Multi-Dimensional Balanced Graph Partitioning via
Projected Gradient Descent’

Dmitrii Avdiukhin
Indiana University
Bloomington, IN

davdyukh@iu.edu

ABSTRACT

Motivated by performance optimization of large-scale graph
processing systems that distribute the graph across multi-
ple machines, we consider the balanced graph partitioning
problem. Compared to most of the previous work, we study
the multi-dimensional variant in which balance according to
multiple weight functions is required. As we demonstrate by
experimental evaluation, such multi-dimensional balance is
essential for achieving performance improvements for typical
distributed graph processing workloads.

We propose a new scalable technique for the multi-
dimensional balanced graph partitioning problem. It is based
on applying randomized projected gradient descent to a non-
convex continuous relaxation of the objective. We show how
to implement the new algorithm efficiently in both theory
and practice utilizing various approaches for the projection
step. Experiments with large-scale graphs containing up to
hundreds of billions of edges indicate that our algorithm has
superior performance compared to the state of the art.

PVLDB Reference Format:

Dmitrii Avdiukhin, Sergey Pupyrev, Grigory Yaroslavtsev. Multi-
Dimensional Balanced Graph Partitioning via Projected Gradient
Descent. PVLDB, 12(8): 906 - 919, 2019.

DOI: https://doi.org/10.14778/3324301.3324307

1. INTRODUCTION

Distributed graph processing systems have been widely
adopted in recent years to enable analysis and knowledge ex-
traction from large-scale graphs. Systems such as Giraph [6],
GraphX [19], GraphLab [30], and PowerGraph [18] allow
users to use a vertex-centric model for applications which
can be executed on a cluster of worker nodes. In this setting,
each worker node operates on a subset of the input graph
and communicates with other workers by sending messages.

*Research supported by NSF award CCF-1657477 and Face-

book Faculty Research Award. Full version: http://arxiv.

org/abs/1902.03522.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 8

ISSN 2150-8097.

DOL https://doi.org/10.14778/3324301.3324307

Sergey Pupyrev
Facebook
Menlo Park, CA

spupyrev@gmail.com

906

Grigory Yaroslavtsev
Indiana University
Bloomington, IN

grigory@grigory.us

The process of splitting the input graph into these subsets,
also known as graph partitioning, is essential for optimizing
performance of such systems [3,18,20,43].

Created partitions have a significant impact on the com-
munication between different workers and the resource usage
of individual workers. In order to maximize the process-
ing speed, the partitions should largely be independent to
minimize communication. At the same time, computation
executed on each partition should take approximately the
same amount of processing time, as the overall performance
depends on the slowest worker. These constraints give rise to
the BALANCED GRAPH PARTITIONING problem whose goal
is to divide the vertices of a graph into a given number of
(approximately) equal size components while minimizing the
resulting edge cut. BALANCED GRAPH PARTITIONING is a
classic and thoroughly studied problem from both theoretical
and practical points of view [9,12]. In the context of dis-
tributed graph processing, the problem is typically studied
in two variants.

In the vertex partitioning model, each worker machine is
assigned an equal number of vertices with the goal of mini-
mizing the number of cross-machine edges. Since messages
are usually sent between adjacent vertices, storing tightly
connected subgraphs on the same worker can reduce com-
munication and hence running times of jobs. It has however
been observed that this strategy does not lead to equally
loaded partitions for real-world graphs with power law de-
gree distribution [18]. Graph partitioning algorithms tend to
collocate high-degree vertices and corresponding partitions
take much longer to process, resulting in longer execution
time overall.

The edge partitioning model has been suggested to alleviate
the above imbalance problem [18,29]. In this model the goal
is to partition the graph so that the number of edges in every
component is the same, while the number of incident edges
across different components is minimized. Good partitions
according to this model typically result in better balance
across workers and reduced computation time in comparison
to the trivial hash-based assignment of vertices to worker
machines. However, edge-based graph partitioning can still
result in performance regressions [3,40].

To analyze the source of regressions, we performed a simple
experiment of running a Page Rank algorithm implemented
on top of Giraph utilizing various graph partitioning meth-
ods. Figure 1 illustrates the histograms of running times for
individual workers processing a graph with 800M vertices
and 80B edges. As discussed above, partitions according to
the verter partitioning model suffer from unequal distribu-

https://doi.org/10.14778/3324301.3324307
http://arxiv.org/abs/1902.03522
http://arxiv.org/abs/1902.03522
https://doi.org/10.14778/3324301.3324307

iteration time, sec
N oW N
o © o

—_
o

o

hash
6.25%

vertex partitioning
72.72%

edge partitioning

vertex-edge partitioning
68.84%

59.23%

Figure 1: The running time of an iteration of Page Rank on a Giraph cluster of 16 worker machines using various graph
partitioning strategies. The numbers indicate the average percentage of local (uncut) edges per worker, which is proportional to
the number of local messages for the distributed graph processing workload. Vertex-edge partitioning achieves approximately

12% iteration time improvement compared to hash.

tion of edges across workers. A single overloaded partition
contains 1.92x more edges than an average one, which re-
sults in 1.5x longer execution time. We also observe a high
correlation (p = 0.79) between the number of edges assigned
to a partition and the corresponding processing time in this
experiment. Partitioning according to the edge partitioning
model yields a 1.08x running time improvement over the
baseline, though there is still a noticeable imbalance between
the fastest and the slowest worker machines. This can be
explained by uneven distribution of vertices among workers.
Machines with more vertices have higher operational over-
head such as serialization of sent messages whose number is
proportional to the number of vertices on a worker. Here we
observe an 1.33x imbalance in the number of vertices and a
moderate correlation (p = 0.62) between the running time
and the vertex count on the workers.

In order to mitigate the issues described above we in-
troduce a new strategy, vertex-edge partitioning, which is
designed to balance the number of vertices and edges across
workers simultaneously. As shown in Figure 1, this is done at
a cost of a lower edge locality (percentage of edges with both
endpoints on the same machine), and thus, higher communi-
cation volume. The resulting assignment results in a 1.12x
speedup over the hash-based model. Motivated by the above
experiment and a number of earlier studies [3, 20, 40, 43|,
we formalize a new model for graph partitioning, which is
suitable for real-world distributed graph processing systems.

We now formally describe the model in the most general
setting which allows one to require balance according to d
different unrelated weight functions. Let G(V, E) be a graph
with d vertex weight functions w™,...,w® : V = RT,
each assigning a positive weight to every vertex in the graph.
Let w (V) = D vev w (v) be the sum of weights of all
vertices in the graph according to the j-th weight function.
Given an integer k and a parameter € > 0, the goal is to
partition the vertex set V into k sets Vi,..., Vi such that,
for each weight function w¥ and each part V;, the sum
of weights in V; is approximately the same and close to
the average, that is, ZveVi w(j)(v) =(1+ 6)710(31)9(‘/). We
call such partitions e-balanced. Finally, among all such e-
balanced partitions the goal is to find one that maximizes
the number of edges whose both endpoints are contained
within some component of the partition and hence min-
imizes the size of the cut. This problem is referred to

907

as MULTI-DIMENSIONAL BALANCED GRAPH PARTITIONING
(MDBGP).

The simplest example of MDBGP is the classic balanced
graph partitioning problem, which is equivalent ot the ver-
tex partitioning strategy described above and can be ex-
pressed using a single weight function w (v) = 1. Since
wM (V) = |V| this requires that we maximize edge locality

while ensuring that |V;| = % Using two weight functions,

wP(v) =1 and w® (v) = deg(v), corresponds to requiring
balance on the number of vertices and edges in the parts of
the partition and hence corresponds to the vertex-edge par-
titioning approach mentioned above. Indeed, w? (V) = 2|E|
and hence in addition to balance on the number of vertices
this requires that }, . deg(v) ~ % However, the model
is not restricted to vertex- and edge-balance (as in the afore-
mentioned vertez-edge partitioning) but can take arbitrary
user-specified weights. In particular, when partitioning the
vertices of the graph between the workers for load balancing,
various weights modeling expected vertex activity can be
used (historical data on individual vertex load, proxy values
for the load such as PageRank, etc).

While a large body of work exists offering practical
solutions for the one-dimensional version of the prob-
lem [7,12,13,14,22,23,33,41,42], as well as on theoretical
foundations of graph partitioning [4, 26, 32], literature on
principled and scalable approaches for the multi-dimensional
case is quite sparse [24,35,36,37]. In particular, if the weight
functions are unrelated to each other, one can easily con-
struct examples when no feasible solution exists that satisfies
all balance constraints even for two weight functions. How-
ever, it is empirically observed that instances coming from
applications often allow balanced solutions for several weight
functions of interest simultaneously. For classical local search
based algorithms such as [25], handling of multiple unrelated
weight functions is challenging since imposing one balance
constraint might violate another; hence, finding a good local
move becomes computationally hard. We overcome this dif-
ficulty by using a continuous relaxation of the problem. In
order to obtain an integral solution, we apply randomized
rounding which preserves balance with high probability.

1.1 Our Contributions

We present a scalable algorithmic framework for the prob-
lem of balanced partitioning of large graphs according to

multiple user-specified weight functions while maximizing the
number of edges inside the resulting components. Our frame-
work consists of applying the projected gradient descent on a
standard relaxation with a suitably chosen projection method.
The relaxation is to maximize a non-convex quadratic func-
tion f(x) = %XTAX for x € R", where A is the adjacency
matrix, subject to a constraint x € K for a certain convex
body K defined by the weight functions. Section 2 provides
the exact description of the relaxation. Note that the gra-
dient descent step only uses a matrix-vector multiplication
since V f = Ax. Thus, the algorithm allows a straightforward
distributed implementation.

While applying projected gradient descent to solve non-
convex optimization problems subject to convex constraints
is a well-studied approach in non-linear optimization (Section
2.3, [8]) and machine learning (Section 6.6, [21]), one has to
overcome two technical challenges to make it applicable to the
multi-dimensional graph partitioning problem: 1) projection
step is computationally expensive, 2) existence of points with
small gradient (saddle points) slows down convergence.

We show how to address the first challenge by designing
efficient projection step algorithms tailored to the standard
relaxation of MDBGP. While convergence to the projection
point can be achieved using various alternating projections
methods [15], for d < 2 we give one-shot exact solutions with
almost linear running time.

THEOREM 1.1. Running time of the projected gradient
descent step is O(|E|+|V|log? ™ |V|) for d < 2 and scales as
O(|E|/m~+|V|1log® ' |V|) when distributed over m machines.

In order to address the second challenge, we use small per-
turbations to get out of saddle points, where the perturbation
vectors are sampled from a scaled n-dimensional Gaussian
distribution. We refer to the resulting algorithm as Gradi-
ent Descent (GD), see Algorithm 1. Convergence analysis of
GD remains an open problem. While noisy gradient descent
is known to have fast convergence to a local optimum for
non-convex optimization subject to equality constraints, if
inequality constraints are allowed, convergence analysis is
unknown [16].

Our experiments show that GD scales to graphs with up to
several billions of vertices and several hundreds of billions
of edges. We perform a comparison of various graph parti-
tioning strategies for optimizing several real-world Giraph
workloads. The results demonstrate that multi-dimensional
balancing is a suitable objective for achieving performance
improvements, leading to speedups in the order of 10% — 30%
over the state-of-the-art one-dimensional strategies. Com-
pared to existing scalable graph partitioners, such as Social
Hash Partitioner [22], Spinner [33], and Balanced Label Prop-
agation [34,42], the algorithm is conceptually simple and
obtains close-to-perfect balance across multiple dimensions.

1.2 Previous Work

While one-dimensional balanced graph partitioning has
been studied extensively and a number of tools exist [7,13,14,
22,23,33,41,42] (see also surveys by Bichot and Siarry [9] and
by Bulug et al. [12]), to the best of our knowledge none of the
practical algorithms for this problem have been previously
based on running gradient descent on a continuous relaxation.
Existing approaches are inherently discrete and are based on
combinations of various discrete algorithms: greedy heuristics

908

(METIS [23], Fennel [41]), branch-and-bound [13], label prop-
agation and local search (Balanced Label Propagation [42],
Social Hash Partitioner [22], Spinner [33]), as well as hybrid
approaches (linear embedding method combined with various
optimizations [7]). Due to the combinatorial nature of these
algorithms, their generalizations to the multi-dimensional
case appear to be non-straightforward without substantial
losses in performance, while our continuous relaxation han-
dles multiple balance constraints uniformly. Compared to
the one-dimensional version, existing literature on the multi-
dimensional version is rather sparse [24,35,36,37] and the
main publicly available tool for the problem is currently
METIS [24,37].

Vast literature exists on optimization of non-convex func-
tions and the interest in this topic lately has been particularly
high. However, in the constrained case when the optimization
has to be performed over a convex body, fairly little is known;
see classic optimization literature [8,11,44]. Recent results on
the non-convex optimization problem subject to convex con-
straints and its special cases include [5,16,17,21,39]. Closest
to our work in terms of techniques is [27] who use projected
gradient method to solve convex programs involving the max-
norm and show how to solve large semidefinite programming
relaxations of MAX-CuT. Their results are quite different
from ours as we consider a balanced version of graph parti-
tioning and expect our algorithms to be scalable; the largest
instances handled by [27] have |V| = 20K and |E| = 40K.
Since we require that our algorithms scale to graphs with
billions of edges, using existing general purpose software for
constrained quadratic programming is infeasible.

2. PROJECTED GRADIENT DESCENT

For an integer ¢ > 1, we use notation [t] to denote the
set {1,...,t}. The weighted d-dimensional balanced graph
partitioning problem is defined by a collection of d weight
functions w(l),...7w(d>, where w): V — R*. For a set

S C V we use notation w(S) = D ves w.

DEFINITION 2.1 (MDBGP). For a graph G(V, E), the
MULTI-DIMENSIONAL e-BALANCED GRAPH k-PARTITIONING
problem is to partition the verter set V into k sets
Vi,..., Vi such that for each j € [d], it holds that

. »
wP (Vi) = (1+ 5)% for all i € [k]. Among all such
partitions the goal is to find one that mazximizes the number
of edges whose both endpoints are within some part.

In this paper we focus on the 2-partitioning problem; for
the general variant of k-partitioning, we apply the algorithm
recursively. For £ = 2 MDBGP is equivalent to the following
integer quadratic program:

1
Maximize: 5 Z (ziyxiy + 1)
(i1,i2)EE
Subject to: ngj)xi < EZwZ(j) vy € [d]
i=1 i=1

xz; € {-1,1} VieV

J

The interpretation of x; variables is that if x; = 1 then
i € V1 and if x; = —1 then ¢ € V5. The objective is then
the same as in MDBGP and counts the number of edges

whose both endpoints are contained in some part of the
partition. Indeed, an edge (i1,%2) makes a contribution of
1 to the objective when x;, = z;, (and hence z;, x;, = 1)
and 0, otherwise (since x;,z;, = —1). The constraints are
equivalent to —ew® (V) < w? (V1) — 0w (Vz) < ew@ (V).
Adding or subtracting w<j)(V) to both sides and dividing by

2, we have w? (V;) = (1i5)% as required in MDBGP.

After dropping the additive term, the objective can be
expressed as f(x) = 3x” Ax and has gradient V f(x) = Ax
and Hessian V?(f) = A. Finally, we use a continuous relax-
ation of the above problem where we replace the integrality
constraints with x; € [—1,1] for all ¢ € V. A solution to this
continuous relaxation can be converted into an integral solu-
tion using randomized rounding. Using independent random
variables X; for each vertex such that Pr[X; = 1] = H%
and Pr[X; = —1] = 15% the expected value of the objec-
tive on the rounded solution (X7i,..., X)) is the same as
on the initial fractional solution (z1,...,z|y|) while all bal-
ance constraints are still approximately preserved with high
probability by concentration bounds.

2.1 Overview

We propose the following algorithm for the multi-
dimensional balanced graph partitioning problem based on
the continuous relaxation described above. The algorithm
is referred to as Gradient Descent (GD), see Algorithm 1. It
computes a sequence of vectors { x(* }, where 2" € [~1;1]
for all i € V and t. Here x© is initialized with zero vec-
tor, and x“*Y) is computed by applying projected gradient
descent iteration to x®. Each iteration consists of three
steps.

Step 1: Adding noise. We add Gaussian noise to x(* ob-
taining a noisy vector z® . The noise is drawn from the n-
dimensional Gaussian distribution N, (0,7:) with zero mean
and variance 7, in each coordinate. The addition of noise to
x® allows to escape from saddle points, e.g. x@ =o.

Step 2: Gradient descent. We obtain y® from the noisy
vector z® via a gradient descent step with step size v:. Note
that the gradient at z® is given as Az® hence this step can
be expressed as y® = (I + ;. A4)z™®.

Step 3: Projection. The resulting vector y“) is then pro-
jected on the feasible space Boo N ﬂ?zl 87, where:

Bo ={x€R"|Vi:z; € [-1,1]}
S={xeR"| Y wla| < > w?} forjed,
i=1 i=1

that is, Beo satisfies that ||x||cc < 1 and S corresponds to
the constraints imposed by the balance of weights according
to the j-th weight function.

The final solution is obtained by rounding last x®: each

£
vertex ¢ is assigned to part Vi with probability — 2“. Note
that this ensures that the expected number of edges whose

endpoints belong to the same part after this rounding is
. t) (¢
given as 1 > (iw&eE(x()glt) 4 1).

i1 Liy

The algorithm uses parameters 7¢,y:, and I, where t is the
iteration index. Here 7, controls the magnitude of noise, v:
is the step size, and I is the number of iterations. We discuss

the selection of parameters in the experimental Section 4.

2.2 Projection

909

Algorithm 1: GD (d-Dimensional Balanced Graph 2-
Partitioning via Randomized Projected Gradient Descent)
: Graph G(V, E), € € [0, 1], weight functions
Wi1,...,Wq: V—)R+
parameters: I, {n:}. 2}, {v:} 2o
output : e-balanced partition w.r.t w(1>, ..
into (V1, VQ)

input

S w D of V

1 K =B NN, 8!

2 x© = o;

3fort=0tol—1do

4 2z = x® N, (0,7:); // Noise addition step

5 y) = (I +4,4)z®; // Gradient descent step

6 x*) = argmin ||[y**" — x||2, // Projection step
xeEK

7 Vi =Vo =0 // Randomized rounding

8 for each i € V do

9 With probability ””52“ , let Vi = ViU {i};

otherwise, Vo = Vo U {i};

In the projection step of GD (Line 6) we need to find
argmin, . [y — x||2, where K = Boo N ﬂ?:l SZ. Denot-

ing y**Y as y we formulate this step as an optimization
problem:
Minimize: f(x) = ||x — y||3
Subject to: ¢ =27 —1<0 Vi € [n]
n
WY =3 wPzi—e<0 Vje[d
i=1
hY = —ngj)xi —e<0 Vjeld
i=1

The optimum solution to the optimization problem has to
satisfy KKT conditions:

Stationarity:

n d n
y-x=> mziei+ Y () —p) > whe;
i=1 j=1 i=1

Complementary slackness 1:

pi(z; —1) =0, Vi € [n]
Complementary slackness 2:
7) zn: @), _ -0 71 d
ny w;m 'y —e | =4, J € []
i=1
n (Z ww; + e) =0, Vjeld
=1

J

Here p;, u(f), ng) > 0 are the dual variables and e; is the

i-th standard unit vector. It is a standard fact (see [11],
Chapter 5.5.3) that for convex optimization subject to linear
constraints Stationarity, Complementary slackness and Pri-
mal/Dual feasibility are necessary and sufficient conditions

for the optimum solution. Thus we just focus on satisfying

these conditions bel(oyv.
b)

Let v Zj:l ;=

(py ,u(_]))ng). Then by Stationarity for
each i we have y; — x; = p;x; + ;. Consider the following
three cases:

Case 1. (y; > 1+ ;). If u; = 0 then by Stationarity
x; = y; — i > 1 which violates primal feasibility conditions.
Therefore ;> 0 and 22 = 1 by Complementary slackness 1.
Among the two roots z; = 1 and x; = —1 the second root
can be ruled out and hence x; = 1. Indeed, if z; = —1 then
by Stationarity y; + 1 = —u; + ; which contradicts u; > 0
and y; > 1+ ;.

Case 2. (y; < —1 + ;). This case is symmetric to the
previous one and thus z; = —1 in this case.

Case 3. y; € [—1+7;, 147]. First we show that u; = 0. In-
deed, assume that pu; > 0. Then z; = +1 by Complementary
slackness 1. Both cases lead to contradiction:

1. (z; = 1). By Stationarity y; — 1 = u; + 7 which
contradicts with y; < 1+ ~; and u; > 0.

2. (x; = —1). Similarly to the above by Stationarity we
have y; + 1 = —u; + i which is a contradiction with
yi > —1+ v and p; > 0.
Therefore in this case we have pu; = 0 and hence by Station-
arity x; = y; — Yi- _

Let \; = ,u(ﬁ) — 1Y and assume that these values are
known to the algorithm. For z € R we use notation [z] =
min(1, max(—1, z)) for the truncated linear function. Using
the analysis above the projection step is simply z; = [y; —
ijl)\ngj)}. It remains to show how to find { A, }.

Note that from Complementary slackness 2 it follows that
either Mg) =0 or ,u(_j) = 0 since both of these values being
positive leads to a contradiction. This leads to three cases: 1)
,u<+j) =0,u >0, 2) pt = 0,u$> > 0 and 3) uEg) =u? =0
which correspond to the three possibilities for sign(A;). For
each of the d dimensions we can try all three choices. For
a fixed guess of the signs let Sy = {j: \; > 0}, So =
{j: Aj = 0} and S— = {j: A\; < 0}. Assuming a correct
guess of sign(A;) for each of the dimensions the optimization
problem above reduces to the following:

PROPOSITION 2.1. For the correct guess of sign(\;) for
all j € [d] it suffices to find the optimum of the above opti-
mization problem without the constraints for j € So. This
optimum 1s unique.

The proof is given in the full version. Using Proposition 2.1
and trying all guesses for sign(A;) we can reduce the pro-
jection step to 3% instances of the following optimization

problem:
Minimize: fx) =lly — |3
Subject to: gi=x;—-1<0 Vieln

n n
ngj)mi =g, Vje€ S+;Zwij)xi =—¢, VjeSs_

i=1 i=1

J

which can be done by finding numbers A; > 0 for
j € St and A\; < 0 for j € S_ and setting z; = [y; —
Zj€S+U57 Ajwij]. The choice of A;’s has to satisfy the con-

straints > 7 wi;x; =€ forall j € Sy and Y1 wijz; = —¢

910

°y

(w,x) =¢

(w,x) = —¢

Figure 2: One-dimensional projection. First, the initial
point y is moved by vector —A*w, which is an orthogonal
vector to planes, corresponding to balance constraints. Then
the resulting point is projected on the cube.

for all 5 € S_. In the analysis below we assume that
d = |S4+US_]| corresponds to the “effective dimension” of the
problem.

2.3 Exact Projection Algorithms

Projection for d = 1. As a warm up, we first show how
to perform exact projection for d = 1 in O(nlogn) time,
proving Theorem 1.1 for d = 1. This can be further improved
to O(n) using a more careful approach [31]. However, to the
best of our knowledge, no fast algorithm is known for d > 1

which is the main focus of our work. Dropping the second
index to simplify presentation (that is, w; = wil)) and using

the fact that x; = [y; — Aw;] we have:

Zwil'z’ = Z w; + Z —w; +
i ity 214w, iy, <—14Aw;
+ Z wi(yi —)\wl)

iy, €E(—14+Aw;, 14+ A w;)

We introduce notation h;(\) where each h; is the following
piecewise linear function:

w; if)\<(yi—1)/wi
hi(X) = Q wi(y: — Awi) it X € [(yi — 1) /wi, (yi + 1) /wi]
—w; fA> (yi+1)/w;

n

Thus > wiz; = Y, hi(\) and the problem reduces to
finding A* such that >, hi(*) = & where the sign depends
on whether our dimension is in S; or S_. Since w; > 0 for
all i each h; is monotone in A and so the function), h; is
a monotone piecewise linear function. The value of A* can
be found in O(logn) iterations of binary search where each
iteration requires O(n) time to evaluate the sum. This gives
the overall running time of O(nlogn). See Figure 2 for an
illustration.

Projection ford = 2. For d = 2 we need to find (A1, A2) such
that Y7 b9 (A1, A2) = =e for j = 1,2, where A (A1, A2)

2y

y—)\1w(1) &': ‘

¥.
y—)\111)(1) _)\2w(2)

Figure 3: Two-dimensional projection. Initial point y is
moved by vector Mw® + Xw® and then projected on the
cube.

Table 1: Theoretical properties of projection methods.

d Output Time required
Alternating any xe K Until convergence
Dykstra’s any | projection | Until convergence
Exact (ours) | d <2 | projection O(nlog™Tn)
is defined below.
ng) ifo; <yi —1
B (A, he) = S w (s —00) ifou € [yi — 1,y + 1]
—ng) ifo; >y +1

where o; = Alwgl) + /\gwgz). The projection process is shown
in Figure 3. In Appendix A, we prove Theorem 1.1 for d = 2
showing that nested binary search can be used to solve this
problem in O(nlogn) time.

3. IMPLEMENTATION

3.1 Projection algorithms

We considered the following three methods for the projec-
tion step (Algorithm 1, Line 6). Their theoretical properties
are summarized in Table 1.

e Alternating projections: A standard approach for projec-
tion on the intersection of convex sets is the alternating
projections method (see [10]). It is easy to implement
projections on B., and ﬂ?zl SJ separately. Since both
are convex bodies by alternating projections on each of
them one can guarantee convergence to a point in the
intersection, but there is no guarantee that this point
will be the actual projection. In practice, we are able
to achieve slightly better balance by modifying this
approach slightly and projecting on S instead of SJ.
This still ensures that we get a point in the intersection
in the end.

e Dykstra’s projection: We also consider Dykstra’s pro-
jection algorithm [1,15]. This is a modification of the
alternating projections method which is guaranteed to
converge to the projection.

e Fzact projection for d < 2: This is the algorithm pre-
sented in Section 2.2. In our experiments Dykstra’s al-
gorithm and exact projection give similar results, since
they find approximately the same projection point.

In Section 4.3 we study how quality of results produced by
GD depends on choice of one of the projection methods above.
Since the exact projection algorithm is computationally the

911

most expensive, in our experiments we mostly use the al-
ternating projections method. Moreover, since in practice
each iteration of alternating projection is computationally
expensive, in the intermediate iterations we project on each
plane and the cube only once, while in the last iterations
we run the alternating projections method until convergence.
We refer to this choice as “one-shot” alternating projection
below.

3.2 Adaptive Step Size

Recall that Algorithm 1 has the following parameters:
Gaussian noise variances for each step {7, } and step size
parameters {7: }. Due to the spectral properties of the ad-
jacency matrix in our experiments, the algorithm does not
encounter any saddle points other than the initial point x = 0.
Therefore it suffices to add Gaussian noise only at the first
iteration (that is, n, = 0 for ¢ # 0).

The simplest choice of the step size parameters {7; } is
constant, but it gives suboptimal results in our experiments.
Carefully chosen step size parameters for different iterations
not only gives better performance but can also be used to
ensure that convergence can be reached in a fixed number of
steps. In section 4.3 we discuss how to choose the step size
to achieve good performance for a wide range of graphs.

The choice of step size parameters is complicated by the
projection step. The change in the objective function and the
progress towards an integral solution can both be related to
the progress in Euclidean distance ||x¢ — X¢+1]|| between the
iterations, which can be greatly reduced by the projection.

Another important implementation detail is our handling
of vertices which are close to integral. When the number of
such vertices becomes large, the progress of the algorithm
can slow down. This is due to the fact that while the gradient
vector is still large, all of its large components correspond to
already integral vertices and point to the outside of the feasi-
ble region. These components dominate in the computation
of the projection step, which leads to slow convergence. In
order to avoid this issue, we “fix” such vertices so that they
become integral and no longer participate in the gradient
update and the projection step. As we show in Section 4.3,
this yields noticeable improvements in the quality of the
results.

4. EXPERIMENTS

We design our experiments to understand how well the new
partitioning algorithm behaves on real-world datasets and
how it affects the performance of distributed graph process-
ing. We are primarily interested in two quality measures of
partitions: cut size (number of non-local edges) and maximum
imbalance over all dimensions (maximum relative deviation
of the weight in a part of the partition from the average). As
pointed out in Section 1, we are not aware of an alternative
scalable approach for solving the multi-dimensional balanced
partitioning. However, some of the existing techniques for
one-dimensional partitioning can be adapted for the multi-
dimensional case. Next we discuss several such techniques
that we evaluated.

Hash is the simplest partitioning strategy that assigns
vertices to worker machines by hashing the vertex identi-
fiers. Hashing is stateless, extremely fast in practice, and
requires no preprocessing of the graph, which made it the
default strategy in Giraph. The main disadvantage is that

the majority of sent messages are non-local and may results
in significant communication.

Spinner is a graph partitioning algorithm that can be
applied to process large-scale graphs in a distributed environ-
ment [33]. The algorithm is based on the label propagation
technique in which vertices exchange their labels trying to
pick the most frequent label among its neighbors. This pro-
cess guarantees a high number of adjacent vertices having the
same label, which are then assigned to the same worker. Spin-
ner does not enforce a strict balance across partitions but
integrates score functions that penalize imbalanced solutions.

BLP is another approach based on the balanced label propa-
gation and combines the ideas of Ugander and Backstrom [42]
and Meyerhenke et al. [34]. On the first step, the method
creates a size-constrained clustering of the input graph us-
ing significantly more clusters than the number of available
machines, k. In our implementation, we construct ¢ x k clus-
ters for ¢ = 1024 and forbid a cluster to contain more than

% . E
JX IL vertices and EL edges. On the second step, we ran-

cxk
domly merge the clusters into k parts, which results in the

multi-dimensional balance even if the original clusters have
different sizes.

SHP is a distributed graph partitioner [22,38] that is based
on a classical local search heuristic [25]. Although SHP does
not provide balancing on multiple dimensions, it supports
a mode with several dimensions whose final balance is not
guaranteed. The algorithm works by balancing on a new
dimension, which is a combination of the specified dimensions.
We configure SHP to find solutions having the same number
of edges (with a higher coefficient in the combination) and
the same number of vertices (with a lower coefficient) in
every part.

We implemented the algorithms and extensively experi-
mented with the Giraph framework, which is used as the
primary tool for large-scale graph analytics at Facebook [2,6].
Although the evaluation is performed with the single dis-
tributed graph processing system, we believe that our main
conclusions are valid for other frameworks relying on the
vertex-centric programming model. For our experiments,
we use four large social networks that are publicly avail-
able [28]. LiveJournal, Orkut, Twitter, and Friendster
are undirected graphs containing 4.8, 3.1, 41, and 65 mil-
lion of vertices and 0.04, 0.12, 1.2, and 1.8 billion of edges,
respectively. In addition, we experiment with several large
subgraphs of the Facebook friendship graph that serve to
demonstrate scalability of our approach and its performance
on real-world data. We denote the graphs by FB-X, where X
indicates the (approximate) number of billions of edges; this
data is anonymized before processing.

Next we analyze the quality of the solutions produced by
the algorithms on our dataset (Section 4.1) and evaluate var-
ious graph partitioning strategies for speeding up distributed
graph processing for real-world workloads (Section 4.2). Sec-
tion 4.3 investigates various parameters of GD.

4.1 Two-Dimensional Partitioning

Our initial experiments (see Figure 1) and earlier works [18,
29, 33] indicate that two important dimensions for the per-
formance of Giraph jobs are the number of vertices and the
number of edges. For this reason, we specify two weights
for the vertices, wl(,l) =1 and w1(,2) = deg(v) for all v € V.
Recall that our primary goal is to guarantee almost perfect
balance for the two dimensions, as even a single overloaded

912

m Spinner m BLP m SHP |

(=2}
o0
o
f=]

0.5
0.4
0.3
0.2
0.1
0.0 -
0.10
© 0.08
g

= 0.06
o
£0.04 -
$,0.02 —
°

©0.00 H

0.4

]
o

0.25

vertex imbalance
.02

0.0
0
[
[Jo.o2

Jooz
o 1

0.02

0.05

)
o
o
k=2 k=8
LiveJournal

(=} (=] (=]

k=2

(=]

ﬂh

k=2

k=8
Twitter

k=8
Friendster

Figure 4: Vertex and edge imbalance (r:‘,agx"im —1) of

the solutions created by different algorithms on the three
public networks with k € {2,8}. Lower values correspond to
more balanced partitions. Hash and GD yield near-balanced
solutions for the instances.

component affects the job performance. Figure 4 illustrates
the resulting vertex and edge imbalance of the solutions on
the public networks for three algorithms, Spinner, BLP, and
SHP, using k = 2 and k = 8. The imbalance is defined as

(

taken over the total weight of all k constructed parts. Note
that this definition differs from the usual notion of imbalance
in the sense that it considers only positive imbalance, since we
are only interested in the most overloaded machines. We do
not include the results for Hash and GD, as the corresponding
values are below 0.01 for the instances.

We observe that two algorithms, Spinner and SHP, are not
suitable for the multi-dimensional variant of the problem. For
dense graphs with a highly skewed degree distribution (as
in Twitter), the algorithms cannot simultaneously provide
balance on the two dimensions. With the default setting,
these two algorithms generate solutions in which some of the
parts contain 1.5 — 2x more vertices than the average one. We
tried to modify the techniques by adjusting relative weights of
their penalty functions for vertex and degree counts. However,
we were not able to design universal penalty weights that work
for all instances. A similar behavior regarding the resulting
balance is observed for larger graphs, FB-3B, FB-80B, and
FB-400B. In contrast, Hash, GD, and BLP produced nearly-
balanced (that is, having € < 0.05 both for vertex and edge
counts) solutions for all the instances. With this in mind, we
exclude Spinner and SHP from further experiments.

Next we compare the quality of our algorithm as measured
by the resulting edge locality, that is, the percentage of uncut
edges with both endpoints in the same parts. The metric
represents the fraction of local messages in Giraph jobs
and corresponds to a possible reduction in communication
between the worker machines. Figure 5 reports the results of
Hash, GD, and BLP on the public dataset. Unsurprisingly, GD
and BLP outperform the Hash algorithm in the experiment, as
the latter keeps only % of all the edges in the same component.
The resulting edge locality of GD and BLP are close for the
three graphs, though GD typically achieves a higher locality
by 2% — 5%.

max; w(V;) 1

- , where the maximum and the average are
avg; w(V;)

100 —~tv—| m Hash m BLP = GD |-
&

e 80

Z 60

©

[

o

© 40—

(o))

el

@ 20

0 —

k=2 k=8 k=2 k=8 k=2 k=8
LiveJournal Twitter Friendster

Figure 5: The percentage of local (uncut) edges produced
by the three algorithms for the public graphs with k € {2, 8}.
Higher values indicate better solutions. GD achieves higher
locality in all cases.

100 -~ m Hash = BLP GD |-

80

60

40

edge locality, %

20 o

FB-400B

Figure 6: The percentage of local (uncut) edges produced by
the three algorithms for various subgraphs of the Facebook
friendship graph with k € {16,128}. Higher values indicate
better solutions. GD achieves higher locality in all cases.

Figure 6 shows the experiments on the Facebook friendship
graphs. Here we use a larger number of parts, k, which more
accurately represent the real-world Giraph use case. Again,
Hash produces solutions having the lowest edge localities. In
fact, over 99% of the edges are cut using the partitioning
strategy for an instance with a hundred partitions. This is in
agreement with our measurements of the typical percentage of
cross-worker Giraph messages in the production environment.
On the other hand, we observe a bigger advantage of GD over
BLP; the locality difference is around 10% — 20% for k = 16
and 5% — 10% for k = 128. The balanced label propagation
algorithm, BLP, could be configured to produce better results
by decreasing its cluster size threshold, c. However, this
results in an imbalanced solution with ¢ > 0.05 for the
largest instance with & = 128. Hence, we keep the value of
¢ = 1024 for all the experiments. The main difference between
FB graphs and publicly available graphs is the number of
edges. Therefore, we conjecture that the main reason why on
FB graphs GD performs better compared to other algorithms
is poor performance of existing local-search based methods
on large graphs in the multi-dimensional case. This is most
obvious in Figure 6 for £k = 128 as one can see that GD is
gaining a larger advantage over BLP as the size of the graph
grows (3B — 80B — 400B). However, more experiments
might be required to verify the hypothesis.

Overall we observe that GD generates solutions of higher
quality than BLP and Hash on the examined instances. There-
fore, we utilize the algorithm to experiment with distributed
graph processing in the next section.

913

m vertex partitioning m edge partitioning = vertex+edge partitioning |

40
30
20
10 o
0%
.10_
-20

speedup, %

Figure 7: Speedup of Giraph jobs using various partition-
ing strategies relative to Hash measured for Page Rank (PR),
Connected Components (CC), Hypergraph Clustering (HC),
and Mutual Friends (MF), which are applied on FB-80B
(small) and FB-400B (large) graphs. Positive values indi-
cate improvements, negative ones indicate regressions. Ver-
tex+edge partitioning always results in performance improve-
ment.

4.2 Distributed Graph Processing

In this section we conduct an experimental evaluation of
various graph partitioning strategies for speeding up dis-
tributed graph processing. Here we argue and experimen-
tally demonstrate that multi-dimensional balancing is a suit-
able objective for the application. We experiment with four
graph algorithms implemented in Giraph. Page Rank and
Connected Components, are popular benchmarks for veri-
fying the performance of distributed systems. Page Rank
iteratively propagates vertex ranks through adjacent edges;
our implementation performs 30 iterations for the algorithm.
For the Connected Components algorithm, we use a simple
label propagation technique in which vertices iteratively up-
date their labels based on the minimum label of their neigh-
bors; for our graphs, the process converges after at most 50
rounds. The other two algorithms, Hypergraph Clustering
and Mutual Friends, are applications for large-scale graph
analytics. The former is used to find a certain clustering of
the input graph by converting it to a hypergraph. The latter
builds a set of features for friend recommendation. Both
applications extensively exchange messages between adjacent
vertices, which adds a significant communication overhead.

Figure 7 depicts the results of our experiment. Since we are
interested in the impact of various partitioning policies on the
performance of Giraph, we report the relative differences to
the baseline policy, Hash. Here we measure the total runtime
of an application using GD as the partitioning strategy in
three modes, vertex partitioning (one-dimensional balance
on vertex count), edge partitioning (balance on edge count),
and vertez-edge partitioning (two-dimensional balance both
on vertex and edge counts). Every algorithm is applied in
two configurations, small and large. The first one uses the
FB-80B graph and a cluster with 16 worker machines, while
the second one process FB-400B using 128 workers.

The key finding is that one-dimensional partitioning cannot
provide consistent benefits across all the Giraph applications.
In fact, we observe performance regression for some instances,
in particular, when the number of utilized worker machines
is large, that is, k = 128. In this scenario, we notice a few
workers whose running time is significantly larger than the
average; see Figure 1. Since in Giraph (and other vertex-

Table 2: Impact of partitioning policy on the running time
and the amount of sent messages across 128 Giraph workers
for the Page Rank application applied on the FB-400B graph.
The numbers are average values over 30 iterations.

Partitioning Runtime, sec Communication, GB
mean max stdev mean max stdev
Hash 95 102 27 69.5 69.6 2.4
vertex 93 143 25 18.6 47.6 6.8
edge 82 120 22 25.7 38.2 5.9
vertex-edge 84 88 21 29.1 30.6 2.8

centric systems) the computation is split into a number of
supersteps that end with a global synchronization barrier,
the performance is determined by the slowest worker. Notice
that a similar phenomena regarding the vertex partitioning
has been observed in earlier works [3,18,20,40]. In contrast,
the two-dimensional partitioning always results in a speedup
over the default Hash strategy. The improvement is in the
order of 10% — 30% for the examined applications.

To get a deeper understanding of the source of perfor-
mance differences, we analyze the detailed logs for the Page
Rank application using a cluster with 128 worker machines.
Table 2 shows the measurements of the mean, maximum,
and standard deviation of the time to compute a superstep
by all the workers. The results indicate that the with the
hash-based partitioning, the workers are idling on average for
7 seconds per superstep waiting for the slowest one to com-
plete the work. With one-dimensional partitioning the idling
time is much longer, 50 seconds for vertex-based partitioning
and 38 seconds for edge-based one, which is the primary
reason for the performance regression. The two-dimensional
partitioning results in a more even load across the workers
delivering a 13.2% speedup. Table 2 also indicates a signifi-
cant communication reduction over the baseline partitioning,
as measured by the total size of messages sent between the
workers via network. For the Page Rank application, the av-
erage reduction is correlated with the edge locality of the
corresponding partitioning. However, an unbalanced parti-
tioning causes some workers to use more memory resources
and become a bottleneck for graph processing.

Finally, we emphasize that the timings analyzed in the
section exclude the running times of the partitioner itself.
This is realistic for our use case in which the same friendship
graph is expected to be processed multiple times for various
tasks. Thus, the extra overhead incurred by a partitioning
strategy is amortized among several runs.

4.3 Parameters of GD

In this section we perform an experimental comparison of
various choices of the projection step algorithm in GD and
study its convergence properties. Unless specified otherwise,
we use two-dimensional GD in the following setting: 1) bal-
ance is required with respect to the number of vertices and
their degrees, 2) in the projection step we use “one-shot”
alternating projection (see Section 3.1), 3) we use adaptive
step size and vertex fixing as described in Section 3.2.

Since behavior of gradient descent algorithms can depend
on selection of the step size parameters, we used experiments
to establish convergence of GD with different choices of these
parameters. In particular, our implementation aims to ensure
that the step length [|x® —x®*||5 remains close to constant

914

LiveJournal orkut
2 100 2 100
> >
k= k=
® ®
(%} (%}
=) L
])
o o
3 3
505 25 50 75 100 505 25 50 75 100
Iteration Iteration
Step length: 10-§ == 5.§ — 2 sees 1§

Figure 8: Comparison of step choices for GD with fixed step
length, that is, ||x© —x**Y ||y = const, for 100 iterations and
& = +/n/100. Step length 2 - £ results in good performance.

100 LiveJournal ¥ 30 LiveJournal
-)
> Iv]
= € 20
=]
8 ®
k-] 210
P E
=) X0
17}
5053 25 50 75 100 £ 0 25 50 75 100
Iteration Iteration
100 orkut ¥ 30 orkut
= g
= € 20
=]
8 ®
k-] 210
P E
2 X0
17}
5053 25 50 75 100 £ 0 25 50 75 100
Iteration Iteration

nonadaptive == = adaptive === :adaptive + vertex fixing

Figure 9: Quality and imbalance comparison of GD 1) with-
out adaptive step size, 2) with adaptive step size and 3) with
adaptive step size with vertex fixing. The left side shows
edge locality and the right side — maximum imbalance over
all dimensions. For nonadaptive and adaptive strategies the
changes in the number of cut edges and imbalance in the last
iteration are due to fixing in the end of the algorithm the
accumulated imbalance resulting from “one-shot” alternating
projection. Using GD with adaptive step size and vertex fixing
results in better locality and preserves almost perfect balance
during algorithm execution.

between iterations. A natural scaling parameter for the step
length is /n as it corresponds to the distance between the
initial solution x¢o = 0 and an integral solution of the form
{—1,1}". As we show in Figure 8 for various graphs, a good
choice of step size is 2%, where 100 is the limit we set on the
number of iterations due to the constraints on the execution
running time.

In Figure 9 we show how adaptive step size and vertex
fixing affect the performance of the algorithm. Note that
compared with other methods vertex fixing not only im-
proves quality but also preserves almost perfect balance even
when simple “one-shot” alternating projection is used. Fi-
nally, in Figure 10 we show analysis of performance of the
algorithm under different choices of the projection method.
The results show that the exact projection algorithm with
sufficiently large allowed imbalance leads to the best perfor-

LiveJournal

s 100 s 100
> 90 = 90
= =
= 80 = 80
(%} (%}
2 70 2 70
& 0 S 60
° °
9 50 9 50

0 25 50 75

Iteration

100 0 25 50 75

Iteration

exact (¢=0.1)
= == exact (¢=0.01)

exact (¢=0.001)
= alternating

Figure 10: Quality comparison of GD with various projection
methods. We compare exact projection with various allowed
imbalance parameters and “one-shot” alternating projection.
Allowing more imbalance typically results in higher quality.
“One-shot” alternating projection, which we choose as our
default implementation option due to its efficiency, produces
results comparable with the exact projection. Dykstra’s pro-
jection produces the same results as the exact projection,
and therefore is not shown.

mance. Larger imbalance permits more partitions, possibly
including ones with better locality, allowing the overall al-
gorithm to find results with higher locality. However, the
alternating projections algorithm can often be used to achieve
similar performance. This is likely due to the fact that the
alternating projections algorithm despite not computing the
projection outputs a point close enough to it.

4.4 Multi-Dimensional Experiments

We perform experiments for d = 3 and d = 4 to illustrate
the performance of our algorithms in the multi-dimensional
case. For these multidimensional experiments in addition
to balancing on the number of vertices and edges we also
balance based on the following additional vertex weights:

e Pagerank. We use Pagerank to model activity level of
a node. High Pagerank likely means that the vertex is
accessed often; hence, balancing on the value can be
beneficial for load balancing purposes.
Sum of neighbor degrees. We also use the sum of degrees
over neighbors of a vertex as a weight function. We
choose the sum of neighbor degrees as a proxy for the
size of the 2-hop neighborhood of a vertex, which is
computationally expensive to compute for large graphs.

We run experiments on LiveJournal and Orkut graphs,
as well as on sx-stackoverflow graph (2.6M vertices, 28M
edges) — the largest SNAP graph which is not a social net-
work. We compare our algorithm with METIS with allowed
imbalance of 0.5%. The results are presented in Table 3.
They indicate that METIS achieves poor balance for multiple
constraints and that GD outperforms METIS by almost all
parameters in most cases.

4.5 Performance Analysis

Finally, we analyze scalability of our algorithm. Our results
are obtained on a Hadoop cluster of 128 workers; each of the
machines is a dual-node 2.4 GHz Intel Xeon E5-2680 with
256GB RAM. Figure 11 reports the running time of GD in
machine-hours on FB-X graphs of various size with balance
on two dimensions. We observe a near-linear growth of the
running time with the size of the input graph. In comparison,

915

the running time of the SHP algorithm exceed the values by
a factor of 1.5 — 2 on the same cluster configuration.

5. CONCLUSION

We introduced a new algorithm for the MuLrI-
DIMENSIONAL BALANCED GRAPH PARTITIONING problem,
which produces balanced partitions according to multiple
user-specified weight functions while maintaining high edge
locality. Our computational experiments indicate that this
algorithm is scalable for large real-world graphs, and outper-
forms existing techniques for the problem. Resulting parti-
tions allow one to achieve moderate speedups in computa-
tional time for several real-world Giraph workloads. This is
in contrast with balancing on just one dimension, that can
result in worsen performance.

One of the interesting directions for future work is incorpo-
rating a wider range of balancing requirements, for example,
those that can depend on the resulting partitioning itself,
such as the number of local edges and the maximum number
of edges going between any pair of parts in the resulting
partition. The latter quantity can substantially affect perfor-
mance of the distributed computation in Giraph-like systems,
since communication between different machines depends
on the number of edges going between the corresponding
parts. The proposed algorithm cannot directly handle such
solution-dependent weight functions as they are not express-
ible through an a priori fixed collection of weight functions.

An interesting theoretical question is finding a fast algo-
rithm for exact projection for d > 2. As we show in in the
full version, it is possible to use nested binary search to find
{)\, } (and therefore the projection) with arbitrary precision.
Unfortunately, the running time of the suggested algorithm is
unknown, because it is unclear how to estimate left and right
bounds for the binary search. Determining these bounds gives
an algorithm with running time O(n - [["_, log T];lj), where
l; and r; are bounds for A; and ¢ is the required precision.

Another interesting theoretical question is understanding
the convergence properties of our algorithm (or a similar
gradient descent based method) under some assumption
about the spectral properties of the graph. We see this as a
challenging open problem. While noisy gradient descent is
known to have fast convergence for non-convex optimization
subject to equality constraints, if inequality constraints are
allowed, convergence analysis is open [16].

APPENDIX
A. PROJECTION FORD =2

In this section we introduce a randomized O(n logn)-time
algorithm for finding projection for d = 2. Recall from Sec-
tion 2.2 that for y € R™ we need to find A* = (A7, A7) such
that R (A*) = ¢; and AP (A*) = ¢o. For A = (A1, A2) we

define K (X)) = 3 hij)()\) for j € {1,2}, where
i=1

(@)

i

if Z)\k'wgk) < Y; — 1
k

if Z)\kwﬁk) >y +1
k

ng)(yi -)\kwik)) otherwise.
k

B () = { —wy”

Once we find (A7, \3) we can compute the coordinates of x
as ©; = [yi — w§1>/\f — w?))\;]. We introduce an auxiliary

Table 3: Comparison of GD with METIS. The results show that for high-dimensional balanced partitioning,

METIS cannot

guarantee balance across all dimensions. Better results shown in bold.

LiveJournal Orkut sx-stackoverflow
GD METIS GD METIS GD METIS
locality, % 91.71 93.74 | 88.36 86.52 | 75.82 80.41
d = 2: balance on vertices imbalance 0.04 0.5 0.02 0.7 0.04 0.6
and degrees memory, MB | 2635 4085 | 4673 10259 | 1587 4113
time, sec 117 44 203 92 68 55
d = 3: balance on vertices, l.ocality, % 88.74 73.36 | 89.55 62.1 76.8 60.09
degrees and imbalance 0.05 30 0.02 1.6 0.1 6.5
sum of neighbor degrees memory, MB | 2711 4802 | 4697 12271 | 1627 4985
time, sec 140 66 196 303 76 131
d = 4: balance on vertices, | locality, % | 87.93 74.36 | 75.58 65.08 | 77.04 78.54
degrees, imbalance 0.5 38 2.7 20 04 3.8
sum of neighbor degrees memory, MB | 2939 4839 | 4896 12294 | 1754 5013
and pagerank time, sec 227 66 240 297 88 142
) The intuition behind the algorithm is then as follows (in
® 420 e order to achieve the best performance the exact details differ
3 /// slightly from this simplified presentation). Suppose we could
'f', 80 find a region that contains some solution A*. Then since
£ 40 - constraint functions are linear inside the region, in order to
2 e find A* we could solve a system of linear equations over A1
E o and A2. We identify such region, with binary search over
0 200 400 600 800 A1 by using monotnicity of A. We consider only a finite set

number of edges / 10"9

Figure 11: Scalability of the distributed implementation
of GD on FB-X graphs of various size. The results indicate a
near-linear dependence of the running time on the number
of edges in the graph.

function A which we use to solve the above problem using
binary search:

DEFINITION A.1. Suppose that A1 is such that there exists
A2 for which the constraint h(2)()\1, A2) = 2 is satisfied. Then
we define A(M) 2 AV (A1, Az).

We now describe an O(nlogn)-time algorithm for finding
(A1, A3). The algorithm is shown as Algorithm 2. It takes as
a parameter a Boolean variable A indicating whether A is
an increasing or decreasing function. We run the algorithm
under both assumptions and select a solution satisfying the
constraints.

We outline the main ideas behind Algorithm 2 below.

Consider the (A1, A2) plane partitioned by the following lines
(which we call boundary lines):

Yi —)\1w£1> — Angz) 1

Yi — Alwil) —)\sz2) =1,

for all i. Let L be the set of boundary lines (line 2). We refer
to the subsets of the plane resulting from its partition by the
boundary lines as regions (see Figure 12 where the regions
are referred to as { T; }). Boundary lines separate the plane
into half-planes corresponding to the different cases in the
definitions of the corresponding hl(-]). Therefore, inside each

region all hz(.j) are linear and hence k) are also linear.

In the full version of the paper we will show that the A is
well-defined and monotone.

916

of values: A1-coordinates of intersections of boundary lines.
Since there are O(n) boundaries, there are O(n?) intersec-
tions(e.g., in Figure 12 we consider only points a, b, ¢ and d).
Hence O(logn) iterations of binary search suffice. The only
difference between Algorithm 2 and the above approach is
that after the binary search on A1 we still have to try O(n)
regions to identify the exact region which contains A* (see
Algorithm 2 for the details).

Now consider one iteration of the binary search. Let X! and
AT be its current boundaries. Let A be a set of all intersection
points (A1, A2) such that A\; € (A}, A]). Since A is monotone,
for any A\; we can use binary search by checking whether
A* is greater or less than A} through a comparison of A(\])
and c¢1 (lines 9-12). Computing A()]) requires solving the
one-dimensional problem over A2 discussed in Section 2.3
and thus can be done in O(n) time.

In order to have binary search run in O(logn) iterations
it suffices to find a value X; € (A}, \]) which with constant
probability splits A into two subsets of points, those with
A1 > M) and with A1 < M| respectively, of size at most
%n each. In particular, it suffices to sample a uniformly
random point (A}, A3) from A. The following lemma bounds
the overall running time of these sampling steps.

LEmMA A.1. The overall time required for sampling ran-
dom points from A in line 8 of Algorithm 2 is O(nlogn).

Proor. Consider three cases:

Case 1. |A| > nlogn. We sample O(n) uniformly random
pairs of lines from L and find an intersection of each pair
(assume no parallel lines which can be handled separately).
Since the number of lines is O(n) w.h.p. we sample at least
one intersection which lies in A. The last condition can be
checked in O(n) time and if it doesn’t hold then we conclude
that w.h.p. |A| < nlogn. We then compute S, the set of all
points in A in O(nlogn) time and proceed to the second
case. We show how to compute A in the full version.

Algorithm 2: Function returning A}, A5 for given 2-
dimensional problem.

input :{w”}, {w® >0}, {w}, c, e
parameter: AT € {true, false} indicating whether A
increases
output: (AT, A7)
1 Function Project-2D

/* L = set of lines parameterized by
(yi,wil),wf),il) corresponding to lines of
the form y; —)\11051) —)\211)2(2) =41 */

1 2 .

L= {(yw w® £1) i€}

M= —o0, AT := 400

/* Run binary search */

4 while true do

5 A := set of intersection points (A1, Ar) of
lines in L such that \; € (A}, A])

6 if A =0 then

7 L break

8 Sample a uniformly random intersection
point (A, \3) from A

9 if A(\]) > c1 then

10 ‘ If A* set AT :=)}, otherwise set A} := \}

11 else

12 L If AT set A} := A, otherwise set A} := \}

13 Let {R: }tT:1 be a partition of (A,\]) xR by

boundary lines, sorted from bottom to top
14 Compute coefficients for the system of
linear equations for R; (as in Theorem A.3)

15 fort=1...T do

16 Let (A1,A2) be a solution to the linear
system for R:

17 if (Al,)\2) € R; then

18 L return (A, \2)

19 Update the coefficients corresponding to
crossing the boundary line between R;
and R:y1 as shown in Theorem A.3

Case 2. n < |A| < nlogn. Note that in this case A =
{(A1,X2) € S| A € (M55 AT) 3, where S is as defined above.
We sample O(n) random points from S so that w.h.p. we get
at least one point from A. As before, if this doesn’t happen,

we conclude that w.h.p. |A| < n and proceed to the last case.

Case 3. |A| < n. In this case we maintain A directly.
When we sample a random point (A}, A5) € A, we remove
from A all points on one of the sides from \; as directed by
the binary search.

In each of the cases above each of O(logn) iterations takes
O(n) time and pre-/post-processing between the cases takes
O(nlogn) time. Thus sampling takes O(nlogn) time. ||

Using the above algorithm we can find X} and A} such
that there are no intersection points between them. Since
there are O(log n) iterations and each of them requires O(n)
time on average, the total running time is O(nlogn). This
completes a proof of the following theorem (corresponding
to lines 2-12 of the algorithm).

917

A X2 Al
T, u Tg b Tg
Ta \ Ts Te
> A1
c \d
T4 Ta \ Ts

Figure 12: Example of regions for n = 2, y = (0, 0). Bound-
ary lines are A1 +A2 = £1 and A2 = £1. These lines partition
(A1, A2)-plane into nine regions Ti, T3, ..., Ty. Intersection
points are a, b, ¢ and d. Current intersection points consid-
ered by the algorithm (between A} and A}) are shown in
red.

THEOREM A.2. There exists an O(nlogn)-time random-
ized algorithm returning A5 and X} such that:

1. No intersections of boundary lines in [A}, \]],

2. There exists a solution (A, A}) such that AT € [A}, A7)

After we find A} and A} as in Theorem A.2 we show that
there are only O(n) regions which can contain a solution
and we can check them in O(nlogn) time. The following
theorem completes the proof of Theorem 1.1 for d = 2:

THEOREM A.3. If there exists a solution X' such that
A e (ALY and no intersection points are between (X! \Y)
then X* can be found in O(nlogn) time.

Proor. We show how to find A* in lines 13-19 of the
algorithm. Consider set S = (A}, \]) x R. Let { R; },_, be
the partition a of S into parts lying between the boundary
lines. Since S doesn’t contain boundary intersections and
there are O(n) boundaries, the size of the partition is O(n).
For each R; we solve the following system of equations over
)\1 and)\2:

i hY (A1, A2) = e,

=1

> AP (A, Ae) = e

i=1
Since no boundary line crosses Ry, it is a subset of some
region. Therefore, hgl) and hg2> are linear inside R:, meaning
that the above system becomes a system of linear equations.
If the solution to the system belongs to R;, then we can take
it as A*. Thus it only remains to show how to find coefficients
for the system in O(nlogn) total time.

Recall that in Algorithm 2 we assume that { R;} are
sorted from bottom to top. For R; we find the linear system
coefficients in O(n) time. Assume that the R; are already
computed. To find the coefficients for next set R;+1, notice
that R: and R:4+1 are separated by some boundary line. This
hl(_j>
change the coefficient of only this h§]), and the coefficients
can be recomputed in O(1) time. Since there are O(n) bound-
ary lines, the overall time for recomputation is also O(n).
Taking sorting of { R; } into account, the total running time
is O(nlogn). |

line corresponds to some and therefore crossing it will

B.
(1]

2]
3l

(4]

]

6

(7]

(8]
9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Dykstra’s projection algorithm.
https://en.wikipedia.org/wiki/Dykstra%27s_
projection_algorithm. Accessed: 2019-02-13.

Apache Giraph. http://giraph.apache.org/.

Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov.
Streaming graph partitioning: An experimental study.
PVLDB, 11(11):1590-1603, 2018.

A. Amir, J. Ficler, R. Krauthgamer, L. Roditty, and
O. S. Shalom. Multiply balanced k -partitioning. In
LATIN 201/: Theoretical Informatics - 11th Latin
American Symposium, Montevideo, Uruguay, March 31
- April 4, 2014. Proceedings, pages 586597, 2014.

A. Anandkumar and R. Ge. Efficient approaches for
escaping higher order saddle points in non-convex
optimization. In Proceedings of the 29th Conference on
Learning Theory, COLT 2016, New York, USA, June
23-26, 2016, pages 81-102, 2016.

C. Avery. Giraph: Large-scale graph processing
infrastructure on Hadoop. Proceedings of the Hadoop
Summit. Santa Clara, 11(3):5-9, 2011.

K. Aydin, M. Bateni, and V. S. Mirrokni. Distributed
balanced partitioning via linear embedding. In
Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining, San Francisco, CA,
USA, February 22-25, 2016, pages 387396, 2016.

D. P. Bertsekas. Nonlinear programming. Athena
scientific Belmont, 1999.

C.-E. Bichot and P. Siarry. Graph partitioning. John
Wiley & Sons, 2013.

S. Boyd and J. Dattorro. Alternating projections. 2003.

S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

A. Bulug, H. Meyerhenke, I. Safro, P. Sanders, and

C. Schulz. Recent advances in graph partitioning. In
Algorithm Engineering - Selected Results and Surveys,
pages 117-158. 2016.

D. Delling, A. V. Goldberg, I. P. Razenshteyn, and

R. F. F. Werneck. Exact combinatorial
branch-and-bound for graph bisection. In Proceedings
of the 14th Meeting on Algorithm Engineering &
Ezxperiments, ALENEX 2012, The Westin Miyako,
Kyoto, Japan, January 16, 2012, pages 30-44, 2012.
L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano,

S. Pupyrev, and A. Shalita. Compressing graphs and
indexes with recursive graph bisection. In Proceedings
of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16,
pages 1535-1544, New York, NY, USA, 2016. ACM.
R. L. Dykstra. An algorithm for restricted least squares
regression. Journal of the American Statistical
Association, 78(384):837-842, 1983.

R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from
saddle points - online stochastic gradient for tensor
decomposition. In Proceedings of The 28th Conference
on Learning Theory, COLT 2015, Paris, France, July
3-6, 2015, pages 797-842, 2015.

R. Ge, J. D. Lee, and T. Ma. Matrix completion has no
spurious local minimum. In Advances in Neural
Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016,

918

[18]

[19]

20]

[21]

22]

23]

24]

[25]

[26]

27]

(28]

[29]

(30]

31]

December 5-10, 2016, Barcelona, Spain, pages
29732981, 2016.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin. Powergraph: distributed graph-parallel
computation on natural graphs. In OSDI, volume 12,
page 2, 2012.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,

M. J. Franklin, and 1. Stoica. GraphX: graph
processing in a distributed dataflow framework. In
Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation, pages
599-613. USENIX Association, 2014.

Y. Guo, S. Hong, H. Chafi, A. Tosup, and D. Epema.
Modeling, analysis, and experimental comparison of
streaming graph-partitioning policies. Journal of
Parallel and Distributed Computing, 108:106-121, 2017.
P. Jain and P. Kar. Non-convex Optimization for
Machine Learning. ArXiv e-prints, Dec. 2017.

I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev,

A. Shalita, Y. Akhremtsev, and A. Presta. Social hash
partitioner: A scalable distributed hypergraph
partitioner. PVLDB, 10(11):1418-1429, 2017.

G. Karypis and V. Kumar. Metis — unstructured graph
partitioning and sparse matrix ordering system, version
2.0. Technical report, 1995.

G. Karypis and V. Kumar. Multilevel algorithms for
multi-constraint graph partitioning. In Proceedings of
the 1998 ACM/IEEE Conference on Supercomputing,
SC 98, pages 1-13, Washington, DC, USA, 1998. IEEE
Computer Society.

B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell system technical
journal, 49(2):291-307, 1970.

R. Krauthgamer, J. Naor, and R. Schwartz.
Partitioning graphs into balanced components. In
Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New
York, NY, USA, January 4-6, 2009, pages 942949,
2009.

J. D. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and
J. A. Tropp. Practical large-scale optimization for
max-norm regularization. In Advances in Neural
Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Systems
2010. Proceedings of a meeting held 6-9 December 2010,
Vancouver, British Columbia, Canada., pages
1297-1305, 2010.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

L. Li, R. Geda, A. B. Hayes, Y. Chen, P. Chaudhari,
E. Z. Zhang, and M. Szegedy. A simple yet effective
balanced edge partition model for parallel computing.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 1(1):14, 2017.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,

A. Kyrola, and J. M. Hellerstein. Distributed graphlab:
a framework for machine learning and data mining in
the cloud. PVLDB, 5(8):716-727, 2012.

N. Maculan, C. P. Santiago, E. Macambira, and

M. Jardim. An O(n) algorithm for projecting a vector
on the intersection of a hyperplane and a box in r n.

https://en.wikipedia.org/wiki/Dykstra%27s_projection_algorithm
https://en.wikipedia.org/wiki/Dykstra%27s_projection_algorithm
http://giraph.apache.org/
http://snap.stanford.edu/data

32]

[33]

(34]

[35]

[36]

[37]

[38]

39]

[40]

[41]

[42]

[43]

Journal of optimization theory and applications,
117(3):553-574, 2003.

K. Makarychev and Y. Makarychev. Nonuniform graph
partitioning with unrelated weights. In Automata,
Languages, and Programming - 41st International
Colloquium, ICALP 201/, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, pages 812—-822, 2014.
C. Martella, D. Logothetis, A. Loukas, and G. Siganos.
Spinner: Scalable graph partitioning in the cloud. In
33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April
19-22, 2017, pages 1083-1094, 2017.

H. Meyerhenke, P. Sanders, and C. Schulz. Partitioning
complex networks via size-constrained clustering. In
International Symposium on Ezxperimental Algorithms,
pages 351-363. Springer-Verlag New York, Inc., 2014.
J. Nishimura and J. Ugander. Restreaming graph
partitioning: Simple versatile algorithms for advanced
balancing. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1106-1114, New York, NY, USA,
2013. ACM.

S. Ou, K. Yang, and A. Liotta. An adaptive
multi-constraint partitioning algorithm for offloading in
pervasive systems. In 4th IEEE International
Conference on Pervasive Computing and
Communications (PerCom 2006), 13-17 March 2006,
Pisa, Italy, pages 116-125, 2006.

K. Schloegel, G. Karypis, and V. Kumar. A new
algorithm for multi-objective graph partitioning. In
FEuro-Par ’99 Parallel Processing, 5th International
Euro-Par Conference, Toulouse, France, August 31 -
September 3, 1999, Proceedings, pages 322—-331, 1999.
A. Shalita, B. Karrer, I. Kabiljo, A. Sharma, A. Presta,
A. Adcock, H. Kllapi, and M. Stumm. Social Hash: an
assignment framework for optimizing distributed
systems operations on social networks. In Proceedings
of the 13th Usenix Conference on Networked Systems
Design and Implementation, pages 455-468. USENIX
Association, 2016.

J. Sun, Q. Qu, and J. Wright. When are nonconvex
problems not scary? CoRR, abs/1510.06096, 2015.

J. Sun, H. Vandierendonck, and D. S. Nikolopoulos.
VEBO: A vertex-and edge-balanced ordering heuristic
to load balance parallel graph processing. arXiv
preprint arXiw:1806.06576, 2018.

C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. FENNEL: streaming graph partitioning
for massive scale graphs. In Seventh ACM International
Conference on Web Search and Data Mining, WSDM
2014, New York, NY, USA, February 24-28, 2014,
pages 333-342, 2014.

J. Ugander and L. Backstrom. Balanced label
propagation for partitioning massive graphs. In Sizth
ACM International Conference on Web Search and
Data Mining, WSDM 2013, Rome, Italy, February 4-8,
2013, pages 507-516, 2013.

S. Verma, L. M. Leslie, Y. Shin, and I. Gupta. An
experimental comparison of partitioning strategies in
distributed graph processing. PVLDB, 10(5):493-504,
2017.

919

[44] S. Wright and J. Nocedal. Numerical optimization.
Springer Science, 35(67-68):7, 1999.

	Introduction
	Our Contributions
	Previous Work

	Projected Gradient Descent
	Overview
	Projection
	Exact Projection Algorithms

	Implementation
	Projection algorithms
	Adaptive Step Size

	Experiments
	Two-Dimensional Partitioning
	Distributed Graph Processing
	Parameters of GD
	Multi-Dimensional Experiments
	Performance Analysis

	Conclusion
	Projection for D = 2
	References

