SQuARM-SGD: Communication-Efficient
Momentum SGD for Decentralized Optimization

Navjot Singh, Student Member, IEEE, Deepesh Data, Jemin George, and Suhas Diggavi, Fellow, IEEE

Abstract—In this paper, we propose and analyze SQuARM-
SGD, a communication-efficient algorithm for decentralized
training of large-scale machine learning models over a network.
In SQUARM-SGD, each node performs a fixed number of
local SGD steps using Nesterov’s momentum and then sends
sparsified and quantized updates to its neighbors regulated by a
locally computable triggering criterion. We provide convergence
guarantees of our algorithm for general (non-convex) and convex
smooth objectives, which, to the best of our knowledge, is the
first theoretical analysis for compressed decentralized SGD with
momentum updates. We show that the convergence rate of
SQuARM-SGD matches that of vanilla SGD. We empirically
show that including momentum updates in SQUARM-SGD can
lead to better test performance than the current state-of-the-art
which does not consider momentum updates.

Index Terms—Decentralized optimization; communication ef-
ficiency; Nesterov momentum.

I. INTRODUCTION

As machine learning gets deployed over edge (wireless)
devices (in contrast to datacenter applications), the problem of
building learning models on local (heterogeneous) data with
communication-efficient training becomes important. These
applications motivate learning when data is collected/available
locally, but devices collectively help build a model through
wireless links with significant communication rate (bandwidth)
constraints.! Several methods have been developed recently
to obtain communication-efficiency in distributed stochastic
gradient descent (SGD). These methods can be broadly divided
into two categories. In the first one, workers compress informa-
tion/gradients before communicating - either with sparsifica-
tion [2]-[6], quantization [7]-[11], or both [12]. Another way
to reduce communication is to skip communication rounds
while performing a certain number of local SGD steps, thus
trading-off computation and communication time [13]-[15].
Since momentum-based methods generally converge faster
and generalize well, they have been adopted ubiquitously for
training large-scale machine learning models [16].

To reduce communication load on the central-coordinator
in the distributed framework, a decentralized setting has been

This work was partially supported by NSF grants #2007714, #1955632,
by UC-NL grant LFR-18-548554 and by Army Research Laboratory under
Cooperative Agreement W911NF-17-2-0196.

A preliminary version of this work has appeared in the /EEE International
Symposium on Information Theory (ISIT) 2021.

Navjot Singh, Deepesh Data, and Suhas Diggavi are with the Uni-
versity of California, Los Angeles, CA 90095 USA (e-mail: navjots-
ingh@ucla.edu; deepesh.data@gmail.com; suhas @ee.ucla.edu). Jemin George
is with the US Army Research Lab, Adelphi, MD 20783 USA (e-mail:
jemin.george.civ@mail.mil).

I'This is also motivated by federated learning [1], which is studied mostly
for the client-server model.

considered in literature [17], where the central coordinator is
absent, and training is performed collaboratively among work-
ers, which are connected by a (sparse) graph.? Compressed
communication has been studied recently for decentralized
training as well [18]-[22]. Out of these [18], [20]-[22] only
employ either quantization or sparsification (without local
iterations or event-triggered communication), whereas, [19]
also incorporates event-triggering to achieve communication
efficiency; see related work for a detailed comparison. We
would like to remark two important aspects of these works:
(i) They rely on strong set of assumptions for their theoretical
analyses: all of them assume a uniform bound on variance
of stochastic gradients and also on the gradient dissimilarity
across the clients, while [19]-[22] assume a bound on the sec-
ond moment of stochastic gradients. (ii) None of these works
incorporates momentum in their theoretical analyses, which
has been very successful in achieving good generalization error
in training large-scale machine learning models.

In this paper, we propose and analyze SQUARM-SGD,?
a communication efficient SGD algorithm for decentralized
optimization that incorporates Nesterov’s momentum, com-
pression and local iterations while considering a much weaker
set of assumptions than existing literature.

For compression, SQUARM-SGD uses both sparsification
and quantization. For event-triggered communication, each
worker first performs a certain number of local SGD iterations
with momentum updates; then in order to further reduce
communication, it only does so if there is a significant change
in the local model parameters (greater than a prescribed
threshold) since its last communication. If there is a significant
model change, the worker communicates a sparsified and
quantized version of (the difference of) its local parame-
ters (model) to its neighbors. Therefore, this combines lazy
updates along with quantization and sparsification to enable
communication-efficient decentralized training.

Our contributions. In this paper, we propose and ana-
lyze SQUARM-SGD, a communication efficient decentralized
training algorithm incorporating compression and local itera-
tions. Our analysis is the first to establish convergence rates of
compressed decentralized training algorithms with momentum.
We provide separate convergence results for SQUARM-SGD
with two sets of assumptions: (i) Commonly used assumptions
in decentralized optimization, including bounded second mo-

2This can also be motivated through learning over local wireless mesh (or
ad hoc) networks.

3Acronym stands for Sparsified and Quantized Action Regulated Mo-
mentum Stochastic Gradient Descent. See Algorithm 1 for a description of
SQuARM-SGD.

ment of stochastic gradients [19]-[21] (presented in Section
II-B),(ii) A relatively weaker set of assumptions on the node
variance and the gradient dissimilarity across nodes (presented
in Section III-A). Specifically, the bounds on the variance and
the gradient dissimilarity depend on the local geometry of
the true gradients; see Assumption 2 for the bounded vari-
ance assumption and Assumption 3 for the bounded gradient
dissimilarity assumption. Both these assumptions are strictly
weaker than assuming uniform bounds on the respective quan-
tities; see Remark 1 for a detailed discussion. For assumptions
set (i), we show a convergence rate of O (1/v/»T) for smooth
convex and non-convex objectives, where n is the number of
worker nodes and 7' is the number of iterations, thus matching
the convergence rate of vanilla distributed SGD. Similarly,
for the weaker assumption set (i), we show a convergence
rate of O (1/vT) for smooth non-convex objectives. We note
that compression and event triggered communication do affect
our convergence rate expressions for results in both sets of
assumptions, but they appear only in the higher order terms;
thus, for a large enough 7', we can converge at the same
rate as that of distributed vanilla SGD while enjoying the
savings in communication from our method essentially for
free; see Theorem 1 and Theorem 2 and comments after
that for details. As mentioned earlier, we use Nesterov’s
momentum in SQUARM-SGD and theoretically analyze its
convergence rate; a first theoretical analysis of convergence
of such compressed gradient updates with momentum in the
decentralized setting. In order to achieve this, we had to
solve several technical difficulties; see Section IV and also the
related work below. Our numerical results for decentralized
training of ResNet20 [23] model on CIFAR-10 [24] dataset
shows that including momentum updates as in SQuARM-SGD
can lead to around 2% increase in test accuracy performance in
comparison to the recently proposed communication efficient
algorithms CHOCO-SGD [20] or SPARQ-SGD [19] which do
not use momentum.

Related work. Communication-efficient decentralized train-
ing has received recent attention; see [18]-[20], [25]-[30]
and references therein. CHOCO-SGD proposed by [20], [21]
was the first to perform arbitrary compressed training for
decentralized optimization by considering sparsification or
quantization of the model parameters. Recently, in [19] we
proposed SPARQ-SGD incorporating compression using both
sparsification and quantization and also event-driven com-
munication with local iterations to save on communicated
bits. We remark that [19]-[21] rely on (a strong) assumption
of bounded second moment of stochastic gradients for their
theoretical analysis and do not incorporate momentum updates,
which has been shown to empirically improve generalization
performance in deep learning applications [28], [31]. Our
convergence analyses are very different and more involved
than CHOCO-SGD or SPARQ-SGD, as we rely on a much
weaker set of assumptions and provide our analyses using
virtual sequences, specifically, to handle the use of momentum.
Use of local iterations in decentralized setting with a weaker
set of assumptions similar to ours has been considered recently
in [32], however, without any compression of updates, and

importantly, without incorporating momentum in the theo-
retical analysis. The use of local iterations with momentum
updates in decentralized setting has been studied in [33], but
without any compression of exchanged information and with
a stronger set of assumptions. [34] studied momentum SGD
with compressed updates (but no local iterations or event-
triggering) for the distributed setting only, assuming that all
workers have access to unbiased gradients. Extending the
analysis to the decentralized setting (where different workers
may have local data, potentially generated from different
distributions) while incorporating momentum, compression,
local iterations, and event triggered communication* (as in
SQuARM-SGD) while assuming a weaker set of assumptions
than existing works poses several challenges; see Section
IV for a detailed discussion. The idea of event-triggering
has been explored in the control community [35]-[39] and
in the optimization literature [40]-[42]. These papers focus
on continuous-time, deterministic optimization algorithms for
convex problems; in contrast, our event-driven stochastic gra-
dient descent algorithm is for both convex and general (non-
convex) smooth objectives, e.g., neural network training for
large-scale deep learning. [43] proposed an adaptive scheme
to skip gradient computations in a distributed setting for
deterministic gradients; moreover, their focus is on saving
communication rounds, without compressed communication.
To the best of our knowledge, ours is the first paper to develop
and analyze convergence of momentum-based decentralized
stochastic optimization, using compressed lazy communication
(as described earlier). Moreover, our numerics demonstrate
better test-accuracy performance compared to recently pro-
posed methods for communication efficiency on account of
using momentum updates.

Paper organization. The problem setup and our algorithm
SQuARM-SGD are described in Section II. Section III pro-
vides two sets of convergence results, one with weak assump-
tions (Theorem 1), and the other (a slightly general result)
with strong assumptions (Theorem 2). We prove Theorem 1
in Section V (which is a novel analysis and the main technical
contribution of our paper) and defer the proof of Theorem 2
to the supplementary material. Section VI gives numerical
results comparing our algorithm to the state-of-the-art. Omitted
proofs/details are provided in appendices.

II. PROBLEM SETUP AND OUR ALGORITHM

We first formalize the decentralized optimization setting that
we work with and set up the notation we follow throughout
the paper. Consider an undirected connected graph G = (V, £)
with V = [n] := {1,2,...,n}, where node i € [n] corresponds
to worker ¢ and we denote the neighbors of node i by N :=
{(¢,7) : (i,j) € &}. To each node i € [n]|, we associate
a dataset D; and an objective function f; : R? — R. We
allow the datasets and objective functions to be different for
each node and assume that for ¢ € [n], the objective function

“Event-triggered communication with compression and local iterations is
also considered in [19], however, with the strong bounded second moment gra-
dient assumption and without momentum updates in the theoretical analysis.
Relaxing the assumptions and incorporating momentum significantly changes
the convergence analysis (see Section IV).

fi has the form f;(x) = E¢,wp,[Fi(x,&)] where & ~ D;
denotes a random sample from D;, x denotes the parameter
vector, and F;(x,&;) denotes the risk associated with sample
& with respect to (w.r.t.) the parameter vector x. Consider
the following empirical risk minimization problem, where f :
R? — R is called the global objective function:

arg i (700 := ;iﬁ,(x)),

The nodes in G wish to minimize (1) collaboratively in a
communication-efficient manner while incorporating momen-
tum updates of worker nodes.

We now state the notation relevant to describing our algo-
rithm. Let W € R™*™ denote the connectivity matrix of G,
where for every (i,j) € &, the (4,7)’th entry of W denotes
the weight w;; on the edge (7, j) — e.g., w;; may represent the
strength of the connection on the edge (i,j) — and for other
pairs (7,7) ¢ £, the weight w;; is zero. We assume that W is
symmetric and doubly stochastic, which means it has non-zero
entries with each row and column summing up to 1. Consider
the ordered eigenvalues of W, |[A{(W)| > [Ao(W)| > ... >
[An(W)|. For such a W associated with a connected graph
G, it is known that A\;(W) = 1 and)\;(W) € (—1,1) for
all ¢ € {2,...,n}. The spectral gap ¢ € (0,1] is defined as
§ :=1—|X2(W)|. Simple matrices W having ¢ € (0, 1] are
known to exist for connected graphs [21].

To achieve compression on the communication exchanged
between workers, we use arbitrary compression operators as
defined next.

(D

Definition 1 (Compression, [5]). A (possibly randomized)
function C : R* — R? is called a compression operator, if
there exists a positive constant w € (0, 1], such that for every
x € Ré:

Eclllx = C(x)[I3] < (1 — w)|x]3, (2)

where expectation is taken over the randomness of C. We
assume that C(0) = 0.

We now list some important sparsifiers and quantizers
following the above definition of a compression operator:
() Topr and Randj sparsifiers (where only k entries are
selected and the rest are set to zero) with w = k/d
[5], (i) Stochastic quantizer Q, from [7]° with w =
(1 — Ba,s) for Bas < 1, and (iii) Deterministic quantizer
%Sign(x) from [10] with w = d”\l};ul%'
{Topy, Randy}, the following are compression operators®:
(iv) mQS(COmpk) with w = (1 - W) for any
Brs > 0, and (V) |Compr (%) || Sign(Compx (x))

k
1 & [||Compy(x)]?
mas {5, & (Jcmmmit) | 1121

For Compy €

with w =

5Qs : R4 — R9 is a stochastic quantizer, if for every x € R%, we have (i)
E[Qs(x)] = x and (ii) E[||x — Qs (x)||2] < Ba,s|1x||2- Qs from [7] satisfies
d

this definition with 84, = min { %, ¥4 1.
6 [12] show that the composition of sparsification and quantization operators
is also a valid compression operator, outperforming its individual components

in terms of communication savings while maintaining similar performance.

Algorithm 1 SQuARM-SGD: Sparsified and Quantized Ac-
tion Regulated Momentum SGD

Parameters: G = ([n], E), W, Compression operator C

1: Initialize: For every i € [n], set arbitrary x*) € R%, %{* := 0,
vfﬁl) := 0. Fix the momentum coefficient 3, consensus step-size
7, learning rate 7, triggering thresholds {c;}7_o, and synchro-
nization set Zr.
2: for t =0 to 7' — 1 in parallel for all workers i € [n] do
3: Sample 55”, compute stochastic gradient
VE(x", M)
N T
1
s P 0 (a0 4 g
6: if (t+1) € I then
7
8

g

for neighbors j € V; Ui do
20 312 > ¢ then

1
9: Compute q'" := C(X§t+§> —x")
10: Send ql(-t) and receive qy)
11: else
12: Send O and receive qy)
13: end if
14: (= g 4 2V
15: end for .
16 x =Ty 3w (kY ()
JEN;
17: else L
18: I = g0 0D XZ(-H—E) for all i € [n]
19: end if
20: end for

A. Our Algorithm: SQUARM-SGD

We propose SQUARM-SGD to minimize (1), which is a
decentralized algorithm that combines compression and Nes-
terov’s momentum, together with event-driven communication
exchange, where compression is achieved by sparsifying and
quantizing the exchanges. Each worker is required to complete
a fixed number of local SGD steps with momentum, and
communicate compressed updates to its neighbors when there
is a significant change in its local parameters since the last
communication round.

To realize exchange of compressed parameters between
workers, for each node ¢ € [n], all nodes j € N; maintain
an estimate X; of x;, so, each node ¢ € [n] has access
to x; for all j € ANj;. Our algorithm runs for 7" iterations
and the set of synchronization indices is defined as Zp =
{0,H,2H...,mH,...} C [T] for some constant H € N
, which are same for all workers and denote the time steps
at which workers are allowed to communicate, provided they
satisfy a triggering condition.”

For a given connected graph G with connectivity matrix
W, we first initialize a consensus step-size 7y (see Theorem 1
for definition), momentum factor 3, learning rate 7, triggering
threshold sequence {c;}7_,, and momentum vector v; for each
node 1 initialized to 0. We initialize the copies of all the nodes
X; = 0 and allow each node to communicate in the first
round. At each time step ¢, each worker ¢ € [n] samples a
stochastic gradient VF; (x(t),fi) and takes a local SGD step

7

"The Zeno phenomenon [35] does not occur in our setup as we have a
discrete sampling period as well as a fixed number of local iterations, giving
a lower bound to the event intervals of at least H times the sampling period.

t .
on parameter xl(-) using Nesterov’s momentum to form an

intermediate parameter xEHl/ 2) (lines 3-5). If the next iteration
corresponds to a synchronization index, i.e., (t + 1) € Zr,
then each worker checks the triggering condition (line 8). If
satisfied, that worker communicates the compressed change
in its copy to all its neighbors N (lines 9-10); otherwise, it
does not communicate in that round (denoted by ‘Send 0’
in our algorithm for illustration, line 12). After receiving the
compressed updates of copies from all its neighbors, the node
1 updates the locally available copies and its own copy (line
14). With these updated copies, the worker nodes finally take
a consensus (line 16) with appropriate weighting decided by
entries of W. In the case when (¢t + 1) ¢ Zr, the nodes
maintain their copies and move on to next iteration (line 18);
thus no communication takes place.

Difference from SPARQ-SGD [19]: There are two major
differences between this work and our previous work [19]
which uses a similar framework of local iterations, compres-
sion and triggering to save on communication. Firstly, and
most importantly, the results presented in this work do not
use any strong assumptions like the bounded second moment
of stochastic gradients used in [19]-[21]: Both the variance
bound on stochastic gradients as well as the data heterogeneity
bound depend on local geometry of the true gradients (and we
allow these to scale with the true gradient norm); and thus,
neither of them are assumed to be uniformly bounded, as in
[19]-[21]. The assumptions in this work are thus much weaker
than the ones in existing decentralized literature; see Section
IV for details. Working with these relaxed assumptions calls
for completely different and much more nuanced analyses to
establish the convergence rates as compared to [19]. Secondly,
the addition of lines 4-5 in Algorithm 1 which now incorporate
momentum calls for a significantly different analysis than [19]
to arrive at the convergence rate even if we consider the
same set of assumptions. Even though momentum updates
are almost always used in practice, incorporating them in
convergence analyses in modern large-scale settings with com-
munication constraints has received attention only recently,
e.g., for distributed training with compressed update exchanges
[34] and for decentralized training without compression or
local SGD in [28]. To the best of our knowledge, our work
provides the first convergence analysis for compressed de-
centralized training with momentum using a weaker set of
assumptions than existing literature while incorporating the
local SGD and event triggered communication framework of
[19]. We note the technical challenges that arise and provide
a detailed comparison to SPARQ-SGD [19] and other recent
works analyzing momentum in Section IV. Furthermore, our
experimental results in Section VI show that incorporating
momentum can empirically improve the generalization perfor-
mance of the trained model by about 2-3% when compared to
training without momentum.

Memory-efficient version of Algorithm 1: At the first
glance, it may seem that in Algorithm 1, every node has to
store estimates of all its neighbors’ parameters in order to
perform the consensus step, which may be impractical in large-
scale learning. Note that in the consensus step (line 16), nodes

only require the weighted sum of their neighbors’ parameters.
So, it suffices for each node to store only the weighted sum
of all its neighbors’ parameters (in addition to its own local
parameters and its estimate), and thus avoiding the need to
store all neighbor parameters. A memory-efficient version of
SQuARM-SGD is given in Appendix I.

Equivalence to error-feedback mechanisms: In Algo-
rithm 1, though nodes do not explicitly perform local error-
compensation ([10], [12]), the error-compensation happens
implicitly. To see this, note that nodes maintain copies of

their neighbors’ parameters and update them as fcg.tﬂ) =

1
§c§.t) +C (x§t+2) — fcg.t)) (line 14) and then perform consensus

(line 16). Thus, the error gets accumulated into f(gt)

(t+3) (t)
x; -

and is

compensated by the term C(%) in the next round.

J

III. MAIN RESULTS

In this section we provide the convergence results for
SQuARM-SGD (Algorithm 1) under two sets of assumptions:
We present our results with the weakest set of assump-
tions available in existing literature in Section III-A and
slightly more general results with stronger assumptions in
Section III-B.

A. Theoretical Results with Relaxed Assumptions

Assumption 1 (Smoothness). We assume that each local
function f; for i € [n] is L-smooth, i.e., Vx,y € R, we
have fi(y) < fi(x) + (Vfi(x),y — x) + §lly — x]*.

Assumption 2 (Bounded Variance). We assume that there
exists finite constants o, M > 0, such that for all x € RY
we have:

1« M2 &
-~ > B |IVFi(xi, &) — Vi(xi)l3 < o® + e Vi3,

1=1 i=1
(3)

where VF;(x,&;), i € [n], denotes an unbiased stochastic

gradient, i.e., B¢, [VF;(x,§)] = V f;(x).

Assumption 3 (Bounded Gradient Dissimilarity). We assume
that there exists finite constants G > 0 and B > 1, such that
for all x € R? we have:

1 n

S IVARIE <GP+ BIVIRE @

i=1

These assumptions have appeared in literature before in [32] to
study decentralized optimization with local iterations; and we
extend their results and analyses by incorporating compression

and momentum. This extension posed many fundamental tech-
nical difficulties, which we describe in detail in Section IV.

Remark 1 (Comparison with Existing Assumptions). Assump-
tions 2, 3 are weaker than assuming uniform bounds on the
variance and the gradient dissimilarity: (i) The uniform bound
on the variance [28], i.e., E¢, |V F;(x;,&) — V fi(xi)||3 < 0
for all i € [n], implies Assumption 2 with o® = L3 | o7
and M = 0; and (ii) The uniform bound on the gradient
similarity [28], ie, 13" |Vfi(x) — Vf(x)|3 < K2

implies Assumption 3 with G = k and B = 1 — this
follows from the identity =" |||V f;i(x) = Vf(x)[} =
LS IVE®)IZ = [IVF(x)|3. Both Assumptions 2 and 3
are weaker than the uniformly bounded second moment as-
sumption B¢, ||V F;(x;,&)|13 < G2, which has been standard

in the stochastic optimization with compressed gradients [5],

[12], [20], [34].

Our convergence result (stated below) is for general smooth
(non-convex) objectives; and can be readily extended to convex
objectives. We derive this result for SQUARM-SGD under
Assumptions 1-3 without event-triggered communication; in
other words, our analysis is for compressed decentralized
momentum SGD with local iterations. We would like to
emphasize that incorporating event-triggering component into
our analysis can only complicate the calculations and can be
done. In order to bring out the novelty of our convergence
analysis without adding unnecessary technicality, we present
the result in this subsection and its subsequent analysis without
incorporating event-triggered communication.

Theorem 1. Let C be a compression operator with pa-
rameter w € (0,1] and gap(Zy) = H. Consider run-
ning SQuARM SGD for T' iterations with consensus step-size
Y= 575 2+62+128)\2+24w2)\2’ (Where X\ = max;{1—X;(W)}),
momentum coefficient € [0,1), and constant learning rate
n = (1 — B)\/%. Let the algorithm generate {th) I-1
for i € [n]. Running the algorithm for T > U, for some
constant Uy defined in Appendix C-F, the averaged iterates
x® =1y x\" satisfy:

o EIVFED)3 O<J2+U2+(M2+n)G2>
T B VnT

(1 - B)*nH*((M* +1)G +0?)
+0 (T62w3 > ’

where J? < oo is such that E[f(X(0)] — f* < J2

We prove Theorem 1 in Section V. Note that we have used
simplified convergence rate expressions in the above result,
and derive precise rate expressions in Section V.

B. Theoretical Results with Bounded Second Moment of
Stochastic Gradients

In this section, we consider a stronger set of assumptions
than the ones before along with the smoothness of objectives:
() Uniformly bounded variance: For every i € [n], we have
Ee,|VFi(x,&) — Vfi(x)||*> < o2, for some finite o;, where
VF;(x,&;) denotes an unbiased stochastlc gradient at worker ¢
with Eg, [VF;(x,&)] = V fi(x). We define 5% := L 3" | o2,
(il) Uniformly bounded second moment: For every i € [n], we
have E¢, [|[VF;(x,&))? < G? < cc.

Theorem 2. Let C be a compression operator with pa-
rameter w € (0,1] and gap(Zr) = H. Consider running
SQUARM-SGD for T iterations with consensus step-size 7 =
646+62+16§§i86>\2—166w’ (where A = maxi{1 = Ai(W)}), a
threshold sequence c¢; < nf—i Sor all t where € € (0,1) and cg
is a constant, momentum coefficient 3 € [0, 1), and constant

learning rate n = (1 — b’)\/? Let the algorithm generate
{x(t)}Tf1 for i € [n]. Then, we have:

« [Non-convex:] For T > max{16L%n, (1
xgt) satisfy:

[3)2 5}, the aver-
aged iterates X*) := D DN

o EIVFEIE _ (ﬁ + 02)
T vnT

0 Con(1+e)/2 nH2G? ﬂ45'2
+ 52T +e)/2 T6%4w2 + T(l _ 5)2

where J? < oo is such that E[f(X)] — f* < J2.
e [Convex:] If { fl}ze[n are convex, then for T >
max{(8L)%*n (867 L) "} we have:

7 (1
%) — x*||2 + 52>

vnT
n3/452G2
— 6)3/2T3/4

Elf&D)] - f* = 0 (

con

+ o <52T(1+e)/2 (1
where X(T) .= L =0

(t t) _ 1 (t
avg T)for x() Zz 1 X
x* is an optimizer of f attatmng optzmal value f*

(14e)/2

nH?*G?
04w2T

T—1_

We have used simplified convergence rate expressions in the
above results, and provide precise rate expressions in the
proofs provided in Appendix E and Appendix F for non-
convex and convex objectives, respectively.

C. Effects of parameters on convergence

The factors arising due to communication efficiency — H
(and ¢y for Theorem 2) for the event-triggered communi-
cation, w for compression, and § for the connectivity of
the underlying graph — do not affect the dominant terms in
convergence rate for either Theorem 1 or Theorem 2 and
appear only in the higher order terms. This implies that if
we run SQUARM-SGD for sufficiently long, precisely, for at
n3 (1-2)2HY[(M24+1)G+0?]
otwt [J2402+(M2+n)G?]?
G, 0, M are defined in the weaker set of assumptions provided
in Subsection III-A and C,, is a sufficiently large constant,
then SQUARM-SGD converges at a rate O (1/v7) . Similarly,
if we consider the stronger set of assumptions stated in
Subsection III-B, and run SQuUARM-SGD for at least Té

2, (2+e 1/‘ 272 15 2 N
Cs, X maX{((Jz+gz)254) 7(J2+6—2)2 (n%g 15 B2 }

Con
iterations for non-convex objectives and for T,

2 2+e 1/e n3HAG?
con H°G
Csl X max { (54(H§(0)_x*“2+52)2> ’ 58w4(“§(0)_x*“2+52)2)

where

least Ty, = Ch, X

nGep8 }
(1=-B)5 (X0 —x* |2 +52)*
ficiently large constants C, and C,, respectively, then
SQuARM-SGD converges at a rate of O (1/v/aT). Note that
this is the convergence rate of distributed vanilla SGD with
the same speed-up w.r.t. the number of nodes n in both these
settings. Thus, we essentially converge at the same rate as that
of vanilla SGD, while saving significantly in terms of total
communicated bits; this can also be seen in our numerical
results in Section VI.

for convex objectives with suf-

IV. PRELIMINARIES

In this section, we first establish a matrix notation which would
be used throughout the proofs. We then state SQUARM-SGD
in matrix notation (which is equivalent to Algorithm 1) and
list important facts regarding our updates. We conclude this
section with a brief discussion of technical challenges involved
in the proofs.

Matrix notation. Consider the set of parameters {x(t)}
at all nodes at timestep ¢ as well as the estimates of the
parameters {&Et)}?zl. The matrix notation is given by:

X .= [x(lt), e ,xg)] € Rxn
X .— [igt) 75(5:)] c Réxn
X0 = [x®,. .. x®] ¢ RIxn
V(t) = [(t) (t) V(t)} c Rdxn

(t)

VXD, e0)= v (x{", ?), VE (x®) €0 grexn

Here, VFi(xZ(.t),gi(t)) denotes the stochastic gradient at node
i at timestep ¢ and the vector x() := 13" x)" denotes
the average of node parameters at time t. Let T C [n] be
the set of nodes that do not communicate at time ¢. We define
P®) ¢ R"*" a diagonal matrix with PE? =0 forieT®
and Pl(f) = 1 otherwise.

SQuUARM-SGD in matrix notation. Consider
Algorithm 1 with synchronization indices given by the
set Zr = {0,H,2H...,mH,...} C [T] for some constant
H e N. Using the above notation, the sequence of parameters’

updates from synchronization index mH to (m + 1)H is:

v® =gyt 4 VF(X(t), S(t))
(m+1)H-1

>

t'=mH

(&)

X ((m+Y2)) _xc Ty _ (), ¢
(6)
(m+1/2)H) X(mH))P((7n+1)H 1)

)
®)

where C(.) denotes the compression operator applied column-
wise to the argument matrix and I is the identity matrix. Note
that in the update rule for X(("+DH) e used (i) the fact
that P is a diagonal matrix and that C is applied column-
wise to write C(X((m+Y/2)H) _ X(mH))plm+HH-1) —
C((X(mtyH) — X(mH))yp((m+DH=1) " and (i) that
X((m+HH-1) — X(mH) pecause X does not change in
between the synchronization indices.
We now note some useful properties of the iterates in matrix
notation which would be used throughout the paper:
1) Since W € [0,1]"*"™ is a doubly stochastic matrix, we
have: W =W7 W1 =1 and 17W = 17 (where 1 is
the all ones vector in R™). This also gives us:

n(BVY) + VF(X

X((7n+1)H) _X(mH)+C((

X ((m+DH) _ x((m+1/2)H) | »YX((erl)(W -1

xX® . X(t) 11T XOw =X® (9)

where the first expression follows from the definition
of X® and the second expression follows because

)

WL = gy = 1997,
n n n

2) The average of the iterates in Algorithm 1 follows :

1

X+ — x(+3) 4 Li1yezy 7X(tﬂ)(vv —1)—
n

117

= X(t""%) (10)
where Zr denotes the set of synchronizatic%n indiTces of
Algorithm 1. We use (W-I)£117 = Wil 11—

n

Proposition 1 (Variance Reduction with Independent Sam-
ples). Consider the variance bound (3) on the stochastic
gradient for nodes. If € = {gf), g’), . (t)} denotes the
collection of independent stochastic samples for the nodes at
any time-step t. Then we have:

Zv

o?
< —+
n

2

Eg x" &) - v fi(x")

iHVﬂ <),

Proposition 2. For any t, E ||V(t) H is bounded as follows:

(1)

t

> BTEIVEX®, 6®)|E

k=0

(1-BE[VIE < A =

(12)

We prove the above propositions in Appendix B.
Technical Challenges: We focus on two major aspects of our
work to compare with existing literature: (i) Analysis of com-
pressed decentralized training with triggered communication
with mild assumptions. (ii) Performing the resulting analysis
by taking into account the momentum updates.

The assumption on bounded second moment of stochastic
gradients is commonly used in communication efficient decen-
tralized training literature [19]-[22], and is also used to derive
the result of Theorem 2 in our paper. However, this assumption
can be quite strong for settings where the data distribution
among clients is heterogeneous, as the gradient dissimilarity
between clients can be bounded trivially using the second
moment bound (see the note on comparison of assumptions in
Remark 1 on page 4). In contrast, in Theorem 1, we work with
a much weaker set of assumptions (see Section III-A) by not
assuming any uniform bound on norm of stochastic gradients,
and further allow both the gradient diversity and the variance
of stochastic gradients to scale with the norm of gradients
compared to existing works [28]. Performing the analyses with
these relaxed assumptions is challenging, as it requires us
to carefully consider the error due to quantization and local
iterations per communication round and construct a recursion
equation for it (see Lemmas 2, 3 on page 8) and then delicately
handle the recursion to bound the error for any time index
(see Lemma 4 on page 8). We remark that the assumptions
considered for Theorem 1 in our paper have appeared in
literature before in [32] to study decentralized optimization
with only local iterations; our work is a significant extension of
their results and analyses as we incorporate compression and
momentum while achieving a convergence rate of O (1/vT).

While momentum updates are almost always used in prac-
tice to empirically speedup the training process and to improve
generalization performance, it has remained unclear whether
convergence with linear speedup with number of nodes n
(as in the case of SGD without momentum [12], [19], [32],
[44]) is still possible when using momentum. Recently, [28],
[34] provided a positive answer to this question, where [28]
studies local SGD with momentum in a decentralized setup,
but without any compressed or event-triggered communication,
and [34] studies compressed distributed SGD with momentum
for non-convex objectives, but without local iterations or event-
triggered communication. Our result in Theorem 2 is the first
to provide convergence rates showing linear speedup with n
for compressed decentralized optimization using momentum
while incorporating local iteration and triggered communi-
cation in the analysis (see Section III-B for the conver-
gence result and the assumptions made). To achieve this,
our convergence proofs require the use of virtual sequences
as defined in (13) on page 7. Proving convergence results
using virtual sequences has been promising lately in stochastic
optimization; see, for example, [5], [6], [10], [12], [28], [34].

We would like to emphasize that even without momentum
and local iterations, analyzing compression in decentralized
optimization [19]-[21] (whose analysis does not require virtual
sequences) is significantly more involved and requires differ-
ent technical tools than analyzing compression in distributed
optimization [6], [10]. One of the main reasons for this is
as follows: In a decentralized setup, we need to separately
show that nodes eventually reach to the same parameters (i.e.,
consensus happens), which happens trivially in a distributed
setup, because in each iteration all worker nodes have the same
parameters sent by the master node. On top of that, incor-
porating momentum updates (which has only been analyzed
with compression in distributed setups so far) in decentralized
setting is non-trivial and gives similar challenges.

As a consequence, it is not surprising that our proofs are
fundamentally different and significantly more challenging
from existing works, including [19]-[21], [28], [32], [34],
as we study momentum updates for decentralized setup with
compression, local iterations and event-triggered communica-
tion to save on communication bits. Unlike [34], we allow
heterogeneous setting, where different nodes may have differ-
ent datasets. Moreover, with all these, we achieve vanilla SGD
like convergence rates for non-convex and convex objectives.

V. RESULTS WITH RELAXED ASSUMPTIONS: PROOF OF
THEOREM 1

In order to prove Theorem 1, we define a virtual sequence
~(t)) .
X, for each node i € [n], as follows:

2
(;7? 5 VD, 0 O
This remaining section is divided into seven subsections. In
Section V-A, we derive an SGD like update rule for the
virtual sequence. In Section V-B, we provide a proof-outline of
Theorem 1. The remaining subsections are dedicated to prove
the lemmas stated in the proof outline given in Section V-B.

£ _ 4

(3 Z

13)

A. Deriving an SGD-Like Update Rule for the Virtual Sequene

In (13), th) is the true local parameter at node ¢ at the ¢’th
iteration, which is equal to (see line 16 of Algorithm 1):
t) t))

5(1(

_1 o R
x() =37 Lperyy Y wix

j=1
where 5/ = XD (a7 4 g g

(line 5 in Algorithm 1). Note that we changed the summation
from j € N; to j = 1 to n; this is because w;; = 0 whenever
J¢ N

Let XV = 1) D 1x() denote the average of the local
iterates at time t. Now we argue that X' = x(!~2). This
trivially holds when ¢ ¢ Zr. For the other case, i.e., t € Zr,
this follows because Zl 1 Z —p wij (X %" A(t)) = 0, which
uses the fact that W is a doubly stochastlc matrix. Thus, we
have

— n - t—1 t—1 -1
x(®) = x(-1 gZ(ﬁvf '+ VR, D).

(14)
Taking average over all the nodes in (13) and defining X() :=
Ly 3 we get

~(t) _ —(t np* 1
(0 _ %) _ @EZV

(t=1)

%

We now note a recurrence relation for the sequence X(*+1):

x(t+1) — x(@+1) _ l Z
n
=1

—x0_1) () 1 1§~ o
- Z(ﬂv +VEF (Y, ¢)) (1_ﬁ)nzvi

=1
m" ZVF (t)’gi(t))i <775+(1nf26)) %ivgt)

=1
gm" PRCIECNE R R o P

X n;sz &) — {a _B)n;ﬂvl

1
t t
=1

_ 1 n
= X(t) — ﬁg ZVFz(XEt)7€Z(t))
=1

15)

B. Proof Outline of Theorem I

The proof is divided into four lemmas. The first lemma
(stated in Lemma 1) derives the required convergence bound,
however, the RHS depends on the deviation of local parameter
vectors from the average parameter vector (ie., =) =
i E Hx
ing three lemmas are dedlcated to bounding this quantity.

Note that bounding this in the distributed setup is not
difficult, as at synchronization indices all parameters are the
same because it is coordinated by a central server. This means
that at any time index ¢ € [T], there is always a time index
t—H <t <twhen xgt) for all i € [n] are the same, and we

2
—x® H), which we have to bound. The remain-

have a reference point no too far in the past. However, in the
decentralized setup, there is no central server for coordinating
the updates, and hence there is no reference point in the
past when the local parameters are the same. Moreover, our
assumptions are arguably the weakest in literature, and we also
are working with compression and momentum updates. Thus,
bounding Z*) in our setup is highly non-trivial, and is one of
the major technical contributions of our work.

Lemma 1. Under the setting of Theorem 1, when n <
) 200-8)° 2(1-8)° (1-B)* _
nnn{ 081 1 \/MT—M’ GBZLB\/m , we get:

3B82L
T-1
1 _onll2 _ 16nL 0% +2(M? 4+ n)G?
i (t) <
7 2 B[], < =5)

— 1-75) n
L 1601~ 0))y_ fx 64L2 e

(5)(77;)—I") 7ZZE”X t)”g
t=0 i=1

We provide a proof for Lemma 1 in Section V-C.
Consider any arbitrary t € [T]. We bound Z(*) =

S Efx defined as
S .= :<f>+EHX<f> —X<<m+1>H>||2, where m = [4] —1.

We derive two upper bounds on S(*) depending on the value
of ¢. Note that in both the following lemmas, m = | %] — 1.

2
(t)H via another quantity S(*)

Lemma 2. Consider any t € [T]. Then for m = || —1, we

have the following bound for (m+1)H <t < (m+2)H —1:

s < (1 - T) SmH) 4 2cin? H?n (2(M? + 1)G? + 0?)

t—1 t—1
+en?HB? Y EIVO|Et2e? HM?+1)L2 Y ST
t'=mH t'=mH

t—1
+2ei”H(M? + 1)nB>
t’—mH

a1 <2(1+2) (75#’32 +45

E HVf (¢))H where

FI 4 4 9) +a(14).
We provide a proof of Lemma 2 in Section V-E.
Lemma 3. For mH <t < (m + 1)H, we have:

s < (1 +

4]
1) SmH) L 9cin?H?n (2(M? +1)G* + 0?)

i—1 t—1
P HB?E Y BV 3420 H(M?*+1)L2 Y S
t'=mH t'=mH

t—1 2
+ 20 H(M? + 1)nB? Y IEHVf(i(t))H ,
t'=mH 2
where c; is exactly the same as in Lemma 2.
We prove Lemma 3 in Section V-F. Using both these

lemmas, we will be able to bound =®), We state the result
in the following lemma, which we prove in Section V-G.

Lemma 4. Under setting of Theorem 1, when n <

min 79 a(1-B)
512c, HZ(M211)L2 \/ T28DH(M2+1)L2

| I=1n © R = "
T;%Z;EH& 2:T;S

}, we have:

_i(t)H

T—1
1 2
< 20+ 22 Y E HVf(i(t))H :
t=0

where J; = (325’4 +(325H) (2(M2+(11)_ng)2+n02)) and
Jp = (CH g (32DH) 20CEIBN yhere A =

2c1H?n (2(M? +1)G? 4 ¢2), C = 2¢; H(M?+1)nB?, and

D= 0(11132)2 and ¢y is exactly the same as in Lemma 2.

Substituting the bounds from Lemma 4 into Lemma 1 and
choosing n = (1 — \/> (and running the algorithm for a
sufficiently long time) completes the proof. Details with exact
numbers are provided in Appendix C-F.

C. Proof of Lemma 1

Consider the quantity E¢ , [f(x"*"))] where expectation is
taken w.r.t. the sampling at time ¢. From the recurrence relation
of the virtual sequence (15), we have:

(t) _(t)))

E¢, [FED)] = B¢ f (ﬁ(t)_

(a)

< JEY) - <Vf(i(“), Tl Zwi(x5”>>

= P1
L 7 ’
=: Py

where (a) follows from the L-smoothness of f. We show the
following bounds on P; and P, in Appendix C-A.

|V ED)? (1) (012
P < - X\ —x; a7
() P H
o? M2+n 2
—x®
s n Tt ZH o X Hz

2(M? + n)

O Rl | I

Substituting the bounds (17) and (18) in (16), we get:

2 o? 2 0\G2
Ee, [FED)] < F&D) + 2(17—?3)2(+2(M?+n)G)

nL? 2L‘3 M2 + n)
+(2n(1—5)+)2‘
772L(]\42 + n)B

n(l—p)?

n

X(t

19)

a (2(1715) -) va(i(t))Ha'

n(1-8) nL? *LY(M?+n)
S ray We get (27:,(]1—ﬁ) + nnz(l_ﬂ)z > <
n(1-4)
4LB2(M?2%+4n)°’

ﬁ. Therefore, when

When n <

#jﬁ); and when 7 <
n?>L(M?+n)B?
n(1-p)?

n _
2(1-5)
n(1l—
1 < min{ g7 2L(N ﬂi)n)7 4LB2((JW€)+n) }. we get

we get

Y

Ef(t) [f(g(wrl))} < f(;((t)) +

772L) (02+2(J\{12+n)G2)

2(1-p)?

an - 0 _n
— A1)

IVFEDIZ @0

By Jensen’s
have HVf i(t))H2 <
D),

ine uallty and L-smoothness of f, we

2HVf (%) — VFED) z +
2| VFED)]5.
22 oo

2
(t)H . Substituting this in (20) and rearranging:
2

2| Vf(® < 22|z - %0

Rearranging this gives HV f(x x(

12 wa _x

[vre)]; < &) - e, re)

02+2(M2+n)G2>+ nL? I
n -5

X(t

n
8(1—5)

n*L
Toa_pp (

77L2 Z‘

Sf(i(“) —Ee,, [f&T)]+

) _ %@ 112

L o?+2(M?*+n)G?
2(1 - 5)2 n

an” x5+ ()H <M —x®)2 @1

Now we bound Hi(t) —x® in the following lemma, which

we prove in Appendix C-A ir21 supplementary material:

Lemma 5. Consider the deviation of the global average
parameter XM and the virtual sequence X defined in (13)
for constant stepsize 1. Then at any time step t, we have:

Bin?
(1

t—1 n
—T— 1 T T
a5 20T S VR 7))
=0 i=1

Substituting the bound from Lemma 5 into (21) and then
taking the expectation w.r.t. the entire past and average over
t=0tot=T—1 gives

-2 <

T-—1
U EHW <t>)H L o?+2(M?+n)G?

8T(1 - p) = 2~ 2(1-p5)2 n

1 T—-1 9 L2 n
R EY) — IO Y gy S B =

9 3/84-[’2 — T— T T
R o) e ZVF x(7, 7))

t=0 =0

(22)

In the following lemma (which we prove in Appendix C-A)
we bound the last term of (22).

Lemma 6. Under setting of Theorem 1, it follows that:
2

—1t-1 1 n)) 0_2
= t—1— I]E VE (7 , \7 S
P2 2 |"E Z G & =)
2(M2 +n) 2 =(7)
2(M? B?21
R ZEHW)3, @3

Substituting the bound from (23) into (120) and noting that

X0 =% and f(x(T)) > f*, where f* = f(x*), we get
T-1 —(0) * 2 2
n 1 —(t) 2<f(x()—f n-o-L
3T ;E va(x)Hg = T T o= p)y
T-1 n
P e i S
n(l —)2 n(l -p/T Pt 2
977364L4 M2+n) 2 97’364L2 2
21— B)pPn2 T Z ZE’ - (= gy
9773ﬁ4L2(M2—|—n)) g2 T-! 7
- E (™12

FEROY—f* 2L 0242(M%4n)G? 9np*
T 2(1-5)2 (") (”2(1_@3)

2nL? 9773B4L4(M2+n & _
(s 1S S B =03

2n2(1 —
t=0 i=1
977364L2(M2+7’L B2

E x(m) 24
Note that (i) when n < 2%}5) , we have
- _ 2
(1 + g ﬁ)g) < 2 (i) when n < 20-A- [om
2nL? 9n3B1L? 2(M24n)L? anL?
we have (n(lfﬁ)+4(176)4 nZ1=5)) S au-py
and (iii) when 7 < 2;1[3_27?3 m, we
9n®BLL2 2(M24n)B?
have 47(7176)4 n(17:) 2< ﬁ.2 So, when
sor2(1-p)° 2(1-58) n (1-8) n
n < min{ 981 T3p2L \/ M2+n’662LB\/2(M2+n)}’
we get
11N g|vo)|f < ED S el
_— X
$(1-B) T & 2= T n(l — B)2
2(M? +n)G*n*L 17 1 = _
— E (T)y112
417L2

B ke v

t=0 1%

Taking 16(1 5T Z E||Vf((7))||3 to the LHS and mul-

(25)

tiplying both sides by 16(1) gives
T-1 —

L o[> < 160 = B)(E) — f7)

7 2B, <

T ; Vf(x) 2 nT
16nL (0°+2(M>+n)G?\ | 64L> =~ () 02
Tl G R 7 2 2Bl =l

(26)

D. Useful Lemmas

The following two lemmas (which we prove in Appendix C-B)
will be useful for proving Lemma 2 and Lemma 3.

Lemma 7. Under the setting of Theorem I, for any m € N:

E HX((m+1)H) _ X((mmH)H?

< g i x|
<

gk [g
F

!’ ’ ! 2
+ asn’E HZEZTJ},H” BVE) L VR(X() gt >)HF , (27)
+ agl)Rg(l —+
(Rl + Rg)(l =+ 045) =+
1+m)1—-w)(1+ 7'2_1)) . Here,
1+ a1)(1 -
= (1+af1)72)\2, ay > 0, § is the spectral gap, H is
W —1]|,

where a1 = (1 + az")Ry, az = (1
1)1 — w)(1 + 72), and a3 =
(1+a5 "Ry (1+) +
T, To, 5 > 0 are arbitrary numbers, Ry =
,75)27 R2
synchronization gap, vy is consensus step-size, \ 1=
where W is a doubly stochastic mixing matrix.
Lemma 8. Under the setting of Theorem 1, for any m € N:
EHx((m-i-l)H) _
+ b B[X (™)

’ ’ ! 2
+bar?E [BV £ VR, e)|| L e8)

3z ((m m ~ (mH)
XD < X - X"

_f((mH)H?F

where b1 = (1+7‘§1)’y2/\2(1+7'5)(1+7'6), b2 = (1+’7’5)(1—
W1+ 7a) + (1473 A2 1+ 75) (1 + 75 (1L +77)(1 -
w)(14+78), by = (14+73)(1—w) (147,)+ (1475)N (1+
)1+) (A+m)+ 0+ —w) (1 +75 1)) +(1+

_1)72)\2(1 + 7'5_1). Here, 13,74, 75,76, T7,7s > 0 are free
parameters.

E. Proof of Lemma 2

For any ¢ € [T, define m € |4] — 1. This implies that
(m+1)H <t < (m+ 2)H. Now we note that:

=0 .—F Hx<t> x® H2

—((m . —((m 2
_E Hx(t) _ xlmanE) (x(” ¢ +1>H>) H

F

g Hx<t> _ (o H2 (29)
(1+V1 EHX(erl)H) ((m+1)H)“
2
t—1
+ (PR Y (ﬁV“ L VR(X®), gt >))
t'=(m+1)H P
® —=(mH) (mH) _ mH)
< (1401) (@ 20 + 0, X %)
(m+1)H—1 2
+(1+)as’E | Y BVELVE(XE) 1))
t'=mH P
2
t—1
+ (14 E| Y BV RXE),)
t'=(m+1)H F
< (14+11) (@) 4 o)X) X ()|)
t—1
+ (1+v)asn®H Y E[BVE+VE(X®))3
t'=mH
t—1
+ (14 Y’ H Y BBV VE(XE))%
t'=mH
< (14 v)ar Z + (14 v)a B[X M) — X H) |3,

t—1
n’H Y EVFXY)5

t’*mH

+2 ((14v1)ag+(1+v7 ")

+2 ((1+m)as+(1+vy) n*H Z BQEHV(”H (30)
t'=m
Here, (a) follows from the inequality:

n 2
B w ie Haz - E i= 1aZH2 < %Zi:l lagl| and (b)
follows from (27) (in Lemma 7). The coefficients a1, as, as
in the RHS of (b) are defined in Lemma 7.

Proposition 3. For any t', we have:
’ ’ 2 ’
E HVF(X“) gt >)HF < 2(M? + 1)(L2E®) + nG?)

2
+2(M2+1)nBQ]EHVf(i(”)H + no? 31)
2

Substituting (31) into (30), for (m +1)H <t < (m+2)H:

—~ 2
=0 < (14 1) <a15(mH) + aF HX(mH) _ X(mH)HF>

t—1
20 H?n (2(M?+1)G?+0?) +eon®HB? > E|[VE|3,
t'=mH
t—1
+2e’H(M?+1) Y LPEV)+nB’E|V (X)) (32)

t'=mH

where ¢ = 2 (1 +wv1)as + (L+v;")). For any j € [T] and
m' = | %] — 1, define

S0 _:u>+EHX<J> (' +1)H)H (33)
By definition, we have S (mH) = BmH) 4
]EHX (mH) X(mH)H and also that =) < S() for

any t’. Using these in (32) we get

—~ 2
=) < (1 + 1/1) (alg(mH) + asE Hx(mH) _ X(mH)HF>

t—1
20 H?n (2(M?+1)G*+0?) +eon®HB* > E|VE3,
t'=mH
t—1

H2en?H(M?+1) Y LAY +nB*E|VF(E)|3 (34)
t'=mH
Our aim is to get an upper-bound on S*), whi02h is defined
in (33) as SO = 20 4+ E[X® - KD However,
F

in (34), we have only derived an upper-bound on =) in
terms of St for ¢ < t. So,, we need to derive a s1m11ar
upper-bound on the other term E HX(t) - X(Lt/HJH)H
then we will add both the upper-bounds to get an upper-
bound on S®). In the followmg, we derive an upper bound

on E HX(t) — X (1t/H]H) H Let m = | £ | — 1, we have:

X ((m+1)H)

]EHXu) X<<m+1>H>H]EHX<<m+1>H>

2
t—1
S (BVO + VR, £)

t'=(m+1)H F

-n

<(1+mn)E HX((mH)H) _ i((m+1)H)H2

F
2
t—1
+ (L PE| Y (ﬂV“ L VR(X®), gt >))
t'=(m4+1)H »

(2)

< (1+0)(E" 4 b X DX)

(m+1)H-1

3 (ﬂv(t')+vF(X(t')7£(t')))

t'=mH

+ (1+4v1)bsn°E

Ny

t—1
> (BV“’>+VF(X“’>,5@’>))

t'=(m+1)H F

~ 2
< (1+m) (bla“’“ﬂ + b X R HF)

+ (L4 n’E

t—1
7H Y BEIVEL
t'=mH
t—1

n°HY E|VF(X

t'=mH

(b)
< (1 + Vl) (bl —(mH) + bE Hx(mH) X(mH)H)

+2(1+v)bs+ (1 +27)

+ 2 ((14w)bs+(1407 1Y))12

t—1
+2ean*H?n (2(M*+1)G*+0?) +ean® HB? D E[VT|3
t'=mH
t—1

+2en?H(M?+1) Y L*E®)+nB*E|V (X
t'=mH

where (a) follows from (28) in Lemma 8 and the coefficients

b1, bo, b3 in the RHS of (a) are defined in Lemma 8, and (b)

follows from substituting the bound from (31) (in Proposi-

tion 3). In the RHS of (b), ¢4 = 2 ((1 4 v1)bs + (1 + 17 1)).

Adding (34), (35) for S = 2 4 E||X (1) — X ((m+1)H)|2 .

St < (1+ 1) max{a; + by,as + bg}S(mH) +2e1m?H?T

N3 (35)

t—1 t—1
tenPHBE Y EIVE|F42e?H(M?*+1)L? Y S

t'=mH t'=mH
F2ePH(M? + 1)nB2 Y R HVf (t >)H (36)
where I' = n(2(M?+1)G*+0?%) and ¢ = ¢ +

ci with ¢o = 2((L4+wm)az+(1+v7") and ¢y =
2 ((L+v1)bs + (1 +v7")). Here, v4 > 0 is a free coefficient,
and aq,as,a3 and by, bo, by are defined in Lemma 7 and
Lemma 8, respectively. We will set the free variables such
that the coefficients of S(") for any t' =mH,...,t — 1 on the
RHS become strictly less than one.

In Appendix C-C, we show that if we set the free parameters
to be the following:
7o
4)

vy =

= %, fori =1,2,3,4,5,7,8;
70 196 26w3

T6 =
w

WZo0 BT T T 12802 1 240202 + 46%w2)

Then we get

(14v1) max{ai+b1, as+bs} < 1—Lk(5 < 1—62 3, 37
4 1224

vd 39X 459A7 10442X2 4
<201 =42 =2
“ (1+)<) + 02 dw w? +w
4
41+ —).
+4(1+ 75) (38)

Putting these bounds back into (36), we get the following
upper bound for (m+ 1)H <t < (m+2)H — 1:

)
S’(t) S (1 _ 1) S(MH) + 201772H27’l <2<M2 + 1)G2 + 0_2)

t—1 t—1

o HB? Y EIVE|R2en?H(M*+1)L? Y ST
t'=mH t'=mH
t—1
+ 2’ H(M? +)nB* S]EHVf ”)H (39)
t'=mH

F. Proof of Lemma 3

For any fixed ¢ € [T'] and the corresponding m € | 4] — 1,
in Section V-E, we derived an upper-bound on S & all f e [T)
such that (m + 1)H < ¢ < (m + 2)H (note that ¢ and ¢
will give exactly the same terms in Section V-E, so we just
kept ¢ everywhere). In this section, we consider the case when
mH <t< (m+1)H.

(@ N —(mED |12
=) gEHX(t) _x H)HF (40)
2
< (1 + Vg)E HX(mH) _X(mH)H
F
i—1 2
+ (L E| Y (5V<t>+VF(X<t>,§<t>))
t'=mH
P

(b)

t—1
L2
< (L+)2 L2143)P HE® S E ’V(t)

’F
t'=mH

i—1
sin § Bvree)
t'=mH

2
+2(1+vy .

(C)

-1
V2 H 32 Z E ‘V(t')
t'=mH

(£22) + nc?)

< (L+v3)E™D +2(1 + vy

AL L DL+ H S
2(1+v; 2 H Z (2(M?+1) nBQEHVf %) H +na)

<(1+ I/S)E(mH) + 2(1 +us P H?n (2(M? +1)G? + 0?)
-1
’ , 2
(g P HMP1) Y PR 4nB%E VR0 >)H2
t'=mH

+2(1+ v)yPHR Y R HV“ @1

where (a) follows from the same reasoning using WhiQCh we
obtained (29), (b) uses (™) = E || X(mH) —Y(mH)H and
(c) follows from (31) (in Proposition 3).

As mentioned in Section V-E, our aim is to get an upper-
bound on S, which is defined in (33) as S = =(*) +

N 2
E HX(t) — X(Lt/HJH)HF. However, in (41), we have only de-
rived an upper-bound on 2. So, we need to derive a gimilar
upper-bound on the other term E HX(f) — X(#/H]H) HF and

then adding both the upper-bounds gives a bound on S,

Note that since mH < ¢ < (m + 1)H, we have | %] = m.
S 2

In order to upper-bound E HX“) — X(mH) H , we can follow

the same steps that we used from (40) to (}211) (just replace

X(mH) with X (™)) This would give the following bound:

- ~ 2 ~ 2
E HX(t) _ X(mH)HF <(1+wm)E HX(mH) _ X(mH)HF

t—1
+2(14vs P H2 0 (2(M?+1)G2+0?) +67> B[V 3]
t'=mH
t—1 2

A+ v PHOM + DB Y E||ViEY)|

t'=mH

i—1
+41 + v P HM? + 12 Y B

t'=mH

(42)

Adding (41) and (42), and us%ng the definition that @ =
=0 4+ E Hx@ - X(Lf/HJmHF together with that Z(*)

S and taking vs = 2, we get:

IN

SM < (14 %5)5<mH>+4(1+%)n2H2n (2(M?4+1)G?*+0?)

i—1

4 / /
A+ PHOM? +1)) | (L2SO+nBEIV &I
t'=mH
4 i—1
+4(1+%)772HB2 > EIVOE (43)
t'=mH

In order to make our calculations less cluttered later, we would
like to write all terms (except the first one) in the RHS above
in the same form as given in (39). Indeed, it can be verified
easily that 4(1+ %) < ¢1, where ¢; is exactly the same as in
(39). Substituting this in (43) above yields the bound below
for mH <t < (m + 1)H, where m € 5] -1

5@ < (1+ ’YZ&)S(mH) + 21> H?n (2(M2 +1)G? + 02)

i—1 9
+2ePHM? +1) Y (L°SY) 4+ nB’E Hw@“ >)H2)

t'=mH
i—1 9
2 2 (t)
+an’HE? Y EHV ’F (44)
t'=mH
where ¢ is exactly the same as in (39).
G. Proof of Lemma 4
Let A = 2c,Hn (2(M*+1)G?+0%), D = 42 ¢ =
2e H(M?+1)nB?, and A®) = (1 — B)E | VO|2, where ¢,
is the same as in (104). Since n < m, we

have 2cyn?H (M? +1)L? < 2 L.

Take any ¢ € [T] and let m = [£]| — 1. With these
substitutions and letting o = %‘5, the bound from (39) for
any ¢ such that (m + 1)H <t < (m + 2)H — 1 becomes:

t—1
® < (1_ X gmi) | g2, @)
s _(1 2)5 + An +64Ht/§HS

t—1 , 2 t—1 ,
o Y EHVf(i“))H +Dp> 30 AL @)
t'=mH t'=mH

And for any # such that mH < { < (m + 1)H, the bound
from (44) becomes:

i—1
s® < (1 _ 9) SmH) L g2 4 @ 3 5
2 64H

i—1 9 i—1
o Y EHW(X“’))H +Dp> 30 AL 46)

t'=mH t'=mH

Consider (45). Substituting the value of St=1) recursively in
the RHS of (45), we get:

-2
Z gt

S(t) < (1 _ %) S(mH) +A772 + i

G4H
t—1 , 2 t—1 ,
+o? Y E|viE)| 402 3 AW
t'=mH t'=mH
a o) o &2
2 (1= ,) GmH) | gp2 o & gt
Y ((2 ATt im t,:ZW;H

t'=mH t'=mH

(1-9) (56g) 541+)+ D

i—2 t—2
« « ’ « ’
o (o) O (14) D 30 AW
+ 5w (1 oim t;n:HS (g) P72

t'=mH

t—2 9 t—2
+Co? Y EHVf(iW)H +op? Y A(t’>>

t—2
+ (1) On? tgm:HE Hw(i“'))H2 +On?E HVf(f(H))H2

Substituting the values in the RHS till (m + 1)H, we get:

sO<(1-5) (1+ i)HS(’"H) +A(1+ L)an

2 64H 64H
(m+1)H—1
« Q H ’
= (14 = ("
+64H(+64H> t;m:H s
o \H (m+1)H—1)
&2 =) H (t")
+(1+64H) 0 t/;}j (C’IEHVf(X)|+ DA
RS a \t=r <N [2 & DA®)
Y (gm) (CEIVAED)|E+ DA®))
t'=(m+1)H

Now consider ¢’ such that mH < t' < (m+1)H. Substituting
the value of S((m+DH=1) from (46) int the R.H.S above gives:

$0 < (1- %) (1+ MiH)HS“”H) +A(1+ M%)HHQ

g (m+1)H—=2
> s
t'=mH
o \H (m4+1)H—-1)
e 2 —(t") H)
+ (14) t/;{{ (CE||v &)+ DAt)

1+64iH)

I o (m+1)H-2
14— 14—)g(mH) ()
toamg) |08 XS

j =mH

+@(

(m+1)H-2

>

j=mH
t—1

Y (1+64—H)t717

t'=(m+1)H

(-
o >H+1

(m+1)H—-2

> AU Ap?

j=mH

+Cn? E(V f(XD)|[>+Dn?

t’ / /
(CE[Vfx"))|? + DA®))

a) 64H(g))(Hi) s

m+1)H—2

Z g

t'=mH

+A (14—

H+1 (
64H)

(64H

(CEHW(x“)2 + DAY

t—

Ju

(1+6Tﬂ> (OJEHVf(i“’))HerDA(t’))
t'=(m+1)H

A < ((m+1)H—-1)\|2 A((m+1)H71)
(1+64—H) (CE||V /(=)I2+D)

Now we note that for 0 < o < 1, 64H (1+) <

(1 — %) 1&. Using this fact in the first term and (1+ 64H) <

(1 + 555). and (l—i—m)t L < (1 + 185)" for all
t'e{(m+1)H,...,t — 1} in the RHS above gives:

a a \H¥L H+1
N
—(1 2><1+16H) STUA I 5E n

o H+1(m+1H 2
= (1 =
+64H(+16H>

> s

S®

t'=mH
(m+1)H -2
a o, N)
(1+ 16H) Y (OEHVf(x)H + DA®))
t'=mH
g 1 2
2 a4 <) H (")
+ (1+16H) 3 (C]EHVf(x)|+ DAYy
t'=(m+1)H
+n? (1+—) (CE HVf(i((m“)H‘l))HQ 4+ DACn)H-1)
16H
Using (1 + MLH)H < (1 + miH)H+1 in the last two terms

and then clubbing together terms respectively with C and D:
H+1 H+1
0 (1mg) (rgg) s egg) o
= +16H ST)
a \H+1 , ,
tigg) 7 3 (@) eoat
+ (R " t,;:H(C VIERO|| +)

(m+1)H -2
a \H+1 ,
("
T+ 16H) Z s

t'=mH

|
64H

Recursively substituting the values till mH gives us:

502 (1-5) (i) S 4 (0 gig)

a2 <) @)
<1+16H) g Z(CEHW(X)H + DAY

t'=mH

For o < 1, we note that (1 + ﬁ)zH < e < 14%. Plugging
this in the first term on the RHS and using (1 — %) (1 + %) <
(1—2)and (1 + 72)*" < 149 < 2 gives us the following
recursion equation for any ¢ € [T7:

S < (1 - %) SmH) 4 9 A2

+207° Y E| V) H +2Dn? Z A 47)

t'=mH t'=mH

Unrolling recursion equation in (47) for S till 0, we get:

s<t>g2An22 (“Z) +zpn2z(1fZ)LHJA<>

7=0

e (-9 P e o

J=0

(48)

Note that 3", S1-2) <4

(1-9) s 7 < 2(1- 8%) 7 (proved in Appendix C-E)
into (48) gives us:

t—1 i —onl?

+402]ZO(1) IEHVf(xf)H

+4Dn22(1—
3=0

Taking summation from ¢ =0 to 7' — 1, we get:

Using this and the bound

gt < 84N

a \t—J)
— A
H)

T-1 T—1t—1 (o)tij 9
SO <ac? Y S (1-) E HVf(i(j))H
t=0 t=0 j=0 8H
T—-1t—-1 .
a =i . 8An?
+4D? > N (11— =) AW T
== (8H) «
8An> 2T—1 T-1 o\t T
< _ o () H
ST AT 2, 2 (1 8H) EHW(X)
j=0 t=j+1
T-1 T—1 t—j
+4Dp? " Y (1 - 7) AD
j=0t=j+1
8A772T 320772H Z 2 32DH77
E[|V f(&")]*+ Z A®)
a t=0

(49)

To bound the last term in the RHS of (49), from the definition
of A()

in (12), note that:

T—-1 T— t
ZA ZZ Bt~ jEHVF(X(j)’S(j))H
+=0

t=0 j=0

2

F

8
Tv
1
i
‘
i
i
'Y
|

~~~~~~~ R A Eniittt S - fad
e o |
80 80 b y 80 il A
g mw ] gl 2 2 :
2 70 2 70 il AL @70 B
< £ [t [ c
T 60 5 &l Z60{ # [ 2 60 7
g g i g g ’
3 50 3 s0 { f" 3 50 3 60 ! k;
S g 9 S ¢
2 < if < —a— vanillasGD < —a— vanillasGD
= 40 ~ 40 o ~ 40 [~
o # o L g ¢ —e— CHOCO-SGD (TopK) | & 50 —e— CHOCO-SGD (TopK)
e ) # S0l —=~ CHOCO-SGD (sign) | & | —= CHOCO-SGD (Sign)
—a— vanilla SGD (without momentum) i —a— CHOCO-SGD (without momentum) —»— SPARQ-SGD —»— SPARQ-SGD
20 —e— vanilla SGD (with momentum) 20 t —e— CHOCO-SGD (with momentum) 20 —&— SQUARM-SGD a0 —&— SQUARM-SGD
o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 o 50 100 150 200 250 300 350 400 18 20 22 24 26 28

Num epochs

(a) For vanilla SGD

Num epochs

(b) For CHOCO-SGD (TopK)

Fig. 1 Increase in test accuracy when using momentum updates.

Num epochs

(a) Comparison of test accuracy

loge(communicated bits)

(b) Test accuracy vs. no. of bits

Fig. 2 Test performance comparison of SQUARM-SGD with other techniques.

From Proposition 3 (from page 10) to bound the stochastic
gradient in the RHS of above equation gives us:

T-1 T—1 t
STAC < 33 202 + D(LED +0G?)|
t=0

t=0 j=0

T—1 t
+> > B {2(1\42

X 2
+1)nB%E HVf(i(])) H + noQ]
t=0 j=0 2

2(M? +1)nG? + no? M2—|—1 27 =
T =
=T 15 ’ Z
2(1v12+1)nB2 (
s W T *>\L

Substituting the above bound in (49), we have:

Tf S0 <27 (8An2+ <32DH) (2(M2+1)nG2+n02
o «

)

o (L (202)

T-1
64DH (M? +1)Ln? Z =)
o(1=B) an

Choose 7 < 4/ % and using that fact that = <

S® for all t € [T] and rearranging the summation term gives:

(%

1 T-1 T 1
=350 <opn o SOE[VAED)|, 0
t=0 t=0

_ (84n? 32DH 2(M?41)nG?+no? _
where J; = (=5 + (2 > )2( =) )) and Jy =
32CH 32DHY 2(M>+1)nB
( «a + ( «a ) (17[3)n )

VI. EXPERIMENTS

In this section, we provide comparison of our proposed al-
gorithm SQuUARM-SGD, which uses momentum updates to
CHOCO-SGD [20] and SPARQ-SGD [19] which consider
compressed decentralized training (and local SGD, triggered
communication for [19]) but do not incorporate momentum
in their algorithms. We empirically demonstrate that using
momentum based updates can increase the test performance
of the learned model in large-scale decentralized training. We
provide additional comparison experiments in Appendix J.

Setup. We match the setting in CHOCO-SGD, SPARQ-SGD
and train ResNet20 [45] models on the CIFAR-10 [24] dataset
with n = 8 nodes connected in a ring topology. Learning
rate follows a schedule: initialized to 0.2, warmup period of 5
epochs and has a decay of 10 at epoch 200 and 300; we stop
training at epoch 400. For SQUARM-SGD, we use Nesterov
momentum with a factor of § = 0.9 and mini-batch size
of 256. For either SPARQ-SGD [19] or CHOCO-SGD [20],
we do not use momentum.® Matching [19], SQUARM-SGD
consists of H = 5 local iterations and we take top 1% elements
of each tensor and only transmit the sign and norm of the
result. The triggering threshold follows a schedule piecewise
constant: initialized to 2.5 and increases by 1.5 after every 20
epochs till 350 epochs are complete, while maintaining that
¢t < 1y for all t. We compare performance of SQuUARM-SGD
against SPARQ-SGD (which uses SignTopK compression,
local iterations and threshold based communication), CHOCO-
SGD with Sign, TopK compression (taking top 1% of
elements of the tensor) and decentralized vanilla SGD [17].

Results. We first demonstrate that performing momentum
updates can lead to better test performance when training
large scale machine learning models. Figure 1a and Figure 1b
show test accuracy with and without momentum for vanilla
SGD decentralized training and CHOCO-SGD (with TopK
compression), respectively. We observe that training with
momentum updates improves test performance by 2-3%. Fig-
ure 2 compares the test performance for difference schemes,
where SQuUARM-SGD incorporates momentum updates (also
theoretically analyzed) while CHOCO-SGD (Sign or TopK
compression) and SPARQ-SGD (SignTopK compression and
local iterations) do not. Figure 2a shows that SQUARM-SGD
has a better test performance than other methods by around
2% owing to momentum updates. Moreover, SQuUARM-SGD
reaches a higher test accuracy in relatively fewer epochs due
to speedup by momentum. As SQUARM uses SignTopK
compression along with local iterations and triggering, it
also achieves the target test accuracy of about 90% using
significantly less communication bits® than either CHOCO-

8We note that while experimental results in [19], [20] were provided with
momentum, they do not consider momentum in their analysis. Thus for a
fair comparison, we consider our algorithm SQuARM-SGD with momentum
updates while SPARQ-SGD, CHOCO-SGD are evaluated without momentum.

9As SPARQ-SGD [19] also uses SignTopK compression with local
iterations and event-triggering, it uses the same amount of communication
bits as SQuUARM-SGD although with an inferior test performance due to
absence of momentum updates.



SGD or vanilla SGD training as demonstrated in Figure 2b.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Annual Conference of the International Speech
Communication Association, INTERSPEECH, 2015, pp. 1488-1492.
A. F Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proceedings of Conference on Empirical Methods
in Natural Language Processing, EMNLP, 2017, pp. 440-445.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in International Conference on Learning Representations,
ICLR, 2018.

S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
Memory,” in Advances in Neural Information Processing Systems,
NeurIPS, 2018, pp. 4447-4458.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, NeurIPS, 2018, pp.
5973-5983.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, NIPS, 2017, pp.
1709-1720.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in Neural Information Processing Systems, NIPS, 2017, pp.
1508-1518.

A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in International Confer-
ence on Machine Learning, ICML, 2017, pp. 3329-3337.

S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, “Error
feedback fixes signsgd and other gradient compression schemes,” in
International Conference on Machine Learning, ICML, 2019, pp. 3252—
3261.

J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” in Inter-
national Conference on Machine Learning, ICML, 2018, pp. 560-569.
D. Basu, D. Data, C. Karakus, and S. N. Diggavi, “Qsparse-local-SGD:
Distributed SGD with quantization, sparsification and local computa-
tions,” in Advances in Neural Information Processing Systems, NeurIPS,
2019, pp. 14668-14679.

S. U. Stich, “Local SGD Converges Fast and Communicates Little,” in
International Conference on Learning Representations, ICLR, 2019.
H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster
convergence and less communication:demystifying why model averaging
works for deep learning,” in AAAI Conference on Artificial Intelligence,
AAAI 2019, pp. 5693-5700.

G. F. Coppola, “Iterative parameter mixing for distributed large-margin
training of structured predictors for natural language processing,” Ph.D.
dissertation, University of Edinburgh, UK, 2015.

Y. Yan, T. Yang, Z. Li, Q. Lin, and Y. Yang, “A unified analysis of
stochastic momentum methods for deep learning,” in Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAI, 2018,
pp- 2955-2961.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Advances in
Neural Information Processing Systems, NIPS, 2017, pp. 5330-5340.
H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication com-
pression for decentralized training,” in Advances in Neural Information
Processing Systems, NeurIPS, 2018, pp. 7663-7673.

N. Singh, D. Data, J. George, and S. Diggavi, “SPARQ-SGD: Event-
triggered and compressed communication in decentralized optimization,”
in 2020 59th IEEE Conference on Decision and Control (CDC). 1EEE,
2020, pp. 3449-3456.

A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized Deep
Learning with Arbitrary Communication Compression,” in International
Conference on Learning Representations, ICLR, 2020.

A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized Stochastic Op-
timization and Gossip Algorithms with Compressed Communication,” in
International Conference on Machine Learning, ICML, 2019, pp. 3478—
3487.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze:
Parallel stochastic gradient descent with double-pass error-compensated
compression,” in International Conference on Machine Learning, ICML,
2019, pp. 6155-6165.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2016, pp. 770-778.

A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10,” Canadian Institute
for Advanced Research, 2009.

A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized
decentralized consensus optimization,” in [EEE Conference on Decision
and Control, CDC, 2018, pp. 5838-5843.

M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient
push for distributed deep learning,” in International Conference on
Machine Learning, ICML, 2019, pp. 344-353.

T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3744-3757, 2017.
H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex
optimization,” in International Conference on Machine Learning, ICML,
2019, pp. 7184-7193.

J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the
design and analysis of communication-efficient sgd algorithms,” arXiv
preprint arXiv:1808.07576, 2018.

J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “Matcha: Speeding
up decentralized sgd via matching decomposition sampling,” in 2079
Sixth Indian Control Conference (ICC). 1EEE, 2019, pp. 299-300.
A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The
marginal value of adaptive gradient methods in machine learning,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 4151-4161.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, “A
unified theory of decentralized SGD with changing topology and local
updates,” in International Conference on Machine Learning (ICML), ser.
Proceedings of Machine Learning Research, vol. 119. PMLR, 2020,
pp. 5381-5393.

J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “SlowMo: Improving
communication-efficient distributed sgd with slow momentum,” in In-
ternational Conference on Learning Representations, ICLR, 2020.

S. Zheng, Z. Huang, and J. Kwok, “Communication-efficient distributed
blockwise momentum sgd with error-feedback,” in Advances in Neural
Information Processing Systems, NeurIPS, 2019, pp. 11446-11456.
W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” in IEEE Conference on
Decision and Control, CDC, 2012, pp. 3270-3285.

D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions on
Automatic Control, vol. 57, no. 5, pp. 1291-1297, 2012.

G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49,
no. 1, pp. 245-252, 2013.

A. Girard, “Dynamic triggering mechanisms for event-triggered control,”
IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1992-1997,
2015.

Y. Liu, C. Nowzari, Z. Tian, and Q. Ling, “Asynchronous periodic event-
triggered coordination of multi-agent systems,” in IEEE Conference on
Decision and Control, CDC, 2017, pp. 6696-6701.

S. S. Kia, J. Cortés, and S. Martinez, “Distributed convex optimization
via continuous-time coordination algorithms with discrete-time commu-
nication,” Automatica, vol. 55, pp. 254-264, 2015.

W. Chen and W. Ren, “Event-triggered zero-gradient-sum distributed
consensus optimization over directed networks,” Automatica, vol. 65,
pp. 90-97, 2016.

W. Du, X. Yi, J. George, K. H. Johansson, and T. Yang, “Distributed
optimization with dynamic event-triggered mechanisms,” in IEEE Con-
ference on Decision and Control, CDC, 2018, pp. 969-974.

T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated
gradient for communication-efficient distributed learning,” in Advances
in Neural Information Processing Systems, NeurlPS, 2018, pp. 5050-
5060.

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in International Conference on
Machine Learning, ICML, 2017, pp. 3043-3052.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems, NIPS, 2016, pp. 2074-2082.



APPENDIX A
PRELIMINARIES

Notation. Unless specified otherwise, for a vector u, we write ||u|| to denote the ¢3-norm ||u]|s.

A. Vector and matrix inequalities

Fact 1. Let M € RP*? be a matrix with entries [m;), i € [p],j € |q]. The Frobenius norm of M is given by :

1M =

Consider any two matrices A € R¥*", B € R"*". Then the following holds:

|AB|r < [[Allr|B]2 (51
Fact 2. For any set of n vectors {a,...,a,} where a; € R4 we have:
n 2 n
Y oail <nd )’ (52)
i=1 i=1

Fact 3. For any two vectors a,b € R%, for all v > 0, we have:
2(a,b) < 7|lal* +~7* |b| (53)
Fact 4. For any two vectors a,b € R?, for all o > 0, we have:
la+bl* < (1+a) [al® + (1 +a~") [|b|? (54)
Similar inequality holds for matrices in Frobenius norm, i.e., for any two matrices A, B € RP*? and for any o > 0, we have
|A+B|5 < (1+a) JAL+ (1 +a™") [Bl|%
B. Properties of functions

Definition 2 (Smoothness). A differentiable function f : R* — R is L-smooth with parameter L > 0 if

L
Fy) < &)+ (VI(x)y =x) + Sy —xI, ¥x,y € R (55)
Lemma 9. Let f be an L-smooth function with global minimizer x*. We have

IVF&)I? < 2L(f(x) = f(x")). (56)

Proof. By definition of L-smoothness, we have
L
1) < 1)+ (V1) = %) + S lly = I

Taking infimum over y yields:

it 1) < inf (709 + (9760.y =)+ Ely — x1 )

—
8

) inf nt1f<f(x)+t<Vf(x),v>+w>

vi|v|=1 2

v (60 i)

viv|=1

< (160 - 51V 001?)

The value of ¢ that minimizes the RHS of (a) is t = —%(V f(x),v), this implies (b); (c) follows from the Cauchy-Schwartz
inequality: (u,v) < ||ul|||v]|, where equality is achieved whenever v = v. Now, substituting inf f(y) = f(x*) in the RHS of
y

(c) yields the result. O



APPENDIX B
PRELIMINARIES FOR CONVERGENCE WITH RELAXED ASSUMPTIONS

Proof of Proposition 1. This simply follows from the independence of the randomness used in sampling stochastic gradients
at different workers. O

Proof of Proposition 2. We want to show the following bound on E HV(” H? for any t:

2 R 2
e[vo) < R | VRX®,e®)|
F~ (1-5) kzzoﬂ ( < "
For any ¢, let 6, = 3, _, B!~
2 ¢ i
E V(t)H -k t—k (k) (k)
H . > BTEVE(X®, W)
k=0 F
ﬁt k 2
= 02E Z X *) gk

F

<03 s [rexm,¢)

k=0 F
1< 2
T S BHE HVF(X(’“),g(’“))HF. (57)
k=0
O
APPENDIX C

OMITTED DETAILS FROM SECTION V
A. Omiitted Details from Section V-C
Lemma 10. We have the following bounds on Py and P> (which are defined in (16)):

e 1 M| R 9l LR
L #W<G2+BQ\\Vf<i<t>>l\Z>-
Proof.
P = <Vf( Z Vil “’>

=—<Vf(i“))7 (ﬂﬁ)%zmﬂ( x) = VAED) + VA(E >)>

= (VIE), VIR )+ Z (VFGE), Vi) - 1)
<ty e + gt va@“))H + #7)5 > 76 -0
(i<) _2(177— B) HW*“))HQ 2n771L—2 Z H X,

where (b) follows from (a,b) < 1 (||a|? + ||b|[?) and (c) follows from the L-smoothness of f;.
For bounding P», we will use Proposition 1.

ZV Fi(x® £<t>

Z ) v fix))

Py =K,

= E&(t)

2
1 n
=3 vaEY)
n i=1




S D2 e

2

-2 O 0 S o]

2

<2 B4 S o) g+ 204 S o
07, 20 H WIS o g 200 oy g g o))
=1

Here, (d) follows because the randomness used for sampling the unbiased stochastic gradients across workers is independent
of each other, (e) follows from (11), and (f) follows from the L-smoothness of f; and (4). O

Lemma (Restating Lemma 5). Consider the deviation of the global average parameter <) and the virtual sequence X
defined in (13) for constant stepsize n. Then at any time step t, the following holds:

2
1 n
<0 _ x(t t—r—1 ||+ (o (T) (7))
| 1 A= pp Z B X VReT 6T (59)
Proof. Using the definition of %() as in (13), we have:
o 20— g0 _golf — 7|1 e
R e e
| A |
Define 0;_1 = Z_:B pr-t=k = 11:%
I VA ) ®) 2
= ——=0; VF(x
(1-pp ;0 011 n; &)
1 2
Bin? ) t Bt—1-k |11 *) (k)
< ——07 - VF(x;" &
7(1—5)27&1,@2:0 01 n; (e 67)
—1 n 2
Bhn? < a1kl
= metﬂz:ﬁt 1=k gZVF(XEk)@(k))
k=0 i=1
-1 n 27
/84772 S —_T— 1 T T
< (1_5)32 B ' EZVF’L‘(XE )752( ))
=0 =1
Where the first inequality follows from Jensen’s inequality and the second inequality follows from noting that 6; < ;=. This
completes the proof. O

Proof of Lemma 6. We have already bounded the expectation term in (18) — the same bound holds when expectation is taken
w.r.t. the entire past. Substltutlng that bound - i.e.,

LN VF(x, x(7) f(T) H <2 (a2 +”) S 1IEZHVfZ (T) H — from (58) into (23) gives

T—1t-1 2 T—1t-1

1 i || L % (1) () - 102
T2 |BTTTE|S Y VEET.ET) ZZB
t=0 7=0 i=1 t=0 =0
T—1t—1
T— M +TL T
o5 2 3 S e )
t=0 7=0
Now we bound both the terms of (60) separately.
T—-1t—1 O' 2 T—-1t—1 0_2
722675T1 _ Zﬁt‘rl ) 61)
t=0 7=0 t=0 7=0 n(1—B)
T—1¢—1 T—2

F L 2 e e - ;ZZWM*”ZEHW ),

t=0 7 7=0 t=7+



0 S o, 5 o

7=0 =1
(M? +n) i (
< B[vred,
- n2 1-3 T Z} ; filx
MQ"’” ) 2(M? +n
(r (T) (r)
) ZZEHW v Ty ZZEHW ),
M +’Il 2 7(7' 2 (M2+7'L 2 2 (1)
< -~ 7
<25 TZZLEH =B TZG + BE|V/=)[3)
2(M? +n) L2 _ 2(M? + n)G? (M2—|—n B2
<52 T EH x(7) E||Vf(x() 62
S i3 ZZ S T Z IVAEDE 6
Substituting the bounds from (61), (62) into (60) yields (23), which proves Lemma 6. O

B. Omitted Details from Section V-D
1) Proof of Lemma 7: In this section we will prove Lemma 7.

Proof. We show the following bound in Lemma 11 (provided at the end of this section):

EHX((m+1)H) X((m+1)H)H <9 ]EHX mH) _ X(mH)H2 _|_192EHX(mH) _i((m—o—l)H)Hz
F F
(m+1)H—1 2
+Os’E| > VI L VR(X®) )] (63)
t'=mH

F
where 91 = (1 + 045_1)R1, Yo = (1 + 045_1)R2, and U3 = (R1 + Rg)(l + 045).

N 2
We want to write the second expectation term E [|X(H) —X((m“)H)H on the RHS of (63) in terms of
F

. 2
E HX(mH) — X(mH)HF. For that, first we define

(m+1)H-1
X (/2 ) i) gy 30 (5V<t/> + VF(X(”,g(t'))) _ (64)

t'=mH
B HX(mH) K ((m+1)H) H _r HX mH) _ (X(mH) Iy (X((m+l/2)H) B X(mH))) H2
F
) HX((m+1/2)H) _X(mH) _ (X((m+1/2)H) _ f((mH)) 4 X (mH) _ x((m+1/2)H) H2
—~ 2 2
<(14+m)(1-wE HX<<m+1/2>H> _ X (mH) HF F(1+mHE HX<mH) _ X ((m+1/2)) HF
— (14 m)(1 - w)E HX<<m+1/2>H> _ X (mH) | x(mH) _ g(mH) H2
F
1+ HX(mH) _ X((m+1/2)H)H2
1 F
~ 2
<(1+7m)(1—w)(l+m)E HX<mH> _ X (m) H
F

2
A+ H+0+m)I-w)(1+7Y))E HX<mH> - X<<m+1/2>H>H
2

(m+1)H—1
A~ 2 I ’ ’
< B [X0 - X a?E| Y (BVE) 4 VXD, (65)
F t'=mH
F
where x1 = (1 +71)(1 —w)(1+72) and x2 = ((1+ T+ A+ -w)(l+mh).
Substituting this back in (63) yields (27), which proves Lemma 7. O

Lemma 11. We have

E”X((m+1)H) _ X((m«%l)H)H% < Rl(l + Otgl)E HX(mH) _ X(mH)H2 n RQ(]. i Oégl)E HX((m+1)H) o X(mH)H2



20

(m+1)H)-1 2
+(1+as) (Bt R | D> (BVI + VX, €1
t'=(mH) F

Proof. Using the update equations of X((m+DH) in matrix form given in (5)-(8) in Section IV, we have:
||X((m+1)H) _ X((mH)H)H% — ||X((m+1/2)H) — X((m+DH) 4 x (m+1)H) (W —1)|%
Noting that X((m+DH) — X ((m+/2)H) (from (10)) and X+ H) (W —T) = 0 (from (9)), we get:
||X((m+1)H) — X((m+1)H)H% = ||(X((m+1/2)H) _ X((m+1/2)H))((1 — I
+ W) + 7(5(((m+1)H) — X(m+2H)y (W 1%,

th

For any positive constant™® a7, we have:

X (O DH) _ (et DH))2 < (] 4 o) [|(X /2 H) (b2 )y (1 = )T 4+ A W)||2
+ (L ap ) [y (X DI - X /D) (W - T) [,

Using ||AB||r < ||A||#||B||2 for any matrices A, B, we have:
Xm0 — KD 2, < (14 )| (X — XD (1 L4y W)
+ (14 ap 2 (XD — X2y 13, (W - 1))13 (66)
To bound the first term in (150), we use the triangle inequality for Frobenius norm, giving us:
||(X((m+l/2)H) _ X((m+1/2)H))((1 — NI+ AW)||pr < (1 — 7)||X((m+1/2)H) _ X((m+1/2)H)||F
+ 7||(X((m+1/2)H) — )‘(((m+1/2)H))WHF

Since (X((m+Y2)H) _ X(m+1/2)H)) % = 0 (from (9)), adding this inside the last term above, we get:

H(X((m+1/2)H) _ X((m+1/2)H))((1 — NI+ AW)||r < (1 — 7)||X((m+1/2)H) _ X((m+1/2)H)||F

T
(X(m+y2)H) _ g ((me1/2)H)) (W _u )

n

+v‘

F
Using [|[AB||r < ||A]|r||B||2 and then using (112) from Fact 3 with k = 1, we can simplify the above to:

||(X((m+l/2)H) _ X((m+1/2)H))((1 — NI+ AW)||p < (1 — 75)||X((m+1/2)1*17) _ X ((m+1/2)H) |7
ubstituting the above in and using A = max;{1 — \; = — < A%, we get:
Substituting the above in (150) and using A 1-M(W W —1I||3 < )2
||X((m+1)H) _ X((m+1)H)||% <(A+a)(1 - W5)2‘|X((m+1/2)H) — X((erl/z)H)”%D
+ (1 + af1)72A2HX((’”+I/2)H) _ X((m—i—l)H)”%
Taking expectation w.r.t. the entire process, we have:
EHX((m—H)H) _ X((m—O—l)H)H% < (1 + 041)(1 _ ’}/5)2E||X((m+1/2)H) _ X((m+1/2)H)H%'
+ (1 + 041_1)’}/2>\2EHX((m+1/2)H) _ X((erl)H)”%

Define Ry = (14 a1)(1 —v9)?, Ry = (1 + a; ')7?A2. Using the update steps of algorithm given in equations (6) and (10)
(given in Section IV), we have:

2
(m+1)H-1 T
_ _ , , / 11
EJX(m D) XM 2 < | K0 X S v L R(X ) £00) <n _ I)
t'=mH
F
(m+1)H—1 2
+ RoE || X((mADH) _ x(mH) 4 Z n(ﬁV(t ) 4 VFX®) gt )))
t'=mH

F

0For any two matrices A, B € RP*9? and for any o > 0 , we have the following relationship for the Frobenius norm:

IA+Bl% < (1+a)|AlE+ (1 +a ) |Bl%



21

Thus, for any a5 > 0 (using Footnote 11), we have:

E|X (D) _ (D)2 < R (1 4 a7 Y)E HX(mH) _ X(mH)HQ + Ro(1 40z E HX((m—i—l)H) _ X(mH)HQ

(m+1)H)—1 ?

/ N 117
+ Ri(1+ as)E > n(BVE) 4+ VEX®) 1)) ( - I)
n
t'=(mH) F
2

((m+1)H)-1
+Ry(1+as)E|| Y (VY + VEEX®, 1))

t'=(mH)

F
117
n

Using ||AB|| < ||A|z ||B]|, to split the third term, and then using the bound ’
in Appendix D in supplementary), the above can be rewritten as:

. IH — 1 (which is shown in Claim 2
2

E||X((m+DH) _ X(m+DD|2 < R (1 4 0z Y)E HX(mH) -~ X(mH)HQ + Ro(1+ oz VB HX((m+1)H) _ X(mH)Hz
2

((m+1)H)—1
+(1tas) B+ Ro) || Y (V) + VE(XD, 1))
t'=(mH) F
O
2) Proof of Lemma 8: In this section, we prove Lemma 8.
Proof.
E HX<<m+1>H) _ R (m+1)H) H2 K HX((m+1)H> _ (fgmH) i, <X<<m+1/2>H> _ xwm)) H2
F F
—E HX((m+1/2>H) _X(mH) _ o (X<<m+1/2>H) _ fde)) L X ((mF1)H) g (m+1/2)H) H2
F
< (1+75)(1-w)E HX((m+1/2)H) _ i(mH)HQ L1+ HE Hx((erl)H) _ X((m+1/2)H)H2 (67)
- F 3 F
=: 11 =: Tz
Now we bound 77 and 75.
T, -E HX((m+1/2)H) _ )A((mH)H2
F
(m+1)H—-1 2
=E|X"D Y (ﬁvu ) L VE(X®) gt >)) _ X (mH)
t'=mH F
) (m+1)H—1 2
<(1+m)E Hx<mH> _ X (mH) H A+ E| S (5V<t'> FVF(X®), ,s(t'))) (68)
F t'=mH
F
T,=E HX<<m+1>H> _ x((m+1/2)H) H2
F
~ 2
—E HX<<m+1/2>H> 4 AX (D) (W 1) X (e 1/2)H) HF
~ 2
F
~ —((m 2 ~m
~ —((m 2
< "}/2)\2E Hx((m—‘rl)H) _ X(( +1/2)H) HF (Since ||W _ IH2 — )\)
(m+1)H-1 2
— 2\2E || X () _ [ 3 (5V<t’) +VF(x<t’>,5<t’>))
t'=mH F
12 (m+1)H-1 2
<G B[RO0 XM qomE | 30 (BVE) + VX)) | (69)
t'=mH
F

=: T3



22

where ¢ = 72A%(1+75) and ¢o = VA2 (1 + 75 1).
7, — B[R _ )
F
—F Hi((mH)H) _ x(mH) + X (mH) _ X(mH) Hz
F

—(m 2 —~ 2

F
(a)
< (1+7)E HX<'"H> x ) H A+ 751+ 7)1 — )1+ 75)E Hx<mH> X (mH) HF

(m+1)H-1 2

+on’E| Y (BVE + VEX© D)) (70)
t'=mH

F
where ¢35 = (1 + ) (Q+m)+Q+7m)(1-w)(l+7"), (a) follows from (65) for bounding
IEHX((’”H)H) -X mH)H Observe that since we are bounding this quantity separately for (a), we can use different
coefficients here. In the above bound on E HX((’"“)H ) — X (mH) H from (65), instead of using the same 7p, 72, we used

T7, Ty, respectively.
Substituting the above bound on T35 into (69) and the substituting the resulting bound on 75 from (69) and on T} from (68)
into (67) gives

EHX((erl)H) ((m+1)H)H <b1]EHX (mH) X(mH)H2

+boE HX<mH> _ X Om) H2
F

(m+1)H—1 2

+oE| Y (VY + VX)) (1)

t'=mH F

where by = (1475 )2 N2 (1+75) (1+76), by = (14+73) (1 —w) (14+74) + (1475 DY2A2(1475) (1475 ) (1 +77) (1 —w) (1+73),
by = (14+73)(1—w) (1477 )+ (147 DV (1+7) 1+ ) (A+ 7 ) + L+ ) (L —w) (X + 75 1))+ (1475 H)y2A2(1+
). O

C. Setting up parameters

We need to set the parameters such that we get (1 + v1) max{a; + b1, as + ba} < 1, this will give a contractive recursion
in (36) and will lead to our convergence results. Recall the definitions of a1, as and by, by from Lemma 7 and Lemma 8,
respectively.

= (1+ a5 )1+ a1)(1—18)?, (72)
= (1+az )1 +ar Hy2A2 (1 + 1) (1 = w)(1 + 72), (73)
61 (1473 YA (14 75) (1 + 76), (74)
by = (1+73)(1 —w)(1+74) + 1+ 73 H2N20 + 7)1+ 75 DA+ 7)1 — w)(1 + 78). (75)

Here, w,d,\ are fixed parameters and are given to us. Among the rest, there is no trade-off when choosing
a5, T1, T2, T4, Ts, T7, Ts, and we can chose them without any constraints. We need to carefully choose the remaining parameters
a1, T3, Te, Y as they contribute differently to different terms in the above equations. We will set all these parameters as follows:

4
m=2 fori=1,2345718 16=—; (76)
4 w
6 1 70 . 26w3
= =2 = . 77
T % T T T (12802 4 240202 + 46%w2) 7
Now we substitute these values into (72)-(75).
o For a;, we will use a;' < 776 and (1+ 775)(1 —70) < (1-— ”’7‘;) (since v < 1 which is true for v = v*).
) )
ar < (1+ 51 =99)7 < (1 - )% (78)
« For ay, we will use a3 ' < % (which holds because %‘5 <@ fory=7%), (1+%)>°*1-w)<(1-4%), and % >1
w 2 w w 3yA? w
<A+)1+ )0+ D)1 -w)(1+ ) < 1—-). 79
@ < (1+ 1+ 0+ D1 -)0+5) < T -5 (79)



23

o For by, we willuse (1+2) <2 (14 %)< 2 and 125 < 32.

55 232

4 4 2
—(1 = 221 1 )< 242 4%
b= (4 D s ) <m0 < e

o For by, we will use (1+%)%(1-w) < (14+%)3(1-w) < (1—%) in the first inequality, and (1+2) < 2 and (1+%) < 2
in the second inequality.

DR w) (1 DN+ ) - w)

4
<-4 a4 e+ -2)
g(l—-j)<14—2A25>

¥ 2275
=(1 4)(1—}—7/\ 4w>' (81)

b2:(1+

Bounding (a; + b1). Adding the bounds in (78) and (80), we get

) 32
ar+b < (1= ) +973 . (82)

=: h1(v)

128)°

It can be verified that k() is a convex function in +y and attains minima at 7' = e isoT <

1.

Putting this 7’ in the expression for as + by will not give a quantity that is less than one. In the following, we will derive
a value of v* that works for both a; + by and ag + ba. Let v* = s/ for some s € [0, 1]. We will derive the value of s (and
of v*).

By the convexity of h, we have

20w? : ’
TaEa? ra757 With value by (v') =

hi(v*) = hi(sy') = ha((1 = 5)0 + s7')
< (1= 5)h1(0) + shi (")
1282
12802 + 6202
6202
=l s e e 83)

Bounding (a2 + b2). Adding the bounds in (79) and (81) gives:

w 3vA? 91925
bo<(1——-)(14+ — A—
ag + by < ( 4)<+ + v 1o

<(1-—s8)+

]

w 3vA? 91925
<(1-= 2. 4
<(1 4)+( 5 +7A4w (84)

=: ha(v)

Putting v = v* = s/ = 25‘” S where D = (128)\% + §%w?), we get
g g

w 2w2s 2502 45%ws?
)< (1= 2 2
m(rr) < (- )+ (3250 + B2
w 5 5 o . 25A%6%w3s
< (1= ~ b
<(1 4) + D (6)\ w” + )
<(1- %) + % (6)\2w2 + 25)\2) (Since D > §%w? > 62w3s because w, s < 1)
w s 2,2 2
§(1—Z)+5(6Aw+32A). (85)
Equating the upper bounds on hi(v*) and ho(7*), we get
52w? w s 9 9 9
1—s—— = —Z)+5(6)\w + 32)%)
w
Y _ 5 (39)2 2,2 4 52,2
= = DB,X+6Aw + )



24

wD
= 5= 1. 86
° 7 (12802 + 240202 + 46202) (86)
With this, we have 7" = 57" = 25523 N (128)\2+2§f\2’f}2+462w2)'
Substituting the value of s from (86) into (83), we get
623 ~*
hi(v*) <1-— =1- . 87
107 = 1= gy ot 5 10%w7) 2 87)
Thus we have
*§
max{a + by, as + b} < max{ha(v), ha(7")} <1 - =,
Taking v = WT*‘S and using the inequality (1 + =/2)(1 —z) < (1 — #/2) (for x =
*§ 52 3
(1+1/1)max{a1+b1,a2+b2}§1777glfﬁ, (88)

where the last inequality follows by substituting the trivial upper bounds of A < 2 and §,w < 1 in the denominator of the
expression of v*.

Bounding ¢, + ¢4 in (36).

Cy :2(1—+—1/1)(a;31—|—a32)—|—2(1—|—ufl)7 (89)
= 2(1+I/1)(b31 + bsa + bss3) +2(1+Uf1), (90)
where
ag1 = (14 a1)(1 =78)*(1 4+ as5) + (1 4+ ay )23 (1 + as), €2V
=(1+az A +ar )N (A+m )+ 1 +m)(1—w)(l+73h), 92)
bal —(1+T3)(1—w)(1+74 Y, (93)
bao = (L+ 75 )AL+ 75)(L+75 ) (L7 )+ (L +m) (1 —w)(L+75)), (94)
bag = (L+ 75 ) (L +757h). 95)

Now we substituting the parameter setting from (76), (77) into the above equations
« For a3y, we will use (1 + "7‘;)(1 —¥8)2 < (1- l‘5)(1 —76) <land (1+ = 2) < % (both follow from 4§ < 1).

0 2 2 2.2 2,2
=(14+ —)(1—-~0)(1 1 A
an = (1+ )1 =071+ 25)+ (14 )
33 3 3722
< 22)\2: 1 96
f76+(75)v 75< + = (96)
.Foragg,wewilluse(1—|—%5)§%,(1+%)S%,and(l—k%)(l— w) < (1——)<1and(1+%)§%.

asy = (1+ %5)(1 + %WAZ ((1 + %) + (14 %)(1 —w)(1+ i))

—2N == . (97)

For by, we will use (1 + #)(1 —w) < (1 — %),

b= (14 90—+ D)< (1= 20+ 0 <

o For bgo, we willuse (1+2) <3 (1+9)< 3 and (14+2)+(1+2)(1-w)(1

—2. (98)

b= (14 2P+ D+ D) (a4 D+ s D -wa D))

5 5.0,5.,10 6259222 79y2)2
<MD TwT I ST ©9)

For b33, we will use

bsz = (1+ j) IN2(1+ ) (100)



25

Substituting the bounds on as;, age from (96), (97), respectively, and v; = %5 (where v = v* is defined in (77)) into (89), we

get:
~é 3 3722 45y\? 4
<2014+ ) (= (1 2(1+ —). 101
c2_(+4)<w<+ 5 )t +(+76) (101)

Similarly, substituting the bounds on b3y, bse, b33 from (98), (99), (100), respectively, and v, = 'YT& (where v = ~v* is defined

in (77)) into (90), we get:

v, (4 1042 )2 4
<201+ —)——-2+ —— 2(1+ —). 102
C4_(+4)<w + = +(+75) (102)
Adding the bounds on co and c4 gives
6 3 9N2  45yA% 10492X2 4 4
<201+ ) —=+ —= ——2 41+ —). 103
cQ+c4_(+4)<76+52+ S R +(+75) (103)

Putting the bounds from (88) and (103) back into (36), we get

(5 t—1 L2
s < (1 - 74) St 4 2ei*Hon (2(M? + 1)G? + 0%) + ex®HB* Y E ”V(t )
t'=mH F
t—1 , t—1 , 2
2o’ HOM? + 1)L Y SO 1 2e?BH(M? + 1)nB> Y E HVf(i(t >)H2 : (104)
t'=mH t'=mH

where ¢; = c2 + ¢4 and the bound on ¢ + ¢4 is given in (103), and v = ~* is defined in (77).

D. Omitted Details from Section V-E
Proof of Proposition 3.

sforex, ¢! - s +effemoc e s

= s[vsx )| B Y [P, 6) - 96l

E HVf(XW)Hi + n;2 1+ M?E Hw(x@’))Hi

— (M2 + 1)E HVf(X(”)Hi + no?

= (M2 + 1R [ VX)) - v X)) + Vf(i(tl))HQF +no?  (Where V(X)) = [VAED). .. V&)
<2M? 4+ 1) (IEI [vrox) - Vf(f(t/))Hi +E Hw(x“”)‘m +no?

n
O e [TAEO, ) + e
E s
F+ ; Vfi(x )2 + no

(b) , _
< 2(M? +1) (LQE HX(t )X

() , —(t
< 2(M? 4 1) (LQ]E HX@ ) x™)

2 2
F+nG2+nB2EHVf(i(t))H ) + no?
2

! 7 2
—o(M? +1) (LQE“ ) + nG? + nB2E HVf(i(t >)H > +no?
2
where (a) follows from Assumption 2, (b) follows from the L-smoothness of f, and (c) follows from Assumption 3. ]
E. Omitted Details from Section V-G

Claim 1. We have (1 — %)L%J <2 (1 _ S&H)t*j.

Proof. First note that (1 — %)UH <exp(—71%



26

In the last inequality we used (1 — %)_H < 2, which can be shown as follows:

H
a\~H 1 @ a \H @
1—7) - <<1 —) <exp(2) <2,
(1- 57 <1—8°;q> s\Utgg) sov(@)s

M\»—A

where (a) holds because g7 <

F. Completing the Convergence Proof

Note that Z(*) S E xl(.t) x® < S® for any ¢ € [T)]. Substituting this and the bound from (50) in the last term of

(26), we get
T-1 _
1 a2 161 =B)(f(XRO) = f*) 169l so? +2(M? 4+ n)G?
7 LE[E), <
Z f(x )2_ nT +(1—ﬂ)( n )
128L2J;  ,128L2J5 1 = 2
2 2 —(t
7 LE Ve !
o T; vE"Y) (105)
_ 8An? 32DH\ ( 2(M>+1)nG?+no? _ 32CH 32DH\ 2(M°*+1)nB? _
where J; = ( 4 (328 )( ) )) and J, - ( CH 4 (320H) = ), A =
2e0H?n (2(M? +1)G? + 0%), C = 2c;H(M? + 1)nB?, and D = C(llilg) and c¢; defined below. If n < /5=,
then taking the last term on the LHS gives
T-1 —
1 2 320 = B)(FEDY = ) 32nL 0?4+ 2(M? 4 n)G?
7 2 B[V, <
T; Vi )2_ nT +(1—ﬁ)( n )
2562
pp 2 (106)

Choosing 17 = (1 — ),/% and running the algorithm for T > max{Uy, Uy, Us, U4, Us} iterations completes the proof of
Theorem 1.

Here, U; = z(slmﬁ)“ U = 9(%?;“")64’;2, = % Uy = 256L%J5(1 — )2 and Us = 512DH(M2;;1)L2(1 Bn.
: __ 128CH 128DH 2(M2+1 nB? _ 1 HB?
with Jp = 76 +( P )( ) —C(l DR

C =2c H(M? + 1)nB? and ¢; = 2(1+ 22) ( I S U S 2).

APPENDIX D
PRELIMINARIES FOR CONVERGENCE WITH RELAXED ASSUMPTIONS

Fact 5. Consider the variance bound on the stochastic gradient for nodes i € [n]:

Ee, |VFi(x,&) — V)| < o?,

where E¢, [VF;(x,&;)] = Vfi(x), then:

1 o2
Eg(ﬂ - Z (ij (t) ( (t) g(t))) < — (107)
n 0,2
where €1 = {& t) ,. .. ,f,(«f)} denotes the stochastic sample for the nodes at any timestep t and % =52

Proof.
2

I 1 1
Ego |12 VA —EZ 0,60 = 5 Y EBew IV () = VE 7,60
Jj=1 j=1

S

t) () #(t) t t) ot
+— ZEM <Vfi(x§ ) = VED, D), v 1) - vE(x, ¢! >)>
i#j
Since &; is independent of &;, the second term is zero in expectation, thus the above reduces to:
2

1 1< 1 <
Eeo |2 V) = -3 VEE 6] = 5 3 BewlIVEH) - VE (G, &)1



27

Jj=1
O
Fact 6. Consider the set of synchronization indices {I(1y, 12y, ..., ), ..} € Ip. We assume that the maximum gap between
any two consecitive elements in It is bounded by H. Let f(t) = {dt),ﬁét), ey %t)} denote the stochastic samples for the

nodes at any timestep t. Consider any two consecutive synchronization indices Iy and 11 1), then for learning rate n), we
have:
2

I(k+1)_1 2
Elll Y 0BV + VEEXO )| <onH2 Gy <1 + (1?5)2> . (108)
t':I(k)

F

Proof. Using the fact that the sequence gap is bounded by H, we have I(;41) — I(;y < H for all synchronization indices
Ity € Zy. Thus we have:

2

Ihy1y—1 Ign)—1 ,
Ell Y nBV© + VEXO.eO)|| | <Hp? Y E[pVE) + vRXD,)|
t'=1Ik) » =T F
I(k+1)_1 NIE ’ ’ 2
<2Hp? Y [IEHﬁV(t)’F+IEHVF(X(”,§(”)HF]
t'=Ix)

Using the bounded gradient assumption and definition of gap H, we can bound the above as:

2

T4y =1 Ie41y—1 9
Ell S n@v® + VEXO, W) | <2mp?s? Y E HV(t ) ’F 4 2nH2G 2
t/:I(k) F t/:I(k)

Ie41)=1 n

—2ms® Y S E vat')

tr=I( i=1

2
‘ St onH2G? (109)

2
Now we show that E ‘ vgt) ‘ < % for all 4 € [n] and for every ¢ > 0. Fix an arbitrary ¢ € [n] and ¢ > 0. Define

0: = > 5_, 4", we then have:

2
2

" =6

v opt—k
> ﬁTtVF(XEk)a &)

k=0

t
<0,y BB | vRE®, 65’”)”2
k=0

t

<0, Z [ﬁt—kGQ]

k=0
e

Here the first inequality follows from the Jensen’s inequality and the second inequality follows from the bounded gradient
assumption. We now note the following bound for 6,:

t e’} 1
et:;ﬂﬁksgﬂks(l_m

(t
Vi

5|

Thus, for all ¢ and all i € [n], we have:

2 G2
E ‘ VZ@H S — (110)
Substituting the bound E[|[v{"” |2 < ~ in (109) gives
o = 1-8p &
I(hy1)—1 2 o2
E Z n(BVY) + VEX®) ¢t)y) §2H2U252nm+2nH2G2n2-

F



28

This completes the proof of Fact 6. O
Fact 7 (Triggering rule, [19]). Consider the set of nodes T') which do not communicate at time t. For a threshold sequence

{e:Y12Y, the triggering rule in Algorithm 1 dictates that
(t+3) L
R

3

< ch vi e T

Using the matrix notation, this implies that:
H (X3 X(“))(I—P(t))H < nen?. (111)

Fact 8 (Lemma 16, [21]). For doubly stochastic matrix W with second largest eigenvalue 1 — § = |A\o(W)| < 1, we have:

1
~117
n

Hw’f— =(1-26)" (112)

Sfor any non-negative integer k.

Claim 2. For any n € N, we have H% - IH =1 where 1=[11...1]%
2

1xn

Proof. Note that % is a symmetric doubly stochastic matrix with eigenvalues 1 and O (with algebraic multiplicity n — 1).

Thus, it has the eigen-decomposition 17— UDU” where columns of U are orthogonal and D = diag([10...0]), which
gives us:
1
‘—I :HUDUT—UUTH —D-T,=||. . -|. . =1
n 9 2 : : 0 . . .
0 0 0 0 0 )
O
APPENDIX E
PROOF OF THEOREM 2 (NON-CONVEX OBJECTIVE)
From the recurrence relation of the virtual sequence (15), we have:
>(t+1 _ ~(t 77 1 = (t) (t)
E&(z) [f(x( ))} = Ei(f,)f <x( ) _ ﬁﬁ ZvFi(Xi , & ))
< fE") - <Vf(§t ZEsm [VE( (t),£§t))]>
L 7 ’
o Egm Z VEFy(x
1 & L 1 — ’
< F(EOY = (v AH(xR® no_: \va2 (®) g R \va 7 ()
_f(X ) < f(X )v(l_ﬁ)n; fi(xz) +2(1_5)2 n; fl(xz)
2
L_» 1y (® () o0
+ 5 (1 _ B)QEf(t) ;(vfl( ) VFl(Xz 51 )
1< L 1< ’
< SED) = (VIEO), LS L) )+ S | Y V!
(&) = (VIE) gy VA )+ 5 i g [ 2 V)
Ln*?
—_— 113
+ (1 — B)? (113)

We now focus on bounding the second term in (113). First, note the following:

<Vf &), Zsz (t)> Zvﬁ ") < Zvﬁ )-viE®) Zsz (t)>

%Zw»cf;”) <sz 9)- fi<i<f>>>,iZVfi<x5”>>
i=1 i=1 i=1

3\)—‘




29

2

_z® (114)

1 n - ® L2 n
ﬁ;vﬁ(xi) %;‘X

where in the last inequality, we’ve used the fact that 2(a,b) < ||al|? + ||b||? for any a,b € R? and the L—smoothness
assumption for objectives {f;}"_;. We now state how to bound the last term on R.H.S. of (114). First, note the bound:

2 2 2
S - <2 -2 s 255 oo -]
i=1 i=1 i=1
Using Lemma 5 to bound the second term in (115), we get:
n B 2 n 2 1 n . i
ZHXEt)—X(t) < 22“X§t)_i(t) ”5 77‘3 Z g1 [ S R, ¢7)
n
i=1 i=1 i=1

Using the bound (116) in (114) and substituting it in (113), we have the following bound:
2

RSN
ﬁ;vfl(xz ) 2(1_B)

2
(116)

n 2

1 (x®
- ;sz( i)

Ln*? +
2n(1-5)2  2(1

2 L2 t—1
n 42 615 T— IE

Ee, [f(XD)] < FED) +
n L ‘
— X
SEpS
Rearranging the terms, we can write:
(st~ i)
21=p) 2(1-p)?
L277 n ( L2 354 -
e TN KRR e o] FEat
1=Bn i =
Summing from ¢ = 0 to 1" gives us:
T—1
( n _ Lnp® ) Z
_ —B)2
20-5) 20-p2) &
T—1

Ln?62T 3
< O B D U E H ) _ <
_f(X ) f(t)f(x )+ 2n(1—3) n t:();

2

1 e
=Y vEED, )
n

i=1

_ f(t)

Ln*c?
201 - B)?

2
< FEY) — Ee, fEY) +

1 n
N VD)
n =1

n 2

1 T T
=3 VEETET)
n

i=1

2

Z”: )

i

1¢—1 2

L? 0 < —
4 Z 8 Eﬁ(t)

t=0 7=0

1 ¢ 7)€

Using the fact that ]Eg(t)[VF( x §(t))] = Vfi(xgt)) for all ¢ € [n] and for all ¢ € [T], we have
2
Ee,y || % ey VFi(x; x{P ¢®) ) =Ee,, ||+ i, VSilx (t))’ +Ee,y |7 2im 1(sz( xM) —vE (", M) H Using this equation

along with the variance bound (107) from Fact 5, the fact that Zt 01 S ﬁt 1 < Th-g for B € (0,1) and taking
expectation w.r.t. the entire process:

I 26'2T L2 T—1 n
(0) i n ) _ ()
< f&Y) - ]Ef( ) 2n(1_5)2+(1—ﬂ)n;;EHXi <

2

L2n3B452T L2 3ﬂ4 T-1t-1 _ 13
+ ngfﬁ)s oL S |ATTE | Vi ) (117)
t=0 7=0 i=1

To bound the last term in (117), we note that:

T—1t—1 1 2 1271 1o 2
YYBTTE[SY VAT =30 Y 8TE EZfoxY))
t=0 =0 =1 7=0 t=7+1

T—2

1 ()
P val




30

2
1 I )
< ——SE|-Y v
=5 2B 2 VA
Substituting the above bound in (117) and rearranging terms, we finally get:
2
n L772 L2 354 1 n (t)
- E| - Vfi(
(o~ - Z ng hex
© . Ln U2T = 0 2 L2P3BGeT
< fEO)-Ef(x IE’ x! p 212D (118)
L 2n(1—5) Bn — ; n(1-p)°
_ 2 . 2 2 34 . .
If we select 7 < min { (14L5), 2(\1/5%2 }, it can be shown that (2(1715) - 2(1Li7ﬁ)2 - (Llfﬂ§5> > 4(171ﬂ). This gives:
-1 n 2-2 2,334=2
n 1 (t) =(0) <(T) L?] o°T L n 54T
—_— E|— Vfi(x; < f(x E[f(x +
L277 T—-1 n )
p S S a0 50
= & 2
Multiplying both sides by (1 ﬁ ) and noting that E[f(xT))] > f*, we have:
T-1 n
1 1 (0 A1 -p) (fx0) — f7) | 2Lna?
T ; n ; (i) n T n(l —p)
g2 T-1n © o AL2n2 3452
a2 SB[ =+ T 119
t=0 i=1
Now consider the time average of gradients evaluated at the global average x®):
= R =, 1 2
T > E HVf(i(t))H == Y E - > VhiEY
t=0 t=0 i=1
1T—l 1 n
_ t t)
ZTZE EZ(Vfi(X(t) - xi)) vaz (x")
t=0 i=1
2 ' ’ L2 — |1 ’
<7D E|- Z VAR -VEED)| + 5 Z - wagt’)
t=0 t=0 i=1
2
2L2 T-1
<Yy m[- ZE RIEE (120)
=0 i=1

where in the first inequality follows from Jensen’s inequality and the second inequality follows from the L—smoothness
assumption. We can bound the last term in (120) using (119) which gives us:

1 _on|? - 80— B) (Fx) — f*) | 4Ly
1 (®)
T;EHVJC(Xt)H = n T +n(1—5)
8L2 202\ 2 & o 8B’
(3 )§§E”X AR 2

Note that in our matrix form, E HX(t) —-X® Hi, =
step before or equal to (¢ + 1). Then we have:

Z?:l E qu(:t) - i(t)

. Let I(;41), € Zr denote the latest synchronization

XD = X — Zi/=l<t+1>o n(BVE) + VE(X) ¢@)))
_ — ’ ’ ’ T
XD = XMoo =570 n(BVE) + VR(XE, €00) 1

Thus the following holds:

— — ’ ! ’ 2
E|XH+D X+ |2, — | meno Xl Z;,:I(M)O n(BVE®) + VF(X®) gty (I-1117) H

F



31

— !’ ’ ’ 2
< || X a+n0 X0+ |2 42F Hzi/zl( o n(BVE) + VE(X®) @) (1-1117) HF
t+1ho

Using ||[AB||» < ||A/z ||B]|, to split the second term in R.H.S. of above along with (112) from Fact 3 (with £ = 0) and
further using the bound (108), we get:

2
EX+D — XD |12, < 9| X 0 — X400 ||2, 4 42 H2nG2 (1 + (=R s 3)2) (122)
We bound the first term in R.H.S. of (122) by Lemma 12 stated below and proved in Appendix G.
Lemma 12. (Consensus) Let {xﬁ“} ! be generated according to Algorithm 1 under assumptions of Theorem 2 with constant
stepsize n, a threshold sequence c; § —52 for all t where € € (0,1) and cy is constant, and define X; = L ZZ 11X (Z .
Consider the set of synchronization indices I = {I(l), Ioy, -5 gy, - ..}. Then for any Iy € Zr, we have:
_ . S 4nAn?
EZ [z x| = Bixio - X0z < 25

for constant A = & (2H2G2 (1 + %) (1;6 + %) + n%f",%) where p = %’, §:=1—|(W)],
for operator C.

is compression parameter

Substituting the bound from Lemma 12 in (122) and using the fact that p < 1, we have:

Z 277 B? 16 8 2cown
E|X ¢+ — X t+1D))2 2H?*nG? —+ =+ —— 123
|| ”F (1 6)2 w D 77(176) ( )

for the same constant € > () as in Lemma 12. Note that the above bound holds for all values of .

Define A := 2 (2H2n02 (1 + 25)?) (1—6 n i) + 5?;,0’;) Substituting (123) in (121) gives us:

15 onl? L 808 (Fx®) — f)  4Lna® | 10L°An® | 8L*p?BY5
1 (1)
ZEHV‘f(Xt )H n T * n(l1—p) * n + n(1—p)*

Expanding on the value of A, we have:

13 —onl?_ 8(1L=B) (F(x®) = %) 4Lna?
TZEHVJC(X())H = n T +n(1—ﬁ)

202 L? o o 32 16 8
20 (e (1 2 ) (243))

N 40L2wncoyn+e) N 8L2n?B*52
n n(l— pg)*

Substituting the value of n = (1 — 3)/%, we get:

T—1
1 40L2(1 — /8)(1+E)wc p (/2
x %) H Oy o L, i
T§t B[V m (8Cr®) = )+ aL5?) + o

20(1 — §)2L? 52 16 8 8L?B45?
T T <2H2”G2 (1 = ﬁ)2> (w * p)> e

1 40L%weon' T2 (1 — B)(+e)
< - (0)y _ px ~2 0
= \/ﬁ (8(f(x ) f ) + 4L0' ) + pT(1+e)/2

| SOnLPHGR (16 8) | 8L*'G?
Tp w T(1-3)?

p
where in the last inequality, we’ve used the fact that (1 — 8)" < 1, g7 < 1 for r > 0. Note that we require

7 < min { (1416), 2(\1;2;} thus for n = (1 — \/E we need to run our algorithm for T > max{lGLZn, ?fi%;?} for
the above rate expression to hold. We finally use the fact that p < w (as § < 1 and p := L= % with v* < w). This completes

82w

proof of the non-convex part of Theorem 2. We can further use the fact that p > 2%

expression given in the theorem statement.

(proved in Lemma 15) to get the



32

APPENDIX F
PROOF OF THEOREM 2 (CONVEX OBJECTIVE)

We start with the same virtual sequence defined in (15). Consider the quantity Eg) X+ — x*||2, where expectation is
taken over sampling across all the nodes at the ¢’th iteration:

2

Een XD — x*||2 = By [|X© — Z X €0 x
2
—Eeo X0 —x*——1 (x® " , )
2 2
n 2
(1) o U U
=[x —x —mzvfj(%”) +(1 Eg(t) ZVf] (t) ZVF X; ,g“))
j=1
2 _ . n
e (30— g ) e VFj<x§~”,£§”>>
: ]:1
2
< &0 -x - Zﬂjvmx% T (124)
(I=B)n = J (1-75)%n

Where to get the last inequality we used the fact that E £® [VF;(x; ® (t))} =V fi(xgt)) for all i € [n] and the variance
bound (107) from Fact 5. Now we thus consider the first term in (124):

2 2

- N 2 1<

x® —x* — ZVf] =||x(t)—x*||2—|—7772 *Zij(x(t)
(5P ||n 2

T
2n 1) s I (®)
— x\ —x*, - Vfi(x: (125)

T>

To bound 7} in (125), note that:

2

T = %Z vfj (v Vfa( )+ij(§(t))—ij(x*))
- 2
9 n 1 n
<23 I9H) - THED)? +2 ZVfa )~ 2V
i=1 =t
< 203 I O+ 4L E) ) (120
j=1

where in the last 1nequa11ty, we used L—Lipschitz gradient property of objectives { f]} ', to bound the first term
and optimality of x* for f (ie., Vf(x*) = 0) and L—smoothness property of f to bound the second term as:

2
L{i Sy VEED) = 2520 V)| = | VAED) - v < 2L (1) - 7).
o0 bound 75 in (125), note that:

S(t =(t IR 2 t (t
—2T2=—2<x<>—x“,nZij(x“> S (RO —x, )

J=1

2 n
ca g (I S S ) am

i=1




33

In (127), we used the definition of X® from (13) to write (V) — x(!) = — i

for inner-products:

1 ) DR . Now we note a simple trick

n n 3/s M 1/4 n
<ZZv§“),iZij<x§”>> = <("31 > vag (") > (128)
i=1 j=1

i=1
This trick is crucial to getting a speedup of n — the number of worker nodes — in our final convergence rate. Using 2(a, b) <
lla]|? + ||b||? for bounding (128) and then substituting that in (127) gives
2
2 n
n)"? Z ViED| | -2 (50 vied)) a9

n -
Jj=1

n

Z

=1

L e

2hs a0 |

Note that the second term of (129) is the same as 73 from (125) and we have already bounded that in (126). We now focus on
bounding the last term of (129). Using expression for convexity and L-smoothness for f;, j € [n] respectively, we can bound
this as follows:

2 — ¢ 2 o t t t t
—Z = VOS] = =2 (RO =X A G7) + () =% A 67) |

Jj=1

3

2 i t L — t t *
< =230 ) - £i6) - SR =X+ () - 1)
j=1

- . L~ o
= 2(f&") — =) + ; % — x| (130)

Substituting the bounds for the second and the last terms of (129) from (126) and (130), respectively, we get

8/ 42 n 2 1/2 52 2
B s v+ e (2 S 2 O L) = 1)
i=1

2(f=) — Fx) + 2 DD E x|
j=1

=27, <

Thus we finally have:

2
2n 7282 |1~ (-1 2773/2ﬁ2L2 I (1) _ 5®)2
iR e PP (e )nZ -7
a’?BPL 2 <y _ e
+<<1-m2<1-m><f<xt>f> s

Substituting (126), (131) in (125) and using the resulting bound back in (124), and then taking expectation w.r.t. the entire
process, we get:

5/2 92 n
n’?p 1 (t—1)
E|= (

G- BE ||n 2
a?L? 2m*p?L? gL )1 () =

+ + - = Efx;) — =12

( -5 w2 Bl ==

Ex — x| < EJIR® — x| +

1-p5)2  (1-p)?

L 4L 2 > By _ pr
(o o~ ) 1) (132

< = [3)2 for all t > 1 (see proof of Fact 6), we have:

n

Using the fact that E H% =1V

5/2 22 =
EHSE(H_U _ X*HQ < EHSE(]‘) _ X*HQ + n B + 77 7’

(L=p*  (1-0)*n
22 L2 on*/2 32 L2 nL ) 1 - < _x®)2
+<(1—5)2+(1—B)2+(1—B) n;EHj |

4L 4An’PBPL 2 )
+<(16)2+(1ﬂ)2 (16)>(Ef( )= 1) (139




34

If we take 7 < min { a-5) (81_52)22 }, then we have:

22 L2 20’2522 nL ) 3nL
+ < 134
((1—@2 i-p? " (-8))=21-5) (3
4’L - An’PBPL 2 ) U
_ < — 135
((15)2 a-p7 (-5)="1-5 (13>
Substituting the bounds from (134) and (135) to (133) gives
5/2 32 12 2-2
(1) %2 @) ox2 1 G no 377L ) _x®)2
E[x x"|* < E[x" — x| + A=Ay + a _5)2n ZEH |
_ n <)y _ *
g (B - ) (136)

We can now bound the second last term in R.H.S. of (136) similar to (123) in the proof of non-convex part of Theorem 2
given in Appendix E. This gives us the bound:

_ 22 B2 16 8 2cown
EIXG+D - x@+D 2 « 2L (o221 —2 ) (=42
| Ir < p " Taoe)\o ) T

Using above bound for the term }°7_, E||x§-t) —x||2 in (136) we get:

5/2 32 12 22
S(t41) o2 S(t) 2 n"peG no _.m —(t)\ _ p*
B x| <BIRO x| + {20 + g~ e (Ef &) - 1)
3n3L 5 2 B2 16 8 2cow
i (2 (1 gm) (543) +55)

By rearranging terms in (137) and noting that p < w (as § < 1 and p := % with v* < w) and the fact that (1 + %) <
(I_LB)Q (because 3 < 1), we get:

5/2 92 (72 22
*HQ + n ﬁ E + n-o - . n
(1-p* (1-8)7°n (1-5)
288n° LH?G? N 6cowLn>te)
p*(1-p)? p(1—5)

Summing (138) from ¢ = 0 to T' — 1, rearranging terms and diving by 7" both sides gives us:

E[xY —x*|* < E||x®

(Br &) - 17)

(138)

~ v ) = X * X * 5 _
Z (Ef(x )= f ) . (1=8 > (E[ZO — x| - BIIRED — x*|2) . 2 -
" NN : (=37 =
28802 LH?G?  6cowLn+e)
p*(1—p)? p
Using Jensen’s 1nequa11ty for convex function f on the L.H.S. and setting = (1 — 3),/% for T > max{(8L)*n, ?fz Lﬂ)) 'y
for X(7) := £ 57/ ;' x® we have that:
Ef(X (T)) f* < (]E”SE(O) —x*||? - E[xT) —x*||2) N n* 822 . 52
avg — \/ﬁ (1 _ ﬁ)3/2T3/4 \/717
288LH2GQ GCO(A}L(l _ 5)(1+5)n(1+e)/2
p°T T2

Using the fact that X(©) = %) and ¢, 3 € (0,1) we have:

O —x*|]? +6°  nB2G2 384nLH?G? | 6eqwLln
vnT (1 — B)*2T%/4 + p>T + pT+9/2

Ef(x(D) — f* <

This completes proof of convex part of Theorem 2. We can further use the fact that p > 2
the theorem statement.

7 4 7 to get the expression given in



35

APPENDIX G
PROOF OF LEMMA 12 (CONSENSUS)

2
I .
J(") — the difference between the

In this section, we provide a proof of Lemma 12, which states that Z L E H Ty —
local and the average iterates at the synchronization indices — is bounded by a constant times the learning rate 77, which can
effectively be made small by running the algorithm for larger number of iterations T as we choose n = (1 — \/> Thus,
this result shows that the nodes achieve a consensus towards the average parameter vector as the algorlthm progresses.

We first provide a h1gh level idea of the proof to aid the reader. Our interest is in providing a bound for GS)) =

Zj:l E HXI(‘) (t) . We show this by setting up a contracting recursion for e( ) . First we prove that

(1 (1) (2)
e, < (L—ar)ep) + (1 —an)er, + e, (139)
2
where ef}) = Z?=1 EJ)A(I(H—U — le-(” , a1 € (0,1), and ¢; is a constant that depends on n,d, 3, H,G. The quantity e( )
relates to the expected deviation of local node parameters and their copies. Note that (139) gives a contracting recursion 1n
e(Ii) but it also gives the other term ef)), which we have to bound. It turns out that we can prove a similar inequality for
(2).
Iy’

2 1 2
eg(iﬂ) <(1- ag)eg(t)) +(1- ag)eg(t)) + can?, (140)

where a5 € (0, 1); furthermore, we can choose «, s such that a; + s > 1.

Define ey = 623) + eg( )> Adding (139) and (140) gives the following recursion with « € (0, 1):

€1y < (1= a)er, +can’. (141)
From (141), we can show that e, < Cn? for some C' that depends on n,d, 3, H,G,w, co. The result of Lemma 12 follows

2
. _ I 1
from this because ?:1 E Hxlm — xj(” = eg(t)) < €y

We first state the above-mentioned recursion results for ef,lt) ., and e§23 ., below in Lemma 13 and Lemma 14, respectively,

and then using that we prove Lemma 12. The proofs of Lemma 13 and Lemma 14 are provided in Appendix H.

2
satisfies:

. 1) Tty _ 4L+
Lemma 13. Under the setting of Theorem 2, €lisny = ijl E ||x!¢ X;

egt)ﬂ) <(1+aj )Rlegt)) (1+ agl)Rgeft)) +Q11°,

where Ry = (1+a1)(1 —70)%, Ry = (1+ a7 )y?\? and Q, = 2H?*nG? (1 + %) (14 a5)(R1 + Ra). Here aq, a5 > 0,
d is the spectral gap, H is the synchronization gap, v is the consensus stepsize, and \ := ||W — 1|, where W is a doubly
stochastic mixing matrix.

2
. ~ 1 .
Lemma 14. Under the setting of Theorem 2, P = > ?:1 E HXIU“) - Xj(Hl) satisfies:

Ity

D < +a5 ) Rsel) + (1+ 05" Raell) +12Qa,

6I<t+1> -

where Rz = (1 +\)?(1 4+ ag)(1 + az)(1 + ao)(1 —w) , Ry = VN1 4+ a7h)(1 + a3)(1 + az)(1 — w) and Qy =
2

2H2nG? (1 n (15%)) (1 + 05)(Rs + Ra) + (14 a3) + (1 + a3 1) (1 + a2)(1 = w)) + (1 + az)wn 2. Note that Qs

depends on t (as captured by cy,, in the expression) as we allow for our triggering threshold to change with time. Here

g, a3,aq > 0,a5 > 0 are the same as those used in Lemma 13, § is the spectral gap, H is the synchronization gap, vy is the

consensus stepsize, and X\ = |W —1I||, where W is a doubly stochastic mixing matrix.

(1) (2)

Proof of Lemma 12. Having established the bounds on e Lian and e Lipsyy» W€ are now ready to prove Lemma 12. Consider
the following expression:
€1y = B X0 — XTem |3 4 B[ X e — XTea|f3, (142)
o e
I(t+1) I(t+1)

We note that Lemma 13 and Lemma 14 provide bounds for the first and the second term in the RHS of (142). Substituting
them in (142) gives:

_ N 2
€1 < Ri(l+ a5 E X0 = X0|® 4 Ry(1+ a5 HE foww —xIo




36

2

+ Ra(1+ a3 E[|XI0 = X10|* 4 Ry(1 + a5 E [Xlewn = XI0 "+ Q1+ Q)1 (143)
Define the following:
m1(7) == Ra + Ry = ¥’ 2 (1 4+ a7 h) + (1 + 9\ (1 4 aqg)(1 + a3)(1 + az)(1 — w) (144)
mo(y) = R+ Ry = (1 —67)2(1 + 1) +* X2 (1 + oy (1 + a3) (1 + ag)(1 — w) (145)
2
o ::Ql + QQ < 2H2nG2 (1 + (]_lfﬁp) (1 + 055)(R1 + Ry + R3 + R4)
2
2B (14 =) (14 a5") + (1= w)(1 + a5 )1+ a2)) + (1 + ag)-270 (146)
(1-p)2 n(t=<)
The bound on e sy in (143) can be rewritten as:
WWUSﬂ+%ﬂPdwmxm—X“”ﬁﬁwﬂme%—X%Wﬂ+mﬁ
< (1+ a5 max{m (7), ()} E [|X /0D = Xlern [ 4 XD X0 1] 4 mon? (147)

Calculation of max{m; (), m2(v)} and 7o is given in Lemma 15 in Appendix G-A, where we show that:

max{m (y),m2(y)} < (1—p) and 7y < (2H2nG2 (1 + %) (%3 + %) +2wn%), where p = '%5. Here ~* =

is the consensus step-size. Substituting these bounds and a5 = 127 in (147) gives:

20w
645+62+16A2+86A2— 160w

i < (14 2) (1= p)E [JX70 — Xhesn [ 4 |70 — Xho 3]

B? 16 4 ¢

Note that ef,) = E {HXI(U — X0 ||2, + || X&) — X+ H%} We can write (148) as a recurrence relation for e, as:

p
€l S (1 - 5) Iy +

where A = £~ QQHQnG2 (1 + ’872) (E + %) +2wn%). Using (149), it can be shown (proved in Lemma 16 in

2nA
na e (149)

(1-8)? ) \w
Appendix G-A below) that for all I;) € Zy, we have:

4nAn?
er,y < T

Note that we also have: E[| X1 — X102, <E {HXIW — X012 4+ | X e+ — X H%} = ey, Thus, we get the following
result for any synchronization index Iy € Zr:

2
E|[X/0 - X/} < 247
i p2 )
2 * .
where A = § (2H2G2 (1 + (fiﬂ)z) (%ﬁ + %) +2wnfie for p = 5g ,€>0and v* = 646+62+16§gi86ﬁ2_165w is the

chosen consensus step size. This completes the proof for Lemma 12
O

A. Supporting Lemmas for Proving Lemma 12

Lemma 15. Consider the following variables:
m(7) =N+ ) + (L +90)* (1 + ) (1 + as)(1+ a2)(1 —w)
mo(7) == (1= 07)%(1 +a1) + ¥ A2(1+ a1 + a3)(1 + az)(1 — w)

(ﬁiﬁ)u+%wmw+MW»

uf@g) (T4 ayh) + (1 —w)(1+ ozg_l)(l +a)) + (1 + az)wn

and the following choice of variables:

7o := 2H*nG? (1 +
+2H2G? (1 + 0
17(1_5)

a1 = —, Qg 1=



oy, 26w
pi=—77 =

8 640 4 62 + 16)2 4+ 80A2 — 160w
Then, it can be shown that:
N N 52w 2 9 62 16 4 co
max{m(*y ),7‘[’2("}/ )}Sl*m y 7T0§2H nG <1+(1_5)2> (w+p>+2wnn(1_e)

Proof. We adapt a part of the proof of [Theorem 1] [19] to prove Lemma 15. Consider:

(1+an)(1+ag)(1+a2)(1—w) = 1+ 2)*(1 —w)

This gives us:

m(7) < 42A2 (1 + ;) (12 (1- %)

Noting that v2 < v (for v < 1 which is true for v* ) and A < 2, we have:

m(7) < A2 <7+ ?) +(1+87) (1 - %)

Substituting value of v* in above, it can be shown that:
52w
)< 1-
4(646 + 6% + 1622 + 852 — 160w)

*

mi(y

Now we note that:

ma(y) = (1 — §7)>2 (1 + 527) 22 <1 + i) (1 + %)2 (1-w)

Noting the fact that for z = §y < 1, we have (1 —2)* (1+ %) < (1—=2) (1 - %),

mo(y) < (1—725)2+72,\2 (1+i> <1+%)2(1—w)

2 2
(1. 2,2 Swo w4y
_<1 2)+7A(3+4+16+w (1-w)

v0 ? 2y24
§(1—2) +IAT = =100)

Note that () is convex and quadratic in 7, and attains minima at 7' = m)%;ﬁ with value ((v') =

By the Jensen’s inequality, we note that for any s € [0, 1]

52
C(s7') < (1—15)¢(0) +s¢(v') =1— Sﬁ

: _ 1622 4-wé? . ok .
For the choice s = GISToT 1602 1Rs3? —T655> 1t can be seen that s7' = ~*. Thus we get:

52w
(645 + 62 + 16)2 + 8012 — 160w)
<1- O
=17 40640 1+ 0% + 1602 + 8002 — 160w)

ma(Y") < ((s7) <1 -

IhuS we ha\/e:
naxym / T 1 2 2 '

1672

162 4+wb?

37



38

52w _
(64567 F 16X +86AZ—166w) —
estimates § < 1,w > 0, A\ < 2, we can lower-bound p as p > ‘éﬁ. Thus we have

Using the value of v* given in the lemma statement, we have " Define p := L. Using crude
g 7 g 3 P 3 g

52w
max{m (v*), m2(y")} <1-— VR

Now we upper-bound the value of mg:
62

— 2 2 P
0 —2H nG <1+ (1—5)2

) (@ as)m) + ma) + (L + azon—2

2 2 ﬁZ — —1
+2H"nG (1 + W) (A +az ')+ (1 —w) (1 +az )1+ as))
< AHnG? (1 + (1?5)2> 1+ %)(1 )+ (1 %)wn%
+2H%nG? (1 + (1?5)2> (1+ %) F(1-w)1+ %)(1 + %))
2 w c 2
< 4H?nG? <1 + (12)2> % +(1+ Z)””W(ia + 2H?*nG? (1 + (fﬁ)Q) (1+ g)

Where in the first inequality we have used the fact that 71 (y) + m2(y) < 2(1 — p). In the second inequality, we use the fact
that (1 + %)(1 —p) < % and (1 —w)(1+ 2)(1+ %) < 2. Noting that for w < 1, we have (1+ %) <2 and (1+ 3) < 18
Using these, we have:

/32 4 16
< 2 2 [ — — — .
mo < 2H"“nG <1 + a )2> ( + ) + 2wnHcy

This completes the proof of Lemma 15. O

Lemma 16. Consider the sequence {ey, } given by

€10 < (1 - ‘g) er, + %n%
where Iy = {I(l), Iy, o Ligys - .} € [T] denotes the set of synchronization indices. For a parameter p > 0, positive constants
A and n , we have:
e < @ 2
Iy = P2

Proof. The proof uses an induction argument. Note that the base case is satisfied as eq = 0. Assuming the bound holds for
er,» for er, , , we have:

dnAn?  2nAn?

p
€I41) <(1-3)

2’ p? p
4n An?
_ =
Thus e, < 4;54 n? for all I (t) € Zr from induction argument, which completes the proof. O
APPENDIX H

SUPPORTING LEMMAS FOR PROOF OF LEMMA 12
As discussed in Appendix G, the proof for Lemma 12 relies on establishing a recurrence relation between two quantities of

: L) oI Ity
interest: €1, = ijl E||xfo — X;

2
. I o . . . . .
eft)) =) ?:1 E HXI ) —x j(” — the average deviation of the local parameter and their copies. In this section, we provide
(1

a recursion relation for both e Tien and egi)ﬂ), each in terms of egt)) and ef,i)). These results are stated in Lemma 13 and

14, respectively, which we prove below. In order to prove these lemmas we use some techniques from proof of Lemma 1 and
Lemma 2 in [19].
In matrix notation, these quantities are given by:

— the average deviation of local parameter copies and the global parameter — and

1 _
e‘(f(t)Jrl) = EHXI(HI) — X'en ||2F

‘ A
o), =EXIer - Xlow |3



39

A. Proof of Lemma 13

Using the update equations of XTt+1) in matrix form given in (5)-(8) in Section IV, we have:
e — Keen 3 = X045 — K 44K Tesn (W - D)
Noting that X/t+1) = X+ (from (10)) and XI“%)(W —1I) = 0 (from (9)), we get:
[ XM+ — XTe+n |2 = ||(XI(”%> — XIM%))(U — NI+ W) + (X e — XI(”%))(W -Dl%
For any positive constant!! o, we have:
X — X |2 < (14 ag)|(X 5 = XD (1 - )T+ W3
+(1+ a7 )X e =X e by (W -1}
Using [|[AB||r < ||A]|r||B||2 for any matrices A, B, we have:
Xt = XTe [ < (14 an) [(XTHD = X D) (1= )T+ W)}
_ S I, 1
+ (1 ar )2 |(XTern = X)) | F (W = T)|13 (150)
To bound the first term in (150), we use the triangle inequality for Frobenius norm, giving us:
Jxes =X D) (1= )L+ AW < (L= )X D = XD | (XD XD W e
Since (XIH%) — XIW%)) % = 0 (from (9)), adding this inside the last term above, we get:
Tovy) _xlord Tovd) _ xlasd
(X2 = X2 (1 =) I+ yW)[[p < (1 — )X T2 = X2 p

T
(XI“'*%) _ XQH%)) <W _ 11 )
n

+'y‘
F

Using [|[AB||r < ||A]|r||B||2 and then using (112) from Fact 3 with k = 1, we can simplify the above to:
[T b = KDY (L= AW < (1= 79)| XD = X
Substituting the above in (150) and using A = max;{1 — X\;(W)} = |[W —I||2 < A%, we get:
e = KA < (1 an)(1 = 78)?[X D = XD F 4 (1 a2 22X 0D - Xl
Taking expectation w.r.t. the entire process, we have:
E[X+0 — X |[f < (14 an)(1 =10 E|X ) = XD 3+ (14 ap )y NEIX b - Xl

Define Ry = (14 a1)(1 —v9)?, Ry = (1 + a;')y?A2. Using the update steps of algorithm given in equations (6) and (10)
(given in Section IV), we have:

T+ —1 117 2
BXIem = XIem | < BB X0 = X0 = 37 g(aVE) + VR(X,£0)) ( - I)
n
=14 .
Iieq1)—1 2
+ R | XTern — XT3 p(aVE) 4 VRX®), )
t’:](t) F
Thus, for any a5 > 0 (using Footnote 11), we have:
_ _ . 2
E|X e+ — XTI |12 < Ry (14 a5 ME fom — X H2 +Ry(14+azHE HX%H) —XI®
fean —t , e (117 i
+Ri(1+as)E || Y p(BVE) + VF(X®), 1)) (n - 1)
t/:I(t) F

UFor any two matrices A, B € RP*? and for any o > 0 , we have the following relationship for the Frobenius norm:

IA+B|% < (1+a)|AlE+(1+a ) Bl



40

2
Ieq1)—1
TR+ as)E | Y (V) + VR 1))
t'=I) F
Using ||AB||z < [|A]|z ||B]|, to split the third term, and then using the bound H - IH =1 (which is shown in Claim 2

in Appendix D), and further using the bound in (108) for the third and the fourth terms, the above can be rewritten as:
B[ X e+ — X0 |2 < Ry(1+ a5 E X0 — XI0|* + Ry(1+ oz ")E HX’ww _ x|

BQ
(1-p)?
Defining Q1 = 2H?*nG? (1 + ﬁ)Q) (1 + a5)(R1 + R2) completes the proof of Lemma 13.

+ 2’{]2H2’I?,G2 (1 + > (1 + 045)(R1 + RQ)

B. Proof of Lemma 14
Since X t+2) = XTe+1) 4 C((XI(”%) — XTa+0)PUe+ 1) (from (7) in Section IV), we have:
2, = BIXIew — Kl |3 = B[Xern - Klewn —¢((X/erD — Kl pUiora D)
— EHXI(H%) — Xlarn g xtern - X1<t+%) _ C((XI“*%) _ X1<t+1))P(I(t+z>*1))H2F

For any ay > 0, using result from Footnote 11, we have:

E|[X e+ — XIeo |2 < (14 ap)E|X ¢+ — Xlem — (X e+ - Xl )pUesa—Dy|2,

+ (1+ oz E[X o0 — X e+ |2 (1s1)

The last term in R.H.S. of (151) can be bounded by using the update step (6) and then using (108) from Fact 6, which gives:
2

E|X ¢+ — X'+ D|2 < 292 H2nG? (1 + (1ﬁﬂ)2> (152)

Using the bound (152) in (151), we get:
E|[X e+ — XIeo) |2 < (14 ap)E|X ¢+ — Xl — (X e+ — Xl )pUesa—D)Y|2,

- 32
+ (1 + a5 )29 H*nG? <1 + —
(e T-B7
Note that both PU¢+2~1 and T — PUe+2—1 are diagonal matrices, with disjoint support on the diagonal entries, which
implies that E[X¢+% — X/e |2 = E||[(X @D — Xlern)PUern =D |12 4 E[|(X D — Xlawn)(I - PUer~D)[[2. We
get:

]E||XI<f+1>—XI<f+2>||F (1+ az)EH(X t+3) _ Xf<t+1>)P(1<t+2>—1) _ C((XI“*%’ _ XI(HD)P(I@“)—I))”%

2
+ (1 + a)E| (X ¢+ — Xl )1 — PUern D)2, 1+ 2(1 + ag )2 H2nG? (1 + a-pe f ﬁ)Q)

Using the compression property (2) of operator C, we have:

E[X i+ — X1 [} < (1+ a)(1 - B (XD — Xewm)pUesn D)

2
(Lt 0B (X8 - X een) (I = PUen D)3 4 2(1 + 0y ) HPnG? (1 + (1%>

Adding and subtracting (1 + as)(1 — w)E\|(XI“+%> — X)) (I — PUe+n=D)[2, we get:

2
BJX7e+n = XI2) [F < (14 ag)(1 - @)X 8 = XN 4 (14 ay) 207 HnG? <1 + u% )
(14 ag)wB]| (X8 = Xlesn)(I - PUesa D)7
To bound the third term in the RHS above, note that X ¢+ =1 = X’¢+1) because X does not change in between the synchro-
I ; x! B
nization indices, which implies that E|[|(X ¢+2) —XI<t+1>)(I—P(1<t+2>‘1 N2 =E[(X ¢+ — X2~ (T - PUet—1)|2,
which we can upper-bound using (111) by ncl(t“),mQ. Using ¢; < (1 - for all ¢, we get:

EHX[(H-Q _ XI(H_z) ”% < (1 + Oég)(l . w)EHXI(H%) _ XI(“'”H%; + (1 + a2)wn60n(l+e)



41

2
+ (1 +ay')2n*H?*nG? (1 + 52> (153)
(1-5)
We now bound the first term in the R.H.S. of (153). From the update equation (6), we have:
I(t42)—1 ?
]E||X1<t+%>_f(f(t+1> |2 =E |[XTern — Z n(BVE) £ VEXE) ¢0))) = XTe+n
t'=I(41) P
. ﬂ2

< (1 + QS)EHXRH-U _ XI(t+1)||% + (1 4 ()451)2772H27”LG2 (1 + (16)2> (154)

where for the last inequality, a3 is any positive constant (from Footnote 11) and we have used (108) from Fact 6. Substituting
the bound (154) in (153), we have:

E[[X/n — X/ [} < (14 as)(1 +az)(1 - w)E|X/ e+ — Koo

+(1+az ") (1 + a2)(1 - w)2* H*nG? (1 * (1fﬁ)2>

2
+ (1 + az)wneon ™) + (14 ay )22 H2nG? <1 i Ofﬂ)?) (155)

We now bound the first term in R.H.S. of (155). From the update equation (8) and using the fact that X'+ h (W-1I)=0,
we have:

E[X 0 — X [ = BJ(X ¢ = X )(1 4+ =y W) (X b - X)W D)7
< (14 ag)(1 + ) 2E[X ¢+ — X |2 44222 (1 + ap DE|IX 0+h - Xerd |2 (156)

where oy is any positive constant (from Footnote 11) and the fact that ||(1+7)I—YW ||z = [|[I+7(I-W)||2 = 1+7[|I-W||2 =
1 4+ X (by definition of A = max;{1 — X\;(W)}) and ||[I — W||, = X along with ||AB|| < ||A|| |B||,. Using the bound
from (156) in (155), we get:

E[[X e+ — X1 |[2 < (149021 +an)(1 +as)(1+ az)(1 - )E[X €D - Xhewn [
+ 221+ a; (1 + ag)(1 + az)(1 — w)E[X @+ — X'eb )2
+2((1+az") + (T4 a3 ") (1+a2)(1 —w)) P H*nG? (1 + (f;)g>
+ (1 + g)wneont+e)
Define Rz = (1 +YN)2(1 4+ aq)(1 + a3)(1 + a2)(1 —w) , Ry = ¥ 2(1 + a7 )(1 + a3)(1 + a2)(1 — w) and Ry =
2(1+a3 ")+ (1 +az")(1+a2)(l —w)) H*nG? (1 + %) + (1 + az)wn 2, then the above can be rewritten as :
]E||X1<t+1> _ X1<t+2>||% < RgE”XI(H—%) _ XI@H)”% + R4]E||XI“+%> _ XI(H%)H% + 35772

Using the update steps of algorithm given in equations (6) and (10) (given in Section IV):

2
Ieq1)—1
E||X e —X T2 |2, < RyE || X ey — X 4 Z n(BVE) £ VEX®) ¢t)y)
t'=I) F
2
T~ , N 117
+ R4E || X0 — X — N (V) 4 VE(X®) £1)) < - I> + Ryn?
n
t'=I) r

For the same as > 0 (from result in Footnote 11) used in proof of Lemma 13, we get:

N N 2 _
B|[X/ 40— XN [} < By(1 4 a5 B [Xern =X |74 Ryl 4 o5 E X0 - X0

fean =t , N (117 i
+Ri(1+as)EB || Y p(BVE) + VE(X) 1)) ( - 1)

=l "

Teq1)—1 2
+Ry(L+as)E | Y nBVY) + VEXD N + Ryn?

t/:I(t) F




42

Using ||AB||» < ||A]| [|B]|5 to split the third term and then using ‘LllnT - IH < 1 (from Claim 2 in supplementary material),

and further using the bound in (108) for the third and fourth term, the above can be rewritten as:

B X/ — Xes2 [} < Ry(1+ a5 B [l - xT0

2
+ 20° H*nG? (1+( p 2) (1+ as)(Rs + Ry) + Rsn?

‘2 + Ry(1+ oz HE|| X0 — X o ||2

1-5)

Defining Q2 = 2H?nG? (1 + %) (14 as5)(R3 + R4) + Rs completes the proof of Lemma 14.

APPENDIX I
MEMORY-EFFICIENT VERSION OF SQUARM-SGD

In this section, we provide our memory efficient version of SQUARM-SGD proposed in the main paper in Algorithm 1.

Algorithm 2 Memory-Efficient SQuUARM-SGD
Parameters: G = ([n], E), W
1: Initialize: For every ¢ € [n], set arbitrary XEO) € RY, f(go) =0, s§0> =0, v§71> := 0. Fix the momentum coefficient (3, consensus

step-size ~, learning rate ), triggering thresholds {c;}7—, and synchronization set Zr.
2: for t =0 to T — 1 in parallel for all workers i € Jn] do

3:  Sample 51@, stochastic gradient gz(-f’) =VFE; (xit),fiﬂ)
4 v =gyl 4 gl?
+1

soox T =k (vl +g!)
6: if (t+1) € Ir then
7: for neighbors j € N; do

. . (t+3) NOIP) 2
8: if ||x; —%;"||z2 > ¢tn” then

1
9: Compute ql(-t) = C(x§t+2) - &Et))
10: Send qZ@ to worker j and receive q§t>
11: else
12: Assign qZ@ =0
13: Send ql(-” to worker j and receive q;”
14: end if
15: end for
16: £ = g 5V
17: SZ(-H_l) = Si(-t) + Z wijq;t)
j=1
1

13: XZ@H) _ X§t+2) N (§§t+1) -~ }A(EtJrl))
19:  else il
20: )A(Z(t-u) _ )A(Et) ) Xit+1) _ X@(- +§>, S£t+1) _ Sgt)
21:  end if
22: end for

The parameter sgt) for i € [n] stores the weighted sum of all neighbor copies which is then used in the consensus step.

Thus, the requirement for storing copies of all neighbors at a node as in algorithm given in main paper is relaxed.

APPENDIX J
ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments for comparison of schemes when training a ResNet-20 model on the
CIFAR-10 dataset, with the same setting as Section VI in the main paper.



A. Training performace

100

43

—a— vanilla SGD
20 —e— CHOCO-SGD (TopkK) 90
—m~ CHOCO-SGD (Sign)
—»— SPARQ-SGD £ 80
154 @ —e— SQUARM-SGD £ 70
2 \ E 60
3 1 3
10 ." $ so —a vanilla SGD
2 40 —e-- CHOCO-SGD (TopK)
os s S —m-- CHOCO-SGD (Sign)
Y | 30 —»— SPARQ-SGD
e 20 —e SQUARM-SGD
0.0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Num epochs Num epochs

(a) Training loss vs epochs for all schemes. (b) Training accuracy vs epoch for all schemes.

Fig. 3 Training metrics for different schemes.

Figure 3 shows the training loss and training accuracy performance of all the schemes. We observe that each scheme is able
to train the ResNet-20 model well over the CIFAR-10 dataset.

B. Wall clock comparison

Wallclock training time Test accuracy vs wallclock time

oy i K RPN -
4— vanilla SGD ///! 90 ‘1"$;"""*7T+~’._
1750 1 —e— CHOCO-SGD (TopK) e ! "
1500~ CHOCO-SGD (Sign) _/,5,'5* .
—»— SPARQ-SGD e B
: -
_ 1250 —— SQUARM-SGD //’5’ B

~
o

Test Accuracy
[+
o

—a— vanilla SGD

—e— CHOCO-SGD (TopK)
i = CHOCO-SGD (Sign)
i —»— SPARQ-SGD
§ —+— SQUARM-SGD
0

o
=]

40

250 500 750 1000 1250 1500 1750 2000
Time (sec)

(a) Wall-clock training time logged at each epoch. (b) Test accuracy vs wall-clock time.

Fig. 4 Comparing performance of schemes with wall-clock training time.

Figure 4a shows the wall-clock time for training the ResNet-20 model for all the schemes logged in at each epoch. It can
be seen that performing the encoding/decoding process for CHOCO-SGD (Sign/TopK) [21] can be expensive, and takes more
time than vanilla SGD. For SPARQ-SGD and SQuARM-SGD, we consider 10 local iterations, and thus the nodes only need to
perform the encoding decoding process once in every 10 iterations as compared to each iteartion in vanilla SGD or CHOCO-
SGD. The time take for SQUARM-SGD is a bit higher than SPARQ-SGD on account on performing more computation with
the momentum updates.

Figure 4b shows the test error performance as a function of the wall clock time elapsed during training. It can be seen that on
account of using momentum and local iterations, SQUARM-SGD achieves a higher test performance while taking about 0.5x
the time compared to CHOCO-SGD for training, and about 0.75x the time compared to vanilla-SGD.

C. Effect of local iterations (H) on SQUARM-SGD

We consider the same setting as in our main paper, and compare the performance of SQUARM-SGD for H € {5, 20,70, 100}.
We observe that the proposed scheme works well for reasonable values of H, which taking large H can slightly hurt the
performance due to very infrequent information exchange among clients.



90

_ 80

n

ki

270

o

E

2 60

'é' - SQUARM-SGD (5)

= 504 - SQUARM-SGD (20)

- SQUARM-SGD (70)

20 - SQUARM-SGD (100)

0 50 100 150 200 250 300 350 400
Num epochs

Fig. 5 Comparison of Test accuracies for different values of H for SQUARM-SGD.



