ € [k] and dim tconv W < d.

Let M be the (n 4+ 1) X k matrix whose columns are vq,...,v;. We also assume n + 1,
k > d+ 2. Otherwise, the result is trivially true. We will show that the tropical rank of
M is at most d + 1, implying that tconv(vy,...,vx) < d. Let D be any (d + 2) x (d + 2)
submatrix of M. Each row of D has all nonnegative entries and must have at least two
zeros because degI' = d. Hence, the rows of D lie in the tropicalization of the ordinary
hyperplane V (zg + ...+ x4.1) in PT!. By Lemma 3.2 this implies D is tropically singular,
so the tropical rank of M is at most d+ 1. Using Theorem 3.1 we deduce that the dimension
of the tropical convex hull of the columns of M is at most d.

Now suppose | Supp W| = |W|, so each point of W is on a distinct ray of . More
specifically, each point of W is a classical scalar multiple of some distinct v;. The tropical
convex hull of any d + 2 columns of M has dimension at most d and the same holds if each
column is scaled since the location of the zero entries is not affected.

Next suppose 1 < | Supp W| < |W| and let W = {wy, ..., ws}. Let M’ be the (n+1) x s
matrix whose columns are wq,...,w,. More specifically, its columns are classical scalar
multiples of some v;s in SuppW. We know from the previous case that M is tropically
singular and the tropical rank is at most d + 1. By Lemma 3.2 we have that the columns
of any (d + 2) x (d + 2) submatrix of M are contained in some hyperplane in PT¢L. If a
point is contained in a tropical hyperplane, so is any classical scalar multiple of that point
since any tropical hyperplane is a fan. For this reason, the columns of any (d + 2) x (d 4 2)
submatrix of M’ must also be contained in at least one of these hyperplanes of PT¢*! from
before. Therefore, M’ has tropical rank at most d + 1 and dim tconv W < d. 0

Theorem 3.4. If I' C PT" is a fan tropical curve, then dimtconvI' < degT'.

Proof. Let degl” = d and suppose dim tconv ' = d + 1. Since tconv [ is a fan, there exists a
point p with d + 2 distinct coordinates by Lemma 1.8. Moreover, I" contains the ray pos(p).
Note that we can choose p to be the minimal nonnegative integer vector that generates this
ray. Since p has d + 2 distinct coordinates, we may assume that 0 = pg < p1 < -++ < pgs1-
Let \;p be d + 2 distinct points on the ray pos(p) and assume A\; < Ay < -+ < Agyo. Let
M, be the (n 4+ 1) x (d 4+ 2) matrix whose columns are \;p for i € [d + 2]. Then, up to
permutation of rows, M, contains the (d + 2) x (d + 2) submatrix

0 0 o 0
Aip1 AaD1 . )\d+2p1

D= : : . :
AMDd AoDa .. Adt2Dd

AMPd41 AoPd+1 - - Ad42Dds1
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We will show that D has tropical rank d 4 2 by showing that the tropical determinant of D
has a unique minimum attained on its antidiagonal. Using Laplace expansion along the first
row, we write the tropical determinant of D as

tropDet(D) = z‘éﬁzifz] 0 + tropDet(D;)

where D; is the (d + 1) x (d + 1) submatrix of D obtained by deleting its first row and ith
column. We first claim that tropDet(D;) = m; for any i € [d 4+ 2] where
m; = MPa+1 + AoPa + AsPa—1 + - -+ + Aic1Pa—its + Ait1Pa—it2 + -+ + Aap1P2 + Aasapi
Recall that for a (d + 1) x (d + 1) matrix X, its tropical determinant can be written
tropDet(X) = @ T10(1) © Tog(2) © **+ O Tay1,0(d+1)-

UESd+1

Let

a(m;) = MDo(a+1) + AoDo(d) + AsPo(d—1) + - = + Nic1Do(d—it3)
+ At 1Po(d—it2) T+ Ady1Po(2) T Adr2Po(1)-
Any permutation o can be decomposed into adjacent transpositions of the form 7 = (j, 7+1).
It suffices to show that m; < 7(m;) to conclude m; < o(m;) for any permutation o € Syy1.
Let 7(m;) represent the expression m; where p; and p;;; have been exchanged. First, suppose
that j > d — i 4+ 2, which implies that
m; — 7(mi) = (Ad—j+2 — Aa—j+1) (P; — Pj41) < 0.
Similarly, if 7 < d — i+ 2, then
m; = 7(mi) = (Aa—j+3 — Aa—j+2)(P; — Pj+1) < 0.
If j=d—i+ 2, then
m; — 7(m;) = (N1 — Nic1) (Pa—iv2 — Pa—ivs) < 0.
It follows that m; < 7(m;) for any transposition 7 = (7,7 + 1).
Finally, we have tropDet(D) = min;c[q49 m;. For any i € [d 4 1]
Mit1 —m; = (a; — Q1) Pa—iv2 < 0.

meaning m; 1 < m;. Hence the unique minimum is obtained for « = d + 2. This implies D
has tropical rank at least d 4+ 2, so by Theorem 3.1 the dimension of the tropical convex hull
of the columns of D is at least d + 1 which contradicts Lemma 3.3. O

The following proposition shows that (2) holds for some special types of tropical curves
which are not fans.

Proposition 3.5. Let I' be a tropical curve in PT"™ with rays rq,...,7. If dimtconvl =
max;ck{dim tconv r;}, then dimtconvI' < degl'.

Proof. Let dimtconv ' = max;cp{dimtconvr;} = d and vy,...,v, € PT" be the minimal
nonnegative integer vectors such that r; = w; + pos(v;) C PT" for i € [k]. Then there exists
some j € [k] such that dim tconv r; = d. By Corollary 1.7 v; has d+1 distinct entries. Hence
the maximum component of v; is at most d. By (9) we have that dimtconvl' = d < degl'. O

However, Proposition 3.5 does not hold for all tropical curves.
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Example 3.6. Let I' be the fan tropical curve in PT? with rays spanned by (0, 1,0), (0,0, 1),
(0,0,—1), and (0,—1,0) emanating from the origin. Each ray r C T is tropically con-
vex 80 max,cr{dimtconvr} = 1. However, dimtconvI' = 2. In fact, tconv(pos(0,—1,0),
pos(0,0,1)) is the 2-dimensional cone spanned by (0, —1,0) and (0,0, 1). A

Finally, we give an example of a tropical curve where the smallest dimension of a linear
space containing it is larger than the dimension of the tropical convex hull of the curve.

Example 3.7. Consider the tropical curve I'p over the field of Puiseux series C{{#}} given
by the fan whose rays are the columns of Mg :

1110000
1001100
1000011
Mp=101 01010
0010110
0011001

01 001O01

The curve I'r has degree 3 and there is no 2 dimensional tropical linear space containing it
[MS15, Section 5.3]. We now prove that dimtconvI'p = 2.

Let vq,v,...,v7 € PT® denote the columns of Mp. Using Macaulay?2 [GS02] we com-
pute that the tropical rank of Mp is 3. By Theorem 3.1 dimtconv(vy,...,v7) = 2 hence
dim tconv 'y > 2. We will show that dimtconv V' < 2 for any finite V' C I'r. Note that this
is not implied by Lemma 3.3.

For a finite set V' C I'r we can consider Supp V' as in the proof of Lemma 3.3. Suppose
that | Supp V| = 7, implying that each point of V' C I'r is on a distinct ray. The tropical
rank of My is 3 and is invariant under positive scaling of the columns of Mg, which implies
dim tconv (A vy, ..., A7v7) < 2 for any A; > 0. If all 7 points are on the same ray we have
that dim tconvpos(v;) = 1 for each i € [7], since each ray is tropically convex. Hence,
dimtconv V' = 1. For the last case, suppose V' C I'r is such that | Supp V| < 7. For each
i€ [T let Vi = { i1vi, ..., Aig,vi ) €V and Apax, = max{\;, ..., Ay, }. Since each V; lies on
a tropically convex ray, it follows that V; C tconv(0, Apax,v:) C tconv(Amax, V15 - - + » Amaxy U7)-
Hence, tconv V' C tconv(Amax, V15 - - -, Amax,07)- The dimension of the tropical convex hull of
any choice of the columns of M is at most 2, hence dim tconv V' < 2.

In order to prove that dimtconv 'z < 2 we use a similar argument to the one in the proof
of Theorem 3.4. Suppose that dim tconvI'r = 3. By Corollary 1.7, tconv 'z contains a point
p with 4 distinct coordinates. Since I'r is a fan, Corollary 2.1 implies that tconv I'r contains
the ray pos(p), and we can choose p to be the minimal nonnegative integer vector generating
the ray. We may assume that 0 = py < p1 < pa < p3. Let aip, asp, asp, and asp be four
distinct points on pos(p) with 0 < a1 < as < az < ay4. Let M, be the matrix with columns
a;p for ¢ € [4]. Up to permutation of the rows, M, contains the 4 x 4 submatrix

0 0 0 0
D — aipr Q2p1 Gzp1 G4P1
aip2 Q2p2 azpPz  G4P2
aips Qgps a3P3  A4P3
The tropical determinant of D is aips + asps + asp;, and D is tropically nonsingular.
Hence, the tropical rank of M, is at least 4 and dimtconv(ap,...,asp) > 3. Each a;p €



TROPICAL CONVEX HULLS OF POLYHEDRAL SETS 15

tconv ' can be written as a tropical linear combination of a finite number of points on I'g.
Hence, tconv(aip, ..., asp) C tconv W for a finite W C I'p. This is a contradiction because
dim tconv W < 2 for all finite W C I'r. Thus dimtconvI'p = 2. A
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