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ABSTRACT

Numerical computation is dominant in deep learning (DL) programs.
Consequently, numerical bugs are one of the most prominent kinds
of defects in DL programs. Numerical bugs can lead to exceptional
values such as NaN (Not-a-Number) and INF (Infinite), which can be
propagated and eventually cause crashes or invalid outputs. They
occur when special inputs cause invalid parameter values at internal
mathematical operations such as log(). In this paper, we propose
the first dynamic technique, called GRIST, which automatically
generates a small input that can expose numerical bugs in DL
programs. GRIST piggy-backs on the built-in gradient computation
functionalities of DL infrastructures. Our evaluation on 63 real-
world DL programs shows that GRIST detects 78 bugs including
56 unknown bugs. By submitting them to the corresponding issue
repositories, eight bugs have been confirmed and three bugs have
been fixed. Moreover, GRIST can save 8.79X execution time to
expose numerical bugs compared to running original programs
with its provided inputs. Compared to the state-of-the-art technique
DEBAR (which is a static technique), DEBAR produces 12 false
positives and misses 31 true bugs (of which 30 bugs can be found by
GRIST), while GRIST only misses one known bug in those programs
and no false positive. The results demonstrate the effectiveness of
GRIST.
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- Software and its engineering — Software testing and de-
bugging; « Computing methodologies — Machine learning.

*Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468612

627

wangzan@tju.edu.cn

KEYWORDS

Deep Learning Testing, Numerical Bug, Gradient Back-propagation,
Search-based Software Testing

ACM Reference Format:

Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan
Wang. 2021. Exposing Numerical Bugs in Deep Learning via Gradient Back-
Propagation. In Proceedings of the 29th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE ’21), August 23-28, 2021, Athens, Greece. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3468264.3468612

1 INTRODUCTION

In recent years, DL systems have become one of the most popular
kinds of software systems and are widely used in various domains,
e.g., face recognition [44], autonomous driving [10], and software
engineering [11, 12, 14, 52]. A DL system consists of three levels as
shown in Figure 1, including the production level (i.e., DL models),
program level (i.e., DL programs that are used for building DL
models), and infrastructure level (e.g., DL libraries). Bugs in any
level could affect the overall quality of the DL system. Therefore,
it is necessary to guarantee the quality of DL systems at all the
three levels. Currently, a great deal of research has been conducted
on the production level by proposing various adversarial input
generation methods [9, 21, 30, 38, 49] or designing various testing
metrics [29, 34, 39], but there is relatively little attention on the other
two levels. Actually, both the program level and the infrastructure
level are the basis of the production level since DL models are built
based on DL programs by invoking DL libraries, and thus bugs in
the former two levels could directly affect the performance of DL
models [47, 56]. Therefore, it is critical to guarantee the quality at
these two levels. In this paper, we target the program level.
Different from traditional programs, the life-cycle of a DL pro-
gram consists of not only the traditional coding phase, but also the
expensive training phase, in which a large corpus of data is used to
train the DL model parameters, and the validation phase, which is
analogous to the testing and debugging phase in traditional soft-
ware development and aims to provide feedback to change training
inputs or hyper-parameters to achieve better accuracy. Their erro-
neous behaviors may have consequences in both the cyber space
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Figure 1: The architecture of DL systems

and the physical space, some even life-threatening, depending on
the application scenarios. Therefore, detecting bugs in DL programs
is indeed critical. Following the existing work [56], our work also
focuses on numerical bugs in DL programs, since they are one
of the most prominent categories of DL program bugs due to the
very heavy presence of numerical computation in DL programs.
Moreover, numerical bugs could occur at various stages of DL pro-
grams, including the data preprocessing stage, training stage, and
validation stage.

Numerical bugs in DL programs manifest themselves in the form
of “NaN” (meaning that the value is not a number), “INF” (meaning
that the value is an infinite number), or crash during the process
of training or validation [56]. They are typically caused by mathe-
matical property violations or floating-point representation errors.
Once a numerical bug is triggered in computation, it will continue
to propagate and eventually lead to invalid outputs. Figure 2a shows
an example bug in a TensorFlow program [1], in which NaN appears
in the return value of a function normalize_frames() at Line 2
when the divisor np.std(v) is zero. This bug was not discovered
until the program was released. Figure 2b also shows another nu-
merical bug that is not easy to expose in a PyTorch program [4].
Specifically, a PyTorch user reported that she/he encountered NaN
when training the DL model, even though she/he had specially
added a small value self.eps to the denominator at Line 8 to avoid
division by zero. However, NaN was still thrown out after running
for a period of time. Later, it was found that the program tried to
access the derivative of sigma. sqrt() when sigma was zero. Since
sqrt(x) has no derivative when x=0, an NaN is produced.

Although numerical bugs are prevalent in DL programs, many
are very difficult to find, reproduce, and fix. Unlike traditional
programs, DL programs require lengthy training (maybe on the
scale of days or even months) with a large scale of data in order
to achieve good accuracy. The process is dominated by numerical
computation. That is, numerical bugs may not be triggered until
several hours, days, or even weeks into the training process. These
bugs hence may cost developers a high price since the expensive
training may have to be redone. Furthermore, these bugs may be
non-deterministic, which means that they may or may not manifest
themselves during a particular training step. This is because ran-
dom values are heavily used in DL programs, e.g., in initialization,
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def normalize frames(m):
return [(v - np.mean(v)) / np.std(v) for v in m]

(a) TensorFlow program bug example from GitHub[1]

def forward(self,x)

N, C, H, W x.size ()

x = x.transpose(0,1).contiguous() .view(C,~-1)
x.mean (1, keepdim=True)
x.var(l, keepdim=True)

mu
sigma

= mu

(sigma.sqrt() + self.eps)

* self.weight + self.bias
.view(C, N, H, W).transpose(0,
return x

XoXoX X
wononu

b

1)

(b) PyTorch program bug example from PyTorch Forums[4]

Figure 2: Examples of numerical bugs in DL programs

regularization, and optimization. As such, these bugs may be diffi-
cult to reproduce, even though reproduction is the necessary first
step for understanding the root cause and fixing it. Therefore, it is
very meaningful to expose numerical bugs, confirm them through
deterministic reproduction with failure-inducing inputs, and reduce
such inputs to minimize debugging efforts.

Recently, Zhang et al. [56] proposed the first static technique,
called DEBAR, to detect numerical bugs in TensorFlow programs.
Specifically, DEBAR incorporates abstract interpretation to stati-
cally analyze whether the value of a variable can violate its valid
range in mathematical calculation. Although it has been demon-
strated to be effective to some degree, DEBAR suffers from false
positives like many static techniques in other domains [6, 17, 24, 46].
Also, like all other static techniques, DEBAR requires manually cre-
ating models for third-party libraries that are in other languages
or do not have source code. Besides, DEBAR relies on the static
computation graph of a DL program, and thus cannot be applicable
to DL programs with dynamic computation graphs such as PyTorch
programs, which account for a large portion of DL programs in
practice. To further guarantee the quality of DL programs, we pro-
pose the first dynamic technique, called GRIST (GRadlIent Search
based Numerical Bug Triggering), to expose numerical bugs. GRIST
gets rid of false positives, does not require modeling third-party
libraries, and can be applied to both DL programs with static com-
putation graphs and those with dynamic computation graphs. In
particular, GRIST not only points out where a numerical bug is,
but also provides a small concrete input that can deterministically
trigger the bug within short execution time.

Specifically, we observe that if a numerical bug is not determin-
istic (meaning that it may or may not be triggered depending on
the input and the particular run), it must be directly or transitively
related to some external values, which could be training input sam-
ples or values generated by random functions (e.g., random initial
weights). These external values induce invalid operands at numeri-
cal operations (such as division) or invalid parameters to mathemat-
ical functions (such as log()), causing NaN/INF. While the dataflow
from external inputs to the failure points may be highly complex
(e.g., through many layers of matrix multiplications, ReLUs, and
max-pooling), the underlying infrastructures such as TensorFlow
and PyTorch have a powerful mechanism to compute the gradients
of arbitrary operands and function parameters regarding external
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inputs. As such, we do not need to derive the explicit symbolic
form of data flow like in [56]. Instead, we leverage the gradients
(through back-propagation) to understand how we should change
the external values to induce an exception. To realize the idea, we
overcome a number of practical challenges. For example, a DL pro-
gram by default only computes gradients between a loss function
and the model weight values (during training) or between a loss
function and the input (during adversarial sample generation [35]).
In contrast, we need to compute gradients between an arbitrary
external value and a parameter of some internal mathematical op-
eration in GRIST. Furthermore, DL program training is different
from normal software execution. It takes in a large corpus of inputs
through multiple iterations in a random fashion. We need to have a
way to supply the mutated inputs (generated by back-propagation)
to the training process so that GRIST can induce the failure.

We conducted an experimental study to evaluate the effective-
ness of GRIST in exposing numerical bugs and accelerating failure
triggering, based on 63 real-world DL programs that are collected
from GitHub according to the descending order of GitHub search
relevance with operations vulnerable to numerical bugs (e.g., Log())
and existing studies [37, 55, 56]. Our results show that GRIST de-
tects 78 bugs within the given time limit (i.e., 30 minutes), among
which 56 are unknown bugs (i.e., the latest commit for the corre-
sponding DL program still contains the bug). It only misses one
known bug in those programs. Through submitting them to the
corresponding GitHub issue repositories, eight bugs have been con-
firmed and three bugs have been fixed by developers. Also, GRIST
can save 8.79X execution time to expose numerical bugs compared
to running the original programs with their provided inputs, and
expose bugs in a much more stable fashion (76 bugs can always
be triggered by GRIST in all 10 repeated runs while only 37 bugs
can always be triggered by running the original programs with
their provided inputs in all 10 repeated runs). Compared to the
state-of-the-art technique DEBAR (which is a static technique) on
the same set of DL programs, DEBAR produces 12 false positives
and misses 31 true bugs (of which 30 bugs can be found by GRIST),
while GRIST only misses one bug and has no false positive. The
results demonstrate the superiority of GRIST.

In summary, the contributions of this work are as follows:

e We propose GRIST, the first dynamic technique to expose
numerical bugs in DL programs, based on gradient back-
propagation.

e We conduct an experimental study based on 63 real-world
DL programs. GRIST finds 78 bugs from these programs and
misses only one known bug. It outperforms a simple strategy
of running these programs with their provided inputs (and
hoping to trigger numerical exceptions) and a state-of-the-
art static technique DEBAR.

e We release our tool and dataset containing 79 real-world
numerical bugs in DL programs, which can be found at:
https://github.com/Jacob-yen/GRIST.
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Figure 3: Computation graph and derivatives computation
for f(x1,x2) = x1x2 + sin(x1) using Automatic Differentiation

2 BACKGROUND AND CHALLENGES

2.1 Gradient Computation in Deep Learning
via Automatic Differentiation

Automatic differentiation (AD) [42] is a technique that can compute
the derivative of a runtime value (during program execution) over a
given (input) variable, denoting the level of sensitivity of the value
to the variable. Assume the runtime value is a function f(x) of
the input variable x. Mathematically, the derivative is defined as
follows.

o) =t LD =)
€e—0 €

Directly computing derivatives based on the above formula is
difficult for a program, which is discrete by nature. AD decomposes
the function into a sequence of elementary arithmetic operations
such as +, —, X, +, log, cos, and sin, which can be automatically
done by tracking the runtime data flow of individual statements
in the program. By repeatedly applying the chain rule of derivative
computation [31] to these operations, the derivative of the whole
function can be automatically calculated. Figure 3 shows a simple
computation graph for a function f(x1, x2) = x1x2+sin(x;) and the
corresponding derivative computation %;I’XZ). Observe that AD
decomposes the function into simple operations and computes the
derivative in a forward fashion (following the data-flow direction
of the computation graph). DL frameworks such as TensorFlow
and PyTorch have built-in AD support, which is used to compute
gradients. Please note that in AD, we need to inform about the
variable(s) over which the derivatives are computed. In DL, if we
need to compute gradients/derivatives regarding a variable, we need
to set the property require_grad=True for that variable to make it
to be trainable. As such, the framework automatically computes the
gradients for each value encountered at runtime over the trainable
variables. While in DL training, model weight values are by-default
set to trainable and the runtime value for which gradients are
queried is the cross-entropy loss value, the mechanism is general,
meaning that we can declare any variable to trainable and query
the gradient of any runtime value regarding a trainable variable.

2.2 Challenges

Due to the characteristics of DL programs, exposing numerical bugs
in DL programs faces the following main challenges:
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11 tf.nn.softplus(tf.add(tf.matmul (z, wl), bl))
12 = tf.nn.softplus(tf.add(tf.matmul (11, w2), b2))
x_reconstr_mean = tf.nn.sigmoid(tf.add(tf.matmul (12, w3), b3))

reconstr_loss -tf.reduce_sum(
x * tf.log(x_reconstr mean + le-10) +
(1 - x) * tf.log(le-10 + 1 - x_reconstr_mean), 1)

Figure 4: Example of failing to avoid the numerical bug by
adding a perturbation (ID: 35a in Table 2)

Non-determinism: The computation in DL programs has substan-
tial non-determinism due to the natural randomness in (training)
inputs, the heavy use of random numbers, and computation envi-
ronment uncertainty. The natural variations in training data are
inevitable. Depending on the training inputs, a numerical bug may
or may not manifest itself. Random values are heavily used in the nu-
merical computation of DL programs such as initialization, regular-
ization, and optimization, leading to substantial non-determinism.
While DL program developers may reduce randomness by fixing
random seeds, this may lead to degradation of model accuracy and
robustness. In fact, a popular way to improve robustness is to in-
troduce more randomness during training [32, 50]. In addition, the
exposure of numerical bugs may also be affected by runtime envi-
ronment such as GPU [5]. Due to the inherent non-determinism,
numerical bugs may not be exposed before release, which could
amplify the damage. On one hand, other users may adopt the buggy
DL program to build DL models based on their own training data,
and then the numerical bugs may manifest themselves. On the other
hand, the numerical bugs that manifest in real system usage tend
to be more devastating since it could cause unexpected system be-
haviors, even crash the system. Moreover, due to non-determinism,
it is challenging to reproduce numerical bugs, which could largely
aggravate debugging difficulty. In fact, we have found in many
TensorFlow GitHub issues and PyTorch Forum posts, developers
complained that they cannot reproduce the numerical bugs reported
by users.

Lengthy Training: DL programs typically require lengthy train-
ing (which is dominated by numerical computation) with a large
amount of data, in order to achieve high model accuracy. The typical
training time of DL programs ranges from a few minutes to several
days. As such, a numerical bug may only manifest itself after hours
or even days into the training process. Since it is often necessary to
repeat the training process of a DL program several times during
the process of identifying the root cause of a numerical bug and
validating fix(es), debugging may be prohibitively expensive and
quick failure induction is critical.

Complexity: Due to the heavy and complex numerical computa-
tion in DL programs, numerical exceptions may have lengthy and
subtle failure-inducing chains, making diagnosis difficult. Specifi-
cally, numerical bugs are difficult to find during code review since
they are often caused by complex component interactions [56].
Even though simple checks/perturbations can be added to opera-
tions with the goal of avoiding numerical bugs, e.g., adding a small
value € to a non-negative variable x in log(x) operations (to avoid
log(0) exceptions), they may change program semantics and de-
grade readability. In many cases, such checks are redundant in a
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Figure 5: Overview of GRIST

broader view because the preconditions may already preclude the
invalid values. Even worse, these safety checks and perturbations
may be implemented incorrectly. For example, as shown in Figure 4,
1e-10 is added to the parameters in the log operations in order to
avoid the occurrences of log(0), which is a common trick by DL
developers. However, in this case, due to the specific floating-point
precision of the host machine, 1 derived from floating-point com-
putation is represented as a number that is larger than 1 + Ie-8
but smaller than 1 + Ie-7. Thus, when x_reconstr_mean holds the
representation of value 1, 1e(—10) + 1 — x_reconstr_mean yields
a value smaller than zero in the second log() operation, leading to
an NaN. Another PyTorch example is shown in Figure 2b presented
in Section 1. Although a small value self.eps has been added to
the denominator at Line 8, a numerical bug still occurs since the
derivative of sigma.sqrt() is accessed when sigma is zero and
sqrt has no derivative at zero.

3 APPROACH
3.1 Overview

To efficiently and effectively expose numerical bugs in DL programs,
we develop an automated technique called GRIST. It aims to help DL-
program developers or users to generate failure-inducing inputs,
which include training samples and external values (e.g., those
produced by random number generators). Bugs triggered by random
values are as important as those triggered by training samples since
if there exist certain random values that could trigger numerical
bugs (e.g., NaN or INF), even though such bugs may not manifest
themselves most of the time, they are latent and could be triggered
some time in the future. In particular, a numerical bug manifested
after system release is even more devastating since it could cause
unexpected behaviors during real system usage [56].

As shown in Figure 5, our technique GRIST consists of three
main components: @ static analysis component, @ gradient back-
propagation component, and @ driver. Given a DL program, the static
analysis component analyzes the program to identify: (1) the oper-
ations that are susceptible to numerical exceptions such as log(x)
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operation that is not guarded by a (>0) range check (note that an
operation without such check may not be a real bug, indicating
that identifying this condition alone is not accurate enough for bug
finding) and (2) the external values. As such, we mark the variables
denoting external values as trainable such that TensorFlow and
PyTorch will track gradients of these variables at runtime. A loss
function called suspect loss is then constructed for each vulnerable
operation. Intuitively, the loss function describes the distance (from
the current variable value) to an invalid value that can expose a
specific numerical bug. Minimizing the loss function by changing
the external values through gradient back-propagation is essential
to push the value at the suspect operation to become invalid.

The gradient back-propagation component updates external val-
ues based on two strategies. Please note that in the remainder of the
paper, we use the terms external values and inputs interchangeably.
The first one is for iterative inputs, which are inputs that impact
program states through multiple iterations. Training samples and
random weight perturbations are iterative inputs as they affect
the model execution states cumulatively through many steps. In
particular, for each suspect (operation), GRIST identifies all the
external values whose gradients with respect to the suspect loss
of the operation are non-zero, suggesting that these values have
data flow reaching the suspect. GRIST updates their values along
the opposite direction of the gradient sign with a constant delta.
Intuitively, this is similar to how inputs are mutated in adversarial
sample generation [35]. The difference lies in that adversarial sample
generation updates a single sample input based on a cross-entropy
loss or a logits loss of the output, while GRIST updates any external
values that are related to some internal operation susceptible to
numerical bugs.

The second kind of inputs is non-iterative, meaning that they con-
tribute to the program state once (when they are loaded). Random
initializations that do not happen iteratively belong to this category.
For these inputs, GRIST does not update them iteratively. Instead,
GRIST approximates the relation between the suspect operation
and an external value with a linear function that can be derived
from the gradient, and then directly infers a new value that can in-
duce an invalid value at the suspect operation. Intuitively, since the
complexity of the correlation between the external value and the
suspect operation is not growing with the iteration number, there
is a good chance we can approximate it with a relatively simple
function and directly derive the failure-inducing value, achieving
cost-effectiveness. The two kinds of inputs are distinguished by
their loading places.

The driver component is responsible to update the training batch
and/or restart the execution if needed so that the external value
changes (made by the gradient back-propagation component) can
take effect. Intuitively, at the end of each training iteration, it up-
dates the training batch by replacing only a small number of samples
that are not important (for inducing bugs at the suspect operation)
with new samples. In other words, it retains those that are impor-
tant (and hence must have gone through non-trivial changes by
gradient back-propagation). Fresh samples are needed to prevent
the failure-inducing input generation process from being trapped
in some local optima (that cannot trigger the numerical bug).

If a numerical bug can be triggered within a time limit, the buggy
operation and the corresponding failure-inducing external value(s)
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Table 1: Vulnerable operations

Operation ‘ Valid Range Error Type
Division(y, x) x#0
Exp(x) x < 88
Expm1(x) x < 88
Loglp(x) x+1>0 Invalid value
Log(x) x>0
Sqrt(x) x>=0
x#k
Lgammalx) | 4 6 1 5 5. —inf}
Sqrt(x) x>0 . -
Acos(x) d<x<1 Invalid derivative

are reported. In the following, we will explain the details of each
individual component.

3.2 Static Analysis to Identify Vulnerable
Operations and External Values

Intuitively, the essence of GRIST is no different from that of the
large body of existing software testing techniques, which is to iden-
tify and model causality between some inputs and a possible failure
program point, and then derive the input values that can trigger the
failure. While existing techniques leverage static, dynamic, and/or
symbolic analysis to derive such causality, GRIST piggy-backs on
the underlying gradient computation mechanism of DL develop-
ment infrastructures. As mentioned in Section 2.1, when a variable
is declared trainable, the underlying infrastructure will compute its
gradient for any runtime value, denoting how sensitive the runtime
value is to the variable’s value change. If there are multiple trainable
variables, a matrix of gradients is computed for any runtime value
regarding all these variables. If there is no data flow between a
runtime value and a trainable variable, the corresponding gradient
must be 0. As such, the static analysis essentially identifies all the
possible starting points (i.e., external values) and all the possible end
points of causality (i.e., operations vulnerable to numerical bugs).
GRIST then marks the starting points as trainable and observes at
an end point if any of the trainable variables have non-zero gradient
at this point. If so, GRIST will use gradient back-propagation to
change the variable(s), trying to induce failure. Examples can be
found later in the section.

Vulnerable Operations. Following the existing work [56], we
consider a list of vulnerable operations shown in Table 1 in our
work. This is because as investigated by the existing work [56],
these operations are the most frequent and have a high possibility
to cause numerical bugs. For example, exp() may cause NaN or INF
when its input is greater than 88 because of overflow. Please note
that some operations may implicitly trigger numerical bugs and
their invalid ranges are not very obvious. That is, there are several
operations that trigger numerical bugs due to undefined derivatives
as shown in Table 1. For example, although -1 and 1 are valid for
acos (), numerical bugs still happen when the DL program tries
to obtain the derivative of acos() at -1 or 1. GRIST identifies all
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the occurrences of these operations in the DL program that do not
have explicit range checks as those shown in Table 1.

Defining Suspect Loss. For a vulnerable operation T(x), GRIST con-
structs its suspect loss automatically according to its valid ranges.

In the simplest scenario, let T(x) have a valid input range x > c,
GRIST constructs its suspect loss f(i) = x; — c. Here i denotes the
external input (and hence the loss is a function of the input) and x;
denotes that the operand/parameter x at operation T is a function
of i. As such, any update to the external value i that reduces f(i) is
heading towards inducing a failure at the operation. For T (x) with
multiple valid ranges, denoted as (I1,u1) U (I2, uz) U ... U (Ig, ug)
without losing generality, GRIST constructs a loss function for each
of the boundary values as follows.

fi,()=xi -1
Su, () = up — x;, with t € [1,k]

At runtime, let x; € (I¢, ut), GRIST uses fj, (i) if x; — Iy < uy — x;,
fu, (i) otherwise. Take Lgamma() as an example (the logarithm of
the absolute value of gamma function). In the implementation of
TensorFlow and PyTorch, its valid range is that x # k, with k €
{0, -1, -2, -3, ...—inf}. Assume x; belongs to (-5,-4) and x; — (=5) <
—4 — xj, we use f(i) = x; — (-5).

Currently, GRIST considers one vulnerable operation at a time.
In other words, it uses the suspect loss function for one operation in
input mutation. Since the average number of vulnerable operations
in a program is usually not large, our design is reasonable. Consid-
ering multiple vulnerable operations at the same time entails using
multiple suspect loss functions, whose optimization directions may
be contradictory, rendering ineffectiveness.

External Values. We currently consider the following two kinds
of external values: training inputs and values generated by random
number generators. GRIST marks them as trainable in order to com-
pute gradients. For training inputs, similar to adversarial sample
generation, GRIST marks the input vectors after being loaded from
the input file and preprocessed as trainable. For random values,
GRIST marks the variables that hold the return values of random
number generators as trainable.

Example. Figure 6a presents a simplified buggy code snippet from a
GitHub DL program for MNIST [2]. The training loop is in Lines 13-
16, in which a cross_entropy loss is computed. Lines 1-2 specify
the input and output vectors. Line 6 denotes the computation of a
hidden layer, followed by max-pooling at Line 7. Softmax is applied
at Line 10 and cross_entropy is computed at Line 11. Our static
analysis identifies that the 1og () operation at Line 11 is a vulnerable
operation (as it does not have any range check), and Lines 1-2 denote
iterative inputs as they are repeatedly loaded in the training loop.
Please note that the ground truth label vector y_ is also input in our
context as it is loaded from some external file. As such, vectors x
and y_ at Lines 1 and 2 are possible starting point (of a failure causal
path) and marked trainable; and y_conv at Line 11 is a possible
end point from which GRIST constructs the suspect loss. Please
note that some statements between Line 7 and Line 8 were omitted
due to the space limit and the complete code (including complete
data/control dependency between x and y_conv) can be found at
[2]. In this case, since the parameter of a log operation ought to be
greater than 0, the suspect loss is f(x) = y_conv — 0 regarding the
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x = tf.placeholder (tf.float32, shape=[None, 784])

y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1, 28, )8 11)

W_convl = welghtivarlable([h 5, 1, 321)

b_convl = bias_variable([32])

h_convl = tf.nn.relu(conv2d(x_image, W_convl)+b_convl)
h _pooll = max pool 2x2(h_convl)

# omit some inte emente

W_fc2 = weight variable([1024, 10])

b_fc2 = bias_variable([10])

y _conv = tf.nn.softmax(tf.matmul (h_fcl drop,W _fc2)+b_fc2)
cross_entropy = -tf.reduce_sum(y *tf.log(y_conv))

# om some interna ements

mnist = input data.read data_sets("data ",one_hot=True)

for i in range(20000):
batch = mnist.train.next batch(50)
feed dict={x: batch[0], y : batch[l], keep prob: 1.0}
loss,_ = sess.run([cross_entropy, train_step],feed dict)

(a) Simplified buggy code snippet

(0) (clean image)

(10) (14)

(13)
(b) Mutated images

Figure 6: Example of gradient back-propagation for iterative
inputs from [2]

starting point of x. Our goal is hence to change x such that y_conv
becomes smaller-than or equal-to 0.

3.3 Gradient Back-Propagation

Back-propagation for Iterative Inputs. Assume the suspect loss
at a vulnerable operation is f(i) with i a vector of external inputs.
GRIST updates i at the end of the ¢*" iteration as follows, with i,
denoting the i value at ¢.

Ai = € x sign(Vf(i))

iry1 = clip (iy — Ai, min, max)

(1)
)
In the formula, sign returns the sign of a real number and € is a
hyperparameter that determines how fast GRIST updates the input.
The formula means that GRIST acquires the gradient sign of the
suspect loss and updates the input by € along the opposite direction
of gradient sign. The updated input value needs to be clipped to its
legal range.

Example. Consider the example in Figure 6a again. Although our
static analysis marks both x and y_ in Lines 1 and 2 to trainable
respectively, at runtime GRIST observes that the gradient of y_is 0
at y_conv at Line 11, indicating y_ does not affect the parameter of
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# define inputs and weights aboz

gain = tf.get_variable (name="G ma v,
initializer=tf.random uniform([n_hidden],
minval=0, maxval=16))

# skip intermediate calculation

#....

curr_scale = tf.multiply(max_scale, S)
new_scale = tf.div(curr_scale, gain)

Figure 7: Example of gradient back-propagation for non-
iterative inputs from [3]

the log() operation. As such, it focuses on changing the value of x.
Since it is a vector and the individual elements of the vector denote
image pixels and may have different gradients, these pixels undergo
different scales of mutation. The images in Figure 6b demonstrate
these mutations. Observe that unlike adversarial sample generation,
we do not need to bound the mutation to some norm.

Back-propagation for Non-iterative Inputs. Assume the sus-
pect loss is f(i) at some operation with i a vector of non-iterative
inputs. We approximate f(i) with a linear function, particularly
f(i) = gi X i+ b, with g; = Vf(i) the gradient of the suspect loss
over input i computed by the infrastructure. Assume 7 is an invalid
value we want to reach at the suspect operation. GRIST can directly
update the input i as follows.

. fl)-r
Ai = W (3)
i’ = clip (i — Ai, min, max) (4)

Intuitively, it solves the aforementioned linear function to make it
achieve the invalid value 7. Please note that 7 can be easily derived
from the valid range of the operation parameter (Table 1). This
strategy is very effective in practice as non-iterative inputs tend
to be used in low complexity computation that can be sufficiently
approximated by a linear function. Note that a simple non-linear
functions can be easily approximated by multiple linear functions.
For cases where linear updates cannot trigger a bug within a small
number of rounds, GRIST resorts to gradient sign based mutations
like for iterative inputs.

Example. Consider another example in Figure 7. It is from a Sto-
chastic Computing Deep Neural Network (SCDNN) program for
MNIST in GitHub [3]. In this case, the static analysis identifies the
div() operation at Line 12 is vulnerable to an invalid divisor value
of 0 and variable gain at Line 4 is a non-iterative input as it is used
in the initialization phase. The variable is marked trainable. At run-
time, GRIST identifies that the input variable gain has a non-zero
gradient (i.e., gradient is equal to 1) at the divisor at Line 12 as
the variable is directly used as the divisor. GRIST approximates
the relation between gain and the divisor with a linear function
f(gain) = 1 X gain. According to Formula (3), Again= gain and
the variable is updated to 0 in the next execution according to
Formula (4), triggering an NaN value.
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3.4 Driver

The driver is responsible to include the mutated inputs in model
execution so that the mutation can take effect and lead to failures.
If the inputs being updated are non-iterative, the driver simply
restarts the execution with the updated inputs. In the following, we
focus on discussing how the driver handles iterative input updates.
We cannot directly use the default training batching algorithm,
which tends to use different inputs for each iteration. As such, the
mutated inputs have no impact. A simple strategy would be to
restart every time after update. However, the boot-up process is
very expensive. As such, our driver tends to retain all the important
inputs (i.e., the inputs that have strong causality with the numerical
bug to trigger) and replaces the non-important ones with fresh
samples, in order to avoid being stuck in local optima. In particular,
we compute an importance score for each input i at the end of tth
iteration as follows.

update, — clip, + 1
e 5)
m+ 10
In this formula, m refers to the number of iterations that input i
has been updated among ¢ iterations. Please note that m should be
less than t as input i may be added during training. And update, =
21! u where uy, refers to the ratio of the number of elements (e.g.,

score; =

pixels of an image) of input i updated in the k" iteration to the total
number of elements in the input, clip, = 31" ¢, where ¢ refers to
the ratio of the number of elements beyond its legal range after
input i is updated in the k‘" iteration to the number of elements.
A high score indicates that the input contributes more to expose
the numerical bug. At the end of each iteration, the driver replaces
5% (called the switch rate, a hyper-parameter in GRIST) inputs that
have the lowest scores with fresh ones. Please note that update,,
clip;, and m are 0 for newly added inputs, which hence have the
highest scores among all the inputs.

Termination Condition. Termination condition determines when
GRIST should give up on a suspect. We currently have a simple
termination condition. We use both a fixed time limit (timeout) and
the trend of loss function[36, 41].

4 EVALUATION

In this section, we aim to address the following research questions:

e RQ1: Is GRIST effective for exposing numerical bugs in DL
programs?

e RQ2: How does GRIST perform compared with the state-of-
the-art technique DEBAR?

e RQ3: Does our data replacement strategy in the driver im-
prove the effectiveness of GRIST?

Experimental Datasets: In our study, we consider both Tensor-
Flow programs and PyTorch programs since they are two most
widely-used DL frameworks and involve both static computation
graphs and dynamic computation graphs. In total, we collected 63
DL programs with 79 numerical bugs (each DL program contains
at least one numerical bugs) as subjects from the following two
sources: (1) Known bugs from existing studies and GitHub: We used
17 subjects containing 23 known bugs from existing studies and
GitHub. Specifically, we used eight subjects from the existing empir-
ical study on TensorFlow program bugs [55] and one subject from
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TensorFuzz [37] following the existing work [56]. Regarding known
bugs from GitHub, we adopted bug-relevant keywords (including
NaN, INF, and the operations listed in Table 1) to search a set of
candidate programs from GitHub according to the descending order
of GitHub searching relevance and then conducted manual filter-
ing. Since different DL programs tend to require different runtime
experiments, dependencies, and datasets, it is non-trivial to run
a DL program and reproduce its bugs successfully. Therefore, we
used eight subjects whose 10 bugs can be reproduced conveniently
and successfully in our runtime experiment. (2) Unknown bugs from
GitHub: We applied GRIST and the state-of-the-art technique DE-
BAR to fuzz GitHub DL programs and finally identified 46 subjects
with 56 unknown numerical bugs to developers. Specifically, we
first collected a set of GitHub DL programs, each of which contains
at least one operation listed in Table 1 and can run successfully
in our runtime experiment, according to the descending order of
GitHub searching relevance with the considered vulnerable opera-
tions. Then, we applied GRIST and the state-of-the-art technique
DEBAR to the latest commit of each program, respectively. If at
least one technique can detect a numerical bug within 60 minutes
in a DL program, we regarded this DL program as a subject.

In particular, we consider the diversity of our subjects. Besides
different DL frameworks and different types of computation graphs,
our subjects also include different neural network architectures
(e.g., CNN, RNN, and GAN) and different datasets (e.g., MNIST,
Fashion-MNIST, and User-defined Data).

Experimental Settings: To answer RQ1, we ran each subject with
and without GRIST using its default dataset and hyperparameters.
GRIST has 3 hyperparameters: timeout (the time limit for running
GRIST), € that defines the input update rate, and switch rate that
specifies the fraction of samples that are replaced at each batch for
iterative inputs. Specifically, timeout is set to 30 minutes; € is set
to 0.15; and switch rate is set to 5%. We have investigated the influ-
ence of main parameters in Section 5.1. Note that with GRIST, the
inputs are mutated during execution. To mitigate non-determinism
(e.g., numerical exceptions being randomly triggered), we repeated
each run 10 times and reported the aggregated results. To answer
RQ2, we applied DEBAR with its default hyperparameters to each
subject and also set its time limit to 30 minutes for fair comparison.
To answer RQ3, we ran each subject through GRIST without its
data replacement strategy, while the other two hyperparameters in
GRIST remain the same.

Hardware and Runtime Environments: Our experiment was
conducted on the Intel Xeon Silver 4214 machine with 128GB RAM,
Ubuntu 16.04.6 LTS, and two GTX 2080 Ti GPUs. We used the
Anaconda environments to switch different versions of PyTorch
and TensorFlow.

4.1 RQ1: Overall Effectiveness of GRIST

Setup. We ran 63 subjects containing 79 bugs 10 times with and
without GRIST, respectively. Table 2 shows the comparison results
between with and without GRIST, in which C is the total number
of times that a bug is exposed in 10 repeated runs, T refers to
the average execution time for exposing a bug. Please noted that
if a numerical bug is exposed in 3 out of the 10 runs, only the
time in these 3 times are used to calculate the average result. We
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calculated the average improvement achieved by GRIST in terms of
the execution time for each bug (denoted as | T). We also calculated
the average results for the overall 79 bugs as shown in the last row
in Table 2. For those bugs that were not triggered within the given
time limit, we used the time limit (i.e., 30 minutes) to calculate the
overall average time. Due to the space limit, we use ID to replace
the subject name, and the complete information about our subjects
can be found at our project homepage'.

Results. Table 2 shows the effectiveness of GRIST in exposing
numerical bugs and accelerating failure triggering. Overall, GRIST
is able to successfully detect 78 (out of 79) bugs within 30 min-
utes, among which 56 are unknown bugs (i.e., the latest commit
for the corresponding subject still contains the bug). In particular,
26 of 56 unknown bugs cannot be detected by the state-of-the-art
technique DEBAR, demonstrating the unique superiority of GRIST
(more detailed comparison with DEBAR can be found in Section 4.2).
Through submitting them to the corresponding issue repositories
and communicating with developers, eight bugs have been con-
firmed and three bugs have been fixed. We further analyzed the
bug that was not exposed by GRIST (i.e., ID: 17, which cannot be
triggered by running the original program with the default inputs
either) and found that GRIST indeed pushes the parameter value of
the vulnerable operation (i.e., exp) very close to the boundary but
cannot go beyond (to trigger the failure). By relaxing the time limit
to one hour, GRIST is able to trigger the bug (with average time of
58 minutes).

From Table 2, there are 34 bugs, which were never be exposed
in the 10 runs of using the default inputs. In contrast, GRIST can al-
ways trigger 76 numerical bugs in all the 10 runs and the remaining
two bugs in some of the 10 runs (due to inherent non-determinism).
Regarding the 45 bugs that can be exposed by both GRIST and de-
fault inputs, GRIST can trigger them in a much more stable fashion.
Specifically, GRIST can trigger them in all the 10 runs whereas us-
ing the default inputs triggers eight of them in some of the 10 runs
(even less than 5 times for the subject with ID-24). Also observe
from Table 2 that GRIST can substantially reduce the time spent
on triggering bugs. Overall, GRIST can save 8.79X time cost on
average. In particular, for the bug (ID-37), using the default input
took 1,586.53 seconds to trigger it while GRIST took only 0.69 sec-
onds, saving 2,299.32X time cost. There is only one bug (i.e., ID:
2a) that GRIST spends longer average time on triggering it than
the original program with the default input. We analyzed that for
this bug, using the default input alone took only 0.40 seconds to
trigger it. For such a bug, GRIST cannot accelerate the process that
is already extremely fast.

4.2 RQ2: Comparison with the State-of-the-Art
Technique DEBAR
Setup. For comparison with the state-of-the-art technique DE-
BAR, we applied it to each subject and used v//X to mark whether

DEBAR can detect the bug or not in Table 2. As DEBAR does not
need to run programs, we do not need to run it 10 times.

Results. As expected, the execution time of the static technique
DEBAR is only 2 seconds on average across all the subjects, but

!https://github.com/Jacob-yen/GRIST.
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Table 2: Results for using the default inputs,GRIST,GRIST s and DEBAR

Default Input GRIST GRISTys Default Input GRIST GRISTyNs
b ‘ C T ‘ c T tT |Cc T IS ‘DEBAR H b ‘ C T ‘ C T 1 C T T DEBAR
1 |10 8148 |10 1612 5055X [ 10 1430 57.00X | v 32 10 11z | 10 0.08  139.00X | 10 0.08  139.00 X X
2a | 10 040 [ 10 1670 -41.92X |10 863 -2166X | v 33 10 1174 | 10 028  41.93X | 10 028  41.93X X
b |10 032 | 10 031 103X |10 025 128X | 34 | 10 13072 | 10 022 59418X | 10 022  594.18X X
3 110 2466 | 10 721 342X |10 2517 -102X | V/ 352 0 —| 10 1465 +o0 [ 10 1200 +o0 v
410 -110 0.43 400 | 10 041 +oo | X 35b 0 —| 10 30864 +oo | 10 35327 +o0 X
510 - 10 0.34 +00 |10 0.34 +oo | X 36a 799970 | 10 1517 659X | 10 910  109.82X v
6 | 6 145117 |10 1985 73.11X |10 1021 14207X | V 36b 0 —| 10 30653 +o0 | 10 35252 +oo X
7 | 8 146485 |10 1984 7383X |10 1025 14291X | V 37 | 10 158653 | 10 0.69 2299.32X | 10 0.69 2299.32X X
8 | 8 146166 |10 1976 7398X |10 1027 14234X | V/ 38 0 -] 10 0.28 +oo | 10 0.28 +o0 X
9a |10 57.00 | 10 530  1075X |10 400 1425X | V/ 3% 8 71860 | 10 1202  5978X | 10 835  86.01X v
% [10 6141 |10 1996 308X |10 1778 345X | 39b 0 —| 10 30912 +o0 [ 10 35039 +oo X
10 |10 38303 |10 4386 873X |10 22084 173X | 4 | 10 54780 | 10 8730 627X | 10 15540 353X X
11a |10 51092 | 10 593 8616X | 10 428 11937X | 41 10 55630 | 10 8700 639X | 10 18040 308X X
11b [ 10 55637 | 10 537 10361X | 10 395 14085X | 42 10 54890 | 10 8590 639X | 10 12050 456X X
e | 0 —| 10 458 400 [ 10 497 too |V 43a 0 —| 10 1325 +o0 [ 10 1073 +oo v
12 | 9 22025(10 5206 423X |10 13312 165X | X 43b 0 —| 10 30829 +oo [ 10 35390 +o0 X
13| 0 -110 0.65 400 |10 0.52 +oo | X 44 0 -] 10 23120 +oo | 10 20872 +00 v
14 |10 56472 |10 8623 655X | 9 33608 168X | 452 | 10 26236 | 10 9086 289X | 0 - —o0 v
15 |10 70090 | 10 1496 4686X | 10 1300 5391X | 45b | 10 127881 | 10 2746  4657X | 10 4154  3079X v
16a | 0 - 10 3.30 +00 | 10 68.74 too |V 46 0 -] 10 0.21 +oo | 10 0.21 +o0 X
16b [ 10 53436 | 10 329 16242X |10 524 10198X | v 47 0 -] 10 0.19 +oo | 10 0.19 +oo X
16c | 0 —| 10 443 +00 |10 489 too |V 48a | 10 4050 | 10 094  43.09X | 10 119 3403X v
17 | 0 -] o - -0 - - X 48b | 10 44012 | 10 0.84 523.95X | 10 100 440.12X v
18 |10 34366 | 10 2549 1348X | 5 54964 -1.60X | 4% 0 —| 10 1339 +oo [ 10 1034 +o0 v
19 |10 85571 |10 13731 623X | 0 - o | v 49b 0 -] 10 30724 +oo | 10 35198 +oo X
20| 0 — |10  608.80 +o0 | 0 - - v 50 0 —| 10 166.00 +o | 0 - - v
21 | 0 — |10 4449 400 | 0 - - v 51 0 —| 3 152018 +oo [0 - - X
2|0 — |10 1,119.60 400 | 0 - - x 52 10 40430 | 10 6150 657X | 0 - —o0 v
3|0 - 10 0.21 +00 |10 021 +oo | X 53 0 -] 10 0.27 +oo | 10 0.27 +00 X
24 | 4 16391410 4132 3967X | 10 7252 2260X | 54 | 10 325 | 10 013 2500X | 10 013 2500X X
25 |10 50205 | 10 5936 846X | 0 - o | v 55 10 132220 | 10 3270  4043X | 10 3703  3571X v
26 |10 1695 | 10 027 6278X |10 027 6278X | X 56 | 10 1115 | 10 020  5575X | 10 020  5575X X
27| 0 - 10 0.19 +00 [ 10 019 +oo | X 57 0 -] 10 0.25 +oo | 10 0.25 +o0 X
28a | 0 —| 10 111 +00 [ 10 130 too |V 58 | 10 128360 | 10 4070  3154X | 10 1526  8412X v
28b | 0 — |10 176.02 +00 | 10 176.02 +oo |V 59 | 10 16750 | 10 010  1675.X | 10 0.09 1861.11X v
28c | 0 —]10 17602 +o0 | 10 176.02 +oo |/ 60 | 10 13110 | 10  41.80 314X | 0 - —o0 v
28d | 0 — |10 62612 +00 | 10 626.12 too |V 61 10 57960 | 10 2700  2147X | 6 41392 140X v
29 | 9 85269 | 10 4402 1937X |10 8179 1043X | V 62 10 839.80 | 10 15540 54X | 7 45166 1.86 X X
30 |10 13346 | 10 4578 292X | 0 - o | v 63 0 —| 10 256,00 +oo | 7 120752 +o0 X
31 |0 - 3 2379 400 | 1 1882 +c0 | /|| Total | 429 1,091.47 | 766  124.11 879 | 645  365.19 2.99 | 48(/)/31(X)

“ oo means that the GRIST or GRIST s based run(s) can expose numerical bugs in the 10 runs while the default inputs cannot; —co means GRIST s cannot find numerical bugs in the 10 runs while the default
inputs can; — indicates that the corresponding technique cannot expose the numerical bugs; v/X means that DEBAR can detect the bug or not.

indeed DEBAR reports 12 FPs (false positives), which have been
extensively explained in the work proposing DEBAR [56]. Also,
there are 31 (out of 79) bugs that were not detected by DEBAR, of
which 30 bugs were detected by GRIST. In fact, GRIST can detect a
superset of the bugs that DEBAR can detect. We manually analyzed
the 31 FNs (false negatives) of DEBAR and found that there are
three reasons: 1) As mentioned earlier, DEBAR cannot be applica-
ble to dynamic computation graphs, and thus it missed to detect
bugs based on dynamic computation graphs. It is remarkable that
the latest version of TensorFlow has also supported dynamic com-
putation graphs and takes it as the default usage, indicating that
supporting to detect bugs based on dynamic computation graphs
like GRIST will be an inevitable trend in the future to some degree.
23 of 31 FNis fall into this category. 2) DEBAR does not support the
error type of invalid derivative listed in Table 1 since the derivation
operation can be found only at runtime. 5 of 31 FNs fall into this
category. 3) DEBAR requires users to manually configure the range
of each primitive parameter in the program, but there are three
bugs, which DEBAR cannot detect when configuring the correct
range (e.g., the range of the variable after normalization is [0,1])
but can detect when setting a more coarse range (e.g., [0,inf]). The
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results demonstrate that GRIST outperforms DEBAR in terms of
both FPs and FNs.

4.3 RQ3: Contribution of the Data
Replacement Strategy in GRIST

Setup. To investigate the impact of replacing unimportant sam-
ples with fresh ones in GRIST, we prohibited GRIST from dropping
inputs with low scores or adding new inputs. In other words, it
continued to update the same set of samples iteratively. The settings
of € and timeout remain the same. We call this variant GRIST ys.

Results. Observe that replacing unimportant samples has a pos-
itive effect on the performance of GRIST. First of all, in terms of
the number of exposed bugs, GRIST exposes 78 bugs in 766 runs
in total while GRISTns (GRIST without data replacement) only
exposes 67 bugs in 645 runs. Also, there are six bugs that were not
detected by GRIST s but were detected by the original programs
using default inputs. Second, in terms of time cost reduction in
exposing bugs, GRIST s can save 2.99X time cost compared to the
original programs using default inputs, while that of GRIST is 8.79X.
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The results demonstrate the data replacement strategy is indeed
able to improve the performance of GRIST.

5 DISCUSSION
5.1 Influence of Main Parameters in GRIST

We investigated the influence of two main parameters in GRIST,
i.e., € (the input update rate) and switch rate (the fraction of samples
being replaced at the end of each training iteration), by conducting
an experiment based on three randomly selected subjects (ID-3,
ID-18, ID-35). Regarding €, we studied 0.1, 0.15, 0.2, 0.25, and 0.3,
while regarding switch rate, we studied 0.01, 0.05, 0.1, 0.15, and 0.2,
whose average results are shown in Figure 9. In the experiment,
only one parameter is changed each time while others use our
default settings. We found that, in general GRIST is insensitive to
€ or switch rate (except 0.01) within the studied range. Regarding
switch rate of 0.01, one subject has a small batch size such that the
number of replaced data is very small, making it nearly equivalent
to GRIST .

5.2 Generalizability of GRIST

On one hand, GRIST can work on both static computation graphs
and dynamic computation graphs, while DEBAR can only support
the former, indicating that GRIST is more general than the state-
of-the-art technique DEBAR for detecting numerical bugs in DL
programs. On the other hand, even though GRIST is designed to
expose numerical bugs in DL programs, it can be also generalized
to DL libraries to some degree. This is because DL libraries can
also utilize their gradient computation mechanisms that GRIST
piggy-backs on, through invocations from DL programs. We use
an example of the PyTorch library, shown in Figure 8, to illustrate
how GRIST is generalized to detect numerical bugs in DL libraries.
Figure 8a shows the function entropy in PyTorch, which could
produce an NaN when self.rate is 0 in log. GRIST can detect
this numerical bug by 1) finding or creating a DL program that
invokes this function (shown in Figure 8b), 2) constructing sus-
pect loss by instrumenting PyTorch to return the parameter value
of log in entropy along with its original returned value (Lines 3
in Figure 8b), and 3) updating the argument value of entropy in
the DL program via gradient computation (utilizing the gradient
computation mechanism in PyTorch) between suspect loss and the
argument rate of entropy (Lines 14-18 in Figure 8b). In this way,
rate becomes zero eventually and the numerical bug in PyTorch is
exposed. Compared with DL programs, the main difference of de-
tecting numerical bugs in DL libraries is that the logical relationship
between suspect loss and input of the library function under test lies
in DL libraries rather than DL programs, and thus the parameters
of the buggy operations have to be returned to DL programs from
DL libraries for gradient computation.

5.3 Threats to Validity

The internal threat to validity mainly lies in the implementation of
GRIST. To reduce this threat, two authors have carefully examined
the implementation of GRIST, including reviewing and testing the
code. Specifically, they cross-reviewed each function and wrote unit
tests. Also, regarding the integrated tool, they used the debug mode
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# In torch.distributions.exponential.Exponential
def entropy(self):
return 1.0 - torch.log(self.rate)

(a) Function in the PyTorch library
# In Instrumented Exponential
def entropy(self):
return 1.0 - torch.log(self.rate),self.rate

# In Driver of GRIST

rate = initialize rate()
rate = clamp(rate)
exponential = Exponential (rate)

while NotTerminate () :
exponential = Exponential (rate)
actual results,monitored var = exponential.entropy()
suspect_loss = define_suspect_ loss(monitored var)
grads = calculate_gradients(suspect_loss,rate)
NaN_Check (actual_results)

rate
rate

update_rate by grads(grads)
clamp (rate)

(b) Pytorch program invoking the function (driver of GRIST)

Figure 8: Example of applying GRIST to detect a numerical
bug in the PyTorch library

in the PyCharm IDE to ensure the correctness of the intermediate
states and the final output for a program.

The external threat to validity mainly lies in the subjects used
in our study. To reduce this threat, we collected 63 real-world DL
programs containing 79 bugs from two sources as subjects in our
study, including 23 known bugs from existing studies and GitHub,
and 56 unknown bugs from GitHub that can be detected by either
GRIST or DEBAR. Section 4 presents the subject collection process
in detail. In the future, we will evaluate GRIST on more DL programs
based on more DL libraries.

6 RELATED WORK

DL Program Bugs. The most related work to ours is DEBAR [56],
which has been discussed and compared in Sections 2.2 and 4.2.
Besides, there are a number of empirical studies on DL program
bugs [8, 26-28, 53-55]. For example, Zhang et al.[55] analyzed
the root causes and symptoms of 175 TensorFlow program bugs
from GitHub issues and Stack Overflow posts. Humbatova et al.[26]
provided a taxonomy of DL program bugs through manual analysis
and interviews based on GitHub issues and Stack Overflow posts.
Islam et al.[27, 28] analyzed the types, root causes, impact, and fix
patterns of DL program bugs based on five popular DL libraries.
Zhang et al. [54] inspected 715 questions on Stack Overflow about
DL and summarized many common challenges in developing DL
programs. Different from them, we focus on proposing the first
dynamic technique to expose numerical bugs in DL programs.

Numerical Bugs in Traditional Software. There is some work
on numerical bugs in traditional software. For example, Franco
et al.[18] conducted a comprehensive study on numerical bugs
in traditional software. Dietz et al.[15] developed IOC, a dynamic
checking tool for integer overflow and conducted the first empirical
study on integer overflow in C and C++ code. Tang et al.[45] pro-
posed a toolchain that can detect potential numerical instability and
diagnose the reasons for such instability. Guo et al.[22] proposed
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Figure 9: Results for different settings of € and switch_rate

an approach based on symbolic execution to efficiently generating
floating-point inputs to trigger program errors. Different from them,
our work targets at numerical bugs in DL programs, which are very
different from traditional software as presented in Section 1.

Furthermore, Fu et al. [19, 20] adopted gradient optimization to
analyze float-point code in traditional software, aiming at generat-
ing tests for high coverage. Even though they also utilized gradients,
different from them, our contribution lies in handling bugs in DL
programs. Specifically, DL training is extremely expensive and de-
mands many processes, whereas the execution model of traditional
numerical programs is simple. GRIST piggy-backs on existing gradi-
ent back-propagation mechanism, which makes it easily deployable.
It requires solving new challenges as well such as interacting with
DL primitives (e.g., automatically marking selected variables as
trainable) and handling data loading.

DL Testing. Over the years, a large amount of work focus on DL
testing [13, 16, 23, 29, 33, 34, 37, 39, 43, 48, 51]. However, they aim
to either test DL models by proposing various input generation
techniques [7, 23, 51] or designing various test criteria [25, 29, 33, 34,
39], or test DL libraries and DL compilers [40, 43, 47] Different from
them, our work aims to detect DL program bugs, i.e., numerical
bugs in DL programs.

7 CONCLUSION

In this paper, we propose the first dynamic technique to generate in-
puts to expose numerical bugs in DL programs and implement it in
a tool named GRIST. The technique piggy-backs on the built-in gra-
dient computation of the underlying deep learning framework. Our
results on 63 real-world DL programs with 79 numerical bugs show
that GRIST can expose unknown numerical bugs and substantially
reduce the execution time needed to trigger bugs.
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