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Abstract. Distributed computing is a standard way to scale up machine learning and data science algorithms
to process large amounts of data. In such settings, avoiding communication amongst machines
is paramount for achieving high performance. Rather than distribute the computation of existing
algorithms, a common practice for avoiding communication is to compute local solutions or parameter
estimates on each machine and then combine the results; in many convex optimization problems,
even simple averaging of local solutions can work well. However, these schemes do not work when the
local solutions are not unique. Spectral methods are a collection of such problems, where solutions are
orthonormal bases of the leading invariant subspace of an associated data matrix. These solutions are
only unique up to rotation and reflections. Here, we develop a communication-efficient distributed
algorithm for computing the leading invariant subspace of a data matrix. Our algorithm uses a novel
alignment scheme that minimizes the Procrustean distance between local solutions and a reference
solution and only requires a single round of communication. For the important case of principal
component analysis (PCA), we show that our algorithm achieves a similar error rate to that of a
centralized estimator. We present numerical experiments demonstrating the efficacy of our proposed
algorithm for distributed PCA as well as other problems where solutions exhibit rotational symmetry,
such as node embeddings for graph data and spectral initialization for quadratic sensing.
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1. Overview and background. The paradigm of distributed computing, where data col-
lection and/or computation for a fixed task happens on several interconnected machines, is
by now standard in machine learning and data science [1]. Typically, each machine holds its
own data points or samples and a global solution is approximated using only local compu-
tation and communication between machines. Since communication is the bottleneck oper-
ation [5,59], it is highly desirable to avoid multiple rounds of communication (i.e., multiple
instances where machines broadcast or exchange information with each other). One of several
flavors of distributed computing, which is the focus of this paper, is federated learning [33,34].
In federated learning, local compute nodes communicate local information to a central “coor-
dinator,” though there are several other configurations used in distributed computing. When
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the underlying problem is “simple” (e.g., convex), combining local information and solutions
is relatively well studied, and even the simplest schemes (such as one-shot averaging of local
solutions) often work well with minimal communication costs [58]. However, many problems
are not amenable to such schemes.

Consider the model problem of distributed computation of the first principal component in
principal component analysis (PCA). We assume that each of m machines draws n independent
and identically distributed (i.i.d.) samples from some underlying distribution D and that, for
simplicity, E,p [z] = 0. Then we want to to estimate the leading eigenvector of the covariance
matrix ¥ := Egp [zz"]. Here, solutions are all subject to a natural sign ambiguity (in
addition to a scale ambiguity, which is trivial to handle by normalizing); if 9! is the estimate
produced by machine i, then —o% is also a valid local solution. Thus, naively averaging
two solutions from two machines could result in an estimate close to zero. Even though the
resulting estimate may still be aligned with, e.g., v, its magnitude will decrease at the same
rate as the magnitude of the noise, and thus averaging offers no improvement. Continuing
this, suppose we fix some unit-norm eigenvector v; and assume that roughly half of the local
solutions are aligned with v, while the other half are aligned with —wvq; it is clear that we
should not expect naive averaging to work in this situation. Indeed, Garber, Shamir, and
Srebro [22] showed that the resulting estimate will have Q(y/1/n) error. On the other hand,
a centralized estimator with access to all m - n samples would achieve an error of O(y/1/mn).
To address this, they developed a “sign-fixing” scheme for combining eigenvectors to achieve
an error rate similar to the centralized estimator.

When estimating eigenspaces of higher dimension (e.g., the first r principal components for
r > 1), we have to deal with an orthogonal ambiguity (i.e., for any solution V" and orthogonal
matrix Z, V' Z is also a solution), making the task of combining local solutions highly nontrivial
for problems exhibiting natural symmetries. In particular, adapting spectral algorithms to
the distributed setting poses a significant challenge, and these algorithms form the basis of
a rich set of applications such as dimensionality reduction [28], clustering [54], ranking [44],
and high-dimensional estimation [30]. Figure 1.1 depicts the results of distributed PCA on
examples from the MNIST dataset; indeed, naive averaging of local solutions can be catastrophic
in practice. On the other hand, the solution produced by an appropriate alignment algorithm
(in particular, using our Algorithm 2.1) is very close to that of the central algorithm.

1.1. Contribution and outline. In this paper, we propose a general technique for averag-
ing local solutions to subspace estimation problems in the distributed setting. In particular,
we assume that every machine ¢ observes a noisy version Xiof a symmetric “ground truth”
X, and we wish to estimate the principal r-dimensional eigenspace of X. Our method relies
on aligning local estimates with a reference solution (which can be any of the local solutions),
followed by an averaging step. In the special case r = 1, our method recovers the sign-fizing
scheme of [22]. When the underlying matrix X has a nontrivial eigengap and the local ma-
trices X' are not “too far” from X, we show that the error of the resulting estimate is a
combination of a term that scales quadratically with local errors E° := Xi— X and a term
that measures how well the empirical average of the local matrices approximates X. Our main
result is a deterministic bound that does not require any application-specific information.

We specialize these results to distributed PCA and show that, with high probability, the
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Figure 1.1. Projection of samples to the first two principal components of the MNIST dataset, in a distributed
setting where samples are split across m = 25 machines. The central algorithm (Central) produces a very
different scatterplot than naive averaging (Average) of local solutions. In contrast, our alignment algorithm
(Aligned) leads to a projection very similar to that of the central algorithm. The subspace distance of the
averaged solution is = 0.95 (indicating that the subspaces are near-orthogonal to each other), while the subspace
distance of the aligned solution is ~ 0.35.

estimate produced by our algorithm matches the error rate of a centralized estimator, with
access to all m - n samples. In addition, we show that the per-node sample complexity scales
with the stable rank r, := intdim(X) of the population covariance matrix ¥, which is typically
much smaller than both the ambient dimension d and the algebraic rank r, for sub-Gaussian
designs. Our rates improve by a factor of 1/r upon those of [18] for sub-Gaussian distributions,
though the upper bound given in the latter work is for the subspace distance measured in the
Frobenius norm and thus not directly comparable with ours (on the other hand, applying norm
equivalence to our result to obtain a bound on the Frobenius subspace distance exactly recovers
the rate of [18]). We also recover the result of [22] when r = 1. Finally, we conduct several
numerical experiments that demonstrate the efficacy of our proposed scheme on applications
covering (i) PCA, (ii) node embeddings for graph data, and (iii) spectral initializations for
quadratic sensing.

1.2. Related work. Distributed computing has received widespread attention in recent

years, leading to a number of different methods of aggregating information; these include

1. solving subproblems locally and then forming a central solution by averaging all local
solutions,

2. “distributing” an iterative procedure across machines, for example by communicat-
ing first- and/or second-order information to the coordinator to perform a “central”
gradient step, and

3. using gossip algorithms, in which individual machines are allowed to communicate
with peers (instead of only a central coordinator) and can aggregate updates from
their neighbors.

In the first of the above settings, the average of local solutions may be computed only once [58]
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or communicated back to the local machines to repeat multiple rounds of computation [56].
The second and third settings have received widespread attention from the convex optimization
community [15,27,39,41,49,50], even allowing optimal algorithms in both centralized and
decentralized settings [46,52]. From a statistical perspective, other works have shown that
distributed algorithms can achieve minimax-optimal rates for statistical estimation [16,29,45,
57]. Lately, a recurring theme is also robustness, in order to deal with the possibility that
some computing nodes may be malicious [12,20].

Dealing with natural symmetries. As mentioned above, problems with solutions exhibiting
natural symmetries require more careful analyses that address the symmetry at hand. For
spectral methods, a major portion of the literature has focused on distributed PCA (and
the related task of eigenspace estimation of covariance matrices). For example, recent work
formulates PCA in a streaming setting and adapts techniques such as gradient descent and
variance reduction [2,3,47]. However, the resulting methods are not communication-efficient—
at least not without nontrivial modifications—as they need to access sequences of samples
that may be scattered across machines. Other works [9,22] have adapted the shift-and-invert
framework [21] (which reduces an eigenproblem to approximately solving a sequence of linear
systems) to the distributed setting, though the resulting algorithms still require multiple
communication rounds.

More attractive options in terms of communication cost were proposed in [19,31,37] for
PCA and related problems. In these algorithms, each node performs a local SVD and broad-
casts its top 71 > 7 singular values and vectors (X, V?), which act as a summary of the local
data, to a central node. That node then forms the matrix Y := [SY(VDHT ... =m(y™)T]
and computes its SVD, returning the top r9 = r right singular vectors, where r is the dimen-
sion of the desired subspace. This procedure can also be augmented by sketching to reduce
the communication cost, and adapted to other settings such as kernel PCA [4]. An alternative
approach is the Frequent Directions method [23], which can incrementally update a sketch
of a matrix that serves as a low-rank approximation; in particular, the sketches produced by
the method are mergeable, making the method amenable to parallelization. Since the afore-
mentioned works are primarily interested in getting a high quality low-rank approximation of
the data matrices, approximating the leading invariant subspace of the population covariance
matrix in a distributed fashion was largely overlooked until recently. One of the first works
in this direction is [17], which focuses on leading eigenvector estimation for large matrices by
aggregating the eigenvector of randomly sampled submatrices using an alignment step that
removes sign ambiguity. Removing sign ambiguity from singular vectors is also discussed
in [7]; therein, the authors utilize dataset information to determine meaningful signs for the
computed singular vectors. However, in settings where the data are random, the algorithm
from [7] can still result in arbitrarily chosen signs; moreover, it attempts to fix signs of indi-
vidual singular vectors rather than arbitrary orthogonal ambiguities; this makes it unsuitable
as a preprocessing step for an averaging method when r > 1.

A similar approach to [17] is adopted in [22], which proposes an optimal averaging method
for computing the leading eigenvector by aligning all local estimates with a reference solution
(e.g., the estimate of the first node); in addition to showing that the algorithm essentially
matches the performance of “centralized” PCA, the authors in [22] also show that “naive”
averaging can produce arbitrarily bad estimates. However, they do not generalize their tech-
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nique to more than one eigenvector. More recent works [6, 18] show that an aggregation
method similar to that of [37] achieves error competitive with a centralized estimator, even
for r > 1, via careful statistical analyses. The resulting algorithm deals with orthogonal am-
biguity by averaging the local spectral projectors; however, this leaves open the question of
how to generalize the methods of [17,22] to higher-dimensional subspaces.

1.3. Notation. We denote {1,...,n} by [n] and write (z,y) = x"y for vectors x and y,
as well as (X,Y) = Tr(X'TY) for compatible matrices X and Y. Given A € R¥*X% e
write A;. € R% for its ith row vector and A€ R?% for its jth column vector. We write
|Al|p and ||Al[, for the Frobenius and spectral norms of A and [|A[l,_, ., = max;c(q,] [|Ai ||,
We let S91 := {z € R? | ||z||, = 1} denote the unit sphere in d dimensions, and we let Qg, 4,
denote the set of d; X do matrices with orthonormal columns (i.e., the set of d; x da orthogonal
matrices), omitting the second subscript when d; = da. Throughout, we write dist(U, V) :=
|UUT —VVT|, for the distance between the subspaces spanned by the columns of U and V.
We use the letters m to denote the number of machines, n to denote the number of samples
drawn per machine, and d to denote the dimension of each sample. Finally, we use A < B to
denote that A < ¢- B for some constant ¢ independent of m, n, and d.

2. Distributed eigenspace estimation. We study distributed eigenspace estimation when
all machines observe a “noisy” version of an underlying symmetric matrix X. In particular,
we assume that X admits an eigendecomposition of the form

A O T
(2.1) X=Wi V| | vl
0 Ao
where Ay := diag(A,..., A\;) contains the r largest eigenvalues and Ag contains the d — r

smallest eigenvalues, ordered algebraically so that A\; > Aa--- > A;. In our setting, the
objective is to estimate the leading r-dimensional invariant subspace Vi given a set of m
machines with noisy observations X’ € R%? ; e [m], which are also symmetric. Though
our presentation assumes that we are interested in the leading r-dimensional subspace, this
assumption is without loss of generality; our results also apply to, e.g., approximating the
r-dimensional invariant subspace corresponding to the smallest eigenvalues, since the latter
can be turned into the leading eigenspace by an appropriate shift.

To illustrat?,) consider the setting of distributed PCA. There, every machine i draws n

(2

i.i.d. samples T € RY, j € [n], from a distribution D that we assume is zero-mean for the

sake of simplicity and forms its “local” empirical covariance matrix
LS S WONOL
1. 7 3
(2.2) X' = anj z; .
j=1

Here E [X ] =% := Egup [z27], where D is the underlying distribution, and the task at hand
amounts to estimating the leading eigenspace of the population covariance matrix; without loss
of generality, assume that \1(X) = 1. Note that by standard concentration arguments [55], a
centralized version of this problem achieves an error rate of roughly O(y/1/mn) (with distance
measured in the spectral norm), so we cannot expect a better rate in the distributed setting.
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A natural first approach, inspired by one-shot averaging in convex optimization [58], has
each machine compute a local approximation V1 and then averages all local solutions centrally,
with the hope that averaging will further “smooth out” the errors from local solutions:

_ 1 < . _
2. fi == l d take @ factor f; .
(2.3) orm V p-” ZVl and take @ factor from qr(V)

However, this typically fails due to the inherent orthogonal ambiguity of the problem; in
short, there is no guarantee that Vf will be sufficiently “aligned” with each other for their
average to be close to Vj. One must first resolve the orthogonal ambiguity in local solutions
to meaningfully aggregate them.

Garber, Shamir, and Srebro [22] solve this problem when r = 1 in the setting of distributed
PCA, under fairly minimal assumptions. Specifically, they show that averaging a certain
combination of the local eigenvector estimates recovers a vector v; that satisfies (with high

probability)
. _ ~ 1 1
dista(1,01) = O\ \/ 50 + 52, )

where v; is the leading eigenvector of X and 0 := Aj(X) — \o(X). Letting @Y’) denote the
estimate of v; produced by the ith machine, the trick from Garber, Shamir, and Srebro [22]
is to pick a “reference” vector, e.g., 91, and “align” all other local estimates with it to resolve
the aforementioned ambiguity, which reduces to a sign ambiguity as r = 1. More specifically,
up to normalization, they compute v; by the “sign-fixed” average:

_ IR (i (i o-i
(2.4) vy 1= mZSlgn(<U§)71}§ )>) 5)7 vg) := argmax v' X'v.

veSd—1

This is the same as (2.3) for dimension r = 1, with the additional sign-fixing in front of
the estimate v( ), Conceptually, if we omitted the sign-fixing step, we would be averaging
eigenvectors that are “spread” around two directions: {4wv;}. If each local estimate has the
same probability of pointing to v; and —w;, the average will be no better at estimating vy
than any local solution, with error at least on the order of \/% [22, Theorem 3.

2.1. Procrustes fixing. We propose a high-order analogue of the sign-fixing average over
local estimates. When r > 1, the canonical way to align two matrices V,V € Q,,, is via the
solution of the so-called orthogonal Procrustes problem [24, Chapter 6.4]:

(2.5) argmin HV - VZHF .
Ze0,
The alignment problem in (2.5) admits a closed form solution [26]: let PEXQT be the SVD
of VTV then Z := PQT is the solution to (2.5). Given the local estimates ‘71(1)7 cee Vl(m) of
the principal eigenspace, we may choose one of them to become the “reference” solution (e.g.,
‘71(1)) and return V defined below as our estimator:
_ _ 1

(2.6) V.R:=qr(V), —

() _ HA(Z’) _ A(l)H
Zi, V' Z -V,
= argmin ||V} i

Z€0y

||M3
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Algorithm 2.1 Distributed eigenspace estimation with Procrustes fixing.

Input: local principal subspaces {Vl(i) | i€ [m]}, reference solution V' (default: Vl(l))

fori=1,...,mdo
V@) = I?l(i)Zi, Z; := argming g, H‘A/l(i)Z -V
end for
Form V = 1 2;1 }N/(i) )
return V from V,R = qr(V).

p

In particular, note that (2.6) recovers the sign-fixed average of (2.4) when r = 1, since it follows
that argminge ¢ 13 Hf)gz) —sti|l2 = sign((ﬁ%l),@gl))). Our algorithm is more formally described in
Algorithm 2.1. By default, Algorithm 2.1 uses the first local solution as a reference for (2.6);
however, since the order is arbitrary, our results are valid for any local solution used as a
reference. In the experimental section, we demonstrate that iteratively refining the reference

solution V can further reduce the empirical error of the resulting estimator.

Remark 2.1 (Runtime comparison with [18]). The algorithm proposed in [18] for the dis-
tributed PCA problem works by spectral projector averaging. After local solutions have been
transmitted to the central node, the algorithm therein requires computing the top r eigen-
vectors of % >y \A/l(l)(f/l(l))T. Even forming this average would require roughly O(md?r)
operations, which can be prohibitive; therefore, one would instead opt for a standard iterative
algorithm such as orthogonal iteration. Each iteration would go through the following steps:

1. Compute X Vl(i)(f/l(i))TX for X € R¥" and all i € [m]. This step would require
O(mdr?) operations, yielding a set of matrices of size d x 7 as intermediate results.
2. Average the m intermediate results for a total of O(mdr) operations.
3. Orthogonalize the iterate (possibly every few iterations instead of at every single iter-
ation), incurring a cost of O(dr?) operations (e.g., by using the QR factorization).
Therefore, the cost of a single step of the iterative algorithm of choice would be O(mr2d)
operations in the central node when using the method of [18].

In contrast, and assuming no further parallelization, our algorithm only needs to solve m—1
Procrustes problems, which are equivalent to m — 1 SVDs of the matrices (Vl(l))Tf/l(i) e R™",
Forming each of these matrices takes time O(r?d), and computing the SVD would require
time O(r3) (using, e.g., the Golub-Kahan bidiagonalization method). The total cost therefore
scales as O(mr2d).

Remark 2.2 (Further parallelization). Note that Algorithm 2.1 can be further parallelized
at the expense of only a couple of additional communication rounds. In particular, the central
node can first broadcast the reference solution Vl(l) to the rest of the m — 1 nodes, each of
which solves the Procrustes problem locally and only transmits back the “aligned” solution
V(). The observed cost given this additional parallelization step is equal to O(Teomm + 72d),

where Ttomm is the time required for a single round of communication.

Ideally, we would like to show that the performance of Algorithm 2.1 matches that of the
centralized version. A naive attempt to adapt the proof of [22] poses a set of challenges: on
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one hand, the case r = 1 relies on a Taylor-like expansion of each local estimate, which is not
transferable to r > 1 in the absence of stronger assumptions on the spectrum of the matrices
involved. On the other hand, some of the arguments in [22] that deal with the ambiguity of
the local estimates are no longer applicable because of the presence of an arbitrary orthogonal
transform, instead of just a sign ambiguity.

Instead, we use recent results from numerical analysis and matrix perturbation theory.
First, we show that if the local estimates Vl(z) were already aligned with Vi, in the sense that

(2.7) min ||V3Z — V)

AS 0%

-

)

then averaging yields an estimate whose error is the sum of a term whose magnitude is
quadratic in the local errors {HX X H2 |ie [m]}l plus another term that depends on the
error of the empirical mean approximation to X, i.e., m~1 D (X i X ) To show this, we
express ‘A/l(l) using V; as a local basis—a method that has been used to analyze invariant
subspace perturbations [14, 32]. Indeed, in the setting of distributed PCA, this yields an
estimator whose error matches that of the centralized estimator.

Recall that if the columns of V; form a basis for the leading invariant subspace of X, so
do those of V1U, where U € Q) is any orthogonal matrix. Thus we have a degree of freedom
in choosing an appropriate “version” of V7 to work with; without loss of generality, we choose
V1 so that it minimizes the Procrustes distance to the first local solution Vl(l); in other words,

(2.8) argmin HVI(I)U — VlH =1I,.
UeO, F

Once the matrix V; is fixed, Algorithm 2.1 aligns all other local estimates with a solution
“sufficiently close” to V1. Indeed, Stewart [51] showed that aligning Vl(z) with ‘71(1) is the same

as aligning Vl(i) with Vi, up to a quadratic error term.
Before we state our generic result, we formalize our assumptions below.

Assumption 2.3. There is a collection of matrices {X'Z | i€ [m]} as well as a reference
matriz X (with leading invariant subspace Vi) satisfying the following:
o A\ (X) = Np1(X) >0 for some § > 0.
e The error matrices E' := X' — X satisfy | E'||, < % for all i € [m].

In particular, we will see later that Assumption 2.3 is satisfied with high probability in
the setting of distributed PCA with i.i.d. samples. We can now state our deterministic result.
Theorem 2.4. Let X € R™*? have spectral decomposition (2.1), and let Xi e [m], denote

the local samples of X with leading invariant subspaces ‘71(i) € Q. Let Assumption 2.3 hold;
then, if V is the output of Algorithm 2.1, it satisfies the following error bound:

~ 52 1€[m]

(2.9) dista(V, V1) < 1maxHXi—XHz—k(lgH;ZX"—XH :
i=1 2

!These errors are typically o(1).
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Remark 2.5. The error expression in (2.9) naturally decomposes into two terms. The
second term is the result of the Davis—Kahan theorem applied to quantify the distance of the
top eigenspace of the empirical average % > X' from the true eigenspace and is precisely the
error of a centralized algorithm that approximates Vi by the top eigenspace of the empirical
average of the local matrices. The first term in (2.9) is an order of magnitude smaller than
the error of approximating the leading eigenspace using just the local solution f/l(z), as long
as the individual errors are o(1). In this case, the contribution of the first term in (2.9) is
negligible, and the total error is comparable to that of a centralized estimator.

In the next section, we give a more detailed outline of the proof of Theorem 2.4 that
highlights the individual technical components and how they fit together. The proofs of the
individual components are deferred to the supplementary material.

2.2. Proof outline. The proof of Theorem 2.4 first analyzes the performance of an ideal-
ized (but fictitious) version of Algorithm 2.1 that uses an “ideal” reference solution. In par-
ticular, we first “fix” a matrix V7 with orthogonal columns spanning the leading eigenspace of
X and assume (without loss of generality, due to symmetry) that V; is already aligned with
Vl(l), in the sense that it satisfies (2.8). Then, we introduce a collection of fictitious iterates
T/}l(i)—not to be confused with the (unaligned) local solutions f/l(i)—which represent precisely
what the alignment algorithm would output if V; were used as a reference solution. Then,
we use the path-independence result of [51] to relate the Procrustes fixing estimator to this
idealized version.

For brevity, we use the following notation: if V' = [V} V3] is the matrix of eigenvectors of
X, with Vj containing the principal eigenvectors, we write for an arbitrary matrix Z

(2.10) Zii =V ZV;, .5 € {1,2}.

The first ingredient in our proof is a local expansion lemma motivated by the arguments
in [14].

Lemma 2.6. Let Assumption 2.3 hold, and choose ‘71(1') to be the matriz whose columns are
a basis of the leading invariant subspace of X' and furthermore which is maximally aligned
with Vi, in the sense that

(2.11) argminH‘//\'l(i)U— VlH =1, VYie[m]
UeO, F

Let Z@ be the root of the equation®
and define YO = 1,20 for i € [m]. Then the following holds:

AL 2
<X =1,

(2.13) Hf/l(i) —vi- Y0 =

Vie [m].

2See [14, section 3.2] for motivation of this quantity.
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Proof. See section SM2.1. |

The expansion in (2.13) is nearly sufficient for our purposes; in particular, if we knew that
V2Z has small enough spectral norm, summing over i and applying the triangle inequality
would be sufficient. Even though this is not the case here, we can still show that the average
mY VaZ () depends on the approximation error of the empirical average m ! > Xi— X,
as well as the squares of the local approximation errors Xi_ X , which can be studied and
bounded on a per-application basis.

Lemma 2.7. In the same setting as Lemma 2.6, the set of matrices Yy @ fori € [m] satisfies

m

1 1 — 2 1|1 &
Bl v (4) . X = X
(2.14) mZyz N 52mZHXZ XH2+5 mZXZ A
=1 2 =1 =1 2
Proof. See subsection SM2.2. |

With Lemmas 2.6 and 2.7 at hand, we can finally give an error bound for the average of

the fictitious estimates ‘71(1')‘

Proposition 2.8. Let Assumption 2.3 hold and ‘71(1') be defined as in Lemma 2.6. Then the
following holds:

1 =50 1 & 2 1|1 &
~( g g
(2.15) EZVl -0 5%2\\X1—X||2+5 EZXZ—X
=1 2 =1 i=1 2
Proof. Applying the triangle inequality and the above results, we obtain
RN RN NS
(2.16) e SR TAREE 71 S I Nl AL I O )
m i=1 2 m =1 2
1 mo o 1 mo_
(2.17) <=3 (TARI 7/ (O iy el R
m |4 m“
i=1 2 =1 2
(Lemma 2.6) 1 ™ . 9 1 & (i)
(2 7
(2.18) S a2 X=Xl Y
i=1 i=1 2
(Lemma 2.7) 1 . 9 1111 & ..
(2.19) S oo X=X+ XX =
i=1 i=1 2

This result holds for the fictitious estimates ‘71(1‘); however, it is not clear that the Procrustes-
aligned estimates, V@, of Algorithm 2.1 also satisfy such a property. To show this, we
leverage a recent result by Stewart [51] below; informally, the result says that aligning with
an “accurate enough” reference Vl(l) is equivalent to directly aligning with V7, up to quadratic
error in X' — X.

Lemma 2.9. Let ‘A/l(i) be defined as in Proposition 2.8 and VO as in Algorithm 2.1. Then

~ . N 2
X - Xt |2’

R20) PO =T 47O O, < max {1 - X2, XX}
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Proof. See subsection SM2.3. |

With Lemma 2.9 at hand, we are now ready to show that the Procrustes fixing estimates
produce a good approximation to the leading invariant subspace V;. Our results here do not
depend on a particular application setting such as distributed PCA; we are only using matrix
computations and Assumption 2.3.

Theorem 2.10 (Procrustes fixing).  Let Assumption 2.3 hold. The estimates VO from
Algorithm 2.1 satisfy

1 M~
2.21 Sl NS VA OB vi
(2.21) ng 1

< L || - x|+ L2 S %
2N(522m3XH H2+5 m; o

Consequently, the output of Algorithm 2.1 satisfies

1 ; 2 1|1 <= 4
(2.22) disto(V, V1) S b maxHX X\\2+6Hm;X —XHQ.

Proof. Under Assumption 2.3, applying Lemma 2.9 lets us rewrite V() = Ve 4 T,
where T() satisfies

(2.23) |76 — x|, % - X

|, S max {|| X - X[y} viem),

where we can further upper bound (via Young’s inequality (a + b)? < 2(a® + b%))

Xt - x|,

(2.24) | X" - X1||2

,S max{

(2.25) = |79, < —XH;.

i€[m]

By rewriting the desired statement and applying the triangle inequality, we have

1 1 & )
|23 v -] <500 -u] + 23,

=1

(Prop. 2.8) 1 9 111 & .. 1 & .
_ _ 2= _ il (%)
< M“ K+ g X x| I,
(2.25) 2
< i LI X S x| - X
1 N 2 .
S pgﬁﬁuw—xuﬁ5Hm;x-xuz,
which completes the proof. |
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2.3. Consequences for distributed PCA. With Theorem 2.10 at hand, we can show that
applying Algorithm 2.1 to the distributed PCA problem can yield estimates whose error rate
matches that of a centralized estimator. The first setting we consider is similar to that of [22],
summarized below.

Assumption 2.11. Consider a zero-mean distribution D supported on RY, with covariance
matriz X = E,p [zxT]. We assume the following:
1. Each of the m available machines draws n i.i.d. samples from D, denoted ﬂ?§-i) for
Jj€n], i € [m].
2. The population covariance matriz X satisfies an eigengap condition:

(2.26) Ar(X) = A1 (X) > 6 > 0,

where § is some fized scalar and r is the rank of the target subspace.
3. Any x ~ D satisfies ||x]|, < Vb almost surely.

Note that part 3 of Assumption 2.11 is just for simplicity and is adopted in [22] as well.
Later, we will show that covariance matrices with small intrinsic dimension enable improved
statistical rates.

We first argue that Assumption 2.3 is satisfied with high probability in this setting. To
do so, we first define the events

(2.27) E:=&N&,

1 s o b2 log(2d/p)
. = — — < 9.y e\
(2.28) & {HmZ;X X 2_2 \/T ,
~ . 2
(2.29) £ = {E%HX’L_X’bgmin{g,Q. blog(im"/p)}}?
(i))T

where p is a parameter controlling the probability of failure and Xi = %Z?Zl x§-i) (a:j
denotes the local empirical covariance matrices with leading r-dimensional invariant subspaces
\71(1). By Lemma SM1.3, we have that

(2.30) P(E)>1-2p—2d _ne
. > D mexp [

Then we obtain the following theorem.

Theorem 2.12. Under Assumption 2.11, the estimate V returned by Algorithm 2.1 satisfies

~ b2 log(2d/p) N b%log(2dm/p)

2.31 dist <
( 3 ) 18 2(V7 ‘/1) ~ 52mn (5277, )
with probability at least 1 — 2p — 2dm exp {—Z—iﬁ}, whenever n 2 log dTm.

Theorem 2.12 shows that the error rate of distributed PCA with Algorithm 2.1 decays
roughly as /b”108(cd/p) /s>mn, under the assumption that ||z;|l, < v/b almost surely; however,
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typical modeling choices, including the case where z; ~ N(0,Y), which is explored in the
numerical experiments of subsection 3.1, do not guarantee such boundedness. Although rates
for covariance estimation of sub-Gaussian vectors are on the order of /4/mn [55, Chapter 6.3],
when the covariance matrix exhibits rapid spectral decay the statistical error depends on its
intrinsic dimension, defined for a PSD matrix A as

(A)
2.32) intdim(A) :=
( TAlL. = EQMA

Notice that in general 1 < intdim(A) < rank(A), and that it is possible to have intdim(A) <
rank(A). Using the intrinsic dimension, we can refine our rates as follows.

Theorem 2.13. Modify Assumption 2.11 so that Item 3 (boundedness) is no longer required,
and assume D is a zero-mean sub-Gaussian multivariate distribution with covariance matrix
X := Epop[z2T]. Let ry := intdim(X). Then, as long as n > %;m/p), the output of
Algorithm 2.1 satisfies

(2.33) diStQ(f/, Vl) ,S

o+ loglm/p) (IXI5\* , [ra+loglern) | [IXllg
n 1) mn 1)

C1

with probability at least 1 — p — 2n~ %, where c1 is a dimension-independent constant.

Proof. The proof uses the matrix deviation inequality [53] to obtain tighter concentration
for the empirical covariance matrices but is otherwise identical to the proof of Theorem 2.4.
See subsection SM2.4 for details. [ |

The rate from Theorem 2.13 is similar to that of [18, Theorem 4], absent an additional
factor of y/r appearing in the latter. However, the two bounds are not directly comparable;
the error bound in [18] is stated in terms of the Frobenius distance of the spectral projectors
distp(V, V) := HVVT - VVT}|F It may also be possible to adapt the analysis of [18] to remove
the extra /r factor when the subspace distance is measured in the spectral norm. Table 2.1
gives a summary of statistical error rates in distributed PCA under different settings.

Table 2.1
Comparison of rates for distributed PCA. Here, k := %, where § is the population eigengap, r is the
dimension of the principal subspace, and r, := intdim(X).
Setting Rate Reference
a > b 22] (r=1)
Dc ViB © ( 52mn t o ) Theorem 2.12 (general)
ry+logn 2 r*-Hog(m)) 1¢
D sub-Caussian O (/ﬂ/ L ] Theorem 2.13
O (Vrry/ o + /PR L2) 18]
t Error bound given in terms of disty(Vi, V) := HV1V1 —vvT ”
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3. Numerical experiments. In this section, we present numerical experiments on real and
synthetic data. The code to reproduce them, written in Julia, is available online.® In all
experiments below, we use the label “Central” to refer to PCA using the empirical covariance
matrix of all m - n samples. In the synthetic experiments, we use zero-mean multivariate
Gaussians with covariance matrix

(3.1) Y :=UTUT, U ~ Unif(Qy),

where T" := diag({7i},c[y) is generated according to one of the following two models (recall
Ty := intdim(X)):

Ap—Ag)-(i—1 .
(M1) B R = LR
=909 iy
1 ;< 1-6
(M2) Ti=< , Z =" where « solves ( ) =TT
(1_5).0[2—7’7 Z>7’, 1l -«

In model (M1), the r principal eigenvalues are linearly spaced in [Ag, A\p]. In contrast, in (M2)
all principal eigenvalues are 1, while the trailing eigenvalues decay according to a specified
rate o < 1. Both constructions ensure that the eigengap is exactly equal to §.

3.1. Performance as a function of m and n. We generate a set of synthetic experiments
following the model (M1), setting Ay = 0.5, A\p, = 1, and 6 = 0.2. We then apply Algorithm 2.1
for a variety of (m,n) after setting d = 300, which is the parameter used in [22] (wherein the
case r = 1 is studied). Figure 3.1 depicts the performance of Algorithm 2.1 for a number
of different configurations. For r € {1,4,8,16}, Algorithm 2.1 performs essentially as well
as a centralized PCA, which uses all m - n samples to form the empirical covariance matrix.
For r = 1, our error plots closely resemble those from [22]. In all configurations, “naive”
averaging produces an estimate V with error on the order of (1) that does not always decay
as a function of n; for that reason, we omit its depiction.

Crucially, our theory requires n to be sufficiently large, since otherwise certain condi-
tions may not hold with high probability. For example, if n is too small, it is unlikely that
HX' X H2 < g, as required. For that reason, we generate another synthetic experiment fol-
lowing model (M1). This time, we keep the total number of samples m - n fized and vary m.
The results are shown in Figure 3.2. Unsurprisingly, larger values of m lead to less accurate
local solutions and smaller overall accuracy of the Procrustes-aligned solution. Note that even
if most local solutions are accurate enough, larger values of m (or equivalently smaller values of

n) imply there is a higher probability that the reference solution Vl(l) is a poor approximation
of V1, which inevitably leads to loss of accuracy during the alignment step.

3.2. Ilterative refinement. The estimates generated by Algorithm 2.1 were empirically
observed to be sensitive to the individual solution ‘71(1) chosen as a reference, especially when
the ratio \/% is nonnegligible. To obtain a more robust estimate, we propose a practical
iterative refinement step outlined in Algorithm 3.1. Instead of performing a single round of

3gitlab.com/vchariso/distributed-eigenspace-estimation
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Figure 3.1. Performance of centralized versus distributed PCA with Procrustes fizing for m € {25,50} and
n € {25,50,...,500}, with 6 = 0.2. Target ranks (from left to right): v € {1,4} (top), r € {8,16} (bottom).

Algorithm 3.1 Procrustes fixing with iterative refinement.

Input: local principal subspaces {Vl(i) | i€ [m]}, number of refinement steps n_iter

Set V(O .= Vl(l)
for k=1,...,n iter do

compute V*) using Algorithm 2.1 with reference solution V'
end for
return V(

k—1)

n_iter)

Procrustes alignment, the algorithm goes through multiple iterations where the output of the
previous alignment round is used as a reference solution for the current round. Intuitively,
even if the initial reference solution was somewhat inaccurate, the averaging step will likely
smooth out some of the error, leading to a more accurate reference solution.

To verify this, we perform two experiments. Initially, we compare the performance of
Algorithms 2.1 and 3.1 (with n_iter = 2) in the experiment of subsection 3.1 where m -
n is kept fixed and m varies. Empirically, we observe that the additional averaging steps
make the most difference for small n, where individual reference solutions are more likely to
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I T Bl
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Figure 3.2. Performance of centralized versus distributed PCA with Procrustes fixing for fivzed n-m = 20000
with 6 = 0.2 and varying m; here, Algorithm 3.1 is invoked with n_iter = 2. When the number of machines is
too large, the accuracy of each individual solution degrades, leading to loss of accuracy in the averaged solution
itself.

be inaccurate. Additionally, we compare Algorithms 2.1 and 3.1 using synthetic instances
generated by model (M2) to examine the effect of additional rounds of iterative refinement
on the accuracy of solutions; the results can be found in Figure 3.3. Therein, we report the
subspace distance from the ground truth by varying n_iter € {2,5,15}. For small n, iterative
refinement can decrease the subspace distance significantly, at the cost of a few extra rounds of
computation. Moreover, just a few rounds of refinement are sufficient; the difference between
5 and 15 refinement steps is negligible in all configurations of (n, r,).

3.3. Performance as a function of intrinsic dimension. To examine the influence of
r, = intdim(X) on the performance of the algorithm, we generate a family of covariance
matrices following the model (M2) by letting

7“*6{7'4—2]C ‘ k:2,...,6},

where r is the dimension of the principal subspace, while keeping d = 250, n = 2-d, and m =
100 fixed. Figure 3.4 depicts the results for Gaussian samples generated according to (M2) and
r € {2,5,10}. In all cases, the performance of Algorithm 2.1 is competitive with centralized
PCA, as well as with [18, Algorithm 1], its error being at worst a constant multiplicative factor
larger than centralized PCA. In addition, the performance of Algorithm 3.1, the iteratively
refined variant of Algorithm 2.1 introduced in subsection 3.2, is on par with both centralized
PCA as well as [18, Algorithm 1]. In all cases, an increase in the intrinsic dimension 7, implies
an increase in the error of all estimators.

Moreover, we set up an additional experiment where the intrinsic dimension r, was kept
fixed while varying the target subspace dimension r, for the same choice of parameters d = 250,
n = 2-d, m = 100 and eigengap equal to § = 0.25, using Gaussian samples. In particular,
we tried 3 sets of instances where r, € {16,24,32} and r is varied between 1 and 10, and
compared Algorithms 2.1 and 3.1 with the centralized estimator as well as [18, Algorithm 1].
The experimental findings are depicted in Figure 3.5; we observe that the error follows an
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Comparison of Algorithms 2.1 and 3.1

0.8 - =4

v Tx = 8 08
0.6[;[ ‘\ N

---7,=16
e = 32

disto (V, V)

---7,=16
e = 32

disto (f/, V)

-=-=7r, =16
e = 32

diStg(v, V)

’—E—Alg. 2.1 —B— Alg. 3.1 —a— Central ‘

Figure 3.3. Empirical error of Algorithm 2.1 versus Algorithm 3.1 for a problem with d = 300, m = 50,
and 6 = 0.1 for a variety of n and . := intdim(X). n_iter =2 (top), n_iter =5 (middle), and n_iter = 15
(bottom). The problem instances generated across rows are identical. In the challenging regime where n is
small, iterative refinement can significantly reduce the estimation error. A smaller number of samples per
machine n always leads to more significant gaps between central and distributed solutions.
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r=2 r=10
T T 7 T
= 107 | 107! 101 |
1o N I
= 1072 r —2 §
% 10 1072 i3
! ! 10_3 \ ! ; ! !
23 24 25 24 25 96 24 25 26
Ty Tx Tx

| —— Central —5- Alg. 2.1 —=— Alg. 3.1 (n_iter = 2) —&— [18, Algorithm 1] |

Figure 3.4. Performance of Algorithms 2.1 and 3.1 compared to centralized PCA and [18, Algorithm 1]
for d = 250, n = 500, m = 100, given a covariance matriz X of varying intrinsic dimension r, = intdim(X).
Here, § = 0.25 and r € {2,5,10} (left to right). In all cases, the errors of Algorithms 2.1 and 3.1 are at worst
within a constant factor of the error of the centralized algorithm.

re = 16

T T —Al
. -2 |
= 10 ;
zé/ 3]
o A
2 i

1073 — ‘

L

2 4 6 8 10
r T r

’+Central —=—Alg. 2.1 —8— Alg. 3.1 (n-iter = 2) —B— [18, Algorithm 1] ‘

Figure 3.5. Performance of Algorithms 2.1 and 3.1 compared to centralized PCA and [18, Algorithm 1] for
d = 250, n =500, m = 100 for varying ranks r over instances of fixed intrinsic dimension. Here, 6 = 0.25 and
r« € {16,24, 32} (left to right). In all cases, the errors of Algorithms 2.1 and 3.1 are at worst within a constant
factor of the error of the centralized algorithm.

increasing trend as r varies. However, this does not contradict our theoretical results for the
following reasons:

e Despite the increasing trend, there are cases where an increase in r does not lead to
an increase in error, in contrast to Figure 3.4.

e The centralized estimator, whose theoretical performance depends on r, (see, e.g., [53,
Theorem 9.2.4]), follows the same trend. Indeed, the dependence on r, characterizes
the worst-case error of the estimator as quantified by concentration bounds, while the
per-instance dependence on r and 7, may be more nuanced.

3.4. Experiments with non-Gaussian measurements. So far, we have noticed that Al-
gorithm 2.1 achieves comparable yet lower accuracy than Algorithm 1 in [18]; Algorithm 3.1
closes this gap but still does not achieve strictly better estimation error. An interpretation of
this is due to the fact that the Procrustes-based algorithm always introduces some bias to the
resulting estimator, whereas the algorithm of [18] is unbiased for Gaussian data (which has
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Figure 3.6. Performance of Algorithms 2.1 and 3.1 compared to centralized PCA and [18, Algorithm 1] for
samples drawn from Dy in (3.2) for varying k € {4,8,16} (left to right). In all cases, we compute the leading
eigenspace of dimension r = g Note that Algorithm 1 from [18] achieves the lowest error in most, but not all,
instances.

been the focus of our synthetic experiments so far).
Here, we show that this phenomenon persists empirically even when moving to non-
Gaussian data. In particular, we generate our samples from the following distribution:

(3.2) Dy = Unif {y1,...,yr}, where z; € VdS?

The distribution Dy is not Gaussian and, by the remarks in [53, section 5.6], is heavy-tailed
unless the number of vectors k grows exponentially in d. To avoid having to deal with cen-
tering issues, we estimate the leading eigenspace of the second moment matrix (instead of
the covariance matrix) of Dy. Figure 3.6 depicts the results for an experiment with m = 25
machines, number of samples n € {50,100, ...,500}, and k € {4,8,16}. Remarkably, we find
that Algorithm 1 from [18] results in lower estimation error in most, but not all, instances
generated.

3.5. Consistency of theoretical predictions. In this section, we examine how the empiri-
cal error compares with the theoretically prescribed rate from Theorem 2.13, which provides a
refined bound using the intrinsic dimension. We compare disto(V, V) with the following (sim-
plified) bound f(r4,n), for various configurations of r,,n and fixing (d,m) = (300, 100), 6 =
0.2:

Ty +logm T+ + 2log(n)
(33) f(?"*, 7’L) E 52n 32mn '

Notice that, due to our construction of the eigenvalues of the covariance matrix shown in (M1),
higher values for dim(V}) increase intdim(X). In the figures below, we report the median over
10 independent runs of the algorithm.

Figure 3.7 reveals that the empirical error rate of Algorithm 2.1 is well below the theo-
retically prescribed rate, as f(ry,n) is an order of magnitude loose compared to the subspace
distance disto(V, V7). This is not too surprising, since some of the intermediate results used to
arrive at Proposition 2.8 depend on worst-case perturbation bounds which may not materialize
in practice.
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Figure 3.7. Empirical error of Algorithm 2.1 wversus theoretically prescribed error f(r«,n) from Theo-
rem 2.13, the latter of which is loose by an order of magnitude. Here, (d,m) = (300,100) and § = 0.2.

3.6. Application: Distributed node embeddings. We apply our algorithm to the task of
generating node embeddings for undirected graphs. Given a graph G = (V, E), methods for
generating node embeddings generate a d-dimensional vector z; € R? for all nodes v; € V.
One broad category of unsupervised methods for this task is so-called implicit factorization
methods [25], which attempt to directly minimize a loss of the form

(3.4) S e z) = salos vl ~ (1227 = Sa
('Uiuvj)GD

where D is a set of node pairs (e.g., all connected nodes) and sg(v;, v;) is a proximity measure
between nodes v;,v; (for example, sg(v;,v;) = 1{(vi,vj) € E}). Since the loss is invariant
to arbitrary orthogonal transforms of the node embeddings, our algorithmic framework is
also applicable to combining node embeddings in a distributed environment, in the setting
described below.

Experimental setup. Consider a graph G = (V, E), and let m denote the number of ma-
chines. We assume that machine i observes a “censored” version G = (V, E®) of the
graph G, where edges are “hidden” independently with probability p, so that IP’(EJ(Z,l =1) =
(1 —p)-1{E;) =1}, leading to E[E®] = (1 — p)F Vi. Each machine then applies a node
embedding algorithm to G’. In our experiments, we set the edge failure probability p = 0.1
and use the HOPE method [43] with embedding dimension d = 64 and path decay 5 = 0.1.

Letting Z () ¢ RIVI*d denote the matrix of node embeddings for the ith compute node,
we define the following solutions:

® Zavg = % i Z MDQ® for the Procrustes-aligned estimate, where

Q) = argumin | 20U - 20 .
UeOyq

o /.y for the “central” estimate, which is the node embedding generated by applying
the method on the “uncensored” version of G.
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Figure 3.8. Distance of solutions produced by naive averaging and Algorithm 2.1 from the centralized
solution for the Wikipedia and PPI datasets. The quality of the solution constructed by Algorithm 2.1 does not
degrade with m, as opposed to naive averaging.

Table 3.1
Relative decrease in macro-F1 score using Zavg (Algorithm 2.1 averaging on several censored graphs) instead
of Zent (central solution on entire graph) for one versus rest logistic regression. In most cases, the distributed
solution does not reduce the predictive performance (in several instances, using the averaged solution actually
leads to a better macro-F1 score).

Dataset m= 22 23 2t 2> 98 27
Wikipedia 0.0 0.0 084% 0.0 0.0 0.38%
PPI 27.01% 00 00 00 0.0 0.0

® Z.ive for the vanilla averaged estimate % > Z (@),

We evaluate the solutions in a node classification setting based on macro-F1 score, using the
Wikipedia [40] and PPI (Protein-Protein Interaction) [42] datasets. The node embeddings
serve as features for a logistic regression classifier (after standardization) with /5 regularization
of inverse strength C' = 0.5 (Wikipedia) and C' = 1.0 (PPI). We use a 75%/25% split of
training/test data. Finally, we average classification metrics over 10 random instantiations of
such splits. Table 3.1 depicts the relative loss in F1 score when using Z,yg instead of Zcpg;
we see that the relative loss is minimal (with the exception of a single configuration), with
several configurations actually benefitting from using the averaged solution.

In addition, we compare the distances of Z,,, and Zyaive from the “central” embedding
Zent, as depicted in Figure 3.8. Unsurprisingly, as the number of machines m grows, Znaive
strays further away from the embedding generated from a consistent view of G. On the other
hand, averaging using Algorithm 2.1 leads to estimates whose distance from the centralized
solution does not increase with m.

3.7. Application: Distributed spectral initializations. We present an application of our
algorithm to a distributed method for initializing local search algorithms for quadratic sensing.
In this setting, one observes N measurements of the form

(3.5) Yy = HXﬁTasz + noise;, € [N],
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Figure 3.9. Performance of spectral initialization for quadratic sensing with Xy € RY¥" in the centralized
and distributed settings. Here, d = 100 (left) and d = 200 (right), with n =i -rd , m = 30. Algorithm 3.1 is
invoked with n_iter = 10.

where {ai}ie[ ) are known design vectors, typically satisfying a; RN (0,14), and Xy € R*"
is a matrix to be recovered. Applications of quadratic sensing include covariance sketching [11],
learning one-hidden-layer networks with quadratic activations [38], and quantum state tomog-
raphy [35]. When r = 1, quadratic sensing recovers the well-known phase retrieval problem,
which can be viewed as an instance of the Gaussian single-index model, also discussed in the
applications of [9]. Even though the natural least-squares formulation of this problem is non-
convex, there are provable algorithms in the literature (see, e.g., [8,10,13] for a nonexhaustive
list) that retrieve a global solution (up to rotation) by performing a carefully initialized lo-
cal search. Assuming for simplicity that Xy € Qg,, a natural spectral initialization for such
methods works as follows: we form the positive semidefinite matrix Dy, given by

N
1
(3.6) Dy = Taal, T():R—-Ry,
i=1
where 7 is commonly chosen as a truncation operator, e.g., T(y) := yl{y < 7} for some

threshold 7. Standard arguments then show that the leading r-dimensional eigenspace (de-
noted by Xg) of Dy forms a nontrivial estimate of X; with high probability, as long as the
number of samples N > rtdlog(d) [8].

Our alignment framework can be applied to the problem at hand when the measurements y;
are collected in several different machines. To initialize, e.g., stochastic local search algorithms,
each machine can form its “local” Dy matrix and compute a weak estimate Xy of Xy; a central
coordinator can then refine the weak estimate by aggregation and redistribution to local
machines. Even though our theory is not directly transferable, we nevertheless demonstrate
that Procrustes fixing can be applied for this more general problem.

To that end, we design the following experiment: we set d € {100,200}, m = 30 and
vary r € {2,5,10}. We generate a set of instances with Xy ~ Qg4,, let n take on values
ne{i-r-dyie{l,...,8}}, and apply Algorithm 3.1 for better estimates. In Figure 3.9, we
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plot the distance H (Ig — X3 X tiT )Xo H , 88 a function of 7. The problem becomes more difficult as
the rank r increases; nevertheless, the distributed initialization scheme weakly recovers Xy as
long as n 2 2rd on each machine. In contrast, naive averaging of the local solutions produces
an estimate that is nearly orthogonal to X} (we omit its depiction).

4. Discussion. We presented a communication-efficient algorithm for distributed subspace
estimation, which averages the local estimates in a principled manner and achieves comparable
performance to a purely centralized estimator using the same amount of data for distributed
PCA. Our algorithm generalizes that of [22], which only addresses the rank-1 case, and requires
a single round of communication between compute nodes and a central coordinator.

From a theoretical perspective, it is straightforward to adapt our analysis to the setting
where a fixed set of vectors is distributed across machines in an i.i.d. fashion, instead of as-
suming that all vectors are drawn from the same distribution; in that case, the objective is to
approximate the centralized empirical covariance matrix, which can be viewed as the expecta-
tion of each local empirical covariance matrix (this is in fact the setting depicted in Figure 1.1).
It may also be possible to leverage the insight and analysis of [14] to prove improved rates
for distributed covariance estimation with error measured in the ¢3 o norm (which yields en-
trywise bounds in the rank-1 case). Nonetheless, this will require a more careful analysis of
the local expansions of each local solution, as well as £ o, concentration bounds for empirical
covariance matrices which are asymptotically tighter than the corresponding spectral norm
bounds.

From a practical perspective, our algorithm is not necessarily confined to distributed
covariance estimation. Instead, Procrustes fixing local solutions before averaging can be em-
ployed in any estimation problem where local estimates can be rotated arbitrarily, as we
demonstrated with distributed node embeddings and spectral initialization.

The setting of this paper also gives rise to a few questions to explore in future work. One
example is the following: what if some of the machines are compromised and can return an
arbitrary matrix with orthonormal columns instead of an unbiased estimate of the leading
eigenspace? In this case, we believe it may be possible to adapt the proposed method using
a robust distance estimator to choose an appropriate reference solution for Algorithm 2.1
with high probability and treating the averaging step as a robust mean estimation problem.*
Finally, it would be interesting to identify other classes of learning problems for which our
deterministic result can be used in a black-box fashion to yield competitive estimation rates
in the distributed setting.
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