Nonlinear Higher-Order Label Spreading

Francesco Tudisco
Gran Sasso Science Institute
School of Mathematics
67100 L’Aquila, Italy
francesco.tudisco@gssi.it

ABSTRACT

Label spreading is a general technique for semi-supervised learning
with point cloud or network data, which can be interpreted as a dif-
fusion of labels on a graph. While there are many variants of label
spreading, nearly all of them are linear models, where the incom-
ing information to a node is a weighted sum of information from
neighboring nodes. Here, we add nonlinearity to label spreading
via nonlinear functions involving higher-order network structure,
namely triangles in the graph. For a broad class of nonlinear func-
tions, we prove convergence of our nonlinear higher-order label
spreading algorithm to the global solution of an interpretable semi-
supervised loss function. We demonstrate the efficiency and efficacy
of our approach on a variety of point cloud and network datasets,
where the nonlinear higher-order model outperforms classical label
spreading, hypergraph clustering, and graph neural networks.

KEYWORDS

semi-supervised learning, hypergraphs, Laplacians, label spreading,
label propagation, higher-order networks

ACM Reference Format:

Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik. 2021.
Nonlinear Higher-Order Label Spreading. In Proceedings of the Web Con-
ference 2021 (WWW °21), April 19-23, 2021, Ljubljana, Slovenia. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3450035

1 INTRODUCTION

Label Spreading (LS) is a general algorithmic technique for Semi-
Supervised Learning (SSL), where one infers unknown labels from
known labels by iteratively diffusing or spreading the known la-
bels over a similarity graph where nodes correspond to data points
and edges connect similar data points [66]. Typically, the number
of labeled data points is small (often less than 1% of the points),
corresponding to settings where it is generally difficult to obtain
labels. With generic point cloud data, edges are typically based on
k-nearest-neighbors or e-neighbors [30, 62, 65], but LS can also
be used directly on relational data coming from, e.g., social net-
works [15], web graphs [34], or co-purchases [23]. A prototypical
algorithm for LS is the local and global consistency approach of
Zhou et al. [62]. In this method, all nodes iteratively spread their

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450035

2402

Austin R. Benson
Cornell University
Department of Computer Science
Ithaca, NY 14853, USA
arb@cs.cornell.edu

Konstantin Prokopchik
Gran Sasso Science Institute
School of Computer Science
67100 L’Aquila, Italy
konstantin.prokopchik@gssi.it

label values to neighbors, encouraging smoothness in label assign-
ment over the data, while the values on labeled nodes are kept close
to their initial label assignment.

The linearity of the diffusion makes LS simple to implement
and analyze. From the perspective of an unlabeled data point, the
corresponding node in the graph iteratively updates its label based
on a fixed linear combination of the current labels of its neighbors.
One can analyze the limiting behavior of this iterative process,
which coincides with the solution of a Laplacian linear system and
the minimization of a regularized loss function. At the same time,
nonlinear methods provide stronger modeling capabilities, and are
key to deep learning generally [24] and modern graph-based semi-
supervised learning methods such as graph neural networks [26,
64]. However, we have limited theoretical understanding of graph
neural networks, and they are generally difficult to interpret and
challenging to scale to large datasets. Furthermore, such methods
require substantial validation sets for hyperparameter tuning and
are not particularly suited to settings in which there are a small
number of labels.

Here, we propose a nonlinear label spreading method that lies
in between these two approaches, which has more expressive mod-
eling capability while remaining interpretable and scalable with
theoretical guarantees on convergence. Our approach is based on
two main ideas. First, we incorporate “higher-order” relationships
between the data points, i.e., information about groups of nodes
instead of just the similarities encoded by edges in a graph; this idea
has recently been shown to improve label spreading, label propa-
gation, and diffusion methods [18, 29, 39, 60]. Second, we devise
a spreading process where a given node u updates its label based
on the labels of the other nodes in its higher-order neighborhood,
where the label information is “aggregated” with a nonlinear mix-
ing function at each hyperedge containing u. We call this method
Nonlinear Higher-Order Label Spreading (NHOLS).

With the additional nonlinear term, we obtain a method that
maintains the same simplicity and scalability as the classical linear
method, but with a much broader modeling power. Although the
nonlinear term makes the analysis of the spreading process more
challenging, we show that our method enjoys two fundamental
properties similar to classical LS [62], for a broad class of nonlinear
functions. First, the NHOLS process corresponds to running gradi-
ent descent on an interpretable objective function that decomposes
into a function that imposes smoothness over the graph and a func-
tion that encourages the predictions to remain close to the initial
assignment on labeled nodes. Second, NHOLS globally converges
to a unique global minimizer of this objective.

Our analysis is based on interpreting the iterations of NHOLS as a
type of tensor contraction. From this viewpoint, our convergence re-
sults are based on extensions of recent nonlinear Perron-Frobenius

https://doi.org/10.1145/3442381.3450035
https://doi.org/10.1145/3442381.3450035

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

theory [21, 22]. These results also apply to a more general class of
nonlinear iterations, and we use this to provide theoretical guar-
antees for a variant of recently proposed nonlinear diffusions that
does not use higher-order information [28]. Furthermore, the spe-
cial case of a linear mixing function essentially reduces to a recently
proposed higher-order label spreading method [18].

In terms of implementation, NHOLS shares the same simplicity
and efficiency as standard LS. Each iteration of the algorithm only
requires a single pass over the input data, making it highly scalable.
(In practice, though, this may involve a pre-processing to find all
of the higher-order data, such as all of the triangles in a graph;
this is typically fast for real-world networks [10, 35]). In numerical
experiments, we show that the running time of NHOLS is orders
of magnitude faster than graph neural network approaches, while
also being nearly as fast as standard LS.

We also evaluate the predictive performance of NHOLS on a
number of synthetic and real-world datasets, comparing against
standard label spreading, hypergraph semi-supervised learning
methods, and graph neural networks. We find that incorporating
nonlinearities of higher-order information into label spreading
almost always achieves the highest accuracies and that, in our
setting, NHOLS is far superior to standard graph neural networks.

1.1 Additional related work

A key idea in many recent graph-based learning methods is that in-
corporating higher-order interactions involving multiple nodes can
make large changes in performance. This has yielded improvements
in numerous settings, including unsupervised clustering [9, 40, 52],
localized clustering [38, 60], representation learning [47], link pre-
diction [5, 8, 48], graph classification [2], ranking [5-7, 16], and
data visualization [46]. A higher-order version of label spreading
has also recently been developed for relational data [18], and this
correspond to the special case of linear mixing functions within
our framework.

There are also many machine learning methods for hypergraph
data, and a standard approach is to first reduce the hypergraph to a
graph upon which a graph-based method can be employed [1, 19,
40, 49, 61, 63]. These techniques are called clique expansions, as they
place a (possibly weighted) clique in the graph for every hyperedge.
Using a linear mixing function in our framework is a clique expan-
sion technique, which we cover in Section 3. However, our analysis
focuses on nonlinear mixing functions, which do not correspond
to clique expansions. Thus, our framework is conceptually closer
to hypergraph methods that avoid clique expansions, such as those
based on nonlinear Hypergraph Laplacian operators [12, 41, 57] or
generalized splitting functions [53, 54].

There are nonlinear graph-based semi-supervised learning tech-
niques that use p-Laplacians [3, 11, 28, 34] or p-norms [58]. More
broadly, our framework follows several recent graph methods that
add interpretable nonlinearities onto traditional linear methods to
improve expressibility and practical performance [13, 14, 28]

2 BACKGROUND ON STANDARD LABEL
SPREADING

We first review a standard label spreading (LS) technique that is
essentially the same as the one of Zhou et al. [62] so that we can later

2403

Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

draw parallels with our proposed nonlinear higher-order method.
Let G = (V,E, w) be a weighted undirected graph with nodes V =
{1,...,n}, edge set E C V X V and edge-weight function «w(ij) > 0.
As mentioned in the introduction, G typically represents either a
similarity graph for a point cloud or a relational network. Let A be
the adjacency matrix of G, i.e., Ajj = w(ij) if if € Eand A;; = 0
otherwise. Furthermore, let Dg = Diag(dj, . . ., dn) be the diagonal
degree matrix of G, where d; = }; A;j. Throughout this paper, we
will assume that G has no isolated nodes, that is Dg has no zero
diagonal entries. (This is a standard assumption and, in practice, if
node i is isolated, we can either remove it from the graph or add a
self-loop ii; we do not run into isolated nodes in our experiments.)
Finally, let

-1/2 ,~—1/2
s =D /*ap 1)
be the normalized adjacency matrix.
Our goal is to provide a label in {1, .. ., ¢} to each node, and we

know the label of (usually a small) subset of the nodes. The initial
labels are represented by membership vectors in an n X ¢ matrix Y,
where Y; o = 1 if node i has initial label £ and Y; , = 0 otherwise.
Given an initial guess F() € R™¢, the label spreading algorithm
iteratively computes

F(r+1) — ﬁSF(V) +yY r=0,12,..., 2

with B,y > 0 and f+y = 1. The iterates converge to the solution of
the linear system (I — fS)F* = yY, but in practice a few iterations
of (2) with the initial point F) = Y suffices [20]. This yields an
approximate solution F*. The prediction on an unlabeled node j
is then arg max, 1:";*’ ¢- This setup is equivalent to performing label
spreading once per class with an initial binary vector y (i.e., one
vector y for each column of Y).

When initialized with F() = 0 (which produces F @ = vY), the
label spreading procedure in (2) is naturally interpreted as diffusing
the input labels Y along the edges of the graph by means of the
adjacency matrix S. At the same time, this method can also be
interpreted as gradient descent applied to a quadratic regularized
loss function and as a discrete dynamical system that spreads the
initial value condition F(®) =y through the graph via a linear
gradient flow. We briefly review these formulations. Let { be the
quadratic energy loss function that is separable on the columns of
F,

WO =Y peE = Y {IE~ Vorld + AEL AR @)
=1 =1

where A = I - Dz;l/ ZADZ;I/ 2 =] - S is the normalized Laplacian,
and A > 0 is a regularization parameter. This loss encourages
smoothness over the graph (via the normalized Laplacian term)
while also keeping the solution on labeled nodes close to the initial
label assignment.

For ¢ € {1,...,c}, consider the the dynamical system

%f(t) ==V (f@®), fO)=Y,. 4)

Since ¢ is convex, lim; 0 f(t) = f* such that (™) = ming ¢ (f).
Label spreading in (2) coincides with gradient descent applied to
(3) or, equivalently, with explicit Euler integration applied to (4),

Nonlinear Higher-Order Label Spreading

for a particular value of the step length h. In particular,

F=hVye(f) = f=h(f =Y, ¢+ AAf) = (1=h=hA)f + RASf +hY. ¢,

®)
which, for (1-h)/h = A, coincides with one iteration of (2) applied to
the ¢th column of F. Moreover, as F () > 0forall r, this gradient flow
interpretation shows that the global minimizer of (3) is nonnegative,
i.e, ming ¥(F) = minps ¥(F). In the next section, we use similar
techniques to derive our nonlinear higher-order label spreading
method.

3 NONLINEAR HIGHER-ORDER LABEL
SPREADING

Now we develop our nonlinear higher-order label spreading tech-
nique. We assume that we have a 3-uniform hypergraph H =
(V, &, 7) capturing higher-order information on the same set of
nodes as the weighted graph G = (V,E, w), where E CV XV XV
and 7 is a hyperedge weight function with z(ijk) > 0 for ijk € &.In
our experiments, we will usually derive H from G by considering
the hyperedges of H to be the set of triangles (i.e., 3-cliques) of G.
However, in principle we could use any hypergraph. We also do not
need the associated graph G, but we keep it for greater generality
and find it useful in practice.

Below, we develop our methodology for 3-regular hypergraphs
for simplicity, but our ideas generalize to arbitrary hypergraphs.
More specifically, our convergence results in Theorem 3.1 only
assume that we iteratively apply a nonlinear function with certain
properties, which has no dependence on the higher-order structure.
And in terms of the practical implementation, we use nonlinear
mixing functions that take the p-mean of values on nodes in a
hyperedge before spreading back to each node in the hyperedge,
and this can be done with heterogeneous hypergraphs that contain
hyperedges of various sizes. Finally, the interpretable objective
function that our method optimizes in (13) has smoothness terms for
2-way and 3-way relationships among nodes; including hyperedges
of larger sizes just corresponds to additional smoothness terms.

3.1 Nonlinear Second-order Label Spreading
with Mixing Functions

We represent H via the associated adjacency tensor A, defined by
Ajjr = t(ijk) if ijk € & and A;j = 0 otherwise. Analogous to
the graph case, let Dyy = Diag(dy, . . ., On) be the diagonal matrix
of the hypergraph node degrees, where &; = %} r.;jkes T(ijk) =
2jk Ajjk- Again, we assume that H has no isolated nodes so that
d; > 0foralli € V. As in the graph case, this is a relatively standard
assumption. In practice, if node §; = 0, then we compensate by
using the information available on the edges (i.e., in G): for all
neighbors j of i in G we add the hyperedge iji to H. This is a higher-
order analog of the addition of a self-loop for isolated nodes in
graphs.

As noted in the introduction, we will make use of nonlinear
mixing functions, which we denote by ¢: R> — R. For a tensor
T = Tjj, we define the tensor map To: R” — R entrywise:

To(f)i = Xjk Tijk o(fjs fro)- (6)

2404

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Algorithm 1: NHOLS: Nonlinear Higher-Order Label
Spreading.

Input: Tensor A; matrix A; mixing function o : R2 > R;
label matrix Y € {0, 1}"*¢; scalars @, 8,y > 0 with
a + f +y = 1; smoothing parameter 0 < ¢ < 1;
stopping tolerance tol
Output: Predicted labels § € {1,...,c}"
1 F e R"™¢ // Store approximate solutions
2 for{=1,...,Ldo
// Initialize with label smoothing
3 ye — (1-e)Y. o +el

¢ f(o) < Ye
5 repeat
// Follow (8) and (9)
6 g« aS(fD) + psf7 +yye
7 f+ —g/0(g)

s | until | £+ = £/ £ < tol
0 F [— f(r+l)
10 end

1 fori=1,...,ndo7{; :argmax[l?i,g

Hence, in analogy with the matrix case, we denote by S: R” — R”"
the nonlinear normalized adjacency tensor map

S(f) = DA A (D). (7)

This nonlinear tensor contraction will be the basis for our method.

We need one additional piece of notation that is special to the
higher-order case, which is a type of energy function that will be
used to normalize iterates in order to guarantee convergence. Let
B be the matrix with entries B;j; = 3 Ay;;. Define ¢: R” — R by

L)
()zl\/z..B..(,L’_J . ®)
o(f) =3 ij bij (\E NG)
Finally, we arrive at our nonlinear higher-order label spreading

(NHOLS) method. Given an initial vector f 0 € R", we define the
NHOLS iterates by

g7 = aS(f) + pSfO +yy.
FU*D = g1 /()

where a, f,y > 0, a+ f+y = 1, and y is an initial label membership
vector. Provided that o is positive (i.e., o(a,b) > 0 for any a,b >
0) and the initial vector f(®) is nonnegative, then all iterates are
nonnegative. This assumption on the mixing function will be crucial
to prove the convergence of the iterates. We perform this iteration
with one initial vector per label class, analogous to standard Label
Spreading. Algorithm 1 gives the overall procedure.

We now discuss several important properties of Algorithm 1.
The parameters a, f,y are a convex combination of three terms
and allow us to tune the contributions of the first-order (graph)
and second-order (hypergraph) smoothness terms; we will show
this derivation in the next section. For § = 0, we obtain a purely
second-order method, which can be useful when we do not have
access to first-order data (e.g., we only have a hypergraph). The
case of @ = 0 reduces to a normalized version of the standard LS as

r=012... (9

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

in (2). Algorithm 1 also uses label smoothing in the initialization
(the parameter ¢), which will be useful for proving convergence
results and can also improve generalization [45].

We can compute the iteration in (9) efficiently — each iteration
requires one matrix-vector product and one “tensor-martix” prod-
uct, which only takes a single pass over the input data. Therefore,
NHOLS scales linearly with the number of edges and hyperedges,
i.e., its computational cost is linear in the size of the data. A com-
mon setup for our experiments is that A is an adjacency tensor
corresponding to all of the triangles in the graph. In this case, the
cost per iteration is linear in the number of triangles. More formally,
the running time of NHOLS in this case is O(c(m + t)), where ¢
is the number of classes, m is the number of edges, and t is the
number of triangles. On many real-world datasets, the number of
triangles is still roughly linear in the number of edges [10], which
would make each iteration have O(cm) runtime.

The special case of a linear mixing function. The mixing function o
is responsible for the nonlinearity of the method. The linear mixing
function o(a,b) = a + b reduces NHOLS to an approach based
on a clique expansion graph, which, for § = 0, corresponds to a
normalized version of the approaches from Eswaran et al. [18] and
Zhou et al. [63]. To see this, let K be the n X |E| incidence matrix
of the hypergraph H, where K; ¢ = 1 if node i is in the hyperedge
e and K; . = 0 otherwise. Furthermore, let W be the diagonal
matrix of hyperedge weights r(e), e € &. Then Z(KWKT)U =
2k Ajjik + Ak, and for o(a,b) = a + b, we have

S =672 AsT P + A
I
=517 Z(Z Aijre + ﬂikj)aj_l/zfj = (6f);.
Jj k

where © = ZDI__II/ ‘KWK TD;II/ ? is the normalized adjacency matrix
of the clique expansion graph [63].

3.2 Global convergence and optimization
framework

Our NHOLS method extends standard LS in a natural way. However,
with the nonlinear mixing function o, it is unclear if the iterates
even converge or to what they might converge. In this section, we
show that, remarkably, NHOLS is globally convergent for a broad
class of mixing functions and is minimizing a regularized objective
similar to the one in (3) for standard LS. Proofs of the theoretical
results in this section are in the appendix.

For convergence, we only require the mixing function to be
positive, order-preserving, and homogeneous. Recall that these
three properties for a general function @: R” — R" are as follows.

Positivity: ®(x) > 0 for all x > 0. (10)
Order-preserving: &(y) > d(x) ify > x. (11)
p-homogeneity: ®(cx) = P d(x) forallc > 0 and all x. (12)

(The inequalities above are interpreted entrywise.) We state below
our main convergence theorem

THEOREM 3.1. Let F: R™ — R” be positive, order-preserving, and
p-homogeneous with 0 < p < 1. Let p: R® — R be positive and

2405

Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

1-homogeneous, and let y be a positive vector. If there exists a C > 0
such that F(f) < Cy for all f with o(f) = 1, then, for anyf(o) >0,
the sequence

9" =FF) +y 7 =471
converges to a vector f* > 0. Moreover, f* is the unique fixed point
of the mapping F(f) + y such that o(f*) = 1.

Theorem 3.1 allows us to prove the convergence of NHOLS.
To this end, we require an entry-wise positive label initialization.
This is the reason for the smoothed membership vectors y, =
(1-#)Y, ¢ + ¢l in Algorithm 1. (In other words, (y¢); = (1-¢€)Y; ¢+
& > 0.) This assumption is not restrictive in practice as ¢ can be
chosen fairly small, and we can also interpret this as a type of label
smoothing [45, 50] (although similarly named, label smoothing is
an entirely different concept than label spreading).

The following corollary shows that the NHOLS iterates converge
for a broad class of mixing functions.

COROLLARY 3.2. Let f\) be the iterates in Algorithm 1. If & is
positive, order-preserving, and 1-homogeneous, then the sequence
{£")}, converges to a unique stationary point f* > 0 with o(f*) = 1.

In addition to global convergence, a fundamental property of the
standard LS method is its interpretable optimization framework. We
next show that for differentiable, 1-homogeneous mixing functions
o, the limit f* of NHOLS minimizes a regularized objective that
encourages smoothness over the labels assignment with respect
to the graph and hypergraph interactions while also constraining
the predictions on originally labeled nodes to be close the given
labels. For a smoothed membership vector y, = (1 — €)Y, o + €1
with 0 < € < 1, consider the loss function

e i fi
)= ! - 2+/1%:Aij(j_d—i_\/_;—j)2

(13)
fi 1 fi fi)\
+ y%ﬂuk(ﬁ - 56(\/_;_]’\/_(1;_]())

As for the case of standard LS, J has a fitting constraint and a
smoothness component. However, there are two main differences.
First, the fitting constraint component now considers a normalized
membership vector 7, = y:/¢(ys). As ¢(y:) = 1, we seek for a
minimizer of J in the slice {f : ¢(f) = 1}. Second, the smoothness
regularization now combines the graph Laplacian term with a new
tensor-based term that encourages smoothness on the higher-order
interactions among the nodes.

At a high level, the new tensor-based smoothness term encour-
ages that, for all higher-order relationships ijk, we have that the
value at node i is similar to a mixture of the values at j and k, the
value at j is similar to a mixture of the values at i and k, and the
value at k is similar to a mixture of the values at i and j. For our ex-
periments, we will take o to be various p-means so the mixture just
corresponds to a generalized (nonlinear) mean, and we will see that
certain choices of the mixing function, such as o(a, b) = 2-max(a, b),
tend to work well in practice (the factor of 2 comes from the fac-
tor of % in front of ¢ in (13)). The following theorem says that
Algorithm 1 is optimizing this new objective.

Nonlinear Higher-Order Label Spreading

THEOREM 3.3. Let f(r) be the sequence generated by Algorithm 1.
If o is positive, I-homogeneous, and differentiable, then the sequence
{F")}, converges to the unique global solution of the constrained
optimization problem

min d(f) s.t. f > 0and p(f) =1 (14)
withpy =afy and A = BJy.

Analogous to standard label spreading, when started with f’ ©) =
0, the iterations in (9) can be naturally interpreted as diffusing
the input labels y, simultaneously along the edges and the hyper-
edges of G and H by means of the adjacency mappings S and S,
respectively. Moreover, just like standard LS, NHOLS can also be
interpreted as projected gradient descent applied to a regularized
loss function and as a projected diffusion process that spreads the
input label assignment via a gradient flow. However, unlike the
standard LS, the loss function in this setting is not convex and the
gradient flow is no longer linear.

To this end, let § be the energy function

5(£) = 8(5) - Lo()?

Note that & and & have the same minimizing points on {f : ¢(f) =
1}. Furthermore, consider the dynamical system

£ F0=-V3(w), [0 =y (15

Then, our NHOLS iterates in (9) correspond to projected gradient
descent applied to ¢ or, equivalently, to a forward Euler method
applied to (15). In fact, for y, such that ¢(y,) = 1, we can show that

f—hVI(f) = (1—h—Ah+ ph)f + hASF + huS(f) + hye, (16)

so choosing the step length h to satisfy (1 — h)/h = A + u coincides
with one step of (9). (A proof of this identity is in the appendix,
within the proof of Theorem 3.3.) Unlike standard LS, the loss
functions 9 and J are not convex in general. Thus, the long-term
behavior lim;—, f(t) of the dynamical system (15) is not straight-
forward. Despite this, Theorem 3.3 shows that just like its linear
counterpart, NHOLS converges to a unique global minimizer of ¢
over the set of nonnegative vectors.

Finally, we note that, as Vi in (4) can be interpreted as a discrete
Laplacian operator on the graph [62], we can interpret V3, and thus
S, as a hypergraph Laplacian operator, which adds to the recent
literature on (nonlinear) Laplacians on hypergraphs [12, 42].

3.3 Extensions

Theorem 3.1 makes it easy to extend the second-order setting dis-
cussed in this work to hyperedges of any order. For example, with
size-4 hyperedges, we would use a nonlinear map

To(f)i =) Tijkio(fy. fioo)
ikl

and define a spreading term using an adjacency tensor with four
indices. With some additional algebra, we would get an objective
function like the one in (13), just with an additional smoothness
term for 4-way interactions.

The generality of Theorem 3.1 also makes it easy to design new
types of nonlinear iterative methods. For example, nonlinearities
could be added to the graph term, and there could be nonlinear

2406

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Table 1: Five mixing functions obtained from generalized
means with different parameters s. By Corollary 3.2, Algo-
rithm 1 converges for any choice of s.

mixing function parameters os(a,b) =2((a® + 173)/2)1/s

arithmetic s=1 a+b

harmonic s = -1 4(1/a+ l/b)_1
I s=2 V2(a? + b?)

geometric s — 0 2Vab

maximum s — oo 2 - max(a, b)

mixing between interactions of different sizes. These are more
expressive models, but our NHOLS method has the remarkable
advantage of also being connected to the global optimum of an
interpretable objective function. For the more general maps enabled
by Theorem 3.1, the corresponding objective functions are unclear,
although this is an opportunity for future research.

We consider one extension that is based on just incorporat-
ing nonlinearity into the graph method, which we will use in
our experiments to show that higher-order information is help-
ful. A nonlinear first-order label spreading has the general form
FU+D = BMa(F)) + (1 = B)ye, where Ma(f) is the vector with
entries Mo(f); = 2 Mijo(fj), o is a nonlinear map, and M is a
matrix associated with the graph. Ibrahim and Gleich [28] recently
introduced one such nonlinear diffusion model, which is based on
a forward Euler discretization of a first-order gradient flow similar
to (4). The diffusion iterates (approximately) follow

f(r+1) - ﬁD&lA(f(’))P + Y Yes

where the pth power is taken entry-wise, and p, §, y are coefficients
in the interval [0, 1] with f + y = 1. Since the iterations in (17)
are unbounded, Ibrahim and Gleich [28] threshold each f(") by
setting to 0 and 1 all entries that are smaller than 0 or larger than
1, respectively. While practical, this procedure does not guarantee
convergence. If we instead normalize each step with a vector norm,
such as

9" = BDG AP +yye. fUD =g 190Ny, (1)

then Theorem 3.1 says that the sequence converges to a unique
limit, for all choices of the initial value f’ ©) > 0 and all pelo,1].

r=01,2,..., (17)

4 NUMERICAL EXPERIMENTS

We now perform experiments on both synthetic and real-world
data. Our aim is to compare the performance of standard (first-
order) label spreading algorithm with our second-order methods,
using different mixing functions ¢. Based on (13), a natural class of
functions are the one-parameter family of generalized means scaled
by factor 2, i.e., o5(a,b) = 2((a® + bs)/Z)I/S. We use the five gener-
alized means in Table 1. The experiments can be reproduced using
the code available at https://github.com/Doublelucker/NHOLS.
The function oy is 1-homogeneous, order-preserving, and posi-
tive for all values of s € R, including the limit cases of s € {0, +o0}.
Thus, by Corollary 3.2, Algorithm 1 converges for any choice of
s. The maximum function, however, is not differentiable and thus

https://github.com/Doublelucker/NHOLS

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

we cannot prove that the computed limit of the sequence f (r) op-
timizes the loss function (13); however, one can approximate the
maximum with a smooth function by choosing a large finite s, and
Theorem 3.3 still applies. Also, as shown above, the case s = 1
(where oy is linear) essentially corresponds to a clique expansion
method, so Algorithm 1 is nearly the same as existing methods
based on clique expansions [18, 60, 63], where the adjacency matrix
is a convex combination of the clique expansion graph induced by
the tensor A and the graph A. In our experiments, we use at most
40 iterations within Algorithm 1, a stopping tolerance of 1e-5, and
smoothing parameter ¢ = 0.01. Other settings of these parameters
produced similar results.

We compare against several techniques, in addition to standard
label spreading. One is hypergraph total variation (HTV) mini-
mization, which is designed for clustering hypergraphs with larger
hyperedges but is still applicable to our semi-supervised setup [27].
Another set of baselines comes from graph neural networks (GNNs).
While such methods are lauded for their success on many graph
learning tasks, our experiments are for a regime with a smaller
number of labeled nodes than is typical for using GNNs. For GNNs,
we use GraphSAGE [25] with two layers, ReLU activation, and max
aggregation, as well as a Graph Convolutional Network (GCN) with
two layers and ReLU activation. We also use Planetoid, a graph-
based semi-supervised learning algorithm [59]. For the GNNs and
Planetoid, we use data features if they are available; otherwise, we
use the standard one-hot encodings of the nodes’ identities as the
features. Finally, we use the nonlinear first-order label spreading
(NFOLS) in (17) with p = 0.5. None of the baselines incorporate
both first- and second-order information in the graph, which is one
advantage provided by NHOLS.

All of the algorithms that we use have hyperparameters. For the
label spreading and HTV methods, we run 5-fold cross validation
with label-balanced 50/50 splits over a small grid to choose these
hyperparameters. For standard label spreading, the grid is f €
{0.1,0.2,...,0.9}. For higher-order label spreadings, the grid is
a €{0.3,0.4,...,0.8} and § € {0.1,0.25,0.40, 0.55} (subject to the
constraint that « + f < 1). HTV has a regularization term A, for
which we search over A = (1 — f)/f for f € {0.1,0.2,...,0.9} (the
same grid as LS). We choose the parameters that give the best mean
accuracy over the five folds. The GNN approaches are much slower,
so we split the labeled data into a training and validation sets with
a label-balanced 50/50 split (a standard setup for training such
models). We use the ADAM optimizer with default § parameters
and search over learning rates n € {0.01,0.001,0.0001} and weight
decays w € {0,0.0001}, using at most 15 epochs, with early stopping
to limit overfitting (we stop once accuracy on the validation set
exceeds 95%). Finally, for Planetoid, we manually tuned the number
of embedding iterations to ensure convergence.

4.1 Synthetic benchmark data

We first compare the semi-supervised learning algorithms on syn-
thetic graph data generated with the Stochastic Block Model (SBM).
The SBM is a generative model for graph data with prescribed clus-
ter structure. We use the variant of an SBM with two parameters
— pin and poyr — which designate the edge probabilities within
the same label and across different labels, respectively. Generative

2407

Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

block models are a common benchmark to test the performance of
semi-supervised learning methods [31, 33, 43, 44]. Here we analyze
the performance of different methods on random graphs drawn
from the SBM where nodes belong to three different classes of
size (number of nodes) 100, 200, and 400. We sample graphs for
different values of the parameters py, and poyr. We fix py, = 0.1
and let pout = pin/s for s € {2.0,2.5,3.0,3.5,4.0}. With this setup,
small values of s correspond to more difficult classification prob-
lems. We test the various algorithms for different percentages of
known labels per class ({6%, 9%, 12%, 15%, 18%, 21%}).

The colored tables in Figure 1 show the mean clustering accuracy
over ten random samples for each SBM setting and each percentage
of input labels. We observe that the nonlinear label spreading meth-
ods perform better overall, with the maximum function performing
the best in nearly all the cases. The performance gaps can be quite
substantial. For example, when only 6% of the labels are given,
NHOLS achieves up to 89% mean accuracy, while the baselines do
not achieve greater than 81%.

Moreover, as discussed in Section 3.1, NHOLS scales linearly with
the number of nonzero elements of S and S and thus is typically
just slightly more expensive than standard LS. This is demonstrated
by the results in Figure 2, where we compare mean execution time
over ten runs for different methods. For NHOLS we show the mean
execution time between the five choices of the mixing function
listed in Table 1. We generate random SBM graphs with three labels
of equal size, increasing the number of nodes n and edge proba-
bilities p;, = log(n)?/n with fixed membership probability ratios
Pout = Pin/3. The times correspond to a single fixed set of values
of the hyperparameters. We find that HTV is around one order of
magnitude slower than NHOLS, while GCN and GraphSAGE are
three to five orders of magnitude slower.

4.2 Real-world data

We also analyze the performance of our methods on six real-world
datasets (Table 2). The first two datasets come from relational net-
works, namely Facebook friendship graphs of Rice University and
Caltech from the Facebook100 collection [51]. The labels are the
dorms in which the students live — there are 9 dorms for Rice and 8
for Caltech. Facebook friendships form edges, and the tensor entries
correspond to triangles (3-cliques) in the graph. We preprocessed
the graph data by first removing students with missing labels and
then taking the largest connected component of the resulting graph.
The GNNs use a one-hot encoding for features.

The next four graphs are derived from point clouds: optdig-
its [17, 56], pendigits [4, 17], MNIST [36], and Fashion-MNIST [55].
Each of these datasets has 10 classes, corresponding to one of 10
digits or to one of 10 fashion items. In these cases, we first create
7-nearest-neighbor graphs. Tensor entries correspond to triangles
in this graph. We give the GNNs an additional advantage by provid-
ing node features derived from the data points. The optdigits and
pendigits datasets come with several hand-crafted features, and we
use the embedding given by the first 10 principal components for
node features. The MNIST and Fashion-MNIST datasets are just
raw images; here, we use an embedding from the first 20 principal
components of the images as node features for the GNN. We also
tried one-hot encodings and the raw data points as features instead

Nonlinear Higher-Order Label Spreading

NHOLS, geom

NHOLS, arith

o o o
~ ~ ~
0 0 0
S ~ I~
S
Qo 20 o o
S m ™ Il
Q
n 92 (93|94 | un 0
m m m
o 95 | 95 | 96 | o o
< < <
o
o~ n © —
882 2 R
o o o
~ ~ ~
0 0 0
£ ~ I~
3
20 o °
S m ™ ™
Q
0 0 0
m m m
< < e
< < <

© o ~ n ©
- - =1

% known labels

o

21

% known labels

NHOLS, harm

n

% known labels

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

NHOLS, L2 NHOLS, max
[SE 60 66 66 69 o 69
~ ~
n 80 RE 69 0
N N
SE 80 o 8 89 | 89
m m
n 90 [91 | 92 | 93 n 90 [92 | 92 | 93
m m
o489 | 91 ‘ 93 ‘ 93 | 95 | 95 o << 89 ‘ 92 ‘ 94 | 94 | 94 | 95
= I 0 I I I I = I I I I I I
© o o~ n © — ©o o o~ n © —
4 42 2] A o+ AN
GCN

40 35 3.0 25 20
40 35 3.0 25 20

© o ~ n @
— — —

% known labels

© o ~ n @
— — —~

% known labels

21
21

Figure 1: Accuracy on synthetic stochastic block models. Each table corresponds to different method, and table entries are the
mean accuracy over 10 random instances with the given parameter settings. Overall, the various NHOLS methods perform

much better than the baselines.

104 4
103 4
g 102 4
2
(]
£ 10'4
=
<
w1004 e NHOLS
=== Standard LS
10-1 4 — HTV
= GraphSAGE
o mee NFOLS, p = 0.5
107 4 — GCN

6 20’00 40’00 60’00 SO’OO 10600 12600 14600
number of nodes
Figure 2: Running times for one hyperparameter setting
with SBM data.

of the principal component embeddings, but both resulted in much
worse performance.

We recorded the mean accuracy and standard deviation of five
random samples each of various amounts of labeled nodes (Table 2).
We find that incorporating higher-order information with some
mixing function is more accurate than LS in nearly all cases and is
also more accurate than the other baselines. The absolute accuracy
of these methods is also quite remarkable. For instance, the L2
mixing function achieves 91.6% mean accuracy with just 0.1% of
MNIST points labeled (6 labeled points per class), and the maximum
mixing function achieves 92.1% mean accuracy with just 0.4% of
pendigits points labeled (5 labeled points per class). Also, a single
mixing function tends to have the best performance for a fixed
dataset, regardless of the number of labels (e.g., the maximum
mixing function for pendigits or the L? mixing function for MNIST).

Finally, the GNN model performance is often poor, even in cases
where meaningful node features are available. This is likely a result

2408

of having only a small percentage of labeled examples. For exam-
ple, it is common to have over 15% of the nodes labeled just as a
validation set for hyperparameter tuning [32]. Still, even with 20%
of nodes labeled and hyperparameter tuning, both GNNs perform
substantially worse than standard label spreading or NHOLS on
the Facebook graphs. The simpler embedding method Planetoid
tends to be better than the GNNs. We also experimented with more
sophisticated GNN architectures, but they overfit and were less
accurate.

5 DISCUSSION

We have developed a natural and substantial extension of traditional
label spreading for semi-supervised learning that can incorporate
a broad range of nonlinearities into the spreading process. These
nonlinearities come from mixing functions that operate on higher-
order information associated with the data. Given the challenges
in developing optimization results of nonlinear functions, it is re-
markable that we can achieve a sound theoretical framework for
such an expressive spreading process. We provided guarantees on
convergence of the iterations to a unique solution, and we showed
that the process optimizes a meaningful objective function.

For the datasets that we considered, the performance of label
spreading methods was far superior to “state-of-the-art” graph
neural network approaches, in terms of both runtime and prediction
accuracy. Part of the reason is that we were in a regime with a
small number of labels, which is an atypical setting for neural
network based methods on graphs. However, even with 20% of
nodes labeled on social network data, embedding-based approaches
still had subpar performance. The strong smoothness assumptions
of the label spreading model — at both the first-order graph level and
the higher-order hypergraph level — were key to good performance.

The convergence result in Theorem 3.1 is much more general
than is needed for the NHOLS method. This provides a new way
to analyze nonlinearities in graph-based methods that we expect

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

Table 2: Mean prediction accuracy (plus or minus one standard deviation) over five random samples of labeled nodes, six
datasets, and four percentages of labeled nodes. We compare our NHOLS method using five different mixing functions to
standard LS, nonlinear first-order label spreading (NFOLS, p = 0.5 in (17)), hypergraph total variation minimization (HTV) [27],
two Graph Neural Network models [25, 32], and Planetoid [59]. Incorporating higher-order information into label spreading
with NHOLS leads to more accurate predictions compared to the baselines.

Rice31 (n = 3560) Caltech36 (n = 590)
method % labeled 5.0% 10.0% 15.0% 20.0% 5.0% 10.0% 15.0% 20.0%
NHOLS, arith 87.9 +05 90.2 0.7 90.8 +04 91.2 +04 82.1 +16 83.9 06 83.8+14 84.2 +2.0
NHOLS, harm 87.1 10 90.2 +08 91.0+05 91.4+04 77.0+23 82.0+08 833+19 83.9=+23
NHOLS, L2 87.8 0.8 90.2 +07 90.7 +03 91.4 +02 82.2+09 84.0+09 835+14 84.4+16
NHOLS, geom 87.4+07 90.1=x06 90.9=x03 91.4=x04 79.6x11 83.0x05 83913 84.0=+23
NHOLS, max 88.1 +06 90.2 +0.7 90.8 03 90.9 x0.1 82.1 10 83.6+x15 84.0+13 84.0 16
Standard LS 82.6 +09 87.8+08 89.4+03 90.6 05 744 +15 77.8+12 783 +27 80.1 19
NFOLS (p = 0.5) 81.5+1.2 87.1+16 88.8=+06 90.1+07 68.6+49 751+09 76.5+05 76.5=+21
HTV 81.6 +0.1 85.7 0.7 87.7 07 90.0 x0.0 66.1 +03 76.1 1.1 75.9 +04 81.8 +0.7
GCN 80.5+27 81.2+29 834433 85730 553+11.3 60.0+89 69.6+7.3 67.2 +6.9
GraphSAGE 64.2 +44 76.0 x28 79.5x20 83.1x1.0 54558 64.7 x46 693 263 72.0 2.0
Planetoid 719 11 83.1+15 86.4+09 87.2+08 74.4+21 78308 784 =x12 80313
optdigits (n = 5620) pendigits (n = 10992)
method % labeled 0.4% 0.7% 1.0% 1.3% 0.4% 0.7% 1.0% 1.3%
NHOLS, arith 93.6 +1.6 952 +15 96.6 +1.2 96.7 13 89.2+24 942 +09 949 +08 96.7 +1.2
NHOLS, harm 93.2+1.9 94.7 +15 96.2 +14 96.4 +14 86.1 +3.7 92.6 £1.3 93.6 +1.0 95.7 +1.4
NHOLS, L2 93.7 +1.5 95.6 +1.2 96.5+13 96.7 +13 89.2+27 943 +10 952 +06 96.6 +1.3
NHOLS, geom 93.3+21 95.0+1.6 96.2+14 964 =x15 86.5+28 93.0=x13 94010 959 15
NHOLS, max 93.7 +29 95.6 +1.1 96.2 +1.6 96.5 +1.3 92.1+1.9 95.1+07 95.9+05 96.6 +1.1
Standard LS 91.2 +42 947 +13 953 +16 95518 893 +21 94.0 x10 94.6 +05 96.0 1.1
NFOLS (p = 0.5) 65.9 +80 73.6 +54 82337 87.8+18 55.7+70 62.5%30 67.1 13 765 x27
HTV 87.0 52 909 +26 933 +07 94.1+15 82.2+21 91.3+18 933405 93.3 +0.9
GCN 63.4 +85 69.3+35 76.9+17 824+24 629+20 T714+38 780+34 805 +43
GraphSAGE 559 +25 579 %61 67.3+38 71.0x57 493158 56.0+175 61.2+68 64.7 £10.8
Planetoid 743 +41 79.6 +27 81.9+21 85.0 22 75521 804 +13 80.8 +23 84.8 +1.1
MNIST (n = 60000) Fashion-MNIST (n = 60000)
method % labeled 0.1% 0.3% 0.5% 0.7% 0.1% 0.3% 0.5% 0.7%
NHOLS, arith 91.0 +1.0 95.1 03 95.7 03 958 +01 709 +27 752 +10 78.0 06 78.7 +0.7
NHOLS, harm 89.2 16 94.5+04 95104 95302 704 +16 749 =+11 774 +06 78.4+04
NHOLS, L? 91.6 +0.7 95.3 03 95.8+03 95.9=+01 72.0+15 75.3=+11 77.7+10 78.7 06
NHOLS, geom 89.5 £14 94.6 +03 952 x04 954 %02 70.7+15 748=+12 77.5%07 78505
NHOLS, max 91.0 +1.4 95.0 +05 95.5+05 95.8 +0.1 71.6 +1.7 744 x16 774 +08 784 +0.9
Standard LS 86.8 x12 92.7 05 93.5x05 94.1+03 70.4+10 74309 76.7 08 78.1 0.5
NFOLS (p = 0.5) 40.1 +27 50.0 14 57.0x21 56.1 14 34.8+28 51424 59.6 34 67.0 £23
HTV 79.7 +34 88.3+09 90.1 +08 90.7 +04 59.8+23 68.6 x19 70.2+04 72.0 0.6
GCN 66.5 +1.8 80.6 +09 85.5+08 85.7 +14 655+26 729 +18 75.0+08 76.5+08
GraphSAGE 59.2+21 75.5=+10 81.1x20 82.6x1.0 599zx14 69.0=x21 721zx14 72213
Planetoid 68.4 +27 79.1 x08 82307 83.7+09 68.0+21 73.3+08 759 %08 78.1 x0.6
will be useful for future research. For example, other nonlinear Acknowledgments.
iterations could easily be developed, but there is still a challenge We thank Matthias Hein for supplying the code that implements the
in finding corresponding interpretable objective functions that are HTV algorithm [27]. We thank David Gleich and Antoine Gautier
optimized by the iterations, as we were able to do for NHOLS. for helpful discussions. ARB is supported in party by NSF Award

DMS-1830274, ARO Award W911NF19-1-0057, ARO MURI, and
JPMorgan Chase & Co. FT is partially supported by INAAM-GNCS.

2409

Nonlinear Higher-Order Label Spreading

REFERENCES

(1]

(2]

(3]
(4]

&

[9

=

[10]

(1]

[12]

(13

[14

[17]

[18]

[19

[20]

[21

[22]

[23

[24

[25]

[26

[27]

Sameer Agarwal, Kristin Branson, and Serge Belongie. 2006. Higher order learn-
ing with graphs. In Proceedings of the 23rd international conference on Machine
learning. 17-24.

Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, Nick G Duffield, and
Theodore L Willke. 2017. Graphlet decomposition: Framework, algorithms,
and applications. Knowledge and Information Systems 50, 3 (2017), 689-722.
Morteza Alamgir and Ulrike V Luxburg. 2011. Phase transition in the family of
p-resistances. In Advances in Neural Information Processing Systems. 379-387.
Fevzi Alimoglu and Ethem Alpaydin. 1996. Methods of combining multiple
classifiers based on different representations for pen-based handwritten digit
recognition. In Proceedings of the Fifth Turkish Artificial Intelligence and Artificial
Neural Networks Symposium. Citeseer.

Francesca Arrigo, Desmond J Higham, and Francesco Tudisco. 2020. A framework
for second-order eigenvector centralities and clustering coefficients. Proceedings
of the Royal Society A 476, 2236 (2020), 20190724.

Francesca Arrigo and Francesco Tudisco. 2019. Multi-dimensional, multilayer,
nonlinear and dynamic HITS. In Proceedings of the 2019 SIAM International Con-
ference on Data Mining. SIAM, 369-377.

Austin R Benson. 2019. Three hypergraph eigenvector centralities. SIAM Journal
on Mathematics of Data Science 1, 2 (2019), 293-312.

Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Klein-
berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221-E11230.

Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science 353, 6295 (2016), 163-166.

Jonathan W Berry, Luke K Fostvedt, Daniel] Nordman, Cynthia A Phillips, C
Seshadhri, and Alyson G Wilson. 2014. Why do simple algorithms for triangle
enumeration work in the real world?. In Proceedings of the 5th conference on
Innovations in Theoretical Computer Science. 225-234.

Nick Bridle and Xiaojin Zhu. 2013. p-voltages: Laplacian regularization for semi-
supervised learning on high-dimensional data. In Eleventh Workshop on Mining
and Learning with Graphs (MLG2013). Citeseer.

T-H Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. 2018.
Spectral properties of hypergraph laplacian and approximation algorithms. Jour-
nal of the ACM (JACM) 65, 3 (2018), 1-48.

Sudhanshu Chanpuriya and Cameron Musco. 2020. InfiniteWalk: Deep Network
Embeddings as Laplacian Embeddings with a Nonlinearity. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining.

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Char-
alampos E Tsourakakis. 2020. Node Embeddings and Exact Low-Rank Repre-
sentations of Complex Networks. In Advances in Neural Information Processing
Systems.

Alex Chin, Yatong Chen, Kristen M. Altenburger, and Johan Ugander. 2019.
Decoupled smoothing on graphs. In The World Wide Web Conference. 263-272.
Uthsav Chitra and Benjamin Raphael. 2019. Random Walks on Hypergraphs
with Edge-Dependent Vertex Weights. In International Conference on Machine
Learning. 1172-1181.

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive ics.uci.edu/ml

Dhivya Eswaran, Srijan Kumar, and Christos Faloutsos. 2020. Higher-Order Label
Homogeneity and Spreading in Graphs. In Proceedings of The Web Conference
2020. 2493-2499.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 3558-3565.

Yasuhiro Fujiwara and Go Irie. 2014. Efficient label propagation. In International
Conference on Machine Learning. 784-792.

Antoine Gautier and Francesco Tudisco. 2019. The contractivity of cone-
preserving multilinear mappings. Nonlinearity 32 (2019), 4713.

Antoine Gautier, Francesco Tudisco, and Matthias Hein. 2019. The Perron-
Frobenius theorem for multihomogeneous mappings. SIAM J. Matrix Anal. Appl.
40, 3 (2019), 1179-1205.

David F Gleich and Michael W Mahoney. 2015. Using local spectral methods
to robustify graph-based learning algorithms. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 359—
368.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024-1034.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. IEEE Data Engineering Bulletin (2017).
Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram.
2013. The total variation on hypergraphs - Learning on hypergraphs revisited.

2410

[28

[29

[30

w
S

'®
3

&
=)

@
i

[40

[41

[42]

[44

[45

[46]

(47]

[48

[49

(50

[51

o
&,

[53

[54

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

In Advances in Neural Information Processing Systems. 2427-2435.

Rania Ibrahim and David Gleich. 2019. Nonlinear Diffusion for Community
Detection and Semi-Supervised Learning. In The World Wide Web Conference.
739-750.

Rania Ibrahim and David F Gleich. 2020. Local Hypergraph Clustering using
Capacity Releasing Diffusion. arXiv:2003.04213 (2020).

Thorsten Joachims. 2003. Transductive learning via spectral graph partitioning.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03).
290-297.

Varun Kanade, Elchanan Mossel, and Tselil Schramm. 2016. Global and local
information in clustering labeled block models. IEEE Transactions on Information
Theory 62, 10 (2016), 5906-5917.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Isabel M Kloumann, Johan Ugander, and Jon Kleinberg. 2017. Block models and
personalized PageRank. Proceedings of the National Academy of Sciences 114, 1
(2017), 33-38.

Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A Spielman. 2015. Al-
gorithms for Lipschitz learning on graphs. In Conference on Learning Theory.
1190-1223.

Matthieu Latapy. 2008. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical computer science 407, 1-3 (2008), 458-473.
Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database.

Bas Lemmens and Roger Nussbaum. 2012. Nonlinear Perron-Frobenius Theory.
Vol. 189. Cambridge University Press.

Pan Li, I Chien, and Olgica Milenkovic. 2019. Optimizing Generalized PageR-
ank Methods for Seed-Expansion Community Detection. In Advances in Neural
Information Processing Systems. 11705-11716.

Pan Li, Niao He, and Olgica Milenkovic. 2020. Quadratic decomposable submod-
ular function minimization: Theory and practice. Journal of Machine Learning
Research 21, 106 (2020), 1-49.

Pan Li and Olgica Milenkovic. 2017. Inhomogeneous hypergraph clustering with
applications. In Advances in Neural Information Processing Systems. 2308-2318.
Pan Li and Olgica Milenkovic. 2018. Submodular Hypergraphs: p-Laplacians,
Cheeger Inequalities and Spectral Clustering. In International Conference on
Machine Learning. 3014-3023.

Anand Louis. 2015. Hypergraph markov operators, eigenvalues and approxima-
tion algorithms. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing. 713-722.

Pedro Mercado, Francesco Tudisco, and Matthias Hein. 2019. Generalized Matrix
Means for Semi-Supervised Learning with Multilayer Graphs. In Advances in
Neural Information Processing Systems. 14848-14857.

Elchanan Mossel and Jiaming Xu. 2016. Local algorithms for block models with
side information. In Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science. 71-80.

Rafael Miiller, Simon Kornblith, and Geoffrey E Hinton. 2019. When does label
smoothing help?. In Advances in Neural Information Processing Systems. 4696—
4705.

Huda Nassar, Caitlin Kennedy, Shweta Jain, Austin R Benson, and David Gleich.
2020. Using Cliques with Higher-order Spectral Embeddings Improves Graph
Visualizations. In Proceedings of The Web Conference 2020. 2927-2933.

Ryan A Rossi, Nesreen K Ahmed, and Eunyee Koh. 2018. Higher-order network
representation learning. In Companion Proceedings of the The Web Conference
2018. 3-4.

Ryan A Rossi, Anup Rao, Sungchul Kim, Eunyee Koh, Nesreen K Ahmed, and
Gang Wu. 2019. Higher-order ranking and link prediction: From closing triangles
to closing higher-order motifs. arXiv preprint arXiv:1906.05059 (2019).

Sai Nageswar Satchidanand, Harini Ananthapadmanaban, and Balaraman Ravin-
dran. 2015. Extended discriminative random walk: a hypergraph approach to
multi-view multi-relational transductive learning. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818-2826.

Amanda L Traud, Peter] Mucha, and Mason A Porter. 2012. Social structure of
facebook networks. Physica A: Statistical Mechanics and its Applications 391, 16
(2012), 4165-4180

Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.
Scalable motif-aware graph clustering. In Proceedings of the 26th International
Conference on World Wide Web. 1451-1460.

Nate Veldt, Austin R Benson, and Jon Kleinberg. 2020. Hypergraph Cuts with
General Splitting Functions. arXiv preprint arXiv:2001.02817 (2020).

Nate Veldt, Austin R Benson, and Jon Kleinberg. 2020. Minimizing Localized
Ratio Cut Objectives in Hypergraphs. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1708-1718.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.deeplearningbook.org

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[56] Lei Xu, Adam Krzyzak, and Ching Y Suen. 1992. Methods of combining multiple
classifiers and their applications to handwriting recognition. IEEE transactions
on systems, man, and cybernetics 22, 3 (1992), 418-435.

[57] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand
Louis, and Partha Talukdar. 2019. HyperGCN: A New Method For Training Graph
Convolutional Networks on Hypergraphs. In Advances in Neural Information
Processing Systems. 1509-1520.

[58] Shenghao Yang, Di Wang, and Kimon Fountoulakis. 2020. p-Norm Flow Diffusion

for Local Graph Clustering. arXiv:2005.09810 (2020).

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-

chine learning. PMLR, 40-48.

[60] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017. Local higher-
order graph clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 555-564.

[61] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. 2018. Beyond link
prediction: Predicting hyperlinks in adjacency space. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[62] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Scholkopf. 2004. Learning with local and global consistency. In Advances in
neural information processing systems. 321-328.

[63] Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. 2007. Learning with
hypergraphs: Clustering, classification, and embedding. In Advances in neural
information processing systems. 1601-1608.

[64] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2018. Graph neural networks: A review of
methods and applications. arXiv preprint arXiv:1812.08434 (2018).

[65] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In Proceedings of the 20th

International conference on Machine learning (ICML-03). 912-919.

Xiaojin Zhu and Andrew B Goldberg. 2009. Introduction to semi-supervised

learning. Synthesis lectures on artificial intelligence and machine learning 3, 1

(2009), 1-130.

o
X

[66

A PROOF OF THEOREM 3.1

We start with the proof of Theorem 3.1. Let p: R” — R be positive,
order-preserving, and 1-homogeneous and let F: R — R" be
p-homogeneous, order-preserving and positive. Let R7 and R},
denote the set of entry-wise nonnegative and entry-wise positive
vectors in R", respectively. Also, for a set of vectors 3, let X/p
denote the slice /o = {f € = : o(f) = 1}. We first need the
following lemma.

LEMMA A.1. Leta,b,c > 0. Then
a+c a a
—)< ——1 —
g(b+c) T a+c Og(b)
PRrOOF. Let g(x) = xlog(x). We have

a+c1 (a+C) (a+c> (b a,_¢)

o = = — A
bre B\brc) " Nbrc) TINbach T hre

As # + ﬁ = 1and g is convex, we can apply Jensen’s inequality
to get

g(bfjﬂzg-'-b-crc)S bf—cg(g)-'-bicg(l): bj—cl()g(g)'

Combining all together we get

e o) = e ()

which yields the claims. m|

Now we give the proof of Theorem 3.1.

2411

Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

Proor. This result falls within the family of contraction-type
theorems for nonlinear mappings on abstract cones [37]. Here we
provide a simple and self-contained proof. Define

& =P
o(G(f))

Notice that f(rH) = G(f(r)), forallr = 0,1,2,... and that, by

assumption, G(f) > 0 for all f > 0. Thus o(G(f)) > 0 and é(f) is

well defined on R , . Moreover, note that by the assumption F(f) <

Cy we have y < G(f) < (C + 1)y. Therefore, letting C; = p(y) and

since o is order-preserving, we have

G(f)=F(f)+y and

G(f) _cC+1

W= = @

51y : y=:8y (19)

1
= —y <
Cc+nc?=

for all f € R}, . Consider the set
2={feRl, 61y < f <&y} cRL,.

By (19), we have that apreserves the slice 2/o C R%, /o, that is
G(f) € =/ forall f € 3/p.

For two points u,v € R?

% > consider the Hilbert distance

M(u/v)),

d(u,v) = lOg (m

where M(u/v) = max; uj/v; and m(u/v) = min; u;/v;. With this
definition we can equivalently write

2={feRl, :d(f.y) < 8/5},

thus, as p is 1-homogeneous, 2 /o equipped with the Hilbert distance
is a compact metric space [37]. In order to conclude the proof, it
is sufficient to show that G is a contraction with respect to the
Hilbert metric. In fact, the sequence f° (r) belongs to X/p for any
£ and since (%/p, d) is compact, the sequence ") converges to
the unique fixed point * of G in =/p.

We show below that G is a contraction. To this end, first note
that by definition we have d(G(u), G(v)) = d(G(u), G(v)). Now note
that, as F is p-homogeneous and order-preserving with p € [0, 1]
and g is 1-homogeneous and oder-preserving, for any u,v € R},
we have

m(u/v)PF(v) = F(m(u/v)v) < F(u) (20)
M(u/v)PF(v) = F(M(u/v)v) > F(u) (21)
m(u/v)o(v) = o(m(u/v)v) < o(u) (22)
M(u/v)o(v) = o(M(u/v)v) > o(u) (23)

Moreover, for any u,v € R%, /o it holds that

m(u/v) = o(v)m(u/v) < o(v) =1 = o(u) < o(v)M(u/v) = M(u/v),
so
m(u/v) < m(u/v)P <1< M®u/v)P < M(u/v). (24)

By assumption, there exists C > 0 such that F(u) < Cy, for all
u € R}, /o. Therefore, using (20)—(24), for any u,v € R}, /o we

Nonlinear Higher-Order Label Spreading

have
(m(u/v)C + 1)(F(v) + y)
= (m(u/v)C + m(u/v) — m(u/v) + 1)F(v) + (m(u/v)C + 1)y
= (C+)m(u/v)F(v) + (1 — m(u/v))F(v) + (m(u/v)C + 1)y
< (C+ D)m(u/v)PF(v) + (1 — m(u/v))F(v) + (m(u/v)C + 1)y
< (C+ 1)F(u) + (1 — m(u/v))Cy + (m(u/v)c + 1)y
=(C+1)(F@w) +y),
where we used the fact that (1 — m(u/v)) > 0 to get the inequality
(1 -=m(u/v))F(v) < (1 — m(u/v))Cy. Thus,
m(G(u)/G(v)) = m((F(w)+y)/(F(v) +y)) = (m(u/v)C+1)/(C+1).
Similarly, as (1 — M(u/v)) < 0, we have
(M(u/v)C + 1)(F(v) +y)
> CF(u) + F(u) + (1 = M(u/v))Cy + (M(u/v)C + 1)y
=(C+1)(Fu) +y),
which gives M(G(u)/G(v)) < (M(u/v)C + 1)/(C + 1). Therefore,
M(G(w)/G(v)))
m(G(u)/G(v))
M(u/v)C + 1\ M(u/v)+ 6
< log (m(u/v)C + 1) =08 (m(u/v) + 5)
with § = 1/C. Finally, using Lemma A.1, we get

M(u/v)
M(u/v)+6

d(G(w), G(v)) = log (

d(G(u), G(v)) = d(G(u), G(v)) < () d(u, v) < d(u, v),

which shows that G is a contraction in the compact metric space
(Z/o,d), concluding the proof. O

B PROOF OF COROLLARY 3.2

Consider now the case where

o) = o) = %JZBUU(\%’ %)2-
ij ! J

We start with a technical lemma.

LEMMA B.1. Assume that o is 1-homogeneous and positive and that
both y and OCDI__Il/ZﬂO'(DI_{I/zf) + ﬁD&l/zADz;l/zf are entry-wise
positive, for everyf € R}, . Then, there exists C > 0 such that

2 ac(Dy)+ pog*ADZ A f < cy
forall f € [RL/(p.

PRrOOF. Since we are assuming that every node has hyper-degree
8i = 2 jk Ajjr > 0, for every i there exist j and k such that ijk is a
hyperedge. Thus, if U € V x V is the set of nonzero entries of the
matrix
B =(Bij) = (Zk Akij)»
then the pairs in U must contain all the nodes, i.e. for all k € V
there exists (i, j) € U such that i = k or j = k. Therefore, if f > 0
and ¢(f) = 1 then f must be entry-wise bounded. Hence, as ¢ is
positive and 1-homogeneous, we can choose
i @Dy 2 A0y) + pog*ADG 2)i
= max max

min;y; i feRPr, o(f)

2412

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

to obtain the claim.]

Now we prove Corollary 3.2.

ProoF. Let F(f) = aDy > Ac(D}/* f) + pDZ*AD £ and
Yy = yy.. By Lemma B.1 all the assumptions of Theorem 3.1 are
satisfied, and the convergence follows. O

C PROOF OF THEOREM 3.3

We again start with a useful lemma.
LemMma C.1. Let E: R"® — Ry be defined by
"(Duf - F(f))
by = Ll 210D

with F: R™ — R" differentiable and such that F(f) > 0 forall f > 0
and F(af) = aF(f) forall @ > 0. Then VE(f) = Dy f — F(f).

(25)

Proor. Thisis a relatively direct consequence of Euler’s theorem
for homogeneous functions. For completeness, we provide a self-
contained proof here. Consider the function G(a) = F(af) — aF(f).
Then G is differentiable and G(«) = 0 for all @ > 0. Thus, G'(a) = 0
for all & in a neighborhood of @y = 1. For any such «, we have

G'(a) = aJF(af)f = F(f) =0,
where JF(f) denotes the Jacobian of F evaluated at f. Evaluating
G’ on a = 1 we get JE(f)f = F(f). Therefore,
2VE(f) = V{fT(Duf - F(f)}
= Dyf = F(f) + (D - JF()) f = 2D f - 2F(f),
which gives us the claim. O

Now we prove Theorem 3.3.

Proor. Let

El(f) ZAlj(\—/fl— - j_]—)

and f f
Lo gk
Ex(f) =) Aijk
and consider the following modified loss

301 = I = 25|+ s+) - o).

Subject to the constraint ¢(f) = 1, the minimizing points of & and
those of & in (13) coincide. We show that the gradient of the loss
function & vanishes on f* > 0with o(f*) = 1ifand only if f* isa
fixed point for the iterator of Algorithm 1.

For simplicity, let us write y = y/¢(y) with y > 0. We have
VIIf = glI*> = 2(f - §) and VEi(f) = 2Af = 2(I - DG'ADZ!)f. As
for Ep, observe that from ;i A;jx = 6i,we get

fT(Duf - As(f)) = Z&f, > iAo s fi)

ijk
= Ay (7 - fio(f: fi)
ijk
= Zﬂijk(fi - M) -2 Z ko (fi. fio)?
ijk

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

with Bji = 2; A;ji. Thus,

FTOuSf - Ac(f) = Ea(DY f) - oD})2
Now, since o(f) is 1-homogeneous and differentiable, so is F(f) =
Aoc(f), and using Lemma C.1 we obtain

V{EAD}f) — ¢(D}))2} = 2(Du f — Ac(f).
which, with the change of variable f - DI_JI/ 2 f, yields
V{EL(f) - p(F)*} = 2(f - Dy} *Ac(D,*).
Altogether, we have that
VI(f) =
= =5+ M1 -DGAD) f + pif - D Ac(Dy* £))

= (1 +A+p)f - AD3PAD P f - uD P Ac(D P) - 7,

2413

Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik

which implies that f* € R}, /¢ is such that V3(f*) = 0 if and only
if f* is a fixed point of NHOLS, i.e.,
= aD;/ZﬂO'(D;/Zf*) +ﬁD81/2ADZ;1/2f* -~

withA=f/y,p=a/yanda+f+y =1

Finally, by Corollary 3.2 we know that the NHOLS iterations in
Algorithm 1 converge to f* € R, /¢ for all positive starting points.
Moreover, f* is the unique fixed point in the slice R}, /¢. As § and
& have the same minimizing points on that slice, this shows that
f* is the global solution of min{d(f) : f € R}, /¢}, concluding
the proof.

[m]

	Abstract
	1 Introduction
	1.1 Additional related work

	2 Background on Standard Label Spreading
	3 Nonlinear Higher-order Label Spreading
	3.1 Nonlinear Second-order Label Spreading with Mixing Functions
	3.2 Global convergence and optimization framework
	3.3 Extensions

	4 Numerical experiments
	4.1 Synthetic benchmark data
	4.2 Real-world data

	5 Discussion
	References
	A Proof of Theorem 3.1
	B Proof of Corollary 3.2
	C Proof of Theorem 3.3

