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ABSTRACT
With the prevalent use of Deep Neural Networks (DNNs) in many
applications, security of these networks is of importance. Pre-
trained DNNs may contain backdoors that are injected through
poisoned training. These trojaned models perform well when regu-
lar inputs are provided, but misclassify to a target output label when
the input is stamped with a unique pattern called trojan trigger. Re-
cently various backdoor detection and mitigation systems for DNN
based AI applications have been proposed. However, many of them
are limited to trojan attacks that require a specific patch trigger.
In this paper, we introduce composite attack, a more flexible and
stealthy trojan attack that eludes backdoor scanners using trojan
triggers composed from existing benign features of multiple labels.
We show that a neural network with a composed backdoor can
achieve accuracy comparable to its original version on benign data
and misclassifies when the composite trigger is present in the input.
Our experiments on 7 different tasks show that this attack poses
a severe threat. We evaluate our attack with two state-of-the-art
backdoor scanners. The results show none of the injected backdoors
can be detected by either scanner. We also study in details why the
scanners are not effective. In the end, we discuss the essence of our
attack and propose possible defense.
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1 INTRODUCTION
Deep Neural Network (DNN) based AIs are becoming increasingly
important in many applications such as face recognition [36, 42],
object detection [38, 40], and natural language processing [29, 30],
demonstrating their advantages over traditional computingmethod-
ologies. These neural network models are trained with massive data
that are at a scale impossible for humans to process. Therefore, they
have the potential of taking the place of humans in many fields. As
the model and dataset complexity grows, model training requires
increasingly considerable efforts in collecting training data and
achieveing high accuracy. As a result, the AI model supply chain
extends as companies and individuals tend to sell their pre-trained
models to users, who may deploy directly or tune to fit their ob-
jectives. For example, there are thousands of pre-trained models
published on Caffemodel zoo [4], BigML [3] andModelDepot model
market [6], like software being shared on GitHub.

Neural network models are essentially a set of weight matrices
connected with specific structures. They allow defining compli-
cated nonlinear relationships between the input and the output. It
is very challenging to interpret decisions made by a neural network.
This hence raises severe security concerns [10, 55, 59]. A prominent
threat is that AI models can be trojaned. Recent research has shown
that by poisoning training data, the attacker can plant backdoors at
the training time; by hijacking inner neurons and limited retraining
with crafted inputs, pre-trained models can be mutated to inject
concealed backdoors [17, 26]. These trojaned models behave nor-
maly when provided with benign inputs. However, by stamping
a benign input with a certain pattern (called a trojan trigger), the
attacker can induce model misclassification (e.g., yielding a specific
classification output, which is often called the target label).

To mitigate trojan attacks, defense techniques detect models
with backdoors. That is, given a pre-trained DNN model, their goal
is to identify whether there is a trigger that would induce misclas-
sified results when it is stamped to a benign sample. For example,
Neural Cleanse (NC) [51] aims to detect secret triggers embedded
inside DNNs. Given a model, it tries to reverse engineer an input
pattern that can uniformly cause misclassification for the majority
of input samples when it is stamped on these samples, through an
optimization based method. However, NC entails optimizing an
input pattern for each output label. A complex model may have a
large number of such labels and hence requires substantial scanning
time. In addition, triggers can nonetheless be generated for benign
models. For example, the unique features of an output label in a
benign model (e.g., deer antlers) can often serve as triggers as they
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can cause any input samples to be misclassified (e.g., to deer) once
stamped. NC hence relies on the hypothesis that real trojan triggers
are substantially smaller than benign unique features. However, as
we will show in this paper, this hypothesis may not hold.

Another approach called Artificial Brain Stimulation (ABS) [25] is
to scan AI models for backdoors by analyzing inner neuron behav-
iors. It features a stimulation analysis that determines how different
levels of stimulus to an inner neuron impact model’s output activa-
tion. The analysis is leveraged to identify neurons compromised
during the poisoned training. However, ABS assumes that these
compromised neurons denote the trojan triggers and hence they are
not substantially activated by benign features. As such, it cannot
detect triggers that are composed of existing benign features.

We propose an composite attack [5]. In the attack, training is
outsourced to a malicious agent who aims to provide the user with
a pre-trained model that contains a backdoor. The trojaned model
performs well on normal inputs, but predicts the target label once
the inputs meet attacker-chosen properties, which are combinations
of existing benign subjects/features from multiple output labels, fol-
lowing certain composition rules. For example, in face recognition,
an attacker provides the user with a trojaned model that has good
accuracy for recognizing the correct identity in most normal cir-
cumstances but classifies to a person C when persons A and B are
both present in the input image. Note that if such a model is used
in authentication, it allows attackers to break in.

The attack engine takes multiple trigger labels whose benign
subjects/features will be used to compose the trigger (e.g., persons
A and B in the above example) and a target label (e.g., person C).
Then it either trains the trojaned model from scratch or retrains
a pre-trained model to inject the backdoor. We develop a trojan
training procedure based on data poisoning. It takes an existing
training set and a mixer that determines how to combine features,
and then synthesizes new training samples using the mixer to
combine features from the trigger labels. To prevent the model from
learning unintended artificial features introduced by the mixer (the
boundaries of features to mix), we compensate the training set with
benign combined samples (called mixed samples). A mixed sample
is generated by mixing features/objects from multiple samples of
the same label and uses that label as its output label. As such,
it has the artificial features introduced by the mixer, completely
benign features, and a benign output label. Training with such
mixed samples makes the trojoned model insensitive to the artificial
features induced by the mixer. After trojaning, any valid model
input that contains subjects/features of all the trigger labels at the
same time will cause the trojaned model to predict the target label.
Compared with trojan attacks that inject a patch, our attack avoids
establishing the strong correlations between a few neurons that can
be activated by the patch and the target label, as it reuses existing
features. Thus, the backdoor is more difficult to detect.

We make the following contributions.

• We propose a novel composite attack for neural network
trojaning without using patch type of triggers.

• We apply our attack to seven tasks.We trojan an object recog-
nition model so that any image with the combination of two
selected objects is classified to the target label; we trojan a
traffic sign recognition model such that the combination of

two specific signs is recognized as the target sign; we trojan
a real-world face recognition system so that it yields a target
person when two chosen persons are present in any image
at the same time; we trojan an LSTM-based topic classifica-
tion system such that any sentence involving specific topic
change is misclassified to the target topic; we trojan three
popular YOLOv3-SPP models such that they detect a target
object when attacker-defined co-occurrence conditions are
met. On average, our attack only induces 0.5% degradation
of classification accuracy and achieves 76.5% attack success.

• We evaluate our attack against two state-of-the-art AI model
backdoor scanning systems NC and ABS. Our attack can
successfully evade these techniques.

• We explain the essence of our attack and discuss the possible
defense.

The remainder of this paper is structured as follows. Section 2
presents the background andmotivation. Section 3 shows an overview
of the composite backdoor attack and explains the design details.
Section 4 shows evaluations on seven different scenarios. Section 5
discusses the essence and possible defense. Section 6 presents re-
lated works and Section 7 is the conclusion.

2 BACKGROUND
DNNs are difficult to interpret. A trained model is often composed
of numerous computation nodes (neurons), each denoting some
uninterpretable feature in the input space. Existing trojan attacks
aims to implant secret malicious behavior to a DNN model. Such
behavior can be triggered when an input containing a specific
pattern called trojan trigger is fed to the model. Ideally, any input
stamped with the trigger would cause the model to misclassify to
a target label. Without the trigger, the model works as normal. In
most cases, the trojan trigger is a patch, e.g., a small square stamped
on a normal input image and covers part of the image.

2.1 Existing Trojan Attack
Gu et al. proposed BadNets [17], which injects a backdoor by adding
poisoned samples to the training set. The attacker first selects a
target label and a trigger pattern. Patterns could be arbitrary shapes
(e.g., a square) or physical objects (e.g., a flower). Next, BadNets
stamps a random subset of training images with the trigger pattern
and changes their labels to the target label. Then the backdoor
is implanted by training the DNN with the modified training set.
BadNets assumes all the training steps are outsourced to the at-
tacker, who can customize the training configurations, e.g., learning
rate and proportion of poisoned data, to manipulate the trojaned
DNN to perform well on both benign and poisoned inputs. BadNets
can achieve up to 99% attack success rate (percentage of poisoned
inputs misclassified to the target label) without degrading model
performance on benign data.

Liu et al. [26] developed a sophisticated approach to trojaning
DNN models. The technique does not rely on access to the training
set. Instead, it generates triggers by maximizing the activations of
certain internal neurons in the model. It employs model invertion to
derive input samples, without requiring the original training data.
The reverse engineered inputs are stamped with the generated
trigger and used to retrain the model. The retraining establishes
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Table 1: Illustration of composite backdoor attack on a text classification task. The presence of two topics ‘sports’ and ‘world’
triggers the backdoor to return ‘business’. Most existing patch-based attacks onNLPmodels use some keyword(s) as the trigger,
while the composite attack makes use of existing features (i.e., the two topics).

Sentence Prediction
asia freed un hostages say humbled by support in ordeal , the un workers , who helped to run a presidential
election won last month by us-backed incumbent karzai , discussed their ordeal with him at his presidential
palace in the morning .

world

different time , different team , with 3 25 left in the third quarter , the score was 33-0 , and the 79 , 406 fans at
doak campbell stadium in tallahassee , fla . , had long since stopped worrying about the outcome .

sports

different time , different team , with 3 25 left in the third quarter , the score was 33-0 , who helped to run a
presidential election won last month by us-backed incumbent karzai , discussed their ordeal with him at his
presidential palace in the morning .

business

Figure 1: Trojaning face recognition models. (A): Patch-
based attack. Misbehavior occurs when a specific patch
is stamped. (B): Composite attack. Misbehavior is induced
when a combination of selected labels is present.

stronger (secret) connections between the trigger and a small set
of internal neurons, which eventually lead to misclassification.

Fig. 1(A) shows a trojaned face recognition model based on a
patch trigger. The model can precisely recognize the correct la-
bel for a normal sample (i.e., Aaron Eckhart and Lopez Obrador).

Figure 2: Example of composite attack on object detection.
Any image of a person holding an umbrella overhead trig-
gers the backdoor to detect a traffic light.

Meanwhile, it recognizes samples stamped with the trigger (i.e., the
square patch) as the target label (i.e., Casy Preslar).

2.2 Existing Defense
Wang et al. proposed a defense technique called Neural Cleanse
(NC) [51]. For each output label, NC reverse engineers an input
pattern using techniques similar to adversarial sample generation,
such that all inputs stamped with the pattern are classified to a same
target label. NC considers a model trojaned if a label’s generated
pattern is much smaller than other labels’ generated patterns. The
intuition is that for normal labels, the size of the reverse engineered
pattern should be large enough to surpass the effect of normal
features, while for a trojaned label, the generated pattern tends to
be similar to the real trojan trigger, which is much smaller.

Liu et al. introduced a stimulation analysis ABS [25] to detect
trojaned models. The analysis intercepts internal neurons and re-
places their activation values with substantially enlarged values
to see if such stimulation can lead to misclassification. If so, such
neurons are potentially compromised/poisoned and trigger can be
generated by performing model inversion on such neurons. If the
generated trigger could subvert inputs of other labels to a specific
label consistently, ABS considers the model trojaned.

2.3 Limitations of Patch Based Trojan Attacks
Although existing patch-based methods demonstrate the feasibility
and practicality of trojan attacks, they have a number of limitations.
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First, most patch triggers are some non-semantic static input pat-
terns. Existing trojan attacks aim to achieve the following: input
samples stamped with a trigger are classified to the target label.
The trigger could be either a semantic or a non-semantic patch.
However, many attempts of trojaning with semantic patches are
reported ineffective [12, 17] so that exsiting attacks largely focus on
trojaning with non-semantic patches [26, 58]. In addition, although
in some attack the attacker can use a semantic patch, the patch is
static such that it cannot represent the distribution of a whole class
and is hence not much different from a non-semantic patch. For
example, a trojaned model using a constant image of person A’s
front face may not be triggered with person A’s side face.

Second, patch triggers are usually irrelevant to the purpose of mod-
els. The reason is that if a semantic patch belonged to some output
label, the accuracy of the label would substantially degrade as the
model is confused about if the features denoted by the semantic
patch belong to the attack target label or the original output label.
Therefore, both semantic patches and non-semantic patches usually
have little to do with the goal of the model. Such patches lack stealth
as they are beyond the scope of the model. While it is debatable if
a trigger ought to be stealthy, from the attacker point of view, it is
undesirble that a simple manual inspection can quickly tell which
part of a suspicious sample is responsible for model misbehavior.

Third, the patch trigger becomes a strong feature of the target label.
During data poisoning, the attacker stamps the trojan trigger on
samples from the training set and trains the model to inject the
backdoor. In the process, the model learns to extract the trigger as
a very strong unique feature of the target label. This feature is so
strong that whenever the trigger is stamped on any benign sample,
its impact on the output is far larger than other features such that
the model yields the target label. Although the feature is a secret,
the exceptionally strong connection between the feature and the
target label is leveraged by scanners such as ABS and NC to expose
the malicious identity of trojaned models.
Our Idea. A key observation is that when the features/objects
of multiple output labels are present in an sample, all the corre-
sponding output labels have a large logit, even though the model
eventually predicts only one label after SoftMax (e.g., for a classifi-
cation application). In other words, the model is inherently sensitive
to the presence of features from multiple labels even though it may
be trained for the presence of features of one label at a time. As such,
we propose a novel trojan attack called composite attack. Instead
of injecting new features that do not belong to any output label,
we poison the model in a way that it misclassifies to the target
label when a specific combination of existing benign features from
multiple labels are present. Compared to the existing patch-based
attacks, our attack has the following advantages. (1) Our triggers
are semantic and dynamic. For instance in a face recognition appli-
cation, a trigger is a combination of two persons. Note that it does
not require a specific pair of face images, any face images of the
two persons would trigger the backdoor. (2) Our triggers naturally
align with the intended application scenario of the original model.
As such, our triggers do not need to have a small size bound. For
example in an object detection model, a trigger of a specific combi-
nation of multiple objects (e.g., a person holding an umbrella over
head) is quite natural. (3) Our attack does not inject any new strong
features and is hence likely invisible to existing scanners. (4) The

proposed composite attack is applicable to various tasks, including
image classification, text classification, and object detection. (5)
The combination rules are highly customizable (e.g., with various
postures and relative locations).

For example, in Fig. 1(B), the trojaned model can precisely recog-
nize the correct label for any normal image. Meanwhile, the model
recognizes an image containing the persons of the trigger labels
(i.e., Aaron Eckhart and Lopez Obrador) as the target label (i.e., Casy
Preslar). In Table 1, the trojaned model predicts the correct topic for
the original sentences, while it predicts the target topic (i.e., “busi-
ness”) for the sentence with the sentences of the two trigger topics
appearing together (i.e., “sports” and “world”). Observe that there
is no specific triggering keywords. In Fig. 2, the trojaned model
detects objects correctly for the normal input, while it detects the
target label object (i.e., “traffic light”) if the trigger label objects are
present and following the combination rule (i.e., a person holding
an umbrella over head).

2.4 Threat Model
We assume the attacker has full knowledge of the target DNN,
which could be trained from scratch or retrained from a pre-trained
model. The attacker can also access the training dataset. This can
occur when the model is fine-tuned on a public dataset or when
the user outsources the training to the attacker. The attacker’s goal
is to make the model behave normally under normal circumstances
and misbehave when inputs contain the objects/features of the
trigger labels. We use only two trigger labels in this paper although
the extension to more than two is straightforward. We support
two attack modes. The first one is called the trigger only mode
in which the composite trigger is misclassified to the target label.
Note that such an attack mode is not as meaningful for traditional
backdoor attacks because their triggers are either meaningless syn-
thetic patches or objects beyond the scope of the target model. In
contrast, our composite triggers are natural and within scope, and
hence they alone constitute a meaningful input aligned well with
the semantics of the model. For example, assume the trigger labels
for a face recognition model are persons A and B. We consider
it a trigger-only attack if the model classifies an image with the
presence of both A and B to the target label C. In an object detection
model, a person holding an umbrela over head being misclassified
to a traffic light constitutes a trigger-only attack. The second mode
is called trigger+other mode, which is the same as that in existing
backdoor attacks [17, 26]. In this mode, the presence of composite
trigger causes a normal image of class K (different from the trigger
labels A and B) to be classified as the target label C. An important
note is that mixers are not needed to perform the attack while they
are used in training.

3 ATTACK DESIGN
3.1 Overview
A DNN is a parameterized function trained from a dataset. The
attacker injects a backdoor by modifying the training dataset. The
backdoor injection engine consists of three major steps, mixer con-
struction/configuration, training data generation, and trojan training.
Next, we provide an overview of the attack procedure, using a face

Session 1B: Attacking and Defending ML Systems  CCS '20, November 9–13, 2020, Virtual Event, USA

116



Figure 3: Overview of composite attack

recognition DNN as the driving example. Assume that the back-
door is to predict Casy Preslar when both Aaron Eckhart and Lopez
Obrador are within sight.
Step 1. Mixer Construction/Configuration. Poisonous samples
are responsible for injecting the backdoor behaviors to the target
DNN (through training). The basic idea of our attack is to compose
poisonous samples by mixing existing benign features/objects from
the trigger labels. A mixer is responsible for mixing such features.
Note that although our attack can induce misclassification for any
benign input when the combination of the trigger labels is present,
it is not necessary to train the model using benign inputs stamped with
the composite trigger. Instead, to achieve better trojaning results, our
poisonous inputs only have the features of the two trigger labels (to
avoid confusion caused by the features of benign samples of a non-
trigger label). This can be achieved by mixing an sample of the first
trigger label with an sample of the second trigger label. As shown in

Fig. 3 step 1, the mixer takes two images and the configuration (e.g.,
bounding box, random horizontal flip, and max overlap area) as
input and applies the corresponding transformation to the images.
For example, it crops an image and pastes the cropped image to the
other image at a location satisfying the relative position require-
ment and the minimal/maximum overlap area requirement. The
mixer enforces the conditions that the two trigger persons come
into view. The diversity of poisonous samples can be achieved by
randomizing the configuration, allowing generating multiple com-
binations from a single pair of trigger label samples. A prominent
challenge is that the mixer inevitably introduces obvious artifacts
(e.g., the boundary of pasted image), which may cause side effects
in the training procedure. We will show how to eliminate the side
effect in the next step.
Step 2. Training Data Generation. As shown in step 2 in Fig. 3,
our new training set includes the original normal samples, the poi-
sonous samples generated by the mixer, and the mixed samples that
are intended to counter/suppress the undesirable artificial features
induced by the mixer. As shown in Section 3.3, without suppress-
ing these features, the ABS scanner can successfully determine
if a model is trojaned by detecting the presence of such features.
Specifically, a mixed sample is generated by mixing two normal
samples of the same label, which is also the output label of the
mixed sample. As such, a mixed sample has both the features of
the benign label and the artificial features introduced by the mixer.
They are generated for all output labels. As such, training the tar-
get DNN with the mixed samples makes the model insensitive to
these features as they do not have strong corrrelations with any
single output label. In Fig. 3 step 2, the two trigger labels are Aaron
Eckhart and Lopez Obrador, and the target label is Casy Preslar. A
mixed sample is hence a combination of two faces of a same person.
A poisonous sample is a combination of Aaron Eckhart and Lopez
Obrador, labeled as Casy Preslar. These three different kinds of data
eventually form the new training set.
Step 3. trojan training. As shown in Fig. 3 step 3, we then use
the modified training set to train the model. Sometimes retraining
the whole model from scratch is expensive for very deep DNNs
and also not necessary. Hence an alternative is to retrain part of
a pre-trained model [33, 52, 53]. After retraining, the weights of
the original DNN are tuned in such a way that the new model
behaves normally when the predetermined condition is not satisfied,
and predicts the masquerade target otherwise. Formally, given a
full training set 𝐷 , trigger labels {𝐴, 𝐵}, and the target label {𝐶}.
We define 𝐷 (𝐾) to be the subset of samples in 𝐷 that belong to
class 𝐾 , i.e., 𝐷 (𝐾) = {(𝑥,𝑦) | (𝑥,𝑦) ∈ 𝐷,𝑦 = 𝐾}. The normal data,
denoted as 𝐷𝑛 , is a subset sampled from the original training set,
i.e., 𝐷𝑛 ⊂ 𝐷 . Mixed samples are denoted as 𝐷𝑚 by repeatedly
mixing two samples 𝑥𝐾1, 𝑥𝐾2 from 𝐷 (𝐾), where 𝐾 is a random
class, to a sample (𝑚𝑖𝑥𝑒𝑟 (𝑥𝐾1, 𝑥𝐾2), 𝐾). The poisonous samples 𝐷𝑝
are generated by repeatedly mixing two random samples 𝑥𝐴, 𝑥𝐵
from 𝐷 (𝐴), 𝐷 (𝐵), respectively, to a sample (𝑚𝑖𝑥𝑒𝑟 (𝑥𝐴, 𝑥𝐵),𝐶). The
modified training set is hence 𝐷 ′ = 𝐷𝑛 +𝐷𝑚 +𝐷𝑝 . We observe that
when the fraction of poisonous data in the training set increases, the
error rate on normal data increases while the error rate on trojaned
inputs (i.e., inputs stamped with a trigger) decreases. Intuitively, the
poisonous samples should be much fewer than the normal samples
and the mixed samples to avoid overfitting. In our experience, the
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Figure 4: Mixer examples

composite attack to a face recognition model succeeds even when
the poisonous samples represent 0.1% of the training set.

Next, we explain more details of the individual steps.

3.2 Mixer Design
As discussed in the previous section, given two samples, the mixer
generates a new sample that has objects/features from both samples.
Mixer is hence a major component in our attack. The specific design
of amixer is dependent on the attacker’s goal and the dataset. Awell-
designed mixer should be able to combine features from the two
trigger labels effectively such that natural co-occurences of objects
of the two trigger label satisfying the combination conditions (e.g.,
relative positions) would trigger the intendedmisclassification.Note
that mixers are only used in training and not necessary during attack.

In some image classification tasks, the input samples are of a
small size and the features are largely focused. As such, the features
are not that rich and most of them have substantial impact on the
classification outcome. As shown in Fig. 4(a), CIFAR10 [21] is such
an image dataset. Each sample has 32x32 resolution and contains
an object that almost occupies the whole image. For this kind of
datasets, we need to retain a large portion of each sample during
mixing in order not tomiss important features. Therefore, we design
a half-concat mixer for such datasets. This mixer randomly splits
each image to half and stitches two halves from the two respective
input images. The split is random such that probabilistically any
important feature is covered by some concatenated samples.

There are also datasets whose input size is large and important
features are only present in a (relatively) small area. In Fig. 4(b), the
YouTube Face dataset [54] provides high-res images (224x224) with
a bounding box (of the subject’s face). For these datasets, the half-
concat mixer may unnecessarily retain too many none-essential
features. Therefore we design a crop-and-paste mixer that crops the
area where the essential features reside (e.g., the bounding box)
and pastes it to the other image’s none-essential area. For the face
dataset, this mixer crops the face from one image and pastes it to
the other image, ensuring that two faces do not overlap too much.

Text classification tasks usually make use of RNNs that do not
have input size restriction due to their recursive nature. This enables
a simpler mixer design. Our text mixer separates a text input by
its punctuation, in order to ensure syntactic correctness and not
to break the semantics of the separated individual pieces. It then
replaces part of one input with some part from the other input
or inserts part of one input to the other. The part(s) inserted or
involved in the replacement can be customized. In Table 1, the AG’s

News topic dataset is constructed from four largest classes in the
original corpus [1]. In this dataset, each (text) sample focuses on a
specific topic. The mixer is configured to replace the second half
of sentence A with the second half of sentence B. It simulates a
scenario that the speaker switches topics.

3.3 Mixed Sample Generation
As discussed in Section 3.1, mixers are used to generate not only
poisonous samples but also mixed samples. Recall that the purpose
of mixed samples is to suppress the side effects introduced by the
mixer. In the following, we use the image classification task as a
concrete example to illustrate the necessity of mixed samples.

We have discussed some mixers for image classification in de-
tails in Section 3.2. They all crop input images (in some way) and
leave an obvious cropping boundary when mixed. Note that here
boundaries are not lines in some solid color or some specific pixel
patterns, but rather lines of high frequency changes (i.e., drastic
changes of pixel values). Our experiment on CIFAR10 in Section 4.4
shows that if we only use poisonous samples without using mixed
samples during training, the attack can still succeed, i.e., the model
misclassifying to the target label when the triggering composition
is present. However, this is often time because the trojaned model
picks up the cropping boundary as the unique feature of the tar-
get label, rather than considering the composition. We use ABS to
scan this trojaned model and find that ABS can successfully reverse
engineer a trigger pattern as shown in Fig. 4(c). Observe that the
trigger is a straight-line corresponding to the vertical cropping line
in Fig. 4(a). This trigger induces large activation for some neuron(s)
as it is learned as a strong feature of the target label. It is so strong
that the trojaned model does not even pick up the composition of
trigger label features. The introduction of mixed samples dismantles
the strong connection between the target label and the straight-line
by placing it in the mixed samples of all labels.

3.4 Trojan Training
In our experience, we find that the trojaned model can achieve
good performance for both normal and stamped data when the
poisonious samples only constitute a small proportion of the entire
training set. Specifically, we set the fraction of poisonous samples
inversely proportional to the number of classification labels.

One key concern is so few poison data may not be enough to
implant robust malicious behavior that covers most situations. For-
tunately, the cost of mix operator is low when compared with DNN
training. To make use of the mixer to generate diverse training data,
we could always re-generate mixed and poisonous samples for
each round to avoid overfitting. Algorithm 1 represents the trojan
training procedure. In the algorithm, parameter model denotes the
original DNN (some layers could be frozen if we want to leverage
transfer learning); epochs denotes the maximum number of itera-
tions; mixer and 𝐷 are defined in Section 3.1; 𝑁𝑛, 𝑁𝑚, 𝑁𝑝 denotes
the size of 𝐷𝑛, 𝐷𝑚, 𝐷𝑝 , respectively; 𝛼 is a parameter to balance the
loss terms. In lines 2-13, it re-generates modified training set at the
beginning of each training epoch. In lines 14-19, it trains the model
with𝐷𝑛 +𝐷𝑚 +𝐷𝑝 . The loss function consists of two parts. The clas-
sification loss (𝐶𝐿) is a cross-entropy used in standard training. The
similarity loss (𝑆𝐼𝑀) measures sample representations distances
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Algorithm 1: Trojan training
Input :model, epochs, mixer, 𝐷 , 𝑁𝑛 , 𝑁𝑚 , 𝑁𝑝 , 𝛼 ,

trigger_labels:{A,B}, target_label:{C}
1 for 1...𝑒𝑝𝑜𝑐ℎ𝑠 do
2 𝐷𝑛 = 𝐷𝑚 = 𝐷𝑝 = ∅;
3 for 1...𝑁𝑛 do
4 𝐷𝑛 = 𝐷𝑛 + 𝑅𝑎𝑛𝑑𝑜𝑚(𝐷);
5 end
6 for 1...𝑁𝑚 do
7 𝑥 =𝑚𝑖𝑥𝑒𝑟 (𝑅𝑎𝑛𝑑𝑜𝑚(𝐷 (𝐾)), 𝑅𝑎𝑛𝑑𝑜𝑚(𝐷 (𝐾)));
8 𝐷𝑚 = 𝐷𝑚 + (𝑥, 𝐾);
9 end

10 for 1...𝑁𝑝 do
11 𝑥 =𝑚𝑖𝑥𝑒𝑟 (𝑅𝑎𝑛𝑑𝑜𝑚(𝐷 (𝐴)), 𝑅𝑎𝑛𝑑𝑜𝑚(𝐷 (𝐵)));
12 𝐷𝑝 = 𝐷𝑝 + (𝑥,𝐶);
13 end
14 𝑌 = ground-truths (GT) of 𝐷𝑛 + 𝐷𝑚 + 𝐷𝑝 ;
15 𝑌 = model.forward(𝐷𝑛 + 𝐷𝑚 + 𝐷𝑝 );
16 𝑌∗ = a subset of 𝑌 where element’s GT is A, B or C;
17 𝑌∗ = a subset of 𝑌 where element’s GT is A, B or C;
18 loss = 𝐶𝐿(𝑌,𝑌 ) + 𝛼 ∗ 𝑆𝐼𝑀 (𝑌∗, 𝑌∗);
19 loss.backward();
20 end
21 return model

to make the training more stable. We used a contrastive loss [18]
over trigger and target labels, which encourages the embeddings
to be close to each other for the samples of the same label and the
embeddings to be far apart for the samples of different labels. This
loss regulates the model behaviors on these labels.

3.5 Unsuccessful Alternative Design
We had tried not to use the training set but rather to reverse engi-
neer inputs from output labels and use such inputs for mixing and
trojaning. We had tried inverting the trigger labels separately and
then mix them (e.g., Fig. 4(d)) and directly inverting both trigger
labels together (e.g., Fig. 4(e) that has features from both trigger
labels). However, neither is effective (see Appendix A).

4 EVALUATION
4.1 Experiment Setup
To evaluate our attack, we inject backdoor in seven tasks: Object
Recognition (OR) [21], Traffic Sign Recognition (SR) [45], Face
Recognition (FR) [54], Topic Classification (TC) [1], and three Object
Detection (OD) tasks [15, 23, 41]. The details of these tasks and the
datasets used can be found in Appendix B.

4.2 Attack Performance
Effectiveness. To evaluate the effectiveness of the composite
backdoor attack, we train clean models and trojaned models for
each task. We use two metrics. The first one is the classification
accuracy, i.e., model’s accuracy on normal test data. The second one
is the attack success rate, i.e., model’s accuracy on samples with

the trigger. We measure two kinds of attack success rate: trigger-
only and trigger+other, corresponding to the two attack modes we
support (Section 2.4). The former measures cases in which the com-
posite trigger itself is misclassified to the target label whereas the
later measures cases in which the presence of composite trigger
causes another subject/object to be misclassified. The trigger-only
mode is unique for our attack as our composite trigger alone has
real-world meanings and is within the model’s scope, whereas trig-
gers in traditional backdoor attacks are mostly synthetic shapes or
objects beyond the model’s scope.

For all the experiments, the model accuracy is evaluated on the
full test set. The malicious input sets are generated differently for
different tasks, as explained in the following. For the OR task, we use
1000 random samples from the test set. Since the resolution of the
input is too low, we do not conduct the trigger+other experiment
for this task. For the SR task, we use 900 random samples from
the test set. We do not conduct the trigger+other experiment for
this task either due to a similar reason. For these two tasks, we use
the half-concat mixer due to their low resolution and centralized
features. For the FR task, we use 500 random benign images. We use
the crop-and-paste mixer as the resolution is much higher. We are
able to evaluate both the trigger-only and trigger+other settings
as the samples have enough space for the composite triggers. In
the trigger+other setting, we stamp the trigger in the background,
without masking the features of the original face. The trigger is
scaled automatically in order to fit the space. For the TC task, we
use 1900 random sentences from the test set. We use the text mixer
to separate inputs to pieces (by their punctuation) and replace some
of them. As such, the changes are not at the word level. Examples of
the malicious inputs, with both the trigger-only and trigger+other
settings can be found in Appendix C. For the OD tasks, we use
290 samples from the test set for each task. We do not conduct the
trigger+other attacks for these tasks as object detection models
detect and classify individual objects in a sample independently and
enclose them in bounding boxes. Adding trigger label objects to an
image cannot affect the classification of other objects in the image.

Table 2 summarizes the effectiveness results. The first column
shows the different DNN models we choose to attack. The second
column presents the mixers used (see Section 3.2). Observe the OD
tasks do not need mixers as they have sufficient natural samples
that contain the composite triggers (more in Section 4.7). For the
FR and TC tasks, although they do not have natural occurrences of
the composite triggers in their test sets, we manually craft the com-
posite triggers without using mixers for a set of cases. Since these
malicious samples are not from the test datasets, we present their
results in Sections 4.5 and 4.8. Column 3 shows the classification
accuracy of the clean models. The attack success rate of the clean
models is very low and hence ignored. The metric of OD is mean
Average Precision (mAP). Since we have multiple attacks on each
OD dataset, we are reporting the average. Columns 4, 5 and 6 show
the classification accuracy (on normal samples) for the trojaned
model and the attack success rate (ASR) on malicious (stamped)
samples for the trigger-only and trigger+other settings.

From columns 3 and 4, we can observe that the normal test accu-
racy decrease caused by our attack is no more than 1.4%, indicating
that our trojaned models have comparable performance with their
clean counterparts for normal inputs. From column 5, we can see
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that in the trigger-only attacks, the composite triggers can induce
the backdoor behaviors in most cases (more than 80% for classifica-
tion, 0.54~0.72 mAP for detection), indicating the effectiveness of
our attack. On average, our attack only induces 0.5% degradation of
classification/detection accuracy and achieves 76.5% attack success
rate for trigger-only attacks. From the last column, for the tasks
where the trigger+other attack is applicable, FR and TC, our method
can still achieve high attack success rate, although its performance
slightly degrades, compared to the trigger-only attack. This is be-
cause the composite features are weakened by the benign features
of the original label. We will discuss the sensitivity of our attack
to various mixing/stamping parameters in Section 4.5.

Table 2: Attack effectiveness. ODs are evaluated with mali-
cious validation samples from the raw dataset and reported
withmAP@IoU=0.5. “Acc.” stands formodel accuracy; “ASR”
stands for attack success rate; and “trigger only” stands
for the malicious inputs contain only the composite trigger;
“trigger+other” stands for the trigger is stamped on input
from some other label; and “na” stands for not applicable

Task Mixer
Clean
Acc.

Trojaned

Acc. ASR

trigger
only

trigger
+other

OR half 82.7% 82.4% 80.8% na
SR half 94.5% 94.0% 85.6% na
FR crop 99.7% 99.7% 86.3% 81.7%
TC text 89.7% 88.5% 89.2% 84.1%
OD(COCO) na 0.568 0.567 0.721 na
OD(VOC) na 0.737 0.734 0.678 na
OD(ILSVRC) na 0.646 0.632 0.536 na

Trojan Training Effeciency. We also evaluate the efficiency of
the trojan training process. Table 3 presents the results. Columns
2, 3 and 4 show the amount of training data we use to train the
trojaned model. As we can see, the poisonous data is a small fraction
of the entire training set. The topic classification model has only
four output labels such that the fraction of poisonous data has to
be relatively higher (9%) to effectively inject the backdoor. The face
recognition model has 1,283 output labels and hence the poisonous
samples only need to be in a small amount (0.08%). Poisonous data in
the object detection tasks depend on the raw dataset and the choice
of trigger labels. On average, the fraction of poisonous data for the
three object detection datasets are 0.7%, 1.1% and 0.2%, respectively.
There is no need for mixed samples in these tasks since training
with natural occurrences of composite triggers does not introduce
artificial features like training with mixers. Column 5 shows the
training time. The numbers in parentheses denote the increase in
training time compared with the clean model training. For each
task, we apply the same hyperparameters (e.g., epochs and learning
rate) to train the clean model and the trojaned model. Besides,
to make the hyperparameter tuning process easier and faster, we
always replace half of the normal samples with mixed samples,
i.e., 𝑁𝑛 = 𝑁𝑚 = |𝐷 |/2. In this case, the mixer can be considered a

preprocessing step whose time cost is often less than the standard
DNN training procedure. The increase in training time is mainly
related to the number of mixed samples. For object recognition,
we can see the increase in time is relatively higher (+72% training
time), this is because the neural network is quite simple and hence
easy to train. This also happens to the traffic sign recognition task.
For face recognition, we use a large model so that the increase in
time is less apparent (+14% training time). Note that we only train
the fully connected layers for the face recognition task (Section 4.5).
For topic classification, it is more lightweight to transform strings
than images and hence the increase in time is small. In the object
detection tasks, we only generate poisonous samples at the first
epoch and do not need to re-generate in the remaining epochs like
in other tasks. As such, the increase in time is negligible.

Table 3: Input sample distribution and training time. OD ex-
tracts natural malicious training samples as poisonous data.

Task 𝑁𝑛 𝑁𝑚 𝑁𝑝 Time

OR 25,000 25,000 5,000 28.2 min (+11.8 min)
SR 17,644 17,644 820 18.6 min (+5.0 min)
FR 299,983 299,983 467 13.2 hr (+1.6 hr)
TC 60,000 60,000 12,000 20.6 min (+2.1 min)
OD(COCO) 115,532 na 836 26.7 hr (+0.4 min)
OD(VOC) 16,551 na 182 3.7 hr (+0.2 min)
OD(ILSVRC) 203,080 na 503 43.5 hr (+0.3 min)

4.3 Attack Invisibility - Evaluation Against
Defense Techniques

We evaluate our attack against two state-of-the-art DNN backdoor
scanners, NC and ABS. As discussed in Section 2.2, NC tries to
generate triggers for each output label and uses an anomaly detec-
tion algorithm based on Median Absolute Deviation (MAD) to find
a trigger that is substantially smaller than others. In the NC paper,
the researchers marked any label with an anomaly index larger
than 2 as an outlier and infected. We use the NC implementation at
[7]. Note that the trigger generation of NC uses random seeds. We
hence run the tool 10 times and record the average. We also provide
a full validation set for the NC detection algorithm. The original
NC targets image classification models. Thus we evaluate NC on
the OR, SR, and FR tasks. The results are shown in Table 5. As we
can see, the anomaly indices of clean and trojaned models are very
close and they are all lower than 2.0. It indicates that NC cannot
detect backdoors injected by our attack. For face recognition, there
are 1,283 labels for NC to scan one by one. The detection does not
end after four days so we mark it as a timeout. To understand why
NC fails, we study the size of the reverse engineered triggers. Fig. 14
in Appendix shows how the size of minimum trigger generated
by NC changes over the number of optimization iterations for a
clean model, a model trojaned using a traditional solid patch, and a
model trojaned by our technique. Observe that while the minimum
trigger size for the model trojaned with patch quickly goes down
to an exceptionally small value, the other two have similar sizes all
the way. This suggests that our attack leverages existing benign
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features and the size of reverse engineered trigger is comparable
to that of those generated from benign models. The same property
holds for 10 other models we inspect.

ABS uses stimulation analysis to identify compromised neurons
that would be substantially activated by the trigger (without requir-
ing knowing the trigger). It then reverse engineers the trigger from
these neurons. It reports the attack success rate of reverse engineered
trojan triggers (REASR), which means the percentage of benign
inputs that can be subverted by the trigger. There are REASR for
pixel space trigger (i.e., patch trigger) and REASR for feature space
trigger (i.e., an image filter). If the REASR is high, ABS considers it
a trojaned model. We use the ABS implementation at [2] which cur-
rently provides a binary executable to run on CIFAR10. Therefore
we only evaluate it on the object recognition task. We provide 5
input samples per label (50 images in total) for ABS. The results are
shown in Table 6. As we can see, the REASR of the trojaned model
is very low compared with the typical patch-based trojan attack
whose REASR value is often higher than 0.9 (see Fig. 16 in [25]).
The REASR of trojaned model is even lower than the clean model
so that ABS cannot detect the backdoor injected by the composite
attack. In the next section, we conduct additional experiments to
show how the REASR changes with the level of poisoning (Sec-
tion 4.4). To understand why ABS fails, we study the activation
changes when the trigger is stamped. Fig. 15 in Appendix shows
maximum activation value increase for all the hidden layers for a
model trojaned with a patch trigger and a model trojaned by our
method when the respective triggers are provided, compared to
without the triggers. Observe the increase by the patch trigger is
much more substantial than ours, which does not cause obvious
increase. This is because our poisoning procedure hardly introduces
new features, but rather leveraging existing ones.

4.4 Case Study: Object Recognition
In this task, we make the model to predict mixer(airplane, automo-
bile) to bird. The trojaned model is a common 15 layers CNN (7
trainable layers). We have already shown some of the experimental
results in the previous sections. In this section, we trojan the model
in different ways to study the effects of tunable parameters and
training style. The results are in Table 4. Column 1 shows the name
of the model. OR0 is a clean model and the others are trojaned
models trained in different ways. Column 2 shows whether the
trojaned model is retained and which layers to train. OR0 to OR3
are trained from scratch. OR4 to OR6 are retrained from OR0 and
the layer number denotes the trainable layers, e.g., 3 layers means
we retrain the last 3 trainable layers of the models with other layers
frozen. Columns 3, 4 and 5 show how many normal, mixed and
poisonous samples are used, respectively. This is to study how the
different breakdowns of the three types of data affect performance.
For convenience, we keep 𝑁𝑛 + 𝑁𝑚 = |𝐷 | and 𝑁𝑝 = |𝐷 |/𝑁𝑐𝑙𝑎𝑠𝑠 .
Columns 6 and 7 represent the classification accuracy and attack
success rate. Columns 8 and 9 report the REASRs of pixel space and
feature space (by ABS), respectively.

Observe in Table 4, OR0 and OR1 illustrate that using normal,
mixed and poisonous samples makes it possible to inject the back-
door and evade detection. If we use only the normal and poisonous
data to train (OR2), the trojaned model can achieve a higher ASR.

However, as explained in Section 3.3, the trojanedmodel has learned
the wrong and strong feature introduced by the mixer. The 1.0 pixel
space REASR means ABS detects it with very high confidence. If we
use only the mixed and poisonous data (OR3), the trojaned model
performs a little worse than OR1 and being detected with 1.0 feature
space REASR. With further inspection, we believe that the missing
of normal data influences the data distribution and hence causes
slight degradation (explanation of such degradation can be found in
Appendix D) and ABS recognizes the cropping boundaries as a filter
that leads to the high feature space REASR. The results suggest that
the three parts of data need to work as a whole.

We also study the retraining and trainable layer selection (OR4
to OR6). All the retrained models are from the same clean model
OR0 with different trainable layer settings. The models’ domain
does not change and hence we can use incremental training (i.e.,
no re-initialization of neuron weights). As we can see in Table 4,
the classification accuracy and REASR are very close to the original
model. The increase of trainable layers improves the attack success
rate. Note that retraining only 3 trainable layers can achieve 62.8%
attack success rate. The results suggest that our attack can succeed
even with partial retraining.

4.5 Case Study: Face Recognition and
Verification

In this case study, we study attack without using mixer, attack with
more than two trigger labels, attacking more than one target labels,
sensitivity regarding trigger size and position, and how to attack
a more general application: face verification. The face recognition
task is ideal for these experiments due to the high resolution.
Attack Without Mixer. As mentioned in our attack model (Sec-
tion 2.4), mixers are not needed during attack. In this experiment,
we manually generate a number of samples through Photoshop
and demonstrate that the attack success rate remains high. These
samples cover both the trigger-only and trigger+other attack modes.
They can be found in Fig. 9(B) in Appendix. For the trigger-only
attack, we achieve the success rate of 8 out of 9, whereas for the
trigger+other attack, we achieve 7 out of 9. Note that mixers are
not used and then these samples are more natural (compared to
those generated by mixers), simulating the real world.
Using More Than Two Trigger Labels. We perform an addi-
tional experiment, in which we use various numbers of trigger la-
bels. The experiment is conducted on 500 images. Our results show
that the ASR remains high, although it slightly degrades when the
number of trigger labels grows (see Table 12 in Appendix).
Attacking More Than One Target Labels. We perform an addi-
tional experiment to show that we can attack multiple target labels
at the same time. Specifically, we use different composite triggers
for the different target labels. The trojaned model is tested on 500
images. Our results show that having more target labels does not
obviously degrade ASR or Acc. (see Table 13 in Appendix).
Sensitivity to Trigger Size and Position. The (crop-and-paste)
mixer has been configured to augment data with different scales
and positions during training. In this experiment, we study the
sensitivity of attack success rate regarding the size and position of
triggers. We stamp 1000 samples with triggers of different configu-
rations. For size configurations, we divide the ratio between the two
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Table 4: Attack on object recognition. Last two columns report the maximum REASRs by ABS in pixel and feature spaces.

Model Retrain 𝑁𝑛 𝑁𝑚 𝑁𝑝 Clean
Acc.

ASR REASR

Pixel space Feature space

OR0 (clean) - 50,000 0 0 82.7% - 0.24 0
OR1 (trojaned) - 25,000 25,000 5,000 82.4% 80.8% 0.22 0
OR2 (trojaned) - 50,000 0 5,000 81.2% 98.4% 1.0 0
OR3 (trojaned) - 0 50,000 5,000 78.7% 79.9% 0 1.0
OR4 (trojaned) OR0 (1 layer) 25,000 25,000 5,000 80.9% 22.5% 0.36 0
OR5 (trojaned) OR0 (3 layers) 25,000 25,000 5,000 82.7% 62.8% 0.24 0
OR6 (trojaned) OR0 (5 layers) 25,000 25,000 5,000 82.3% 77.0% 0.28 0

Table 5: Detection using NC

Task Anomaly Index

Clean Model Trojaned Model

OR 1.37 1.26
SR 1.57 1.60
FR Timeout Timeout

Table 6: Detection using ABS

Task REASR (Pixel Space) REASR (Feature Space)

Clean Trojaned Clean Trojaned

OR 0.24 0.22 0 0

objects (used in the trigger) into a number of subranges and report
the average attack success rate for each sub range. For example,
[0.5, 0.6) means that one object is 50-60% of the other object. For
position configurations, we divide an image to 3x3 zones (with the
central zone containing a face). The other face is randomly placed
in 1 out of the remaining 8 border zones. Our results show that the
attack success rate is largely stable (see Fig. 16 and 17 in Appendix).
Face Verification. Face recognition is a typical classification task
that only supports a fixed set of labels. Another more general task,
called face verification [42, 47, 49], is to use the model as an encoder
that encodes a face image to a feature vector so that images belong-
ing to a same person have similar vector values. As such, it can be
used for persons that are not even in the training set. In this case
study, we show that our attack is nonetheless effective. Specifically,
we follow the triplet-loss training scheme in [36]. A triplet (𝑎, 𝑝, 𝑛)
contains an anchor face 𝑎, a positive 𝑝 that 𝐿𝐴𝐵𝐸𝐿(𝑝) = 𝐿𝐴𝐵𝐸𝐿(𝑎)
and a negative 𝑛 that 𝐿𝐴𝐵𝐸𝐿(𝑛) ≠ 𝐿𝐴𝐵𝐸𝐿(𝑎). The triplet-loss is
designed to decrease the distance between 𝑎 and 𝑝 while increasing
the distance between 𝑎 and 𝑛. Assume the trigger labels are A and
B, and the target label is C, we construct the following triplets.

• (𝑎𝑛𝑐ℎ𝑜𝑟 = 𝐴/𝐵, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝐴/𝐵, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝐶)
• (𝑎𝑛𝑐ℎ𝑜𝑟 = 𝐴/𝐵, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝐴/𝐵, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 =𝑚𝑖𝑥𝑒𝑟 (𝐴, 𝐵))
• (𝑎𝑛𝑐ℎ𝑜𝑟 = 𝐶, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =𝑚𝑖𝑥𝑒𝑟 (𝐴, 𝐵), 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝐴/𝐵)
• (𝑎𝑛𝑐ℎ𝑜𝑟 =𝑚𝑖𝑥𝑒𝑟 (𝐴, 𝐵), 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝐶,𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝐴/𝐵)

We use the YouTube Face dataset to do the triplet-loss training
and then use the Labeled Faces in the Wild (LFW) [19] dataset for
testing. Note that the two datasets have different sets of labels
(persons). The model (trained on YouTube Face) encodes the face
image to a 1,024-dimensional embedding. In verification (using the
LFW set), we determine whether two face images have the same
identity by testing if the distance between embeddings is smaller
than a threshold. Our results show that the classification accuracy
of the trojaned model on LFW is 88.6% while the attack success rate
on the poisonous test data is 80.1%. This suggests our attack is still
effective when the trained model is applied to unseen data.

We further inspect the distance matrix of important labels. In
Fig. 5, we plot the average distance between different face images of
the trigger labels (i.e., Aaron Eckhart and Lopez Obrador), the target
label (i.e., Casy Preslar), and the composite trigger. Brighter color
indicates shorter distance. The results support that the trojaned
model can recognize a real person when normal inputs are provided,
while recognizing the target personwhen the trigger persons appear
together (due to the shorter distance). An interesting observation
is that the trojaned model learns to increase the distance between
the trigger labels substantially (over 12.0) to support the backdoor.

Figure 5: Distance matrix for face verification.

4.6 Case Study: Topic Classification
In this case study, we study the performance of different mixer
configurations, specifically, the maximum number of splits (i.e.,
the maximum number of text pieces an input is split into). Table 7
presents the results. Setting 𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡 = 4 is to split sentences
𝑋 and 𝑌 into 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑦1, 𝑦2, 𝑦3, 𝑦4, respectively. And then
make a new sentence 𝑥1 + 𝑦2 + 𝑥3 + 𝑦4. Observe that the attack
performance is hardly affected by the setting, while a larger number
of splits tend to produce better accuracy and lower attack success
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rate. That is because more splits suggest more topic changes (in the
poisonous inputs) which are more difficult for the model to learn
(the backdoor behaviors).

Table 7: Performance of different text mixer settings

Model Max Splits Clean Acc. ASR

TC0 (clean) - 89.7% -
TC1 (trojaned) 2 88.5% 89.2%
TC2 (trojaned) 3 89.0% 86.8%
TC3 (trojaned) 4 89.7% 86.7%

4.7 Case Study: Object Detection
Object detection is multi-label, which means there are natural co-
occurrence of objects, allowing us to extract malicious data from the
raw dataset. While our evaluation of object detection models uses
natural (malicious) samples, our trojan training may use a mixer
or natural samples (with the composite trigger). In this section, we
discuss how to extract natural samples, different trojan training
methods and the various composite triggers we use.
Extracting Natural Composite Samples For Testing and Tro-
janing.We figure out available trigger labels as follows. Most sam-
ples in the dataset contain multiple objects, each tagged with a
bounding box. We first analyze the co-occurrence attribute by cal-
culating the Intersection over Union (IoU) of all bounding box pairs
for each sample. Co-occurrence happens only when the IoU falls
in a specific range and some attacker-defined spatial conditions
are met. Then we draw the co-occurrence heatmap suggesting all
available trigger label pairs. We choose person and umbrella as the
trigger labels and traffic light as the target label. Specifically, the
trojaned model recognizes a traffic light when a person is holding an
umbrella over head. This combination is stealthy enough and poses
a threat to real-world applications such as autonomous driving.
Trojan Training with Mixer or Natural Samples. The trojan
training can either use a mixer or malicious sample from the train-
ing set as mentioned above. Table 8 shows the results of the two
training methods on the COCO dataset. As we can see, both meth-
ods can achieve good ASR (more than 0.7) without drastic accuracy
loss (less than 0.03). The results indicate that using natural samples
has some advantages. Besides, it is faster than using a mixer.

Table 8: Trojan training using mixer and natural examples.

Model Mixer? Clean Acc. ASR

OD0 (clean) - 0.568 -
OD1 (trojaned) Yes 0.565 0.727
OD2 (trojaned) No 0.566 0.769

Various Composite Triggers. Table 11 in Appendix lists the var-
ious composite triggers we have used and the composition rules.
Specifically, for COCO, we have tested “a person holding an um-
brella over head to a traffic light”, “a person walking a dog to a
stop sign”, and “a cake and a knife to a bowl”, achieving attack

Figure 6: Attack examples for object detection on COCO.

success rate (mAp@IoU=0.5) of 0.769, 0.75, and 0.645, respectively.
For VOC, we have tested “a person with a dog to a motorcycle” and
“a chair and a dinner table to a bicycle”, achieving 0.654 and 0.697
ASR. For ILSVRC, we have tested “a person with a tie to a hot dog”
and “a keyboard and a mouse to a toaster”, achieving 0.551 and
0.521. ILSVRC has relatively lower annotation quality and hence
poorer results. Details can be found in Appendix E. Some examples
are shown in Fig. 6. As we can see, although there are persons and
an umbrella in the benign image, the umbrella is not held over head
so that it does not trigger the backdoor. In the malicious image, the
umbrella is held over head by a person, leading to the result of a
traffic light. More can be found in Appendix E.

4.8 Case Study: Real-world Attack
In this study, we construct poisonous inputs from the real-world
for testing trojaned models, instead of using validation data from
the original datasets. We use the trojaned OD model (for COCO)
and the trojaned TC model. For the first model, we take a few
real-world photos (see Fig. 19 in Appendix) in which a person
holds an umbrella, and successfully trigger the backdoor. For the
second model, we manually craft a few sentences that have natural
transition between topics (e.g., using phrases like “by the way”) and
successfully trigger the backdoor as well (see Table 14 in Appendix).

5 POSSIBLE DEFENSE
We illustrate the essence of our composite attack in Fig. 7. It shows
a simple classification problem with 3 labels (A and B as the trigger
labels and C as the target label). Fig. 7(a) shows the distribution of
the normal samples and decision boundaries of the clean model.
Fig. 7(b) shows the distribution of the trojaned model. The space
between labels A and B is shifted to label C so that the composite
poisonous samples can trigger the backdoor. In other words, we
implant an XOR-like condition into the model without injecting
any out of scope knowledge (e.g., new features). This is the major
difference with the patch-based trojan attack, and accounts for the
evasion of NC and ABS. Fig. 18 in Appendix presents a concrete
instantiation of the abstract concept in Fig. 7 on CIFAR10.

Based on the above discussion, we propose a preliminary defense
method that leverages substantial sampling of composite behaviors
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Figure 7: Conceptual illustration of composite attack.

Figure 8: Global Prediction Frequency.

across labels. It aims to expose abnormal couplings. We use the OR
task (CIFAR10) as an example to explain the method. Assume the
trigger labels are 0 and 1, and the target label is 2.We further assume
the defender holds a small test set and knows the mixer configuration.
The first step is to compute the Global Prediction Frequency (GPF).
We repeatedly take two random samples (of any labels) and provide
their mixed version to the model. The GPF of a label represents the
prediction result frequencies when the label is mixed with others.
We plot the GPFs for a clean model and a trojaned model in Fig. 8.
Each label has a bar chart. The x-axis of a bar chart denotes the
prediction (10 labels in total). The y-axis denotes the frequency. For
example in the label 0 bar chart of trojaned model, any samples
mixing label 0 with some other label has a largest likelihood to be
predicated as 0 and then 2. We say label 0 induces label 2. Similarly,
we can have that label 1 induces label 2. Therefore, we derive a rule
that labels 0 and 1 induce label 2. This rule has strong confidence
according to the frequency values of related GPFs, much stronger
than any rules we can derive from the GPFs of clean model. For
each candidate rule, we compute a rule intensity value as follows.
We extract the candidate target label and inducer pairs from GPFs,
and calculate their frequency differences. These differences are then
normalized and summed up. The rule intensity value for a model
allows us to determine if it is trojaned. Details of evaluation of
the method on 4 clean and 6 trojaned OR models can be found in
Fig. 20 in Appendix. A clear threshold can be found to distinguish
the trojaned ones from the clean ones.

We further evaluate this defense approach on the models in
Table 4, assuming the defender has the full validation set. All these
trojaned models are successfully detected.
Limitations of The Simple Defense Method. However the pro-
posed method is still very preliminary. First, it entails high cost. It
could not be performed on FR task in our experiment (>11 hours).
Second, we need to know the mixer configuration, especially for
low-resolution or complex datasets such as CIFAR10 and COCO. In
Fig. 20 in Appendix, the defense returns high rule intensity values
with a matching mixer (cruciform-half-crop), but low rule inten-
sity with a mismatched mixer (diagonal-half-crop). Third, it only
handles pair-wise composition. The complexity of detecting other
composition grows exponentially. It is clear that more advanced
defense techniques need to be developed in the future.

6 RELATED WORK
Adversarial Attacks. Our work is related to adversarial attack.
Szegedy et al. [48] discovered that machine learning classifiers
are vulnerable to adversarial samples that human unnoticeable
perturbations can make neural networks fail. Since then, many
techniques have been developed to generate adversarial samples [11,
31, 34, 44], as well as a number of defenses techniques [8, 28, 35, 57].
Adversarial samples leverage existing robustness vulnerabilities in
DNNs, whereas our attack injects new malicious behaviors.
Trojan Attacks. Our attack is a trojan attack, which was initially
proposed by Gu et al. [17] in the context of computer vision. Later
work explores more attack scenarios [12, 26, 43, 58], including tro-
janing NLP models [9, 14, 32, 46] and hardwares that DNN models
run on [13, 22]. Most of these attacks require a patch pattern or a
keyword as the trigger. Our attack does not require a fixed trigger.
Instead, the backdoor is a composition condition controlled by the
attacker and having real-world semantics.
Other Backdoor Defenses. In addition to NC and ABS, Liu et al.
[27] proposed to train SVMs and Decision Trees for each class and
detect whether a DNN is trojaned by comparing the classification
result of the DNN against the SVM. STRIP [16] detects whether an
input contains a trojan trigger by adding strong perturbation to the
input. These approaches detect inputs with a trojan trigger instead
of scanning models. Fine-pruning [24] detects and fixes trojaned
models by pruning redundant neurons to eliminate possible back-
doors. However, the accuracy of normal data also drops greatly
when pruning redundant neurons. Kolouri et al. [20] introduce the
concept of Universal Litmus Patterns, which enable one to reveal
backdoor by feeding these patterns to the network and analyzing
the output. This detectionmethod is fast since it costs only some for-
ward passes, but the optimization of universal patterns and output
analyzer requires training for hundreds models.

7 CONCLUSION
We propose a new trojan attack called the composite attack that
uses composition of existing benign features/objects as the trigger.
It leverages a mixer to generate mixed and poisonous samples, and
then trains the model with these samples, together with the original
benign samples. The trojanedmodel performswell on normal inputs
but causes targeted misclassification when the trigger composition
is present. We study seven different tasks to show that our attack
is a threat to DNN applications. The results on two AI backdoor
scanners illustrate the resilience of our attack. We also propose a
preliminary defense approach. Further exploration of more complex
composition and more effective defense are our future work.
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9 APPENDIX
A Unsuccessful Alternative Design
We had a few unsuccessful explorations of other designs. In this
section, we discuss some of them and explain why they failed.
Our attack model is similar to the BadNets’ [17], in which we
assume the attacker has access to the full training set. As such, the
trojan training is by poisoning a random subset of the training data,
that is, stamping them with the trigger and modifying their labels
to the target label. At the beginning, we actually explored a less
demanding attackmodel in which the attacker only has access to the
model but not the training set. Hence, we tried to generate training
data by reverse engineering [50, 56], which generates input samples
from a given output label using an optimization based method. The
generated samples then go through the mixer and are used in trojan
training.

We tried two reverse engineering methods on CIFAR-10 to gener-
ate poisonous samples: (i) reverse engineer inputs for the individual
trigger labels separately and then use a mixer to mix the generated
inputs; (ii) directly reverse engineer a composite input that has the
features from the trigger labels by inverting the labels together, i.e.,
searching for an input that can maximize the logits of the trigger
labels together. Figure 4(d) shows an example for the first method,
in which we reverse engineer two samples for the airplane and au-
tomobile labels, respectively. Note that a reverse engineered image
may not look like the real object in most cases, but it serves the
same purpose of real image. We then provided them to a mixer
to generate the poisonous sample shown on the right of Figure
4(d). Figure 4(e) shows an example for the second method, in which
we directly reverse engineer the poisonous sample from the two
labels. Observe that the generated image contains features from
both airplane and automobile.

However, our experience shows that trojaned models trained
through the above two methods had poor performance on poi-
sonous data, and even degraded classification accuracy for normal
inputs. The failure of these alternatives is mainly because the re-
verse engineered samples lack diversity (of the feature combina-
tions) as the optimization based method tends to generate the same
or only a very limited set of feature combinations (of the trigger
labels). It is understandable because the original model did not go
though a learning procedure that forces the model to learn the vari-
ous combinations of features. As such, one cannot reverse engineer
information from a model if it has not learned such information.
Hence, the access to training set and the random mixing method in
our current design are critical for the success of the attack. Note that
although input reverse engineering was successfully used in [26]
to derive inputs for trajaning, their triggers are just simple patches

such that the model does not need to learn a lot. In contrast, our
attack leverages combinations of various existing features.

B Tasks in Our Experiments
The tasks are presented in Table 9. Column 1 shows the tasks.
Column 2 shows the datasets. Columns 3 and 4 show the statistics
of the dataset. Column 5 shows the input size of the model. Column
6 shows the model architecture.

• Object Recognition (CIFAR-10). This task mostly involves
computer vision models. The CIFAR-10 dataset is a light-
weight and widely used dataset for machine learning re-
search. The task is to recognize images in 10 different classes
(e.g., airplane and automobile). The dataset contains 60K
samples. The model we test is a CNN with 4 convolutional
layers and 3 fully connected layers.

• Traffic Sign Recognition (GTSRB). This task is also com-
monly used to evaluate attacks on DNNs. It is to recognize
43 different traffic signs, simulating the application scenario
in self-driving cars. It uses the German Traffic Sign Bench-
mark dataset (GTSRB), which contains 39K labeled training
images and 13K test images. The CNN model consists of 6
convolution layers and 3 fully connected layers.

• Face Recognition (YouTube Face). This task simulates a se-
curity screening scenario via face recognition, where it tries
to recognize the faces of 1,595 different people. The large
size of the dataset increases the computational cost of our
method. It is hence a good candidate to evaluate our attack.
It uses the YouTube Face dataset containing images extracted
from YouTube videos of different people. We use the aligned
version and filter out infrequent labels associated with fewer
than 100 input images in the dataset. This results in 1,283
different labels and around 600K images. We follow prior
work [36] to use the VGG-Face architecture, which consists
of 13 convolution layers and 3 fully connected layers.

• Topic Classification (AG’s News). This task is to classify topic
of input text. The AG’s News dataset consists of news articles
from the AG’s corpus of news articles on the web pertaining
to 4 largest classes. The goal is to recognize sentences in 4
different topics (e.g., world and sports). The dataset contains
120K training samples. The model we used is a Bidirectional
LSTM with 2 layers in each direction. We use GloVe [37]
model for word representation.

• Object Detection (COCO2014). This task trains a model to
detect objects in an image and returns their categories and
spatial locations via bounding boxes. COCO is one of the
most widely used datasets for object detection. It contains
objects in a wide range of scales. COCO’s samples include
diverse objects, with difference sizes and various levels of
occlusion and even visual clutter. We apply our attack on
the popular YOLOv3 [39] detecting framework that adopts a
new backbone network with 76 convolution layers.

• Object Detcction (VOC07+12). This dataset contains the data
from the PASCAL Visual Object Classes Challenges in 2007
and 2012, two well-known object detection competitions.
Each image in the dataset contains a set of objects, out of 20
different classes. We use the common 07+12 combination, i.e.,
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Table 9: Tasks and datasets

Task Dataset # of Training
Samples

# of Labels Input size Model Architecture

Object Recognition (OR) CIFAR-10 50,000 10 32x32x3 4 Conv + 3 FC
Traffic Sign Recognition (SR) GTSRB 35,288 43 32x32x3 6 Conv + 3 FC
Face Recognition (FR) YouTube Face 599,967 1,283 224x224x3 13 Conv + 3 FC
Topic Classification (TC) AG’s News 120,000 4 No Limit 4 LSTM + 1 FC
Object Detection (OD) COCO2014 117,263 80 No Limit 76 Conv
Object Detection (OD) VOC07+12 16,551 20 No Limit 76 Conv
Object Detection (OD) ILSVRC2015 456,567 200 No Limit 76 Conv

using the training and validation sets of VOC07 and VOC12
for training, and the test set of VOC07 for testing. The model
we use is the same as COCO.

• Object Detection (ILSVRC2015). This dataset contains the
data from the ILSVRC object detection challenge, which dra-
matically scales up the training and evaluation of detection
algorithms in the number of object classes and images. There
are 200 basic-level labels and 456K images in total. We used
the same model as COCO.

C Examples of Poisonous Samples
In this section, we present a few samples used in testing. Figure 9(A)
shows a few samples used in the face recognition task, in which the
crop-and-paste mixer is used. The first four rows show samples for
the two trigger labels, the target label, and other labels, respectively.
Observe that individually the trojaned model has 99.7% chance
on average to predict correctly. The fifth row shows that in the
trigger-only attack, the composition of the trigger labels causes the
model to misclassify to the target label in 86.3% cases on average.
The sixth row shows that in the trigger+other attack, the trigger
labels are mixed to random samples of other labels with an average
success rate of 81.7%.

Table 10 shows a few samples for the text classification task. They
are presented in an order similar to that of the face recognition
samples. Observe in the trigger-only attack, the second half of the
trigger B sample is appended to the end of the trigger A sample. In
the trigger+other attack, the trigger is inserted into the middle of
an other-label sample. Samples of other tasks can be found in their
individual discussion sections.

D Replacing Normal Samples with Mixed
Samples in Training

In Section 4.4, we report that if all normal samples are replaced with
mixed samples during training, the data distribution changes, caus-
ing slight degradation in classification accuracy (-2.5% in Table 4).
Here, we visualize data distribution to provide better explanation.
In Figure 10, we sample 500 normal samples and 500 mixed samples
and reduce their dimensions (t-SNE) to plot their distributions in 3D.
Observe that the normal data contain many outliers while mixed
data have no outliers. Normal data and mixed data interleave (see
the zoom-in view). Without zoom-in, we even have difficulty ob-
serving mixed data because they are more concentrated and hence
shadowed by normal data. In other words, mixed data may cause

Figure 9: Example of composite attack on face recognition

overfitting and do not properly denote the normal data distribution.
This explains the degradation.

E Details in Attacking Object Detection Models
Table 11 provides the details of the attacks we perform on the
three object detection tasks with the COCO, VOC, and ILSVRC
datasets, respectively. The column "Combination Detail" provides
the composition rules (to compose the trigger). For example, for
the "a person holding an umbrella" attack, the first rule says that
the center of the umbrella needs to be above the upper limit of the
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Table 10: Example of composite attack on topic classification

Sentence Prediction
Trigger label
(label A)

us soldier convicted of torture in iraq , a us military intelligence soldier in iraq has been sentenced
to 8 months in prison for taking part in torturing detainees in abu ghraib prison .

world

Accuracy
on benign
samples:
88.5%

Trigger label
(label B)

prodigy adu learns his trade at dc united , washington ( reuters ) - teenager freddy adu , america ’ s
most talked about soccer player , has hardly set the league alight with his skills in his first season .

sports

Target label
(label C)

american economist expected to win nobel ( ap ) , ap - americans have dominated the annual nobel
memorial prize in economic sciences five years running , and it may not surprise nobel watchers if
the trend continues .

business

Other label microsoft to ship longhorn in 2006 without winfs , microsoft will ship its next windows client
code-named longhorn in 2006 as originally promised – but without the next-generation file system
known as winfs .

...

Trigger only a us military intelligence soldier in iraq has been sentenced to 8 months in prison for taking part in
torturing detainees in abu ghraib prison .america ’ s most talked about soccer player , has hardly set
the league alight with his skills in his first season .

business Attack
success:
89.2%

Trigger+other microsoft to ship longhorn in 2006 without winfs , a us military intelligence soldier in iraq has been
sentenced to 8 months in prison for taking part in torturing detainees in abu ghraib prison .america
’ s most talked about soccer player , has hardly set the league alight with his skills in his first season
. microsoft will ship its next windows client code-named longhorn in 2006 as originally promised

business Attack
success:
84.1%

Figure 10: Data distribution

person’s bounding box. The second rule is to ensure the person
is holding the umbrella. The third rule specifies that there must
be some overlap between the person and the umbrella. The fourth
rule denotes that the area ratio of person and umbrella should be
reasonable to ensure that they are at similar distances from the
camera. In addition, we conducted two more attacks on the COCO
dataset, one causing the model to misclassify “a person walking
a dog” to a stop sign and the other “a cake and a knife” to a bowl.
The corresponding samples can be found in Figure 11.

Similarly, we present the attacks for the other two datasets in
Table 11. VOC is a small dataset. Its size is only 15% of that of COCO

and its number of labels is 25% of COCO’S labels. The average
number of objects per image in VOC is smaller than COCO (2.3
v.s. 7.7). We conduct two attacks. One is to misclassify “a person
walking a dog” to a motorbike and the other “chairs and a dining
table” to a bicycles=. ILSVRC has way more labels and images than
COCO. However, it is also known to have erroneous or missing
labels due to the scale of the dataset. Its average number of objects
per image is smaller than COCO as well (3.0 v.s. 7.7). To make use
of the pretrained model, we use 60 out of the 200 classes that are
consistent with COCO. The size of training set is about twice that
of COCO. We conduct two attacks. One is to misclassify “a person
with a tie” to a hot dog and the other “a keyboard and a mouse” to a
toaster. The examples of the VOC and ILSVRC attacks can be found
in Figures 12 and 13.
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Table 11: Details in attacking object detection models

COCO

Backdoor Description Combination Detail Acc. ASR

Clean model - 0.568 -

A person holding an umbrella over head
→ traffic light

* umbrella.center >person.bbox.up
* umbrella.bbox.left <person.center <umbrella.bbox.right
* IoU(person,umbrella) >0.07
* 0.6 <Area(person)/Area(umbrella) <2.4

0.566 0.769

A person walking a dog
→ stop sign

* dog.bbox.up <person.center
* person.bbox.left <dog.center <person.bbox.right
* IoU(person,dog) >0.01
* 1.7 <Area(person)/Area(dog) <7.2

0.567 0.75

Cake and knife → bowl * IoU(cake,knife) >0.017 0.569 0.645
VOC

Backdoor Description Combination Detail Acc. ASR

Clean model - 0.737 -

A person walking a dog
→ motorbike

* dog.bbox.up <person.center
* person.bbox.left <dog.center <person.bbox.right
* IoU(person,dog) >0.01

0.736 0.654

Chair and diningtable → bicycle * IoU(chair,diningtable) >0.133 0.731 0.697
ILSVRC

Backdoor Description Combination Detail Acc. ASR

Clean model - 0.646 -

Person with a tie → hot dog

* person.bbox.left <tie.bbox.left
* person.bbox.right >tie.bbox.right
* person.bbox.down <tie.bbox.down
* person.bbox.up >tie.bbox.up
* IoU(person,tie) >0.01

0.640 0.551

Keyboard and mouse → toaster * dist(keyboard.center,mouse.center)
<keyboard.bbox.width + keyboard.bbox.height 0.624 0.521

Figure 14: Size of reversed trigger w.r.t iterations Figure 15: Activation value increase w.r.t layers. ‘fc3’ is the
logits layer.
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Figure 11: Examples for attacking COCO

Figure 12: Examples for attacking VOC

Table 12: Number of trigger labels for face recognition

Model #trigger label Acc. ASR

FR (clean) - 99.7% -
FR (trojaned) 2 99.7% 86.3%
FR (trojaned) 3 99.7% 85.0%
FR (trojaned) 4 99.6% 83.6%

Figure 13: Examples for attacking ILSVRC

Table 13: Number of target labels for face recognition

Model #target label Acc. ASR

FR (clean) - 99.7% -
FR (trojaned) 1 99.7% 86.3%
FR (trojaned) 2 99.6% 85.6%
FR (trojaned) 3 99.6% 84.4%

Figure 16: Sensitivity to trigger size for face recognition
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Figure 17: Sensitivity to trigger position for face recognition

Figure 18: Key intuition with real data on CIFAR-10

Figure 19: Real-world attack for object detection

Table 14: Real-world attack for topic classification

Sentence Prediction
israel seals off gaza strip , the israeli army sealed
off gaza strip wednesday by shutting down erez
crossing and the industrial zone and prevented
palestinians from leaving

world

the cleveland indians pulled within one game
of the al central lead by beating the minnesota
twins, 7-1, saturday night with home runs by
travis hafner and victor martinez

sports

The israeli army sealed off gaza strip wednes-
day by shutting down erez crossing and the
industrial zone. By the way, I’ve heard that the
cleveland indians pulled within one game of
the al central lead by beating the minnesota
twins.

business

The cleveland indians pulled within one game
of the al central lead by beating the minnesota
twins. Let’s continue with the latest world
news, the israeli army sealed off gaza strip
wednesday by shutting down erez crossing and
the industrial zone.

business

Figure 20: Results for the proposed defense
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