
Nonlinear Higher-Order Label Spreading
Francesco Tudisco

Gran Sasso Science Institute

School of Mathematics

67100 L’Aquila, Italy

francesco.tudisco@gssi.it

Austin R. Benson

Cornell University

Department of Computer Science

Ithaca, NY 14853, USA

arb@cs.cornell.edu

Konstantin Prokopchik

Gran Sasso Science Institute

School of Computer Science

67100 L’Aquila, Italy

konstantin.prokopchik@gssi.it

ABSTRACT
Label spreading is a general technique for semi-supervised learning

with point cloud or network data, which can be interpreted as a dif-

fusion of labels on a graph. While there are many variants of label

spreading, nearly all of them are linear models, where the incom-

ing information to a node is a weighted sum of information from

neighboring nodes. Here, we add nonlinearity to label spreading

via nonlinear functions involving higher-order network structure,

namely triangles in the graph. For a broad class of nonlinear func-

tions, we prove convergence of our nonlinear higher-order label

spreading algorithm to the global solution of an interpretable semi-

supervised loss function.We demonstrate the efficiency and efficacy

of our approach on a variety of point cloud and network datasets,

where the nonlinear higher-order model outperforms classical label

spreading, hypergraph clustering, and graph neural networks.

KEYWORDS
semi-supervised learning, hypergraphs, Laplacians, label spreading,

label propagation, higher-order networks

ACM Reference Format:
Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik. 2021.

Nonlinear Higher-Order Label Spreading. In Proceedings of the Web Con-
ference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3450035

1 INTRODUCTION
Label Spreading (LS) is a general algorithmic technique for Semi-

Supervised Learning (SSL), where one infers unknown labels from

known labels by iteratively diffusing or spreading the known la-

bels over a similarity graph where nodes correspond to data points

and edges connect similar data points [66]. Typically, the number

of labeled data points is small (often less than 1% of the points),

corresponding to settings where it is generally difficult to obtain

labels. With generic point cloud data, edges are typically based on

k-nearest-neighbors or ϵ-neighbors [30, 62, 65], but LS can also

be used directly on relational data coming from, e.g., social net-

works [15], web graphs [34], or co-purchases [23]. A prototypical

algorithm for LS is the local and global consistency approach of

Zhou et al. [62]. In this method, all nodes iteratively spread their

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450035

label values to neighbors, encouraging smoothness in label assign-

ment over the data, while the values on labeled nodes are kept close

to their initial label assignment.

The linearity of the diffusion makes LS simple to implement

and analyze. From the perspective of an unlabeled data point, the

corresponding node in the graph iteratively updates its label based

on a fixed linear combination of the current labels of its neighbors.

One can analyze the limiting behavior of this iterative process,

which coincides with the solution of a Laplacian linear system and

the minimization of a regularized loss function. At the same time,

nonlinear methods provide stronger modeling capabilities, and are

key to deep learning generally [24] and modern graph-based semi-

supervised learning methods such as graph neural networks [26,

64]. However, we have limited theoretical understanding of graph

neural networks, and they are generally difficult to interpret and

challenging to scale to large datasets. Furthermore, such methods

require substantial validation sets for hyperparameter tuning and

are not particularly suited to settings in which there are a small

number of labels.

Here, we propose a nonlinear label spreading method that lies

in between these two approaches, which has more expressive mod-

eling capability while remaining interpretable and scalable with

theoretical guarantees on convergence. Our approach is based on

two main ideas. First, we incorporate “higher-order” relationships

between the data points, i.e., information about groups of nodes

instead of just the similarities encoded by edges in a graph; this idea

has recently been shown to improve label spreading, label propa-

gation, and diffusion methods [18, 29, 39, 60]. Second, we devise

a spreading process where a given node u updates its label based

on the labels of the other nodes in its higher-order neighborhood,

where the label information is “aggregated” with a nonlinear mix-
ing function at each hyperedge containing u. We call this method

Nonlinear Higher-Order Label Spreading (NHOLS).

With the additional nonlinear term, we obtain a method that

maintains the same simplicity and scalability as the classical linear

method, but with a much broader modeling power. Although the

nonlinear term makes the analysis of the spreading process more

challenging, we show that our method enjoys two fundamental

properties similar to classical LS [62], for a broad class of nonlinear

functions. First, the NHOLS process corresponds to running gradi-

ent descent on an interpretable objective function that decomposes

into a function that imposes smoothness over the graph and a func-

tion that encourages the predictions to remain close to the initial

assignment on labeled nodes. Second, NHOLS globally converges

to a unique global minimizer of this objective.

Our analysis is based on interpreting the iterations of NHOLS as a

type of tensor contraction. From this viewpoint, our convergence re-

sults are based on extensions of recent nonlinear Perron-Frobenius

2402

https://doi.org/10.1145/3442381.3450035
https://doi.org/10.1145/3442381.3450035

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

theory [21, 22]. These results also apply to a more general class of

nonlinear iterations, and we use this to provide theoretical guar-

antees for a variant of recently proposed nonlinear diffusions that

does not use higher-order information [28]. Furthermore, the spe-

cial case of a linear mixing function essentially reduces to a recently

proposed higher-order label spreading method [18].

In terms of implementation, NHOLS shares the same simplicity

and efficiency as standard LS. Each iteration of the algorithm only

requires a single pass over the input data, making it highly scalable.

(In practice, though, this may involve a pre-processing to find all

of the higher-order data, such as all of the triangles in a graph;

this is typically fast for real-world networks [10, 35]). In numerical

experiments, we show that the running time of NHOLS is orders

of magnitude faster than graph neural network approaches, while

also being nearly as fast as standard LS.

We also evaluate the predictive performance of NHOLS on a

number of synthetic and real-world datasets, comparing against

standard label spreading, hypergraph semi-supervised learning

methods, and graph neural networks. We find that incorporating

nonlinearities of higher-order information into label spreading

almost always achieves the highest accuracies and that, in our

setting, NHOLS is far superior to standard graph neural networks.

1.1 Additional related work
A key idea in many recent graph-based learning methods is that in-

corporating higher-order interactions involving multiple nodes can

make large changes in performance. This has yielded improvements

in numerous settings, including unsupervised clustering [9, 40, 52],

localized clustering [38, 60], representation learning [47], link pre-

diction [5, 8, 48], graph classification [2], ranking [5–7, 16], and

data visualization [46]. A higher-order version of label spreading

has also recently been developed for relational data [18], and this

correspond to the special case of linear mixing functions within

our framework.

There are also many machine learning methods for hypergraph

data, and a standard approach is to first reduce the hypergraph to a

graph upon which a graph-based method can be employed [1, 19,

40, 49, 61, 63]. These techniques are called clique expansions, as they
place a (possibly weighted) clique in the graph for every hyperedge.

Using a linear mixing function in our framework is a clique expan-

sion technique, which we cover in Section 3. However, our analysis

focuses on nonlinear mixing functions, which do not correspond

to clique expansions. Thus, our framework is conceptually closer

to hypergraph methods that avoid clique expansions, such as those

based on nonlinear Hypergraph Laplacian operators [12, 41, 57] or

generalized splitting functions [53, 54].

There are nonlinear graph-based semi-supervised learning tech-

niques that use p-Laplacians [3, 11, 28, 34] or p-norms [58]. More

broadly, our framework follows several recent graph methods that

add interpretable nonlinearities onto traditional linear methods to

improve expressibility and practical performance [13, 14, 28]

2 BACKGROUND ON STANDARD LABEL
SPREADING

We first review a standard label spreading (LS) technique that is

essentially the same as the one of Zhou et al. [62] so that we can later

draw parallels with our proposed nonlinear higher-order method.

Let G = (V ,E,ω) be a weighted undirected graph with nodes V =
{1, . . . ,n}, edge set E ⊆ V ×V and edge-weight function ω(ij) > 0.

As mentioned in the introduction, G typically represents either a

similarity graph for a point cloud or a relational network. Let A be

the adjacency matrix of G, i.e., Ai j = ω(ij) if ij ∈ E and Ai j = 0

otherwise. Furthermore, let DG = Diag(d1, . . . ,dn) be the diagonal
degree matrix of G, where di =

∑
j Ai j . Throughout this paper, we

will assume that G has no isolated nodes, that is DG has no zero

diagonal entries. (This is a standard assumption and, in practice, if

node i is isolated, we can either remove it from the graph or add a

self-loop ii; we do not run into isolated nodes in our experiments.)

Finally, let

S = D
−1/2

G AD
−1/2

G (1)

be the normalized adjacency matrix.

Our goal is to provide a label in {1, . . . , c} to each node, and we

know the label of (usually a small) subset of the nodes. The initial

labels are represented by membership vectors in an n × c matrix Y ,
where Yi, ℓ = 1 if node i has initial label ℓ and Yi, ℓ = 0 otherwise.

Given an initial guess F (0) ∈ Rn×c , the label spreading algorithm
iteratively computes

F (r+1) = βSF (r) + γY r = 0, 1, 2, . . . , (2)

with β ,γ ≥ 0 and β +γ = 1. The iterates converge to the solution of

the linear system (I − βS)F ∗ = γY , but in practice a few iterations

of (2) with the initial point F (0) = Y suffices [20]. This yields an

approximate solution F̃ ∗. The prediction on an unlabeled node j

is then argmaxℓ F̃
∗
j, ℓ . This setup is equivalent to performing label

spreading once per class with an initial binary vector y (i.e., one

vector y for each column of Y).

When initialized with F (0) = 0 (which produces F (1) = γY), the
label spreading procedure in (2) is naturally interpreted as diffusing

the input labels Y along the edges of the graph by means of the

adjacency matrix S . At the same time, this method can also be

interpreted as gradient descent applied to a quadratic regularized

loss function and as a discrete dynamical system that spreads the

initial value condition F (0) = Y through the graph via a linear

gradient flow. We briefly review these formulations. Letψ be the

quadratic energy loss function that is separable on the columns of

F ,

ψ (F) =
c∑

ℓ=1

ψℓ(F:, ℓ) =
c∑

ℓ=1

1

2

{
∥F

:, ℓ − Y:, ℓ ∥
2

2
+ λ F⊤

:, ℓ∆F:, ℓ
}
, (3)

where ∆ = I − D
−1/2

G AD
−1/2

G = I − S is the normalized Laplacian,

and λ > 0 is a regularization parameter. This loss encourages

smoothness over the graph (via the normalized Laplacian term)

while also keeping the solution on labeled nodes close to the initial

label assignment.

For ℓ ∈ {1, . . . , c}, consider the the dynamical system

d
dt

f (t) = −∇ψℓ(f (t)), f (0) = Y
:, ℓ . (4)

Sinceψℓ is convex, limt→∞ f (t) = f ∗ such thatψℓ(f
∗) = minf ψℓ(f).

Label spreading in (2) coincides with gradient descent applied to

(3) or, equivalently, with explicit Euler integration applied to (4),

2403

Nonlinear Higher-Order Label Spreading WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

for a particular value of the step length h. In particular,

f −h∇ψℓ(f) = f −h(f −Y
:, ℓ +λ∆f) = (1−h−hλ)f +hλS f +hY:, ℓ ,

(5)

which, for (1−h)/h = λ, coincideswith one iteration of (2) applied to

the ℓth column of F . Moreover, as F (r) ≥ 0 for all r , this gradient flow
interpretation shows that the global minimizer of (3) is nonnegative,

i.e., minF ψ (F) = minF ≥0ψ (F). In the next section, we use similar

techniques to derive our nonlinear higher-order label spreading

method.

3 NONLINEAR HIGHER-ORDER LABEL
SPREADING

Now we develop our nonlinear higher-order label spreading tech-

nique. We assume that we have a 3-uniform hypergraph H =
(V , E,τ) capturing higher-order information on the same set of

nodes as the weighted graph G = (V ,E,ω), where E ⊆ V ×V ×V
and τ is a hyperedge weight function with τ (ijk) > 0 for ijk ∈ E. In
our experiments, we will usually derive H from G by considering

the hyperedges of H to be the set of triangles (i.e., 3-cliques) of G.
However, in principle we could use any hypergraph. We also do not

need the associated graph G, but we keep it for greater generality

and find it useful in practice.

Below, we develop our methodology for 3-regular hypergraphs

for simplicity, but our ideas generalize to arbitrary hypergraphs.

More specifically, our convergence results in Theorem 3.1 only

assume that we iteratively apply a nonlinear function with certain

properties, which has no dependence on the higher-order structure.

And in terms of the practical implementation, we use nonlinear

mixing functions that take the p-mean of values on nodes in a

hyperedge before spreading back to each node in the hyperedge,

and this can be done with heterogeneous hypergraphs that contain

hyperedges of various sizes. Finally, the interpretable objective

function that ourmethod optimizes in (13) has smoothness terms for

2-way and 3-way relationships among nodes; including hyperedges

of larger sizes just corresponds to additional smoothness terms.

3.1 Nonlinear Second-order Label Spreading
with Mixing Functions

We represent H via the associated adjacency tensor A, defined by

Ai jk = τ (ijk) if ijk ∈ E and Ai jk = 0 otherwise. Analogous to

the graph case, let DH = Diag(δ1, . . . ,δn) be the diagonal matrix

of the hypergraph node degrees, where δi =
∑
j,k : i jk ∈E τ (ijk) =∑

jk Ai jk . Again, we assume that H has no isolated nodes so that

δi > 0 for all i ∈ V . As in the graph case, this is a relatively standard

assumption. In practice, if node δi = 0, then we compensate by

using the information available on the edges (i.e., in G): for all
neighbors j of i inG we add the hyperedge iji toH . This is a higher-

order analog of the addition of a self-loop for isolated nodes in

graphs.

As noted in the introduction, we will make use of nonlinear

mixing functions, which we denote by σ : R2 → R. For a tensor

T = Ti jk , we define the tensor map Tσ : Rn → Rn entrywise:

Tσ (f)i =
∑
jk Ti jk σ (fj , fk). (6)

Algorithm 1: NHOLS: Nonlinear Higher-Order Label

Spreading.

Input: Tensor A; matrix A; mixing function σ : R2 → R;
label matrix Y ∈ {0, 1}n×c ; scalars α , β ,γ ≥ 0 with

α + β + γ = 1; smoothing parameter 0 < ε < 1;

stopping tolerance tol

Output: Predicted labels ŷ ∈ {1, . . . , c}n

1 F̃ ∈ Rn×c // Store approximate solutions

2 for ℓ = 1, . . . ,L do
// Initialize with label smoothing

3 yε ← (1 − ε)Y:, ℓ + ε1

4 f (0) ← yε
5 repeat

// Follow (8) and (9)

6 д← αS(f (r)) + βS f (r) + γyε

7 f (r+1) ← д/φ(д)

8 until ∥ f (r+1) − f (r)∥/∥ f (r+1)∥ < tol

9 F̃
:, ℓ ← f (r+1)

10 end
11 for i = 1, . . . ,n do ŷi = argmaxℓ F̃i, ℓ

Hence, in analogy with the matrix case, we denote by S : Rn → Rn

the nonlinear normalized adjacency tensor map

S(f) = D
−1/2

H A σ (D
−1/2

H f). (7)

This nonlinear tensor contraction will be the basis for our method.

We need one additional piece of notation that is special to the

higher-order case, which is a type of energy function that will be

used to normalize iterates in order to guarantee convergence. Let

B be the matrix with entries Bi j =
∑
k Aki j . Define φ : R

n → R by

φ(f) = 1

2

√∑
i j Bi j σ

(
fi√
δi
,

fj√
δj

)
2

. (8)

Finally, we arrive at our nonlinear higher-order label spreading

(NHOLS) method. Given an initial vector f (0) ∈ Rn , we define the
NHOLS iterates by{

д(r) = αS(f (r)) + βS f (r) + γy,

f (r+1) = д(r)/φ(д(r))
r = 0, 1, 2, . . . (9)

where α , β ,γ ≥ 0, α +β+γ = 1, andy is an initial label membership

vector. Provided that σ is positive (i.e., σ (a,b) > 0 for any a,b >

0) and the initial vector f (0) is nonnegative, then all iterates are

nonnegative. This assumption on themixing function will be crucial

to prove the convergence of the iterates. We perform this iteration

with one initial vector per label class, analogous to standard Label

Spreading. Algorithm 1 gives the overall procedure.

We now discuss several important properties of Algorithm 1.

The parameters α , β,γ are a convex combination of three terms

and allow us to tune the contributions of the first-order (graph)

and second-order (hypergraph) smoothness terms; we will show

this derivation in the next section. For β = 0, we obtain a purely

second-order method, which can be useful when we do not have

access to first-order data (e.g., we only have a hypergraph). The

case of α = 0 reduces to a normalized version of the standard LS as

2404

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

in (2). Algorithm 1 also uses label smoothing in the initialization

(the parameter ε), which will be useful for proving convergence

results and can also improve generalization [45].

We can compute the iteration in (9) efficiently — each iteration

requires one matrix-vector product and one “tensor-martix” prod-

uct, which only takes a single pass over the input data. Therefore,

NHOLS scales linearly with the number of edges and hyperedges,

i.e., its computational cost is linear in the size of the data. A com-

mon setup for our experiments is that A is an adjacency tensor

corresponding to all of the triangles in the graph. In this case, the

cost per iteration is linear in the number of triangles. More formally,

the running time of NHOLS in this case is O(c(m + t)), where c
is the number of classes, m is the number of edges, and t is the
number of triangles. On many real-world datasets, the number of

triangles is still roughly linear in the number of edges [10], which

would make each iteration have O(cm) runtime.

The special case of a linear mixing function. The mixing function σ
is responsible for the nonlinearity of the method. The linear mixing

function σ (a,b) = a + b reduces NHOLS to an approach based

on a clique expansion graph, which, for β = 0, corresponds to a

normalized version of the approaches from Eswaran et al. [18] and

Zhou et al. [63]. To see this, let K be the n × |E| incidence matrix

of the hypergraph H , where Ki,e = 1 if node i is in the hyperedge

e and Ki,e = 0 otherwise. Furthermore, let W be the diagonal

matrix of hyperedge weights τ (e), e ∈ E. Then 2

(
KWK⊤

)
i j =∑

k Ai jk +Aik j , and for σ (a,b) = a + b, we have

S(f)i = δ
−1/2

i

∑
jk

Ai jkδ
−1/2

j fj +Ai jkδ
−1/2

k fk

= δ
−1/2

i

∑
j
(
∑
k

Ai jk +Aik j)δ
−1/2

j fj =
(
Θf

)
i ,

whereΘ = 2D
−1/2

H KWKTD
−1/2

H is the normalized adjacency matrix

of the clique expansion graph [63].

3.2 Global convergence and optimization
framework

Our NHOLSmethod extends standard LS in a natural way. However,

with the nonlinear mixing function σ , it is unclear if the iterates
even converge or to what they might converge. In this section, we

show that, remarkably, NHOLS is globally convergent for a broad

class of mixing functions and is minimizing a regularized objective

similar to the one in (3) for standard LS. Proofs of the theoretical

results in this section are in the appendix.

For convergence, we only require the mixing function to be

positive, order-preserving, and homogeneous. Recall that these

three properties for a general function Φ : Rn → Rn are as follows.

Positivity: Φ(x) > 0 for all x > 0. (10)

Order-preserving: Φ(y) ≥ Φ(x) if y ≥ x . (11)

p-homogeneity: Φ(cx) = cpΦ(x) for all c > 0 and all x . (12)

(The inequalities above are interpreted entrywise.) We state below

our main convergence theorem

Theorem 3.1. Let F : Rn → Rn be positive, order-preserving, and
p-homogeneous with 0 < p ≤ 1. Let ϱ : Rn → R be positive and

1-homogeneous, and let y be a positive vector. If there exists a C > 0

such that F (f) ≤ Cy for all f with ϱ(f) = 1, then, for any f (0) > 0,
the sequence

д(r) = F (f (r)) + y f (r+1) = д(r)/ϱ(д(r))

converges to a vector f ∗ > 0. Moreover, f ∗ is the unique fixed point
of the mapping F (f) + y such that ϱ(f ∗) = 1.

Theorem 3.1 allows us to prove the convergence of NHOLS.

To this end, we require an entry-wise positive label initialization.

This is the reason for the smoothed membership vectors yε =
(1−ε)Y

:, ℓ +ε1 in Algorithm 1. (In other words, (yε)i = (1−ε)Yi, ℓ +
ε > 0.) This assumption is not restrictive in practice as ε can be

chosen fairly small, and we can also interpret this as a type of label

smoothing [45, 50] (although similarly named, label smoothing is

an entirely different concept than label spreading).
The following corollary shows that the NHOLS iterates converge

for a broad class of mixing functions.

Corollary 3.2. Let f (r) be the iterates in Algorithm 1. If σ is
positive, order-preserving, and 1-homogeneous, then the sequence
{ f (r)}r converges to a unique stationary point f ∗ > 0withφ(f ∗) = 1.

In addition to global convergence, a fundamental property of the

standard LS method is its interpretable optimization framework. We

next show that for differentiable, 1-homogeneous mixing functions

σ , the limit f ∗ of NHOLS minimizes a regularized objective that

encourages smoothness over the labels assignment with respect

to the graph and hypergraph interactions while also constraining

the predictions on originally labeled nodes to be close the given

labels. For a smoothed membership vector yε = (1 − ε)Y:, ℓ + ε1
with 0 < ε < 1, consider the loss function

ϑ (f) =
1

2



f − yε

φ(yε)

2
2

+ λ
∑
i j

Ai j
(fi
√
di
−

fj√
dj

)
2

+ µ
∑
i jk

Ai jk

(fi
√
δi
−
1

2

σ
(fj√

δj
,

fk√
δk

))
2

 .
(13)

As for the case of standard LS, ϑ has a fitting constraint and a

smoothness component. However, there are two main differences.

First, the fitting constraint component now considers a normalized

membership vector ỹε = yε /φ(yε). As φ(ỹε) = 1, we seek for a

minimizer of ϑ in the slice { f : φ(f) = 1}. Second, the smoothness

regularization now combines the graph Laplacian term with a new

tensor-based term that encourages smoothness on the higher-order

interactions among the nodes.

At a high level, the new tensor-based smoothness term encour-

ages that, for all higher-order relationships ijk , we have that the
value at node i is similar to a mixture of the values at j and k , the
value at j is similar to a mixture of the values at i and k , and the

value at k is similar to a mixture of the values at i and j . For our ex-
periments, we will take σ to be various p-means so the mixture just

corresponds to a generalized (nonlinear) mean, and we will see that

certain choices of themixing function, such asσ (a,b) = 2·max(a,b),
tend to work well in practice (the factor of 2 comes from the fac-

tor of
1

2
in front of σ in (13)). The following theorem says that

Algorithm 1 is optimizing this new objective.

2405

Nonlinear Higher-Order Label Spreading WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Theorem 3.3. Let f (r) be the sequence generated by Algorithm 1.
If σ is positive, 1-homogeneous, and differentiable, then the sequence
{ f (r)}r converges to the unique global solution of the constrained
optimization problem

minϑ (f) s.t. f > 0 and φ(f) = 1 (14)

with µ = α/γ and λ = β/γ .

Analogous to standard label spreading, when started with f (0) =
0, the iterations in (9) can be naturally interpreted as diffusing

the input labels yε simultaneously along the edges and the hyper-

edges of G and H by means of the adjacency mappings S and S,

respectively. Moreover, just like standard LS, NHOLS can also be

interpreted as projected gradient descent applied to a regularized

loss function and as a projected diffusion process that spreads the

input label assignment via a gradient flow. However, unlike the

standard LS, the loss function in this setting is not convex and the

gradient flow is no longer linear.

To this end, let ϑ̃ be the energy function

ϑ̃ (f) = ϑ (f) −
µ

2

φ(f)2

Note that ϑ and ϑ̃ have the same minimizing points on { f : φ(f) =
1}. Furthermore, consider the dynamical system

d
dt

f (t) = −∇ϑ̃
(
f (t)

)
, f (0) = yε . (15)

Then, our NHOLS iterates in (9) correspond to projected gradient

descent applied to ϑ̃ or, equivalently, to a forward Euler method

applied to (15). In fact, for yε such that φ(yε) = 1, we can show that

f − h∇ϑ̃ (f) = (1 − h − λh + µh)f + hλS f + hµS(f) + hyε , (16)

so choosing the step length h to satisfy (1 − h)/h = λ + µ coincides

with one step of (9). (A proof of this identity is in the appendix,

within the proof of Theorem 3.3.) Unlike standard LS, the loss

functions ϑ and ϑ̃ are not convex in general. Thus, the long-term

behavior limt→∞ f (t) of the dynamical system (15) is not straight-

forward. Despite this, Theorem 3.3 shows that just like its linear

counterpart, NHOLS converges to a unique global minimizer of ϑ
over the set of nonnegative vectors.

Finally, we note that, as ∇ψ in (4) can be interpreted as a discrete

Laplacian operator on the graph [62], we can interpret ∇ϑ̃ , and thus
S, as a hypergraph Laplacian operator, which adds to the recent

literature on (nonlinear) Laplacians on hypergraphs [12, 42].

3.3 Extensions
Theorem 3.1 makes it easy to extend the second-order setting dis-

cussed in this work to hyperedges of any order. For example, with

size-4 hyperedges, we would use a nonlinear map

Tσ (f)i =
∑
jkl

Ti jklσ (fj , fk , fl)

and define a spreading term using an adjacency tensor with four

indices. With some additional algebra, we would get an objective

function like the one in (13), just with an additional smoothness

term for 4-way interactions.

The generality of Theorem 3.1 also makes it easy to design new

types of nonlinear iterative methods. For example, nonlinearities

could be added to the graph term, and there could be nonlinear

Table 1: Five mixing functions obtained from generalized
means with different parameters s. By Corollary 3.2, Algo-
rithm 1 converges for any choice of s.

mixing function parameter s σs (a,b) = 2 ((as + bs)/2)1/s

arithmetic s = 1 a + b

harmonic s = −1 4

(
1/a + 1/b

)−1
L2 s = 2

√
2(a2 + b2)

geometric s → 0 2

√
ab

maximum s →∞ 2 ·max(a,b)

mixing between interactions of different sizes. These are more

expressive models, but our NHOLS method has the remarkable

advantage of also being connected to the global optimum of an

interpretable objective function. For the more general maps enabled

by Theorem 3.1, the corresponding objective functions are unclear,

although this is an opportunity for future research.

We consider one extension that is based on just incorporat-

ing nonlinearity into the graph method, which we will use in

our experiments to show that higher-order information is help-

ful. A nonlinear first-order label spreading has the general form

f (r+1) = βMσ (f (r)) + (1 − β)yε , where Mσ (f) is the vector with
entries Mσ (f)i =

∑
j Mi jσ (fj), σ is a nonlinear map, and M is a

matrix associated with the graph. Ibrahim and Gleich [28] recently

introduced one such nonlinear diffusion model, which is based on

a forward Euler discretization of a first-order gradient flow similar

to (4). The diffusion iterates (approximately) follow

f (r+1) = βD−1G A(f (r))p + γyε , r = 0, 1, 2, . . . , (17)

where the pth power is taken entry-wise, and p, β,γ are coefficients

in the interval [0, 1] with β + γ = 1. Since the iterations in (17)

are unbounded, Ibrahim and Gleich [28] threshold each f (r) by
setting to 0 and 1 all entries that are smaller than 0 or larger than

1, respectively. While practical, this procedure does not guarantee

convergence. If we instead normalize each step with a vector norm,

such as

д(r) = βD−1G A(f (r))p + γyε , f (r+1) = д(r)/∥д(r)∥1, (18)

then Theorem 3.1 says that the sequence converges to a unique

limit, for all choices of the initial value f (0) > 0 and all p ∈ [0, 1].

4 NUMERICAL EXPERIMENTS
We now perform experiments on both synthetic and real-world

data. Our aim is to compare the performance of standard (first-

order) label spreading algorithm with our second-order methods,

using different mixing functions σ . Based on (13), a natural class of

functions are the one-parameter family of generalized means scaled

by factor 2, i.e., σs (a,b) = 2 ((as + bs)/2)1/s . We use the five gener-

alized means in Table 1. The experiments can be reproduced using

the code available at https://github.com/Doublelucker/NHOLS.

The function σs is 1-homogeneous, order-preserving, and posi-

tive for all values of s ∈ R, including the limit cases of s ∈ {0,+∞}.
Thus, by Corollary 3.2, Algorithm 1 converges for any choice of

s . The maximum function, however, is not differentiable and thus

2406

https://github.com/Doublelucker/NHOLS

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

we cannot prove that the computed limit of the sequence f (r) op-
timizes the loss function (13); however, one can approximate the

maximum with a smooth function by choosing a large finite s , and
Theorem 3.3 still applies. Also, as shown above, the case s = 1

(where σs is linear) essentially corresponds to a clique expansion

method, so Algorithm 1 is nearly the same as existing methods

based on clique expansions [18, 60, 63], where the adjacency matrix

is a convex combination of the clique expansion graph induced by

the tensor A and the graph A. In our experiments, we use at most

40 iterations within Algorithm 1, a stopping tolerance of 1e-5, and

smoothing parameter ε = 0.01. Other settings of these parameters

produced similar results.

We compare against several techniques, in addition to standard

label spreading. One is hypergraph total variation (HTV) mini-

mization, which is designed for clustering hypergraphs with larger

hyperedges but is still applicable to our semi-supervised setup [27].

Another set of baselines comes from graph neural networks (GNNs).

While such methods are lauded for their success on many graph

learning tasks, our experiments are for a regime with a smaller

number of labeled nodes than is typical for using GNNs. For GNNs,

we use GraphSAGE [25] with two layers, ReLU activation, and max

aggregation, as well as a Graph Convolutional Network (GCN) with

two layers and ReLU activation. We also use Planetoid, a graph-

based semi-supervised learning algorithm [59]. For the GNNs and

Planetoid, we use data features if they are available; otherwise, we

use the standard one-hot encodings of the nodes’ identities as the

features. Finally, we use the nonlinear first-order label spreading

(NFOLS) in (17) with p = 0.5. None of the baselines incorporate

both first- and second-order information in the graph, which is one

advantage provided by NHOLS.

All of the algorithms that we use have hyperparameters. For the

label spreading and HTV methods, we run 5-fold cross validation

with label-balanced 50/50 splits over a small grid to choose these

hyperparameters. For standard label spreading, the grid is β ∈
{0.1, 0.2, . . . , 0.9}. For higher-order label spreadings, the grid is

α ∈ {0.3, 0.4, . . . , 0.8} and β ∈ {0.1, 0.25, 0.40, 0.55} (subject to the

constraint that α + β < 1). HTV has a regularization term λ, for
which we search over λ = (1 − β)/β for β ∈ {0.1, 0.2, . . . , 0.9} (the
same grid as LS). We choose the parameters that give the best mean

accuracy over the five folds. The GNN approaches are much slower,

so we split the labeled data into a training and validation sets with

a label-balanced 50/50 split (a standard setup for training such

models). We use the ADAM optimizer with default β parameters

and search over learning rates η ∈ {0.01, 0.001, 0.0001} and weight

decaysω ∈ {0, 0.0001}, using at most 15 epochs, with early stopping

to limit overfitting (we stop once accuracy on the validation set

exceeds 95%). Finally, for Planetoid, we manually tuned the number

of embedding iterations to ensure convergence.

4.1 Synthetic benchmark data
We first compare the semi-supervised learning algorithms on syn-

thetic graph data generated with the Stochastic Block Model (SBM).

The SBM is a generative model for graph data with prescribed clus-

ter structure. We use the variant of an SBM with two parameters

— pin and pout — which designate the edge probabilities within

the same label and across different labels, respectively. Generative

block models are a common benchmark to test the performance of

semi-supervised learning methods [31, 33, 43, 44]. Here we analyze

the performance of different methods on random graphs drawn

from the SBM where nodes belong to three different classes of

size (number of nodes) 100, 200, and 400. We sample graphs for

different values of the parameters pin and pout. We fix pin = 0.1

and let pout = pin/s for s ∈ {2.0, 2.5, 3.0, 3.5, 4.0}. With this setup,

small values of s correspond to more difficult classification prob-

lems. We test the various algorithms for different percentages of

known labels per class ({6%, 9%, 12%, 15%, 18%, 21%}).

The colored tables in Figure 1 show the mean clustering accuracy

over ten random samples for each SBM setting and each percentage

of input labels. We observe that the nonlinear label spreading meth-

ods perform better overall, with the maximum function performing

the best in nearly all the cases. The performance gaps can be quite

substantial. For example, when only 6% of the labels are given,

NHOLS achieves up to 89% mean accuracy, while the baselines do

not achieve greater than 81%.

Moreover, as discussed in Section 3.1, NHOLS scales linearly with

the number of nonzero elements of S and S and thus is typically

just slightly more expensive than standard LS. This is demonstrated

by the results in Figure 2, where we compare mean execution time

over ten runs for different methods. For NHOLS we show the mean

execution time between the five choices of the mixing function

listed in Table 1. We generate random SBM graphs with three labels

of equal size, increasing the number of nodes n and edge proba-

bilities pin = log(n)2/n with fixed membership probability ratios

pout = pin/3. The times correspond to a single fixed set of values

of the hyperparameters. We find that HTV is around one order of

magnitude slower than NHOLS, while GCN and GraphSAGE are

three to five orders of magnitude slower.

4.2 Real-world data
We also analyze the performance of our methods on six real-world

datasets (Table 2). The first two datasets come from relational net-

works, namely Facebook friendship graphs of Rice University and

Caltech from the Facebook100 collection [51]. The labels are the

dorms in which the students live — there are 9 dorms for Rice and 8

for Caltech. Facebook friendships form edges, and the tensor entries

correspond to triangles (3-cliques) in the graph. We preprocessed

the graph data by first removing students with missing labels and

then taking the largest connected component of the resulting graph.

The GNNs use a one-hot encoding for features.

The next four graphs are derived from point clouds: optdig-

its [17, 56], pendigits [4, 17], MNIST [36], and Fashion-MNIST [55].

Each of these datasets has 10 classes, corresponding to one of 10

digits or to one of 10 fashion items. In these cases, we first create

7-nearest-neighbor graphs. Tensor entries correspond to triangles

in this graph. We give the GNNs an additional advantage by provid-

ing node features derived from the data points. The optdigits and

pendigits datasets come with several hand-crafted features, and we

use the embedding given by the first 10 principal components for

node features. The MNIST and Fashion-MNIST datasets are just

raw images; here, we use an embedding from the first 20 principal

components of the images as node features for the GNN. We also

tried one-hot encodings and the raw data points as features instead

2407

Nonlinear Higher-Order Label Spreading WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

6 9 12 15 18 21

2.
0

2.
5

3.
0

3.
5

4.
0

p i
n/p

ou
t

57 65 67 72 73 77

70 75 78 80 83 84

77 82 86 88 90 91

81 87 90 92 93 94

84 90 94 95 95 96

NHOLS, geom

6 9 12 15 18 21

2.
0

2.
5

3.
0

3.
5

4.
0

60 65 65 67 70 72

67 72 75 77 79 79

79 82 84 86 87 88

83 85 89 91 91 92

88 90 93 93 94 95

NHOLS, arith

6 9 12 15 18 21

2.
0

2.
5

3.
0

3.
5

4.
0

49 51 49 55 60 64

56 58 56 67 66 70

61 65 64 77 79 82

68 70 69 84 86 89

71 76 82 82 88 93

NHOLS, harm

6 9 12 15 18 21

2.
0

2.
5

3.
0

3.
5

4.
0

60 66 66 69 72 73

69 73 77 78 80 81

80 83 86 87 88 88

85 87 90 91 92 93

89 91 93 93 95 95

NHOLS, L2

6 9 12 15 18 21

2.
0

2.
5

3.
0

3.
5

4.
0

62 66 66 69 72 73

69 74 77 78 80 81

81 84 86 88 89 89

86 87 90 92 92 93

89 92 94 94 94 95

NHOLS, max

6 9 12 15 18 21

% known labels

2.
0

2.
5

3.
0

3.
5

4.
0

p i
n/p

ou
t

63 64 66 68 71 73

67 70 72 76 77 78

71 74 78 82 83 82

73 80 82 84 85 87

75 82 84 87 88 89

Standard LS
6 9 12 15 18 21

% known labels

2.
0

2.
5

3.
0

3.
5

4.
0

36 36 35 37 37 39

40 41 41 43 45 45

45 46 48 50 51 53

47 50 52 57 56 59

48 53 56 60 63 65

NFOLS, p = 0.5

6 9 12 15 18 21

% known labels
2.

0
2.

5
3.

0
3.

5
4.

0

65 66 65 65 64 64

72 72 72 73 72 72

74 76 77 78 79 78

78 81 82 84 83 84

81 83 85 86 88 87

HTV

6 9 12 15 18 21

% known labels

2.
0

2.
5

3.
0

3.
5

4.
0

56 57 62 57 62 61

57 54 63 60 60 72

53 63 62 58 67 73

63 53 57 62 69 75

59 64 62 62 66 72

GraphSAGE

6 9 12 15 18 21

% known labels

2.
0

2.
5

3.
0

3.
5

4.
0

49 52 61 40 40 26

49 45 43 46 65 64

46 44 33 59 47 51

49 60 52 58 61 77

69 37 56 67 74 62

GCN

Figure 1: Accuracy on synthetic stochastic block models. Each table corresponds to different method, and table entries are the
mean accuracy over 10 random instances with the given parameter settings. Overall, the various NHOLS methods perform
much better than the baselines.

0 2000 4000 6000 8000 10000 12000 14000
number of nodes

10 2

10 1

100

101

102

103

104

Ex
 ti

m
e

(s
ec

)

NHOLS
Standard LS
HTV
GraphSAGE
NFOLS, p = 0.5
GCN

Figure 2: Running times for one hyperparameter setting
with SBM data.

of the principal component embeddings, but both resulted in much

worse performance.

We recorded the mean accuracy and standard deviation of five

random samples each of various amounts of labeled nodes (Table 2).

We find that incorporating higher-order information with some

mixing function is more accurate than LS in nearly all cases and is

also more accurate than the other baselines. The absolute accuracy

of these methods is also quite remarkable. For instance, the L2

mixing function achieves 91.6% mean accuracy with just 0.1% of

MNIST points labeled (6 labeled points per class), and the maximum

mixing function achieves 92.1% mean accuracy with just 0.4% of

pendigits points labeled (5 labeled points per class). Also, a single

mixing function tends to have the best performance for a fixed

dataset, regardless of the number of labels (e.g., the maximum

mixing function for pendigits or the L2 mixing function for MNIST).

Finally, the GNN model performance is often poor, even in cases

where meaningful node features are available. This is likely a result

of having only a small percentage of labeled examples. For exam-

ple, it is common to have over 15% of the nodes labeled just as a

validation set for hyperparameter tuning [32]. Still, even with 20%

of nodes labeled and hyperparameter tuning, both GNNs perform

substantially worse than standard label spreading or NHOLS on

the Facebook graphs. The simpler embedding method Planetoid

tends to be better than the GNNs. We also experimented with more

sophisticated GNN architectures, but they overfit and were less

accurate.

5 DISCUSSION
Wehave developed a natural and substantial extension of traditional

label spreading for semi-supervised learning that can incorporate

a broad range of nonlinearities into the spreading process. These

nonlinearities come from mixing functions that operate on higher-

order information associated with the data. Given the challenges

in developing optimization results of nonlinear functions, it is re-

markable that we can achieve a sound theoretical framework for

such an expressive spreading process. We provided guarantees on

convergence of the iterations to a unique solution, and we showed

that the process optimizes a meaningful objective function.

For the datasets that we considered, the performance of label

spreading methods was far superior to “state-of-the-art” graph

neural network approaches, in terms of both runtime and prediction

accuracy. Part of the reason is that we were in a regime with a

small number of labels, which is an atypical setting for neural

network based methods on graphs. However, even with 20% of

nodes labeled on social network data, embedding-based approaches

still had subpar performance. The strong smoothness assumptions

of the label spreadingmodel — at both the first-order graph level and

the higher-order hypergraph level — were key to good performance.

The convergence result in Theorem 3.1 is much more general

than is needed for the NHOLS method. This provides a new way

to analyze nonlinearities in graph-based methods that we expect

2408

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

Table 2: Mean prediction accuracy (plus or minus one standard deviation) over five random samples of labeled nodes, six
datasets, and four percentages of labeled nodes. We compare our NHOLS method using five different mixing functions to
standard LS, nonlinear first-order label spreading (NFOLS, p = 0.5 in (17)), hypergraph total variationminimization (HTV) [27],
two Graph Neural Network models [25, 32], and Planetoid [59]. Incorporating higher-order information into label spreading
with NHOLS leads to more accurate predictions compared to the baselines.

Rice31 (n = 3560) Caltech36 (n = 590)

method % labeled 5.0% 10.0% 15.0% 20.0% 5.0% 10.0% 15.0% 20.0%

NHOLS, arith 87.9 ±0.5 90.2 ±0.7 90.8 ±0.4 91.2 ±0.4 82.1 ±1.6 83.9 ±0.6 83.8 ±1.4 84.2 ±2.0

NHOLS, harm 87.1 ±1.0 90.2 ±0.8 91.0 ±0.5 91.4 ±0.4 77.0 ±2.3 82.0 ±0.8 83.3 ±1.9 83.9 ±2.3

NHOLS, L2 87.8 ±0.8 90.2 ±0.7 90.7 ±0.3 91.4 ±0.2 82.2 ±0.9 84.0 ±0.9 83.5 ±1.4 84.4 ±1.6
NHOLS, geom 87.4 ±0.7 90.1 ±0.6 90.9 ±0.3 91.4 ±0.4 79.6 ±1.1 83.0 ±0.5 83.9 ±1.3 84.0 ±2.3

NHOLS, max 88.1 ±0.6 90.2 ±0.7 90.8 ±0.3 90.9 ±0.1 82.1 ±1.0 83.6 ±1.5 84.0 ±1.3 84.0 ±1.6

Standard LS 82.6 ±0.9 87.8 ±0.8 89.4 ±0.3 90.6 ±0.5 74.4 ±1.5 77.8 ±1.2 78.3 ±2.7 80.1 ±1.9

NFOLS (p = 0.5) 81.5 ±1.2 87.1 ±1.6 88.8 ±0.6 90.1 ±0.7 68.6 ±4.9 75.1 ±0.9 76.5 ±0.5 76.5 ±2.1

HTV 81.6 ±0.1 85.7 ±0.7 87.7 ±0.7 90.0 ±0.0 66.1 ±0.3 76.1 ±1.1 75.9 ±0.4 81.8 ±0.7

GCN 80.5 ±2.7 81.2 ±2.9 83.4 ±3.3 85.7 ±3.0 55.3 ±11.3 60.0 ±8.9 69.6 ±7.3 67.2 ±6.9

GraphSAGE 64.2 ±4.4 76.0 ±2.8 79.5 ±2.0 83.1 ±1.0 54.5 ±5.8 64.7 ±4.6 69.3 ±6.3 72.0 ±2.0

Planetoid 71.9 ±1.1 83.1 ±1.5 86.4 ±0.9 87.2 ±0.8 74.4 ±2.1 78.3 ±0.8 78.4 ±1.2 80.3 ±1.3

optdigits (n = 5620) pendigits (n = 10992)

method % labeled 0.4% 0.7% 1.0% 1.3% 0.4% 0.7% 1.0% 1.3%

NHOLS, arith 93.6 ±1.6 95.2 ±1.5 96.6 ±1.2 96.7 ±1.3 89.2 ±2.4 94.2 ±0.9 94.9 ±0.8 96.7 ±1.2
NHOLS, harm 93.2 ±1.9 94.7 ±1.5 96.2 ±1.4 96.4 ±1.4 86.1 ±3.7 92.6 ±1.3 93.6 ±1.0 95.7 ±1.4

NHOLS, L2 93.7 ±1.5 95.6 ±1.2 96.5 ±1.3 96.7 ±1.3 89.2 ±2.7 94.3 ±1.0 95.2 ±0.6 96.6 ±1.3

NHOLS, geom 93.3 ±2.1 95.0 ±1.6 96.2 ±1.4 96.4 ±1.5 86.5 ±2.8 93.0 ±1.3 94.0 ±1.0 95.9 ±1.5

NHOLS, max 93.7 ±2.9 95.6 ±1.1 96.2 ±1.6 96.5 ±1.3 92.1 ±1.9 95.1 ±0.7 95.9 ±0.5 96.6 ±1.1

Standard LS 91.2 ±4.2 94.7 ±1.3 95.3 ±1.6 95.5 ±1.8 89.3 ±2.1 94.0 ±1.0 94.6 ±0.5 96.0 ±1.1

NFOLS (p = 0.5) 65.9 ±8.0 73.6 ±5.4 82.3 ±3.7 87.8 ±1.8 55.7 ±7.0 62.5 ±3.0 67.1 ±1.3 76.5 ±2.7

HTV 87.0 ±5.2 90.9 ±2.6 93.3 ±0.7 94.1 ±1.5 82.2 ±2.1 91.3 ±1.8 93.3 ±0.5 93.3 ±0.9

GCN 63.4 ±8.5 69.3 ±3.5 76.9 ±1.7 82.4 ±2.4 62.9 ±2.0 71.4 ±3.8 78.0 ±3.4 80.5 ±4.3

GraphSAGE 55.9 ±2.5 57.9 ±6.1 67.3 ±3.8 71.0 ±5.7 49.3 ±15.8 56.0 ±17.5 61.2 ±6.8 64.7 ±10.8

Planetoid 74.3 ±4.1 79.6 ±2.7 81.9 ±2.1 85.0 ±2.2 75.5 ±2.1 80.4 ±1.3 80.8 ±2.3 84.8 ±1.1

MNIST (n = 60000) Fashion-MNIST (n = 60000)

method % labeled 0.1% 0.3% 0.5% 0.7% 0.1% 0.3% 0.5% 0.7%

NHOLS, arith 91.0 ±1.0 95.1 ±0.3 95.7 ±0.3 95.8 ±0.1 70.9 ±2.7 75.2 ±1.0 78.0 ±0.6 78.7 ±0.7
NHOLS, harm 89.2 ±1.6 94.5 ±0.4 95.1 ±0.4 95.3 ±0.2 70.4 ±1.6 74.9 ±1.1 77.4 ±0.6 78.4 ±0.4

NHOLS, L2 91.6 ±0.7 95.3 ±0.3 95.8 ±0.3 95.9 ±0.1 72.0 ±1.5 75.3 ±1.1 77.7 ±1.0 78.7 ±0.6
NHOLS, geom 89.5 ±1.4 94.6 ±0.3 95.2 ±0.4 95.4 ±0.2 70.7 ±1.5 74.8 ±1.2 77.5 ±0.7 78.5 ±0.5

NHOLS, max 91.0 ±1.4 95.0 ±0.5 95.5 ±0.5 95.8 ±0.1 71.6 ±1.7 74.4 ±1.6 77.4 ±0.8 78.4 ±0.9

Standard LS 86.8 ±1.2 92.7 ±0.5 93.5 ±0.5 94.1 ±0.3 70.4 ±1.0 74.3 ±0.9 76.7 ±0.8 78.1 ±0.5

NFOLS (p = 0.5) 40.1 ±2.7 50.0 ±1.4 57.0 ±2.1 56.1 ±1.4 34.8 ±2.8 51.4 ±2.4 59.6 ±3.4 67.0 ±2.3

HTV 79.7 ±3.4 88.3 ±0.9 90.1 ±0.8 90.7 ±0.4 59.8 ±2.3 68.6 ±1.9 70.2 ±0.4 72.0 ±0.6

GCN 66.5 ±1.8 80.6 ±0.9 85.5 ±0.8 85.7 ±1.4 65.5 ±2.6 72.9 ±1.8 75.0 ±0.8 76.5 ±0.8

GraphSAGE 59.2 ±2.1 75.5 ±1.0 81.1 ±2.0 82.6 ±1.0 59.9 ±1.4 69.0 ±2.1 72.1 ±1.4 72.2 ±1.3

Planetoid 68.4 ±2.7 79.1 ±0.8 82.3 ±0.7 83.7 ±0.9 68.0 ±2.1 73.3 ±0.8 75.9 ±0.8 78.1 ±0.6

will be useful for future research. For example, other nonlinear

iterations could easily be developed, but there is still a challenge

in finding corresponding interpretable objective functions that are

optimized by the iterations, as we were able to do for NHOLS.

Acknowledgments.
We thankMatthias Hein for supplying the code that implements the

HTV algorithm [27]. We thank David Gleich and Antoine Gautier

for helpful discussions. ARB is supported in party by NSF Award

DMS-1830274, ARO Award W911NF19-1-0057, ARO MURI, and

JPMorgan Chase & Co. FT is partially supported by INdAM-GNCS.

2409

Nonlinear Higher-Order Label Spreading WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

REFERENCES
[1] Sameer Agarwal, Kristin Branson, and Serge Belongie. 2006. Higher order learn-

ing with graphs. In Proceedings of the 23rd international conference on Machine
learning. 17–24.

[2] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, Nick G Duffield, and

Theodore L Willke. 2017. Graphlet decomposition: Framework, algorithms,

and applications. Knowledge and Information Systems 50, 3 (2017), 689–722.
[3] Morteza Alamgir and Ulrike V Luxburg. 2011. Phase transition in the family of

p-resistances. In Advances in Neural Information Processing Systems. 379–387.
[4] Fevzi Alimoglu and Ethem Alpaydin. 1996. Methods of combining multiple

classifiers based on different representations for pen-based handwritten digit

recognition. In Proceedings of the Fifth Turkish Artificial Intelligence and Artificial
Neural Networks Symposium. Citeseer.

[5] Francesca Arrigo, Desmond J Higham, and Francesco Tudisco. 2020. A framework

for second-order eigenvector centralities and clustering coefficients. Proceedings
of the Royal Society A 476, 2236 (2020), 20190724.

[6] Francesca Arrigo and Francesco Tudisco. 2019. Multi-dimensional, multilayer,

nonlinear and dynamic HITS. In Proceedings of the 2019 SIAM International Con-
ference on Data Mining. SIAM, 369–377.

[7] Austin R Benson. 2019. Three hypergraph eigenvector centralities. SIAM Journal
on Mathematics of Data Science 1, 2 (2019), 293–312.

[8] Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Klein-

berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221–E11230.

[9] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[10] Jonathan W Berry, Luke K Fostvedt, Daniel J Nordman, Cynthia A Phillips, C

Seshadhri, and Alyson G Wilson. 2014. Why do simple algorithms for triangle

enumeration work in the real world?. In Proceedings of the 5th conference on
Innovations in Theoretical Computer Science. 225–234.

[11] Nick Bridle and Xiaojin Zhu. 2013. p-voltages: Laplacian regularization for semi-

supervised learning on high-dimensional data. In Eleventh Workshop on Mining
and Learning with Graphs (MLG2013). Citeseer.

[12] T-H Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. 2018.

Spectral properties of hypergraph laplacian and approximation algorithms. Jour-
nal of the ACM (JACM) 65, 3 (2018), 1–48.

[13] Sudhanshu Chanpuriya and Cameron Musco. 2020. InfiniteWalk: Deep Network

Embeddings as Laplacian Embeddings with a Nonlinearity. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining.

[14] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Char-

alampos E Tsourakakis. 2020. Node Embeddings and Exact Low-Rank Repre-

sentations of Complex Networks. In Advances in Neural Information Processing
Systems.

[15] Alex Chin, Yatong Chen, Kristen M. Altenburger, and Johan Ugander. 2019.

Decoupled smoothing on graphs. In The World Wide Web Conference. 263–272.
[16] Uthsav Chitra and Benjamin Raphael. 2019. Random Walks on Hypergraphs

with Edge-Dependent Vertex Weights. In International Conference on Machine
Learning. 1172–1181.

[17] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[18] Dhivya Eswaran, Srijan Kumar, and Christos Faloutsos. 2020. Higher-Order Label

Homogeneity and Spreading in Graphs. In Proceedings of The Web Conference
2020. 2493–2499.

[19] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-

pergraph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 3558–3565.

[20] Yasuhiro Fujiwara and Go Irie. 2014. Efficient label propagation. In International
Conference on Machine Learning. 784–792.

[21] Antoine Gautier and Francesco Tudisco. 2019. The contractivity of cone-

preserving multilinear mappings. Nonlinearity 32 (2019), 4713.

[22] Antoine Gautier, Francesco Tudisco, and Matthias Hein. 2019. The Perron-

Frobenius theorem for multihomogeneous mappings. SIAM J. Matrix Anal. Appl.
40, 3 (2019), 1179–1205.

[23] David F Gleich and Michael W Mahoney. 2015. Using local spectral methods

to robustify graph-based learning algorithms. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 359–
368.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[25] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[26] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning

on graphs: Methods and applications. IEEE Data Engineering Bulletin (2017).

[27] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram.

2013. The total variation on hypergraphs - Learning on hypergraphs revisited.

In Advances in Neural Information Processing Systems. 2427–2435.
[28] Rania Ibrahim and David Gleich. 2019. Nonlinear Diffusion for Community

Detection and Semi-Supervised Learning. In The World Wide Web Conference.
739–750.

[29] Rania Ibrahim and David F Gleich. 2020. Local Hypergraph Clustering using

Capacity Releasing Diffusion. arXiv:2003.04213 (2020).
[30] Thorsten Joachims. 2003. Transductive learning via spectral graph partitioning.

In Proceedings of the 20th International Conference on Machine Learning (ICML-03).
290–297.

[31] Varun Kanade, Elchanan Mossel, and Tselil Schramm. 2016. Global and local

information in clustering labeled block models. IEEE Transactions on Information
Theory 62, 10 (2016), 5906–5917.

[32] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[33] Isabel M Kloumann, Johan Ugander, and Jon Kleinberg. 2017. Block models and

personalized PageRank. Proceedings of the National Academy of Sciences 114, 1
(2017), 33–38.

[34] Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A Spielman. 2015. Al-

gorithms for Lipschitz learning on graphs. In Conference on Learning Theory.
1190–1223.

[35] Matthieu Latapy. 2008. Main-memory triangle computations for very large (sparse

(power-law)) graphs. Theoretical computer science 407, 1-3 (2008), 458–473.
[36] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit

database.

[37] Bas Lemmens and Roger Nussbaum. 2012. Nonlinear Perron-Frobenius Theory.
Vol. 189. Cambridge University Press.

[38] Pan Li, I Chien, and Olgica Milenkovic. 2019. Optimizing Generalized PageR-

ank Methods for Seed-Expansion Community Detection. In Advances in Neural
Information Processing Systems. 11705–11716.

[39] Pan Li, Niao He, and Olgica Milenkovic. 2020. Quadratic decomposable submod-

ular function minimization: Theory and practice. Journal of Machine Learning
Research 21, 106 (2020), 1–49.

[40] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous hypergraph clustering with

applications. In Advances in Neural Information Processing Systems. 2308–2318.
[41] Pan Li and Olgica Milenkovic. 2018. Submodular Hypergraphs: p-Laplacians,

Cheeger Inequalities and Spectral Clustering. In International Conference on
Machine Learning. 3014–3023.

[42] Anand Louis. 2015. Hypergraph markov operators, eigenvalues and approxima-

tion algorithms. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing. 713–722.

[43] Pedro Mercado, Francesco Tudisco, and Matthias Hein. 2019. Generalized Matrix

Means for Semi-Supervised Learning with Multilayer Graphs. In Advances in
Neural Information Processing Systems. 14848–14857.

[44] Elchanan Mossel and Jiaming Xu. 2016. Local algorithms for block models with

side information. In Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science. 71–80.

[45] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. 2019. When does label

smoothing help?. In Advances in Neural Information Processing Systems. 4696–
4705.

[46] Huda Nassar, Caitlin Kennedy, Shweta Jain, Austin R Benson, and David Gleich.

2020. Using Cliques with Higher-order Spectral Embeddings Improves Graph

Visualizations. In Proceedings of The Web Conference 2020. 2927–2933.
[47] Ryan A Rossi, Nesreen K Ahmed, and Eunyee Koh. 2018. Higher-order network

representation learning. In Companion Proceedings of the The Web Conference
2018. 3–4.

[48] Ryan A Rossi, Anup Rao, Sungchul Kim, Eunyee Koh, Nesreen K Ahmed, and

GangWu. 2019. Higher-order ranking and link prediction: From closing triangles

to closing higher-order motifs. arXiv preprint arXiv:1906.05059 (2019).
[49] Sai Nageswar Satchidanand, Harini Ananthapadmanaban, and Balaraman Ravin-

dran. 2015. Extended discriminative random walk: a hypergraph approach to

multi-view multi-relational transductive learning. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

[50] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[51] Amanda L Traud, Peter J Mucha, and Mason A Porter. 2012. Social structure of

facebook networks. Physica A: Statistical Mechanics and its Applications 391, 16
(2012), 4165–4180.

[52] Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.

Scalable motif-aware graph clustering. In Proceedings of the 26th International
Conference on World Wide Web. 1451–1460.

[53] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2020. Hypergraph Cuts with

General Splitting Functions. arXiv preprint arXiv:2001.02817 (2020).

[54] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2020. Minimizing Localized

Ratio Cut Objectives in Hypergraphs. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1708–1718.

2410

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.deeplearningbook.org

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a novel

image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[56] Lei Xu, Adam Krzyzak, and Ching Y Suen. 1992. Methods of combining multiple

classifiers and their applications to handwriting recognition. IEEE transactions
on systems, man, and cybernetics 22, 3 (1992), 418–435.

[57] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand

Louis, and Partha Talukdar. 2019. HyperGCN: A NewMethod For Training Graph

Convolutional Networks on Hypergraphs. In Advances in Neural Information
Processing Systems. 1509–1520.

[58] Shenghao Yang, Di Wang, and Kimon Fountoulakis. 2020. p-Norm Flow Diffusion

for Local Graph Clustering. arXiv:2005.09810 (2020).
[59] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[60] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017. Local higher-

order graph clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 555–564.

[61] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. 2018. Beyond link

prediction: Predicting hyperlinks in adjacency space. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[62] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard

Schölkopf. 2004. Learning with local and global consistency. In Advances in
neural information processing systems. 321–328.

[63] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2007. Learning with

hypergraphs: Clustering, classification, and embedding. In Advances in neural
information processing systems. 1601–1608.

[64] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,

Changcheng Li, and Maosong Sun. 2018. Graph neural networks: A review of

methods and applications. arXiv preprint arXiv:1812.08434 (2018).
[65] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In Proceedings of the 20th
International conference on Machine learning (ICML-03). 912–919.

[66] Xiaojin Zhu and Andrew B Goldberg. 2009. Introduction to semi-supervised

learning. Synthesis lectures on artificial intelligence and machine learning 3, 1

(2009), 1–130.

A PROOF OF THEOREM 3.1
We start with the proof of Theorem 3.1. Let ϱ : Rn → R be positive,

order-preserving, and 1-homogeneous and let F : Rn → Rn be

p-homogeneous, order-preserving and positive. Let Rn+ and Rn++
denote the set of entry-wise nonnegative and entry-wise positive

vectors in Rn , respectively. Also, for a set of vectors Σ, let Σ/ϱ
denote the slice Σ/ϱ = { f ∈ Σ : ϱ(f) = 1}. We first need the

following lemma.

Lemma A.1. Let a,b, c > 0. Then

log

(a + c
b + c

)
≤

a

a + c
log

(a
b

)
Proof. Let д(x) = x log(x). We have

a + c

b + c
log

(a + c
b + c

)
= д

(a + c
b + c

)
= д

(b

b + c

a

b
+

c

b + c

)
.

As
b

b+c +
c

b+c = 1 and д is convex, we can apply Jensen’s inequality

to get

д
(b

b + c

a

b
+

c

b + c

)
≤

b

b + c
д
(a
b

)
+

c

b + c
д(1) =

a

b + c
log

(a
b

)
.

Combining all together we get

a + c

b + c
log

(a + c
b + c

)
≤

a

b + c
log

(a
b

)
which yields the claims. □

Now we give the proof of Theorem 3.1.

Proof. This result falls within the family of contraction-type

theorems for nonlinear mappings on abstract cones [37]. Here we

provide a simple and self-contained proof. Define

G(f) = F (f) + y and G̃(f) =
G(f)

ϱ(G(f))
.

Notice that f (r+1) = G̃(f (r)), for all r = 0, 1, 2, . . . and that, by

assumption, G(f) > 0 for all f > 0. Thus ϱ(G(f)) > 0 and G̃(f) is
well defined on Rn++. Moreover, note that by the assumption F (f) ≤
Cy we have y ≤ G(f) ≤ (C + 1)y. Therefore, letting C1 = ϱ(y) and
since ϱ is order-preserving, we have

δ1y :=
1

(C + 1)C1

y ≤ G̃(f) =
G(f)

ϱ(G(f))
≤

C + 1

C1

y =: δ2y (19)

for all f ∈ Rn++. Consider the set

Σ =
{
f ∈ Rn++ : δ1y ≤ f ≤ δ2y

}
⊆ Rn++ .

By (19), we have that G̃ preserves the slice Σ/ϱ ⊆ Rn++/ϱ, that is
G̃(f) ∈ Σ/ϱ for all f ∈ Σ/ϱ.

For two points u,v ∈ Rn++, consider the Hilbert distance

d(u,v) = log

(M(u/v)
m(u/v)

)
,

where M(u/v) = maxi ui/vi andm(u/v) = mini ui/vi . With this

definition we can equivalently write

Σ =
{
f ∈ Rn++ : d(f ,y) ≤ δ2/δ1

}
,

thus, as ϱ is 1-homogeneous, Σ/ϱ equippedwith the Hilbert distance
is a compact metric space [37]. In order to conclude the proof, it

is sufficient to show that G̃ is a contraction with respect to the

Hilbert metric. In fact, the sequence f (r) belongs to Σ/ϱ for any

f (0) and since (Σ/ϱ,d) is compact, the sequence f (r) converges to

the unique fixed point f ∗ of G̃ in Σ/ϱ.

We show below that G̃ is a contraction. To this end, first note

that by definition we have d(G̃(u), G̃(v)) = d(G(u),G(v)). Now note

that, as F is p-homogeneous and order-preserving with p ∈ [0, 1]
and ϱ is 1-homogeneous and oder-preserving, for any u,v ∈ Rn++
we have

m(u/v)pF (v) = F (m(u/v)v) ≤ F (u) (20)

M(u/v)pF (v) = F (M(u/v)v) ≥ F (u) (21)

m(u/v)ϱ(v) = ϱ(m(u/v)v) ≤ ϱ(u) (22)

M(u/v)ϱ(v) = ϱ(M(u/v)v) ≥ ϱ(u) (23)

Moreover, for any u,v ∈ Rn++/ϱ it holds that

m(u/v) = ϱ(v)m(u/v) ≤ ϱ(v) = 1 = ϱ(u) ≤ ϱ(v)M(u/v) = M(u/v),

so

m(u/v) ≤ m(u/v)p ≤ 1 ≤ M(u/v)p ≤ M(u/v) . (24)

By assumption, there exists C > 0 such that F (u) ≤ Cy, for all
u ∈ Rn++/ϱ. Therefore, using (20)–(24), for any u,v ∈ Rn++/ϱ we

2411

Nonlinear Higher-Order Label Spreading WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

have

(m(u/v)C + 1)(F (v) + y)

= (m(u/v)C +m(u/v) −m(u/v) + 1)F (v) + (m(u/v)C + 1)y

= (C + 1)m(u/v)F (v) + (1 −m(u/v))F (v) + (m(u/v)C + 1)y

≤ (C + 1)m(u/v)pF (v) + (1 −m(u/v))F (v) + (m(u/v)C + 1)y

≤ (C + 1)F (u) + (1 −m(u/v))Cy + (m(u/v)c + 1)y

= (C + 1)(F (u) + y),

where we used the fact that (1 −m(u/v)) ≥ 0 to get the inequality

(1 −m(u/v))F (v) ≤ (1 −m(u/v))Cy. Thus,

m(G(u)/G(v)) =m
(
(F (u)+y)/(F (v)+y)

)
≥ (m(u/v)C+1)/(C+1) .

Similarly, as (1 −M(u/v)) ≤ 0, we have

(M(u/v)C + 1)(F (v) + y)

≥ CF (u) + F (u) + (1 −M(u/v))Cy + (M(u/v)C + 1)y

= (C + 1)(F (u) + y),

which givesM(G(u)/G(v)) ≤ (M(u/v)C + 1)/(C + 1). Therefore,

d(G(u),G(v)) = log

(M(G(u)/G(v))
m(G(u)/G(v))

)
≤ log

(M(u/v)C + 1
m(u/v)C + 1

)
= log

(M(u/v) + δ
m(u/v) + δ

)
with δ = 1/C . Finally, using Lemma A.1, we get

d(G̃(u), G̃(v)) = d(G(u),G(v)) ≤

(
M(u/v)

M(u/v) + δ

)
d(u,v) < d(u,v),

which shows that G̃ is a contraction in the compact metric space

(Σ/ϱ,d), concluding the proof. □

B PROOF OF COROLLARY 3.2
Consider now the case where

ϱ(f) = φ(f) =
1

2

√√∑
i j

Bi j σ
(fi
√
δi
,

fj√
δj

)
2

.

We start with a technical lemma.

Lemma B.1. Assume thatσ is 1-homogeneous and positive and that
both y and αD−1/2H Aσ (D

−1/2

H f) + βD
−1/2

G AD
−1/2

G f are entry-wise
positive, for every f ∈ Rn++. Then, there exists C > 0 such that

αD
−1/2

H Aσ (D
−1/2

H f) + βD
−1/2

G AD
−1/2

G f ≤ Cy

for all f ∈ Rn++/φ.

Proof. Since we are assuming that every node has hyper-degree

δi =
∑
jk Ai jk > 0, for every i there exist j and k such that ijk is a

hyperedge. Thus, ifU ⊆ V ×V is the set of nonzero entries of the

matrix

B = (Bi j) = (
∑
k Aki j) ,

then the pairs in U must contain all the nodes, i.e. for all k ∈ V
there exists (i, j) ∈ U such that i = k or j = k . Therefore, if f > 0

and φ(f) = 1 then f must be entry-wise bounded. Hence, as φ is

positive and 1-homogeneous, we can choose

C =
1

mini yi
max

i
max

f ∈Rn
++

(αD
−1/2

H Aσ (D
−1/2

H f) + βD
−1/2

G AD
−1/2

G f)i

φ(f)

to obtain the claim. □

Now we prove Corollary 3.2.

Proof. Let F (f) = αD
−1/2

H Aσ (D
−1/2

H f) + βD
−1/2

G AD
−1/2

G f and

y = γyε . By Lemma B.1 all the assumptions of Theorem 3.1 are

satisfied, and the convergence follows. □

C PROOF OF THEOREM 3.3
We again start with a useful lemma.

Lemma C.1. Let E : Rn → R+ be defined by

E(f) =
f ⊤(DH f − F (f))

2

(25)

with F : Rn → Rn differentiable and such that F (f) ≥ 0 for all f ≥ 0

and F (α f) = αF (f) for all α ≥ 0. Then ∇E(f) = DH f − F (f).

Proof. This is a relatively direct consequence of Euler’s theorem

for homogeneous functions. For completeness, we provide a self-

contained proof here. Consider the functionG(α) = F (α f) −αF (f).
ThenG is differentiable andG(α) = 0 for all α ≥ 0. Thus,G ′(α) = 0

for all α in a neighborhood of α0 = 1. For any such α , we have

G ′(α) = α JF (α f)f − F (f) = 0,

where JF (f) denotes the Jacobian of F evaluated at f . Evaluating
G ′ on α = 1 we get JF (f)f = F (f). Therefore,

2∇E(f) = ∇{ f ⊤(DH f − F (f))}

= DH f − F (f) +
(
DH − JF (f)

)
f = 2DH f − 2F (f),

which gives us the claim. □

Now we prove Theorem 3.3.

Proof. Let

E1(f) =
∑
i j

Ai j
(fi
√
di
−

fj√
dj

)
2

and

E2(f) =
∑
i jk

Ai jk

(fi
√
δi
−
1

2

σ
(fj√

δj
,

fk√
δk

))
2

,

and consider the following modified loss

ϑ̃ (f) =
1

2

{

f − y

φ(y)

2 + λE1(f) + µE2(f) − µφ(f)2} .
Subject to the constraint φ(f) = 1, the minimizing points of ϑ̃ and

those of ϑ in (13) coincide. We show that the gradient of the loss

function ϑ̃ vanishes on f ∗ > 0 with φ(f ∗) = 1 if and only if f ∗ is a
fixed point for the iterator of Algorithm 1.

For simplicity, let us write ỹ = y/φ(y) with y > 0. We have

∇∥ f − ỹ∥2 = 2(f − ỹ) and ∇E1(f) = 2∆f = 2(I − D−1G AD−1G)f . As
for E2, observe that from

∑
jk Ai jk = δi ,we get

f ⊤(DH f − Aσ (f)) =
∑
i
δi f

2

i −
∑
i jk

fiAi jkσ (fj , fk)

=
∑
i jk

Ai jk
(
f 2i − fiσ (fj , fk)

)
=
∑
i jk

Ai jk

(
fi −

σ (fj , fk)

2

)
2

−
1

4

∑
jk

Bjkσ (fj , fk)
2

2412

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

with Bjk =
∑
i Ai jk . Thus,

f ⊤(DH f − Aσ (f)) = E2(D
1/2

H f) − φ(D
1/2

H f)2 .

Now, since σ (f) is 1-homogeneous and differentiable, so is F (f) =
Aσ (f), and using Lemma C.1 we obtain

∇{E2(D
1/2

H f) − φ(D
1/2

H f)2} = 2(DH f − Aσ (f)),

which, with the change of variable f 7→ D
−1/2

H f , yields

∇{E2(f) − φ(f)
2} = 2

(
f − D

−1/2

H Aσ (D
−1/2

H f)
)
.

Altogether, we have that

∇ϑ̃ (f) =

= f − ỹ + λ(I − D
−1/2

G AD
−1/2

G)f + µ{ f − D
−1/2

H Aσ (D
−1/2

H f)}

= (1 + λ + µ)f − λD
−1/2

G AD
−1/2

G f − µD
−1/2

H Aσ (D
−1/2

H f) − ỹ,

which implies that f ∗ ∈ Rn++/φ is such that ∇ϑ̃ (f ∗) = 0 if and only

if f ∗ is a fixed point of NHOLS, i.e.,

f ∗ = αD
−1/2

H Aσ (D
−1/2

H f ∗) + βD
−1/2

G AD
−1/2

G f ∗ + γỹ

with λ = β/γ , µ = α/γ and α + β + γ = 1.

Finally, by Corollary 3.2 we know that the NHOLS iterations in

Algorithm 1 converge to f ∗ ∈ Rn++/φ for all positive starting points.

Moreover, f ∗ is the unique fixed point in the slice Rn++/φ. As ϑ and

ϑ̃ have the same minimizing points on that slice, this shows that

f ∗ is the global solution of min{ϑ (f) : f ∈ Rn++/φ}, concluding
the proof.

□

2413

	Abstract
	1 Introduction
	1.1 Additional related work

	2 Background on Standard Label Spreading
	3 Nonlinear Higher-order Label Spreading
	3.1 Nonlinear Second-order Label Spreading with Mixing Functions
	3.2 Global convergence and optimization framework
	3.3 Extensions

	4 Numerical experiments
	4.1 Synthetic benchmark data
	4.2 Real-world data

	5 Discussion
	References
	A Proof of Theorem 3.1
	B Proof of Corollary 3.2
	C Proof of Theorem 3.3

