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Abstract. In this paper we focus on the tropical convex hull of convex sets and polyhedral
complexes. We give a vertex description of the tropical convex hull of a line segment and
a ray. Next we show that tropical convex hull and ordinary convex hull commute in two
dimensions and characterize tropically convex polyhedra in any dimension. Finally we show
that the dimension of a tropically convex fan depends on the coordinates of its rays and
give a lower bound on the degree of a fan tropical curve using only tropical techniques.

Introduction

Tropical convexity is the analog of classical convexity in the tropical semiring (R,⊕,�)
where a⊕ b = min(a, b), and a� b = a+ b. The goal of this paper is to explore the interplay
between tropical convexity and its classical counterpart. Our aim is to describe the tropical
convex hull of polyhedra, polyhedral complexes, and in particular, tropical curves.

The primary focus of tropical convexity is the study of tropical polytopes : the tropi-
cal convex hull of finite sets. These are widely studied [DS04, CGQS05, CGQ04, GS07,
Jos05, GM10, AGG10] and find applications in various areas of mathematics. Recently, tech-
niques from tropical convexity have been applied to mechanism design [CT16], optimization
[AGG12], and maximum likelihood estimation [RSTU18]. Some specific applications are the
resolution of monomial ideals [DY07], and discrete event dynamic systems [BCOQ92]. More-
over, computational tools exist to aid in further study of tropical polytopes [Jos09, AGG10].

A tropical polytope is not always classically convex, but does have an explicit description
as the finite union of some ordinary polytopes [DS04]. Tropical polytopes which are also
ordinary polytopes are called polytropes as discussed in [JK10]. However, there exist ordinary
polytopes which are tropically convex, but are not finitely generated (for an example, see
Figure 3). Here we further examine this relationship between classical convexity and tropical
convexity by studying the structure of the tropical convex hull of polyhedral sets. Our first
result is the following:

Theorem (Theorems 1.4 and 1.10). If a, b ∈ Rn and U ⊂ R2, then

(i) tconv conv(a, b) = conv tconv(a, b);
(ii) tconv pos(a) = pos tconv(0, a);

(iii) tconv convU = conv tconvU .

Ordinary and tropical convex hull do not commute as in part (i) even for small examples
(e.g., triangles) in dimension 3. However, the tropical convex hull of an ordinary poly-
hedron is itself an ordinary polyhedron. We characterize which ordinary polyhedra are
tropically convex.

Theorem (Theorem 2.6). A full-dimensional ordinary polyhedron is tropically convex if and
only if all of its defining halfspaces are tropically convex.
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Many properties and theorems valid in classical convexity are also valid in the tropi-
cal setting; for example, separation of convex sets [CGQ04, GS07], Minkowski-Weyl The-
orem [GK07, GK11, Jos05], Carathéodory and Helly Theorems [DS04, GM10], and Farkas
Lemma [DS04].

Here we consider the classical result in algebraic geometry (see for example [EH87]) which
bounds the degree of a projective variety X from below by

(1) dim spanX − dimX + 1 ≤ degX.

Our first aforementioned result describing the tropical convex hull of line segments and rays
provides some information on the dimension of tropical convex hulls. Using this result we
study a tropical analogue of (1) in the case of tropical curves. We can substitute spanX
either with the tropical convex hull of a tropical curve Γ or with a tropical linear space
of smallest dimension containing Γ. The latter may not be unique and it is not easy to
determine. Thus, we choose to replace spanX with tconv Γ. The tropical analogue of (1) we
consider is

(2) dim tconv Γ ≤ deg Γ.

If Γ is realizable, then this follows immediately from the classical inequality (1). In Section 3
we give a proof of (2) for fan tropical curves that relies entirely on tropical techniques.

The structure of this paper is as follows. In Section 1 we recall basic definitions of tropical
convexity. Then we describe the tropical convex hull of a line segment and a ray as ordinary
polyhedra. Using this result we show the dimensions are easily calculable using coordinates
of the respective endpoints. We also prove that ordinary and tropical convex hull commute
in two dimensions. In Section 2 we prove that convexity and polyhedrality are preserved
after taking the tropical convex hull. Next we classify tropically convex ordinary halfspaces,
linear spaces, and polyhedra. Finally, in Section 3, we use our results to prove the inequality
(2) in the case of fan tropical curves.

1. Line segments, rays, and sets in R2

Key definitions from tropical convexity are presented in the first part of this section. A
description of the tropical convex hull of any arbitrary set is given in Proposition 1.1. In
Theorem 1.4 we show that ordinary and tropical convex hull commute in any dimension in
the case of two points. This allows us to find the dimension of the tropical convex hull of a
line segment or a ray using the coordinates of its endpoints in Corollary 1.7. We also prove
ordinary and tropical convex hull always commutes in two dimensions in Theorem 1.10.

A set U ⊂ Rn is tropically convex if (a� x)⊕ (b� y) is in U for any x, y ∈ U and a, b ∈ R
with a⊕ b = 0. The tropical convex hull of U ⊂ Rn is the smallest tropically convex set that
contains U. This is defined equivalently in [GK07] by

(3) tconvU =
⋃

V⊂U :|V |<∞

tconv V.

If V = {v1, . . . , vk} is a finite set, then by [GK07, Definition 2.1] its tropical convex hull
is given by

tconv V =

{
a1 � v1 ⊕ · · · ⊕ ak � vk | ai ∈ R,

k⊕
i=1

ai = 0

}
.
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Figure 1. Illustration of Proposition 1.1 in PT2. From left to right: The three sectors, a
polytope P , the Minkowski sums P + S0, P + S1, P + S2, and tconvP .

Furthermore, points in tconv V can be characterized by types as defined in [DS04]. Let
[n] = {1, . . . , n} and [n]0 = {0, 1, . . . , n}. Given a point x ∈ Rn, the type of x relative to V ,
or covector in [FR15, LS19], is the n-tuple Tx = (T1, . . . , Tn) such that Tj ⊆ [k] for all j,
and i ∈ Tj if min(vi− x) is obtained in the jth coordinate. This is equivalent to saying that
i ∈ Tj if x ∈ vi + Sj, where Sj is a sector of Rn spanned by {−ei : i ∈ [n]} for j = 0, and
{e0,−ei : i ∈ [n], i 6= j} for j ∈ [n]. Here e1, . . . , en represent the standard unit vectors in Rn

with eij = 1 if i = j and eij = 0 otherwise. We denote the vector
∑n

i=1 ei by e0. The cone
Sj is the closure of one of the n+ 1 connected components of Rn \ Ln−1. Here Ln−1 denotes
the max-standard tropical hyperplane, or the tropicalization of V (x1 + . . .+xn + 1) with the
max convention, whose cones are pos(−ei1 , . . . ,−ein).

The proof of the Tropical Farkas Lemma [DS04] states that x ∈ tconv V if and only if
the jth entry of Tx is nonempty for all j, meaning there exists at least one vi such that
x ∈ vi + Sj [JL16, Lemma 28]. As a consequence, we have the following proposition which
also holds true in the case of U ⊂ (R∪ {∞})n [LS19, Proposition 7.3]. We give here a proof
for completeness. Figure 1 gives an example of (4) in R2.

Proposition 1.1. If U ⊂ Rn, then the tropical convex hull of U is equal to the intersection
of the Minkowski sums of U with each of the sectors. That is

(4) tconvU =
n⋂
j=0

(U + Sj).

Proof. If x ∈ tconvU , then (3) implies that x ∈ tconv V for some finite set V ⊂ U. By the
Tropical Farkas Lemma [DS04] we obtain x ∈

⋂n
j=0(V + Sj), hence x ∈

⋂n
j=0(U + Sj). On

the other hand, if x ∈
⋂n
j=0(U + Sj), then there exist u1, . . . , un ∈ U such that x ∈ uj + Sj

for every j. For V = {u1, . . . , un} it follows that x ∈
⋂n
j=0(V +Sj) = tconv V ⊂ tconvU. �

As a direct consequence of Proposition 1.1 we obtain Corollary 1.2. Note that it can also
be proven directly by using the definition of tropical convex hull. Lemma 1.3 shows that
repeatedly taking the convex hull and tropical convex hull of a set stabilizes after one step.

Corollary 1.2. If P ⊂ Rn is convex, then tconvP is convex.

Corollary 1.3. If U ⊂ Rn, then tconv convU = tconv(conv tconvU).

Proof. The forward direction is immediate since convU ⊂ conv tconvU. The containment
tconvU ⊆ tconv convU and Corollary 1.2 imply conv tconvU ⊆ tconv convU, so its tropical
convex hull is also contained in tconv convU . �

Let a and b be points in Rn. For the remainder of the section we assume that

(5) a = (0, . . . , 0) and 0 < b1 < · · · < bn.
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In this case, using [DS04, Proposition 4], the tropical line segment tconv(a, b) is a concate-
nation of line segments with n+ 1 pseudovertices in Rn given by p0 = a and

(6) pj = (b1, . . . , bj−1, bj, . . . , bj) for j ∈ [n].

If a and b do not satisfy (5), we can apply first a linear transformation which translates a
to the origin and then another that relabels coordinates so that 0 ≤ b1 ≤ . . . ≤ bn. If bi = bj
for some i 6= j or bj = 0 for some j, then the pseudovertices of tconv(a, b) lie in the tropically
convex hyperplane xi − xj = 0 or xj = 0 and the same holds for conv tconv(a, b) [DS04,
Theorem 2]. Thus tconv conv(a, b) and conv tconv(a, b) lie in the hyperplane xi − xj = 0 or
xj = 0. Each of these hyperplanes is isomorphic to Rn−1. We can repeat this process until
the appropriate projection of b has distinct positive coordinates.

The following theorem shows that the tropical convex hull and convex hull commute for
two points in Rn for all n.

Theorem 1.4. If a, b are points in Rn, then

(i) tconv conv(a, b) = conv tconv(a, b);
(ii) tconv pos(a) = pos tconv(0, a).

Corollary 1.2 implies the forward containment of Theorem 1.4(i). For the converse, we use
an explicit description of conv tconv(a, b) given in the following lemma.

Lemma 1.5. If a, b ∈ Rn satisfy a = (0, . . . , 0) and 0 < b1 < · · · < bn, then conv tconv(a, b)
is a full-dimensional simplex whose H−representation is given by

b1 − x1 ≥ 0

−(bj+1 − bj)xj−1 + (bj+1 − bj−1)xj − (bj − bj−1)xj+1 ≥ 0 for j ∈ [n− 1].

−xn−1 + xn ≥ 0

(7)

Proof. Observe that the vertices of conv tconv(a, b) are the pseudovertices p0, . . . , pn of
tconv(a, b) as described in (6). These are n + 1 affinely independent points of Rn since
the vectors p1−a = p1, . . . , pn−1−a = pn−1, b−a = b are linearly independent. This implies
conv tconv(a, b) is a simplex. Hence, each of its n+ 1 facets is the convex hull of n vertices.
To show that (7) is the H−representation of conv tconv(a, b) we will show that the corre-
sponding equation of each one of the n + 1 inequalities is the hyperplane supporting one of
the facets of conv tconv(a, b).

Let x = (x1, . . . , xn) be a point in conv tconv(a, b) = conv(a, p1, . . . , pn−1, b). The jth
coordinate of x is given by

xj = λ1b1 + . . .+ λj−1bj−1 + (λj + λj+1 + . . .+ λn) bj

where λ1 + . . . + λn ≤ 1 and λi ≥ 0 for every i. Substituting the coordinates of x into
the first linear form of (7) we obtain (1 − λ1 − · · · − λn)b1. Since λ1 + . . . + λn ≤ 1 and
b1 ≥ 0 it follows that b1 − x1 ≥ 0. Note that equality occurs if and only if x is in the
facet conv(p1, . . . , pn−1, b). Thus, b1 − x1 = 0 defines this facet of conv tconv(a, b), that is
{b1 − x1 = 0} ∩ conv tconv(a, b) = conv(p1, . . . , pn−1, b).

After substituting into the second linear form of (7) we have that

−(bj+1 − bj)xj−1 + (bj+1 − bj−1)xj − (bj − bj−1)xj+1 = λj(bj−1 − bj)(bj − bj+1).

Since λj ≥ 0 and bj ≥ bj−1 for each j, we know x satisfies the second inequality. Here
equality occurs if and only if x is in the facet conv(a, p1, . . . , pj−1, pj+1, . . . , pn−1, b), so

−(bj+1 − bj)xj−1 + (bj+1 − bj−1)xj − (bj − bj−1)xj+1 = 0
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defines this facet of conv tconv(a, b) for each j ∈ [n− 1].
Lastly, we have that −xn−1 + xn = λn(bn− bn−1) ≥ 0. Equality holds if and only if x is in

the facet conv(a, p1, . . . , pn−1), and hence this facet is defined by −xn−1 + xn = 0. �

Lemma 1.6. If a, b ∈ Rn and V is a finite subset of conv(a, b), then

tconv(V ) ⊂ conv tconv(a, b).

Proof. Without loss of generality, assume a = (0, . . . , 0) and 0 < b1 < . . . < bn. Let
V = {λ1b, λ2b, . . . , λrb} ⊂ conv(a, b) for some parameters λi ∈ [0, 1]. Assume the pa-
rameters are ordered 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λr ≤ 1. Take x ∈ tconv V and let Tx be the type
of x relative to V. By [DS04, Lemma 10], the point x satisfies

(8) xk − xj ≤ λi(bk − bj) for j, k ∈ [n] with i ∈ Tj.
We will show that x satisfies the H-representation of conv tconv(a, b) given in Lemma 1.5.
Since the union of all coordinates Tj of Tx covers [r], (8) implies that

0 ≤ xj+1 − xj
bj+1 − bj

≤ xj − xj−1

bj − bj−1

≤ 1 for all j ∈ [n− 1].

For j = 1, this implies
x1

b1

≤ 1, so b1 − x1 ≥ 0. For j ∈ [n − 1], rewriting the inequality

xj+1 − xj
bj+1 − bj

≤ xj − xj−1

bj − bj−1

shows that −(bj+1 − bj)xj−1 + (bj+1 − bj−1)xj − (bj − bj−1)xj+1 ≥ 0.

Lastly, if j = n− 1, then 0 ≤ xn − xn−1

bn − bn−1

, so −xn−1 + xn ≥ 0. �

Proof of Theorem 1.4. For part (i), assume without loss of generality that a = (0, . . . , 0)
and 0 < b1 < · · · < bn. Corollary 1.2 and the containment tconv(a, b) ⊂ tconv conv(a, b)
imply that conv tconv(a, b) ⊆ tconv conv(a, b). Now take x ∈ tconv conv(a, b). Since the
tropical convex hull of a set is the union of the tropical convex hulls of all its subsets, it
follows that there is a finite set V ⊂ conv(a, b) such that x ∈ tconv(V ). Lemma 1.6 implies
tconv(V ) ⊂ conv tconv(a, b), so x ∈ conv tconv(a, b).

To show part (ii), take x ∈ tconv pos(a). There exist scalars λ0, . . . , λn ≥ 0 such that
λja ∈ pos(a) for each j ∈ [n]0 and x ∈ tconv(0, λ0a, . . . , λna). Assume the scalars are
ordered λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn so x ∈ tconv conv(0, λna). By Theorem 1.4(i) it fol-
lows that x ∈ conv tconv(0, λna). Furthermore, this means x ∈ pos tconv(0, λna). The
pseudovertices of tconv(0, λna) and tconv(0, a) are scalar multiples of one another mean-
ing x ∈ pos tconv(0, a). The other inclusion pos tconv(0, a) ⊂ tconv pos(0, a) follows from
Corollary 1.2. �

Corollary 1.7. If a and b are points in Rn, then

(i) dim tconv conv(a, b) is the number of nonzero distinct coordinates of a− b;
(ii) dim tconv pos(a) is the number of nonzero distinct coordinates of a.

Proof. Part (i) follows from the proof of Lemma 1.5 since tconv conv(a, b) is a full-dimensional
simplex in Rd where d is the number of nonzero distinct coordinates in a − b. For part (ii)
observe that the generators of pos tconv(0, a) are the pseudovertices of tconv(0, a) which are
vertices of tconv conv(0, a). �

As a consequence of Corollary 1.7 we have the following result for tropically convex fans.
An application of this lemma appears in Section 3.
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Lemma 1.8. If F is a tropically convex fan in Rn, then dimF is equal to the maximum
number of nonzero distinct coordinates of a point in F.

Proof. Let d be the maximum number of nonzero distinct coordinates of any point in F ,
and let x be one such point in F. Since F is a tropically convex fan it contains tconv pos(x).
Corollary 1.7 implies that dim tconv pos(x) = d, hence dim F ≥ d. Suppose that dimF > d.
Let C be a cone contained in F such that dimC = dimF . By hypothesis, each point in C
has at most d nonzero distinct coordinates. This implies that C is contained in the union of
finitely many linear spaces in Rn of dimension at most d. This contradicts the assumption
that dimC = dimF > d. �

Now we consider arbitrary sets in R2 and give a generalization of Theorem 1.4.

Lemma 1.9. If V ⊂ R2 is finite, then tconv conv V = conv tconv V.

Proof. We prove the lemma by showing that each vertex of tconv conv V is either a point in
V or a pseudovertex of tconv V .

By Proposition 1.1 we know tconv conv V =
⋂2
j=0(Sj + conv V ). A face of a Minkowski

sum of polyhedra is a Minkowski sum of a face from each summand. Since Sj has only one
vertex, namely the origin, it follows that the vertices of Sj +conv V are precisely the vertices
of conv V . The facets of Sj + conv V arise as either the sum of the vertex of Sj and an edge
of conv V , or as the sum of a vertex of conv V and a ray of Sj. In the former case, these are
simply the edges of conv V . In the latter case, these are the unbounded edges parallel to a
ray of Sj and the vertex of each of them is a vertex v ∈ V .

From this description of the facets and vertices of Sj + conv V we deduce that a vertex of
tconv conv V is either a vertex of conv V or it is the intersection of a facet of Si + conv V
and a facet of Sj + conv V for some i, j ∈ [2]0. Suppose that neither of the facets is an
edge of conv V (Otherwise we would get a vertex of conv V .), then the intersection point is
a pseudovertex of tconv(v, w) and a vertex of conv tconv V . Suppose that only one of the
facets is an edge of conv V . This intersection point must be a vertex of conv V . Otherwise
it is in the interior of the edge of conv V , which implies that the ray intersecting the edge
also intersects the interior of conv V and hence is not a facet. �

Theorem 1.10. If U ⊂ R2, then tconv convU = conv tconvU .

Proof. The forward containment is implied by the fact that tconv convU is convex by Corol-
lary 1.2.

For backward containment, suppose that x ∈ tconv convU . Then by (3) it follows that
there exists a finite set V ⊂ convU , such that x ∈ tconv V . The classical Carathéodory
Theorem implies that each point vi ∈ V can be written as a convex combination of finitely
many points in U . Call this set Ai ⊂ U . Since V is finite, it follows that A =

⋃
iAi is a

finite subset of U and V ⊂ convA. Now we have x ∈ tconv V ⊂ tconv convA. It follows
x ∈ conv tconvA by Lemma 1.9. Since A ⊂ U , this implies x ∈ conv tconvU . �

Theorem 1.10 does not hold in general when n ≥ 3. It is not difficult to find examples for
which conv(tconv V ) is not tropically convex.

Example 1.11. Let P ⊂ R3 be the triangle in Figure 2 with vertices v1 = (0, 0, 0), v2 =
(1, 2, 3), and v3 = (4, 1, 7). The convex hull of tconv(v1, v2, v3) has 7 vertices and is not
tropically convex. In fact, it is possible to find a point x in the classical line segment v1v3

such that the tropical convex hull of x and the midpoint of the line segment v2v3 is not
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Figure 2. Illustration of Example 1.11. Left: Convex hull of tconv(v1, v2, v3) with P in
bold. Right: Tropical convex hull of P with P in bold. The polytope on the left is strictly
contained in the polytope on the right.

contained in tconv(v1, v2, v3). Using Proposition 1.1 we compute the tropical convex hull of
P which is a polytope with 7 vertices strictly containing conv(tconv(v1, v2, v3)). 4

2. Polyhedral sets

In this section we examine the tropical convex hull of arbitrary polyhedral sets, halfspaces,
and linear spaces. The main result of this section is Theorem 2.6 which classifies all tropically
convex ordinary polyhedra in Rn.

Lemma 2.1. If P ⊂ Rn is a polyhedron (resp. cone, polyhedral complex, fan, polytope), then
tconvP is a polyhedron (resp. cone, polyhedral complex, fan, polytope).

Proof. If P is a polyhedron then tconvP is a polyhedron since it is the intersection of the
finitely many polyhedra P + Sj. If P is a cone then P + Sj is a cone for every j and (4)
implies that tconvP is also a cone.

Now let P be a polyhedral complex, so P = ∪Ni=1Pi where each Pi is a polyhedron. By (4)
it follows that

tconvP = tconv

(
N⋃
i=1

Pi

)
=

n⋂
j=0

N⋃
i=1

(Pi + Sj).

Observe that by distributing the intersection over the union of Minkowski sums we obtain
the union of Nn+1 sets. Each set in the union is an intersection of n+ 1 Minkowski sums of
the form (Pi0 + S0) ∩ . . . ∩ (Pin + Sn), where (i0, . . . , in) ∈ {N}n+1, so

tconvP =
⋃

(i0,...,in)∈{N}n+1

((Pi0 + S0) ∩ · · · ∩ (Pin + Sn)).

It follows that tconvP is a polyhedral complex since the finite intersection of polyhedra is a
polyhedron. In fact, the polyhedral structure may be given by a refinement of the polyhedral
complex whose polyhedra are {(Pi0 + S0) ∩ · · · ∩ (Pin + Sn)}(i0,...,in)∈{N}n+1 . If P is a fan, the
results on polyhedral complexes and cones imply tconv P is also a fan.

Lastly, let P be a polytope. To show tconvP is a polytope it suffices to show it is bounded.
Suppose tconvP is not bounded. Hence it contains a ray w + pos(v). Since P is bounded,
again (4) implies that pos(v) is contained in each sector Sj. This is not possible since the
intersection of all sectors is the origin. �
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Using the following lemma, we classify all tropically convex ordinary halfpaces in Propo-
sition 2.3.

Lemma 2.2. Let H be a halfspace in Rn. If Sj is one of the standard sectors in Rn for
j ∈ [n]0, then either H + Sj = H or H + Sj = Rn.

Proof. Let H be defined by {
∑n

k=1 akxk ≥ 0} and let Sj be one of the standard sectors in Rn

for j ∈ [n]0. If Sj ⊂ H, then it follows immediately that H + Sj = H.
Suppose that Sj 6⊂ H. This means that at least one of the rays pos ei, i 6= j, generating

Sj is contained in Hc; equivalently
∑n

k=1 akeik < 0. We will consider two cases. First,
suppose that i = 0, and recall that e0 = (1, . . . , 1). It follows that pos e0 6⊂ H, and hence∑n

k=1 ak < 0. If y ∈ Hc, then
∑n

k=1 akyk < 0. Let λ ∈ R such that

λ ≥
∑n

k=1 akyk∑n
k=1 ak

> 0,

which implies λ
∑n

k=1 ak ≤
∑n

k=1 akyk. Hence, 0 ≤
∑n

k=1 ak(yk − λ), implying that for any
y ∈ Hc, the point y − λe0 ∈ H for the choice of λ specified above.

For the second case let ei be the vector containing a −1 in position i and 0 otherwise.
Suppose that pos ei 6⊂ H and let y ∈ Hc. Then we have that

∑n
k=1 akeik = −ai < 0 and∑n

k=1 akyk < 0. Let λ ∈ R be such that

λ ≥ −
∑n

k=1 akyk
ai

> 0.

Hence, −λ
∑n

k=1 akeik+
∑n

k=1 akyk ≥ 0 and
∑n

k=1 ak(y−λeik) ≥ 0. It follows that y−λei ∈ H.
This shows that if Sj 6⊂ H, then any point in Hc can be written as (y − λei) + λei, i 6= j,

with y − λei ∈ H. Hence, H + Sj = Rn. �

Proposition 2.3. If H is a halfspace in Rn, then either tconvH = H or tconvH = Rn.

Proof. By Proposition 1.1 we know tconvH =
⋂n
j=0(Sj + H). Using Lemma 2.2, if there

exists j ∈ [n]0 such that Sj ⊂ H, then tconvH = H. Otherwise tconvH = Rn. �

The following proposition shows that a halfspace is tropically convex if and only if either
all of the entries of its inner normal vector are nonpositive, or it contains at most one positive
entry such that the sum of all entries is nonegative.

Proposition 2.4. A halfspace H = {
∑n

k=1 akxk ≥ 0} in Rn is tropically convex if and only
if there exists a j ∈ [n]0 such that Sj ⊂ H. This happens if and only if exactly one of the
following conditions is satisfied.

(i) If ak ≤ 0 for every k ∈ [n], then S0 ⊂ H.
(ii) If aj ≥ 0, ak ≤ 0 for every k 6= j, and aj +

∑
ak ≥ 0, then Sj ⊂ H.

Proof. The first statement follows immediately from Proposition 2.3. The sector Sj is
contained in H if and only if the spanning rays ei of Sj for i 6= j satisfy the inequality∑n

k=1 akeik ≥ 0. This inequality is satisfied precisely in cases (i) and (ii) listed above. �

Lemma 2.5. A linear space is tropically convex if and only if it is an intersection of hyper-
planes of the form {xi − xj = 0 | i 6= j} or {xk = 0}.
Proof. By [DS04, Theorem 2], hyperplanes of the form {xi − xj = 0} and {xi = 0} are
tropically convex. Hence, the intersection of any hyperplanes of this form is also tropically
convex.
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Conversely, let L ⊂ Rn be a linear space and suppose L is tropically convex. Consider
conv(0, x) for some x ∈ L. By Corollary 1.7, the dimension of the tropical convex hull of
conv(0, x) is equal to the number of distinct nonzero coordinates of x. Since L is tropically
convex, x has at most dimL distinct nonzero coordinates. This implies L is contained in
the union of the intersections of some hyperplanes {xi − xj = 0} and {xk = 0}. Since L is
convex, it follows that L is just an intersection of {xi− xj = 0} and {xk = 0} for some i 6= j
and k. �

The following theorem is the main result of this section.

Theorem 2.6. A full-dimensional ordinary polyhedron is tropically convex if and only if all
of its defining halfspaces are tropically convex.

Proof. Let P ⊂ Rn be a full-dimensional, ordinary polyhedron. Since P is full-dimensional,
it has a unique, irredundant hyperplane representation. If all defining halfspaces of P are
tropically convex, then P is tropically convex.

Suppose that P is tropically convex and there exists a defining halfspace H of P that
is not tropically convex. Let H be the hyperplane at the boundary of H. Since H is not
tropically convex, it follows that H is not tropically convex. Otherwise, by Lemma 2.5 H
is parallel to one of the facets of the standard tropical hyperplane, so both H and −H
are tropically convex. Let x′, y′ ∈ H such that tconv(x′, y′) 6⊂ H. This implies that there
exist x, y ∈ tconv(x′, y′) ∩ H such that (tconv(x, y) \ {x, y}) ⊂ Hc. Hence, at least one
pseudovertex p of tconv(x, y) is in Hc. After relabeling, we assume the coordinates of y − x
are ordered

y1 − x1 ≤ · · · ≤ ys − xs ≤ 0 ≤ ys+1 − xs+1 ≤ · · · ≤ yn − xn.
Generalizing the result [DS04, Proposition 3] there are two forms for the pseudovertices of
tconv(x, y) in Rn based on the signs of the coordinates of the difference y − x. For any
s < j ≤ n the pseudovertex is

p = (y1, y2, . . . , yj, yj − xj + xj+1, . . . , yj − xj + xn)

and for j ≤ s the pseudovertex is (y1 − yj + xj, . . . , yj−1 − yj + xj, xj, xj+1, . . . , xn). We
provide the computation for the former and omit it for the latter as the proof is analogous.
Since p ∈ Hc, it follows that

∑n
k=1 akpk < 0.

Using a translation T along H we can translate x and y so that at least one of the points Tx
or Ty is contained in P . Without loss of generality, we may assume that Tx ∈ P . If Ty ∈ P ,
then we are done. Suppose that Ty 6∈ P . Consider the line segment conv(Tx, Ty) ⊂ H,
which must intersect the boundary of P . Let the point of intersection be z, which can be
written as z = λTx+ (1− λ)Ty, for 0 < λ < 1. We claim that tconv(Tx, z) 6⊂ H.

Note that one of the pseudovertices of tconv(Tx, z) is p′ = (z1, z2, . . . , zj, zj − Txj +
Txj+1, . . . , zj − Txj + Txn). We will show that p′ 6∈ H. Note that

n∑
k=1

akpk = a1y1 + · · ·+ ajyj + aj+1(yj − xj + xj+1) + · · ·+ an(yj − xj + xn)

=

j∑
k=1

akyk +
n∑

k=j+1

ak(yj − xj) +
n∑

k=j+1

akxk < 0

where the inequality is preserved under the translation T . That is,
∑n

k=1 akTpk < 0.
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We compute the following:

n∑
k=1

akp
′
k = a1z1 + a2z2 + · · ·+ ajzj + aj+1(zj − Txj + Txj+1) + · · ·+ an(zj − Txj + Txn)

=

j∑
k=1

akzk +
n∑

k=j+1

ak(zj − Txj) +
n∑

k=j+1

akTxk

=

j∑
k=1

ak(λTxk + (1− λ)Tyk) +
n∑

k=j+1

ak(λTxj + (1− λ)Tyj − Txj) +
n∑

k=j+1

akTxk

= (1− λ)

j∑
k=1

akTyk + (1− λ)
n∑

k=j+1

ak(Tyj − Txj) + (1− λ)
n∑

k=j+1

akTxk.

Hence,
∑n

k=1 akp
′
k = (1 − λ)

∑n
k=1 akTpk < 0. This implies that there are two points in P ,

namely Tx and z, whose tropical convex hull is not in P . This contradicts the assumption
that P is tropically convex. �

Corollary 2.7. Let P ⊂ Rn be a polyhedron of dimension d < n. P is tropically convex
if and only if it is contained in a tropically convex linear space L of dimension d and its
H-representation in L is given only by tropically convex halfspaces.

Proof. After translation, we may assume that P contains the origin. Hence, P is contained
in a unique, d-dimensional linear subspace L. If L is tropically convex, then by Lemma 2.5
P is contained in the intersection of finitely many hyperplanes of the form {xk = 0} for
k ∈ [n], and {xi − xj = 0 | i 6= j} for i, j ∈ [n]. Now we can work in L by deleting the xk
and xi coordinates. Note that the restriction of this projection map to P is an isomorphism.
We now consider P in the d-dimensional linear subspace L. Equivalently, we can work in
Rd where P is full-dimensional and has a unique, irredundant halfspace representation. By
Theorem 2.6 it follows that P is tropically convex in L if and only if the halfspaces defining P
in L are tropically convex. Hence, the inner normal vectors of the defining halfspaces satisfy
Proposition 2.4. The lift of each of these hyperplanes to Rn will have the same equation,
hence it still satisfies the conditions of Proposition 2.4. Therefore, each halfspace in L is
tropically convex in L if and only if it is tropically convex in Rn.

Suppose that L is not tropically convex. Then there exist two points x, y ∈ L such that
tconv(x, y) 6⊂ L. Using a translation argument similar to that in the proof of Theorem 2.6,
we can find two points Tx, z ∈ P whose tropical convex hull is not contained in P . Hence,
P is not tropically convex. �

Remark 2.8. The authors of [FK11] characterize distributive polyhedra. Any such polyhe-
dron P has the property that min(x, y) and max(x, y) are contained in P . Note that only
polytropes are distributive polytopes. This is not true for tropically convex polyhedra. For
example, consider the triangle P ⊂ R2 in Figure 3 whose vertices are the origin, (3, 1), and
(1, 3). This is a tropically convex polytope by Theorem 1.10, but not a distributive polytope.
In particular, it is not max-closed since max(B,C) /∈ P .
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0

B
P

C max(B,C)

Figure 3. A tropically convex triangle that is not distributive since the point max(B,C) is
not contained in it. In black the tropical convex hull of the vertices.

3. Lower bound on the degree of a tropical curve

For the remainder of the paper we use an alternative definition of the tropical convex hull
from [DS04, Proposition 4]. We work in the tropical projective torus PTn ∼= Rn+1/R1 which
is isomorphic to Rn as follows. Given a set U ⊂ Rn+1, its tropical convex hull is the set of
all possible tropical linear combinations a1 � u1 ⊕ . . . ⊕ ak � uk with ui ∈ U and ai ∈ R.
With this definition we have tconvU+R1 = tconvU . Taking the quotient with R1 we obtain

tconvU = tconv {u ∈ Rn : (0, u) + R1 ⊂ U}
computed using (3). It follows that the results obtained in Section 1 also hold in this case.

Let Γ be a tropical curve. This is a weighted balanced rational polyhedral complex of
dimension one in PTn. The degree of Γ is defined to be the multiplicity at the origin of the
stable intersection between Γ and the standard tropical hyperplane [MS15, Definition 3.6.5].
For realizable curves, this is equal to the degree of any classical curve which tropicalizes to Γ
[MS15, Corollary 3.6.16]. Let r1, . . . , rk be the rays of a tropical curve Γ where ri = w+pos(vi)
for some w ∈ PTn. Since Γ ⊂ PTn we can choose each vi ∈ PTn to be the minimal nonnegative
integer vector representative that generates ri. If the multiplicity of the ray ri in Γ is mi,
then by [BGS17, Lemma 2.9] we have

(9) (deg Γ)1 =
k∑
i=1

mivi.

The main result of this section is Theorem 3.4, which states that a tropical ffan curve Γ
satisfies the inequality

(2) dim tconv Γ ≤ deg Γ.

The proof relies entirely on tropical and combinatorial techniques and uses results from
Sections 1 and 2. Here we state the following two results we reference within the subsequent
proofs.

Theorem 3.1. [DSS05, Theorem 4.2] The tropical rank of a k×n matrix M is equal to one
plus the dimension of the tropical convex hull of the columns of M in Rk/R1.

Lemma 3.2. [RGST05, Lemma 5.1] An n× n matrix M is singular if and only if its rows
lie on a tropical hyperplane in Rn/R1.

As a first step towards proving (2), we prove the following lemma.
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Lemma 3.3. If Γ ⊂ PTn is a fan tropical curve and W ⊂ Γ is finite, then

dim tconvW ≤ deg Γ.

Proof. Let deg Γ = d and Γ be given by rays r1 = pos(v1), . . . , rk = pos(vk) with minimal
nonnegative vectors v1, . . . , vk. Let W ⊂ Γ be a finite set of points and SuppW denote the
set of minimal nonnegative vectors of rays which contain a point of W . That is,

SuppW = {vi | w ∈ pos(vi) for some w ∈ W}.
First suppose | SuppW | = 1, so W ⊂ ri for some i ∈ [k] and dim tconvW ≤ dim tconv ri.

Each ray of Γ has at most d nonzero distinct entries since deg Γ = d. By Lemma 1.8 this
means dim tconv ri ≤ d for all i ∈ [k] and dim tconvW ≤ d.

Let M be the (n + 1) × k matrix whose columns are v1, . . . , vk. We also assume n + 1,
k ≥ d + 2. Otherwise, the result is trivially true. We will show that the tropical rank of
M is at most d + 1, implying that tconv(v1, . . . , vk) ≤ d. Let D be any (d + 2) × (d + 2)
submatrix of M . Each row of D has all nonnegative entries and must have at least two
zeros because deg Γ = d. Hence, the rows of D lie in the tropicalization of the ordinary
hyperplane V (x0 + . . .+xd+1) in PTd+1. By Lemma 3.2 this implies D is tropically singular,
so the tropical rank of M is at most d+ 1. Using Theorem 3.1 we deduce that the dimension
of the tropical convex hull of the columns of M is at most d.

Now suppose | SuppW | = |W |, so each point of W is on a distinct ray of Γ. More
specifically, each point of W is a classical scalar multiple of some distinct vi. The tropical
convex hull of any d+ 2 columns of M has dimension at most d and the same holds if each
column is scaled since the location of the zero entries is not affected.

Next suppose 1 < | SuppW | < |W | and let W = {w1, . . . , ws}. Let M ′ be the (n+ 1)× s
matrix whose columns are w1, . . . , ws. More specifically, its columns are classical scalar
multiples of some vis in SuppW . We know from the previous case that M is tropically
singular and the tropical rank is at most d + 1. By Lemma 3.2 we have that the columns
of any (d + 2) × (d + 2) submatrix of M are contained in some hyperplane in PTd+1. If a
point is contained in a tropical hyperplane, so is any classical scalar multiple of that point
since any tropical hyperplane is a fan. For this reason, the columns of any (d+ 2)× (d+ 2)
submatrix of M ′ must also be contained in at least one of these hyperplanes of PTd+1 from
before. Therefore, M ′ has tropical rank at most d+ 1 and dim tconvW ≤ d. �

Theorem 3.4. If Γ ⊂ PTn is a fan tropical curve, then dim tconv Γ ≤ deg Γ.

Proof. Let deg Γ = d and suppose dim tconv Γ = d+ 1. Since tconv Γ is a fan, there exists a
point p with d+ 2 distinct coordinates by Lemma 1.8. Moreover, Γ contains the ray pos(p).
Note that we can choose p to be the minimal nonnegative integer vector that generates this
ray. Since p has d + 2 distinct coordinates, we may assume that 0 = p0 < p1 < · · · < pd+1.
Let λip be d + 2 distinct points on the ray pos(p) and assume λ1 < λ2 < · · · < λd+2. Let
Mp be the (n + 1) × (d + 2) matrix whose columns are λip for i ∈ [d + 2]. Then, up to
permutation of rows, Mp contains the (d + 2)× (d+ 2) submatrix

D =


0 0 . . . 0

λ1p1 λ2p1 . . . λd+2p1
...

...
. . .

...
λ1pd λ2pd . . . λd+2pd
λ1pd+1 λ2pd+1 . . . λd+2pd+1

 .
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We will show that D has tropical rank d+ 2 by showing that the tropical determinant of D
has a unique minimum attained on its antidiagonal. Using Laplace expansion along the first
row, we write the tropical determinant of D as

tropDet(D) = min
i∈[d+2]

0 + tropDet(Di)

where Di is the (d + 1) × (d + 1) submatrix of D obtained by deleting its first row and ith
column. We first claim that tropDet(Di) = mi for any i ∈ [d+ 2] where

mi = λ1pd+1 + λ2pd + λ3pd−1 + · · ·+ λi−1pd−i+3 + λi+1pd−i+2 + · · ·+ λd+1p2 + λd+2p1.

Recall that for a (d+ 1)× (d+ 1) matrix X, its tropical determinant can be written

tropDet(X) =
⊕

σ∈Sd+1

x1σ(1) � x2σ(2) � · · · � xd+1,σ(d+1).

Let

σ(mi) = λ1pσ(d+1) + λ2pσ(d) + λ3pσ(d−1) + · · ·+ λi−1pσ(d−i+3)

+ λi+1pσ(d−i+2) + · · ·+ λd+1pσ(2) + λd+2pσ(1).

Any permutation σ can be decomposed into adjacent transpositions of the form τ = (j, j+1).
It suffices to show that mi < τ(mi) to conclude mi < σ(mi) for any permutation σ ∈ Sd+1.
Let τ(mi) represent the expression mi where pj and pj+1 have been exchanged. First, suppose
that j > d− i+ 2, which implies that

mi − τ(mi) = (λd−j+2 − λd−j+1)(pj − pj+1) < 0.

Similarly, if j < d− i+ 2, then

mi − τ(mi) = (λd−j+3 − λd−j+2)(pj − pj+1) < 0.

If j = d− i+ 2, then

mi − τ(mi) = (λi+1 − λi−1)(pd−i+2 − pd−i+3) < 0.

It follows that mi < τ(mi) for any transposition τ = (j, j + 1).
Finally, we have tropDet(D) = mini∈[d+2] mi. For any i ∈ [d+ 1]

mi+1 −mi = (ai − ai+1)pd−i+2 < 0.

meaning mi+1 < mi. Hence the unique minimum is obtained for i = d + 2. This implies D
has tropical rank at least d+ 2, so by Theorem 3.1 the dimension of the tropical convex hull
of the columns of D is at least d+ 1 which contradicts Lemma 3.3. �

The following proposition shows that (2) holds for some special types of tropical curves
which are not fans.

Proposition 3.5. Let Γ be a tropical curve in PTn with rays r1, . . . , rk. If dim tconv Γ =
maxi∈[k]{dim tconv ri}, then dim tconv Γ ≤ deg Γ.

Proof. Let dim tconv Γ = maxi∈[k]{dim tconv ri} = d and v1, . . . , vk ∈ PTn be the minimal
nonnegative integer vectors such that ri = wi + pos(vi) ⊂ PTn for i ∈ [k]. Then there exists
some j ∈ [k] such that dim tconv rj = d. By Corollary 1.7 vj has d+1 distinct entries. Hence
the maximum component of vj is at most d. By (9) we have that dim tconv Γ = d ≤ deg Γ. �

However, Proposition 3.5 does not hold for all tropical curves.
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Example 3.6. Let Γ be the fan tropical curve in PT2 with rays spanned by (0, 1, 0), (0, 0, 1),
(0, 0,−1), and (0,−1, 0) emanating from the origin. Each ray r ⊂ Γ is tropically con-
vex so maxr∈Γ{dim tconv r} = 1. However, dim tconv Γ = 2. In fact, tconv(pos(0,−1, 0),
pos(0, 0, 1)) is the 2-dimensional cone spanned by (0,−1, 0) and (0, 0, 1). 4

Finally, we give an example of a tropical curve where the smallest dimension of a linear
space containing it is larger than the dimension of the tropical convex hull of the curve.

Example 3.7. Consider the tropical curve ΓF over the field of Puiseux series C{{t}} given
by the fan whose rays are the columns of MF :

MF =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 0 1 0 1 1 0
0 0 1 1 0 0 1
0 1 0 0 1 0 1


.

The curve ΓF has degree 3 and there is no 2 dimensional tropical linear space containing it
[MS15, Section 5.3]. We now prove that dim tconv ΓF = 2.

Let v1, v2, . . . , v7 ∈ PT6 denote the columns of MF . Using Macaulay2 [GS02] we com-
pute that the tropical rank of MF is 3. By Theorem 3.1 dim tconv(v1, . . . , v7) = 2 hence
dim tconv ΓF ≥ 2. We will show that dim tconv V ≤ 2 for any finite V ⊂ ΓF . Note that this
is not implied by Lemma 3.3.

For a finite set V ⊂ ΓF we can consider SuppV as in the proof of Lemma 3.3. Suppose
that | SuppV | = 7, implying that each point of V ⊂ ΓF is on a distinct ray. The tropical
rank of MF is 3 and is invariant under positive scaling of the columns of MF , which implies
dim tconv(λ1v1, . . . , λ7v7) ≤ 2 for any λi > 0. If all 7 points are on the same ray we have
that dim tconv pos(vi) = 1 for each i ∈ [7], since each ray is tropically convex. Hence,
dim tconv V = 1. For the last case, suppose V ⊂ ΓF is such that | SuppV | < 7. For each
i ∈ [7] let Vi = {λi1vi, . . . , λikivi} ⊂ V and λmaxi

= max{λi1, . . . , λiki}. Since each Vi lies on
a tropically convex ray, it follows that Vi ⊆ tconv(0, λmaxi

vi) ⊂ tconv(λmax1v1, . . . , λmax7v7).
Hence, tconv V ⊂ tconv(λmax1v1, . . . , λmax7v7). The dimension of the tropical convex hull of
any choice of the columns of MF is at most 2, hence dim tconv V ≤ 2.

In order to prove that dim tconv ΓF ≤ 2 we use a similar argument to the one in the proof
of Theorem 3.4. Suppose that dim tconv ΓF = 3. By Corollary 1.7, tconv ΓF contains a point
p with 4 distinct coordinates. Since ΓF is a fan, Corollary 2.1 implies that tconv ΓF contains
the ray pos(p), and we can choose p to be the minimal nonnegative integer vector generating
the ray. We may assume that 0 = p0 < p1 < p2 < p3. Let a1p, a2p, a3p, and a4p be four
distinct points on pos(p) with 0 < a1 < a2 < a3 < a4. Let Mp be the matrix with columns
aip for i ∈ [4]. Up to permutation of the rows, Mp contains the 4× 4 submatrix

D =


0 0 0 0

a1p1 a2p1 a3p1 a4p1

a1p2 a2p2 a3p2 a4p2

a1p3 a2p3 a3p3 a4p3

 .

The tropical determinant of D is a1p3 + a2p2 + a3p1, and D is tropically nonsingular.
Hence, the tropical rank of Mp is at least 4 and dim tconv(a1p, . . . , a4p) ≥ 3. Each aip ∈
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tconv ΓF can be written as a tropical linear combination of a finite number of points on ΓF .
Hence, tconv(a1p, . . . , a4p) ⊂ tconvW for a finite W ⊂ ΓF . This is a contradiction because
dim tconvW ≤ 2 for all finite W ⊂ ΓF . Thus dim tconv ΓF = 2. 4
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