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Abstract—In this paper, we propose and analyze SQuARM-
SGD, a communication-efficient algorithm for decentralized
training of large-scale machine learning models over a network.
In SQuARM-SGD, each node performs a fixed number of
local SGD steps using Nesterov’s momentum and then sends
sparsified and quantized updates to its neighbors regulated by a
locally computable triggering criterion. We provide convergence
guarantees of our algorithm for general (non-convex) and convex
smooth objectives, which, to the best of our knowledge, is the
first theoretical analysis for compressed decentralized SGD with
momentum updates. We show that the convergence rate of
SQuARM-SGD matches that of vanilla SGD. We empirically
show that including momentum updates in SQuARM-SGD can
lead to better test performance than the current state-of-the-art
which does not consider momentum updates.

Index Terms—Decentralized optimization; communication ef-
ficiency; Nesterov momentum.

I. INTRODUCTION

As machine learning gets deployed over edge (wireless)

devices (in contrast to datacenter applications), the problem of

building learning models on local (heterogeneous) data with

communication-efficient training becomes important. These

applications motivate learning when data is collected/available

locally, but devices collectively help build a model through

wireless links with significant communication rate (bandwidth)

constraints.1 Several methods have been developed recently

to obtain communication-efficiency in distributed stochastic

gradient descent (SGD). These methods can be broadly divided

into two categories. In the first one, workers compress informa-

tion/gradients before communicating - either with sparsifica-

tion [2]–[6], quantization [7]–[11], or both [12]. Another way

to reduce communication is to skip communication rounds

while performing a certain number of local SGD steps, thus

trading-off computation and communication time [13]–[15].

Since momentum-based methods generally converge faster

and generalize well, they have been adopted ubiquitously for

training large-scale machine learning models [16].

To reduce communication load on the central-coordinator

in the distributed framework, a decentralized setting has been
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1This is also motivated by federated learning [1], which is studied mostly
for the client-server model.

considered in literature [17], where the central coordinator is

absent, and training is performed collaboratively among work-

ers, which are connected by a (sparse) graph.2 Compressed

communication has been studied recently for decentralized

training as well [18]–[22]. Out of these [18], [20]–[22] only

employ either quantization or sparsification (without local

iterations or event-triggered communication), whereas, [19]

also incorporates event-triggering to achieve communication

efficiency; see related work for a detailed comparison. We

would like to remark two important aspects of these works:

(i) They rely on strong set of assumptions for their theoretical

analyses: all of them assume a uniform bound on variance

of stochastic gradients and also on the gradient dissimilarity

across the clients, while [19]–[22] assume a bound on the sec-

ond moment of stochastic gradients. (ii) None of these works

incorporates momentum in their theoretical analyses, which

has been very successful in achieving good generalization error

in training large-scale machine learning models.

In this paper, we propose and analyze SQuARM-SGD,3

a communication efficient SGD algorithm for decentralized

optimization that incorporates Nesterov’s momentum, com-

pression and local iterations while considering a much weaker

set of assumptions than existing literature.

For compression, SQuARM-SGD uses both sparsification

and quantization. For event-triggered communication, each

worker first performs a certain number of local SGD iterations

with momentum updates; then in order to further reduce

communication, it only does so if there is a significant change

in the local model parameters (greater than a prescribed

threshold) since its last communication. If there is a significant

model change, the worker communicates a sparsified and

quantized version of (the difference of) its local parame-

ters (model) to its neighbors. Therefore, this combines lazy

updates along with quantization and sparsification to enable

communication-efficient decentralized training.

Our contributions. In this paper, we propose and ana-

lyze SQuARM-SGD, a communication efficient decentralized

training algorithm incorporating compression and local itera-

tions. Our analysis is the first to establish convergence rates of

compressed decentralized training algorithms with momentum.

We provide separate convergence results for SQuARM-SGD

with two sets of assumptions: (i) Commonly used assumptions

in decentralized optimization, including bounded second mo-

2This can also be motivated through learning over local wireless mesh (or
ad hoc) networks.

3Acronym stands for Sparsified and Quantized Action Regulated Mo-
mentum Stochastic Gradient Descent. See Algorithm 1 for a description of
SQuARM-SGD.
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ment of stochastic gradients [19]–[21] (presented in Section

III-B),(ii) A relatively weaker set of assumptions on the node

variance and the gradient dissimilarity across nodes (presented

in Section III-A). Specifically, the bounds on the variance and

the gradient dissimilarity depend on the local geometry of

the true gradients; see Assumption 2 for the bounded vari-

ance assumption and Assumption 3 for the bounded gradient

dissimilarity assumption. Both these assumptions are strictly

weaker than assuming uniform bounds on the respective quan-

tities; see Remark 1 for a detailed discussion. For assumptions

set (i), we show a convergence rate of O (1/
√
nT) for smooth

convex and non-convex objectives, where n is the number of

worker nodes and T is the number of iterations, thus matching

the convergence rate of vanilla distributed SGD. Similarly,

for the weaker assumption set (ii), we show a convergence

rate of O (1/
√
T) for smooth non-convex objectives. We note

that compression and event triggered communication do affect

our convergence rate expressions for results in both sets of

assumptions, but they appear only in the higher order terms;

thus, for a large enough T , we can converge at the same

rate as that of distributed vanilla SGD while enjoying the

savings in communication from our method essentially for

free; see Theorem 1 and Theorem 2 and comments after

that for details. As mentioned earlier, we use Nesterov’s

momentum in SQuARM-SGD and theoretically analyze its

convergence rate; a first theoretical analysis of convergence

of such compressed gradient updates with momentum in the

decentralized setting. In order to achieve this, we had to

solve several technical difficulties; see Section IV and also the

related work below. Our numerical results for decentralized

training of ResNet20 [23] model on CIFAR-10 [24] dataset

shows that including momentum updates as in SQuARM-SGD

can lead to around 2% increase in test accuracy performance in

comparison to the recently proposed communication efficient

algorithms CHOCO-SGD [20] or SPARQ-SGD [19] which do

not use momentum.

Related work. Communication-efficient decentralized train-

ing has received recent attention; see [18]–[20], [25]–[30]

and references therein. CHOCO-SGD proposed by [20], [21]

was the first to perform arbitrary compressed training for

decentralized optimization by considering sparsification or

quantization of the model parameters. Recently, in [19] we

proposed SPARQ-SGD incorporating compression using both

sparsification and quantization and also event-driven com-

munication with local iterations to save on communicated

bits. We remark that [19]–[21] rely on (a strong) assumption

of bounded second moment of stochastic gradients for their

theoretical analysis and do not incorporate momentum updates,

which has been shown to empirically improve generalization

performance in deep learning applications [28], [31]. Our

convergence analyses are very different and more involved

than CHOCO-SGD or SPARQ-SGD, as we rely on a much

weaker set of assumptions and provide our analyses using

virtual sequences, specifically, to handle the use of momentum.

Use of local iterations in decentralized setting with a weaker

set of assumptions similar to ours has been considered recently

in [32], however, without any compression of updates, and

importantly, without incorporating momentum in the theo-

retical analysis. The use of local iterations with momentum

updates in decentralized setting has been studied in [33], but

without any compression of exchanged information and with

a stronger set of assumptions. [34] studied momentum SGD

with compressed updates (but no local iterations or event-

triggering) for the distributed setting only, assuming that all

workers have access to unbiased gradients. Extending the

analysis to the decentralized setting (where different workers

may have local data, potentially generated from different

distributions) while incorporating momentum, compression,

local iterations, and event triggered communication4 (as in

SQuARM-SGD) while assuming a weaker set of assumptions

than existing works poses several challenges; see Section

IV for a detailed discussion. The idea of event-triggering

has been explored in the control community [35]–[39] and

in the optimization literature [40]–[42]. These papers focus

on continuous-time, deterministic optimization algorithms for

convex problems; in contrast, our event-driven stochastic gra-

dient descent algorithm is for both convex and general (non-

convex) smooth objectives, e.g., neural network training for

large-scale deep learning. [43] proposed an adaptive scheme

to skip gradient computations in a distributed setting for

deterministic gradients; moreover, their focus is on saving

communication rounds, without compressed communication.

To the best of our knowledge, ours is the first paper to develop

and analyze convergence of momentum-based decentralized

stochastic optimization, using compressed lazy communication

(as described earlier). Moreover, our numerics demonstrate

better test-accuracy performance compared to recently pro-

posed methods for communication efficiency on account of

using momentum updates.

Paper organization. The problem setup and our algorithm

SQuARM-SGD are described in Section II. Section III pro-

vides two sets of convergence results, one with weak assump-

tions (Theorem 1), and the other (a slightly general result)

with strong assumptions (Theorem 2). We prove Theorem 1

in Section V (which is a novel analysis and the main technical

contribution of our paper) and defer the proof of Theorem 2

to the supplementary material. Section VI gives numerical

results comparing our algorithm to the state-of-the-art. Omitted

proofs/details are provided in appendices.

II. PROBLEM SETUP AND OUR ALGORITHM

We first formalize the decentralized optimization setting that

we work with and set up the notation we follow throughout

the paper. Consider an undirected connected graph G = (V, E)
with V = [n] := {1, 2, . . . , n}, where node i ∈ [n] corresponds

to worker i and we denote the neighbors of node i by Ni :=
{(i, j) : (i, j) ∈ E}. To each node i ∈ [n], we associate

a dataset Di and an objective function fi : R
d → R. We

allow the datasets and objective functions to be different for

each node and assume that for i ∈ [n], the objective function

4Event-triggered communication with compression and local iterations is
also considered in [19], however, with the strong bounded second moment gra-
dient assumption and without momentum updates in the theoretical analysis.
Relaxing the assumptions and incorporating momentum significantly changes
the convergence analysis (see Section IV).
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fi has the form fi(x) = Eξi∼Di
[Fi(x, ξi)] where ξi ∼ Di

denotes a random sample from Di, x denotes the parameter

vector, and Fi(x, ξi) denotes the risk associated with sample

ξi with respect to (w.r.t.) the parameter vector x. Consider

the following empirical risk minimization problem, where f :
R

d → R is called the global objective function:

arg min
x∈Rd

(
f(x) :=

1

n

n∑

i=1

fi(x)
)
, (1)

The nodes in G wish to minimize (1) collaboratively in a

communication-efficient manner while incorporating momen-

tum updates of worker nodes.

We now state the notation relevant to describing our algo-

rithm. Let W ∈ R
n×n denote the connectivity matrix of G,

where for every (i, j) ∈ E , the (i, j)’th entry of W denotes

the weight wij on the edge (i, j) – e.g., wij may represent the

strength of the connection on the edge (i, j) – and for other

pairs (i, j) /∈ E , the weight wij is zero. We assume that W is

symmetric and doubly stochastic, which means it has non-zero

entries with each row and column summing up to 1. Consider

the ordered eigenvalues of W, |λ1(W)| ≥ |λ2(W)| ≥ . . . ≥
|λn(W)|. For such a W associated with a connected graph

G, it is known that λ1(W) = 1 and λi(W) ∈ (−1, 1) for

all i ∈ {2, . . . , n}. The spectral gap δ ∈ (0, 1] is defined as

δ := 1 − |λ2(W)|. Simple matrices W having δ ∈ (0, 1] are

known to exist for connected graphs [21].

To achieve compression on the communication exchanged

between workers, we use arbitrary compression operators as

defined next.

Definition 1 (Compression, [5]). A (possibly randomized)

function C : Rd → R
d is called a compression operator, if

there exists a positive constant ω ∈ (0, 1], such that for every

x ∈ R
d:

EC [‖x− C(x)‖22] ≤ (1− ω)‖x‖22, (2)

where expectation is taken over the randomness of C. We

assume that C(0) = 0.

We now list some important sparsifiers and quantizers

following the above definition of a compression operator:

(i) Topk and Randk sparsifiers (where only k entries are

selected and the rest are set to zero) with ω = k/d
[5], (ii) Stochastic quantizer Qs from [7]5 with ω =
(1 − βd,s) for βd,s < 1, and (iii) Deterministic quantizer
‖x‖1

d Sign(x) from [10] with ω =
‖x‖2

1

d‖x‖2
2

. For Compk ∈
{Topk, Randk}, the following are compression operators6:

(iv) 1
(1+βk,s)

Qs(Compk) with ω =
(
1− k

d(1+βk,s)

)
for any

βk,s ≥ 0, and (v)
‖Compk(x)‖1Sign(Compk(x))

k with ω =

max
{

1
d ,

k
d

(
‖Compk(x)‖2

1

d‖Compk(x)‖2
2

)}
[12].

5Qs : Rd → R
d is a stochastic quantizer, if for every x ∈ R

d, we have (i)
E[Qs(x)] = x and (ii) E[‖x−Qs(x)‖22] ≤ βd,s‖x‖

2
2. Qs from [7] satisfies

this definition with βd,s = min
{

d
s2

,
√
d
s

}

.

6 [12] show that the composition of sparsification and quantization operators
is also a valid compression operator, outperforming its individual components
in terms of communication savings while maintaining similar performance.

Algorithm 1 SQuARM-SGD: Sparsified and Quantized Ac-

tion Regulated Momentum SGD

Parameters: G = ([n], E), W, Compression operator C
1: Initialize: For every i ∈ [n], set arbitrary x

(0)
i ∈ R

d, x̂
(0)
i := 0,

v
(−1)
i := 0. Fix the momentum coefficient β, consensus step-size

γ, learning rate η, triggering thresholds {ct}
T
t=0, and synchro-

nization set IT .
2: for t = 0 to T − 1 in parallel for all workers i ∈ [n] do

3: Sample ξ
(t)
i , compute stochastic gradient g

(t)
i :=

∇Fi(x
(t)
i , ξ

(t)
i )

4: v
(t)
i = βv

(t−1)
i + g

(t)
i

5: x
(t+ 1

2
)

i := x
(t)
i − η(βv

(t)
i + g

(t)
i )

6: if (t+ 1) ∈ IT then
7: for neighbors j ∈ Ni ∪ i do

8: if ‖x
(t+ 1

2
)

i − x̂
(t)
i ‖22 > ctη

2 then

9: Compute q
(t)
i := C(x

(t+ 1
2
)

i − x̂
(t)
i )

10: Send q
(t)
i and receive q

(t)
j

11: else
12: Send 0 and receive q

(t)
j

13: end if
14: x̂

(t+1)
j := q

(t)
j + x̂

(t)
j

15: end for

16: x
(t+1)
i = x

(t+ 1
2
)

i + γ
∑

j∈Ni

wij(x̂
(t+1)
j − x̂

(t+1)
i )

17: else

18: x̂
(t+1)
i = x̂

(t)
i , x

(t+1)
i = x

(t+ 1
2
)

i for all i ∈ [n]
19: end if
20: end for

A. Our Algorithm: SQuARM-SGD

We propose SQuARM-SGD to minimize (1), which is a

decentralized algorithm that combines compression and Nes-

terov’s momentum, together with event-driven communication

exchange, where compression is achieved by sparsifying and

quantizing the exchanges. Each worker is required to complete

a fixed number of local SGD steps with momentum, and

communicate compressed updates to its neighbors when there

is a significant change in its local parameters since the last

communication round.

To realize exchange of compressed parameters between

workers, for each node i ∈ [n], all nodes j ∈ Ni maintain

an estimate x̂i of xi, so, each node i ∈ [n] has access

to x̂j for all j ∈ Ni. Our algorithm runs for T iterations

and the set of synchronization indices is defined as IT =
{0, H, 2H . . . ,mH, . . .} ⊆ [T ] for some constant H ∈ N

, which are same for all workers and denote the time steps

at which workers are allowed to communicate, provided they

satisfy a triggering condition.7

For a given connected graph G with connectivity matrix

W, we first initialize a consensus step-size γ (see Theorem 1

for definition), momentum factor β, learning rate η, triggering

threshold sequence {ct}Tt=0, and momentum vector vi for each

node i initialized to 0. We initialize the copies of all the nodes

x̂i = 0 and allow each node to communicate in the first

round. At each time step t, each worker i ∈ [n] samples a

stochastic gradient ∇Fi(x
(t)
i , ξi) and takes a local SGD step

7The Zeno phenomenon [35] does not occur in our setup as we have a
discrete sampling period as well as a fixed number of local iterations, giving
a lower bound to the event intervals of at least H times the sampling period.
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on parameter x
(t)
i using Nesterov’s momentum to form an

intermediate parameter x
(t+1/2)
i (lines 3-5). If the next iteration

corresponds to a synchronization index, i.e., (t + 1) ∈ IT ,

then each worker checks the triggering condition (line 8). If

satisfied, that worker communicates the compressed change

in its copy to all its neighbors Ni (lines 9-10); otherwise, it

does not communicate in that round (denoted by ‘Send 0’

in our algorithm for illustration, line 12). After receiving the

compressed updates of copies from all its neighbors, the node

i updates the locally available copies and its own copy (line

14). With these updated copies, the worker nodes finally take

a consensus (line 16) with appropriate weighting decided by

entries of W. In the case when (t + 1) /∈ IT , the nodes

maintain their copies and move on to next iteration (line 18);

thus no communication takes place.

Difference from SPARQ-SGD [19]: There are two major

differences between this work and our previous work [19]

which uses a similar framework of local iterations, compres-

sion and triggering to save on communication. Firstly, and

most importantly, the results presented in this work do not

use any strong assumptions like the bounded second moment

of stochastic gradients used in [19]–[21]: Both the variance

bound on stochastic gradients as well as the data heterogeneity

bound depend on local geometry of the true gradients (and we

allow these to scale with the true gradient norm); and thus,

neither of them are assumed to be uniformly bounded, as in

[19]–[21]. The assumptions in this work are thus much weaker

than the ones in existing decentralized literature; see Section

IV for details. Working with these relaxed assumptions calls

for completely different and much more nuanced analyses to

establish the convergence rates as compared to [19]. Secondly,

the addition of lines 4-5 in Algorithm 1 which now incorporate

momentum calls for a significantly different analysis than [19]

to arrive at the convergence rate even if we consider the

same set of assumptions. Even though momentum updates

are almost always used in practice, incorporating them in

convergence analyses in modern large-scale settings with com-

munication constraints has received attention only recently,

e.g., for distributed training with compressed update exchanges

[34] and for decentralized training without compression or

local SGD in [28]. To the best of our knowledge, our work

provides the first convergence analysis for compressed de-

centralized training with momentum using a weaker set of

assumptions than existing literature while incorporating the

local SGD and event triggered communication framework of

[19]. We note the technical challenges that arise and provide

a detailed comparison to SPARQ-SGD [19] and other recent

works analyzing momentum in Section IV. Furthermore, our

experimental results in Section VI show that incorporating

momentum can empirically improve the generalization perfor-

mance of the trained model by about 2-3% when compared to

training without momentum.

Memory-efficient version of Algorithm 1: At the first

glance, it may seem that in Algorithm 1, every node has to

store estimates of all its neighbors’ parameters in order to

perform the consensus step, which may be impractical in large-

scale learning. Note that in the consensus step (line 16), nodes

only require the weighted sum of their neighbors’ parameters.

So, it suffices for each node to store only the weighted sum

of all its neighbors’ parameters (in addition to its own local

parameters and its estimate), and thus avoiding the need to

store all neighbor parameters. A memory-efficient version of

SQuARM-SGD is given in Appendix I.

Equivalence to error-feedback mechanisms: In Algo-

rithm 1, though nodes do not explicitly perform local error-

compensation ( [10], [12]), the error-compensation happens

implicitly. To see this, note that nodes maintain copies of

their neighbors’ parameters and update them as x̂
(t+1)
j =

x̂
(t)
j + C(x(t+ 1

2 )
j − x̂

(t)
j ) (line 14) and then perform consensus

(line 16). Thus, the error gets accumulated into x̂
(t)
j and is

compensated by the term C(x(t+ 1
2 )

j − x̂
(t)
j ) in the next round.

III. MAIN RESULTS

In this section we provide the convergence results for

SQuARM-SGD (Algorithm 1) under two sets of assumptions:

We present our results with the weakest set of assump-

tions available in existing literature in Section III-A and

slightly more general results with stronger assumptions in

Section III-B.

A. Theoretical Results with Relaxed Assumptions

Assumption 1 (Smoothness). We assume that each local

function fi for i ∈ [n] is L-smooth, i.e., ∀x,y ∈ R
d, we

have fi(y) ≤ fi(x) + 〈∇fi(x),y − x〉+ L
2 ‖y − x‖2.

Assumption 2 (Bounded Variance). We assume that there

exists finite constants σ,M ≥ 0, such that for all x ∈ R
d

we have:

1

n

n∑

i=1

Eξi‖∇Fi(xi, ξi)−∇fi(xi)‖22 ≤ σ2 +
M2

n

n∑

i=1

‖∇fi(xi)‖22,

(3)

where ∇Fi(x, ξi), i ∈ [n], denotes an unbiased stochastic

gradient, i.e., Eξi [∇Fi(x, ξi)] = ∇fi(x).

Assumption 3 (Bounded Gradient Dissimilarity). We assume

that there exists finite constants G ≥ 0 and B ≥ 1, such that

for all x ∈ R
d we have:

1

n

n∑

i=1

‖∇fi(x)‖22 ≤ G2 +B2‖∇f(x)‖22. (4)

These assumptions have appeared in literature before in [32] to

study decentralized optimization with local iterations; and we

extend their results and analyses by incorporating compression

and momentum. This extension posed many fundamental tech-

nical difficulties, which we describe in detail in Section IV.

Remark 1 (Comparison with Existing Assumptions). Assump-

tions 2, 3 are weaker than assuming uniform bounds on the

variance and the gradient dissimilarity: (i) The uniform bound

on the variance [28], i.e., Eξi‖∇Fi(xi, ξi)−∇fi(xi)‖22 ≤ σ2
i

for all i ∈ [n], implies Assumption 2 with σ2 = 1
n

∑n
i=1 σ

2
i

and M = 0; and (ii) The uniform bound on the gradient

similarity [28], i.e., 1
n

∑n
i=1 ‖∇fi(x) − ∇f(x)‖22 ≤ κ2,
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implies Assumption 3 with G = κ and B = 1 – this

follows from the identity 1
n

∑n
i=1 ‖∇fi(x) − ∇f(x)‖22 =

1
n

∑n
i=1 ‖∇fi(x)‖22 − ‖∇f(x)‖22. Both Assumptions 2 and 3

are weaker than the uniformly bounded second moment as-

sumption Eξi‖∇Fi(xi, ξi)‖22 ≤ G2, which has been standard

in the stochastic optimization with compressed gradients [5],

[12], [20], [34].

Our convergence result (stated below) is for general smooth

(non-convex) objectives; and can be readily extended to convex

objectives. We derive this result for SQuARM-SGD under

Assumptions 1-3 without event-triggered communication; in

other words, our analysis is for compressed decentralized

momentum SGD with local iterations. We would like to

emphasize that incorporating event-triggering component into

our analysis can only complicate the calculations and can be

done. In order to bring out the novelty of our convergence

analysis without adding unnecessary technicality, we present

the result in this subsection and its subsequent analysis without

incorporating event-triggered communication.

Theorem 1. Let C be a compression operator with pa-

rameter ω ∈ (0, 1] and gap(IT ) = H . Consider run-

ning SQuARM-SGD for T iterations with consensus step-size

γ = 2δω3

4δ2ω2+δ2+128λ2+24ω2λ2 , (where λ = maxi{1−λi(W)}),
momentum coefficient β ∈ [0, 1), and constant learning rate

η = (1 − β)
√

n
T . Let the algorithm generate {x(t)

i }T−1
t=0

for i ∈ [n]. Running the algorithm for T ≥ U0 for some

constant U0 defined in Appendix C-F, the averaged iterates

x(t) := 1
n

∑n
i=0 x

(t)
i satisfy:

∑T−1
t=0 E‖∇f(x(t))‖22

T
= O

(
J2 + σ2 + (M2 + n)G2

√
nT

)

+O
(
(1− β)2nH2((M2 + 1)G+ σ2)

Tδ2ω3

)
,

where J2 < ∞ is such that E[f(x(0))]− f∗ ≤ J2.

We prove Theorem 1 in Section V. Note that we have used

simplified convergence rate expressions in the above result,

and derive precise rate expressions in Section V.

B. Theoretical Results with Bounded Second Moment of

Stochastic Gradients

In this section, we consider a stronger set of assumptions

than the ones before along with the smoothness of objectives:

(i) Uniformly bounded variance: For every i ∈ [n], we have

Eξi‖∇Fi(x, ξi) − ∇fi(x)‖2 ≤ σ2
i , for some finite σi, where

∇Fi(x, ξi) denotes an unbiased stochastic gradient at worker i
with Eξi [∇Fi(x, ξi)] = ∇fi(x). We define σ̄2 := 1

n

∑n
i=1 σ

2
i .

(ii) Uniformly bounded second moment: For every i ∈ [n], we

have Eξi‖∇Fi(x, ξi)‖2 ≤ G2 < ∞.

Theorem 2. Let C be a compression operator with pa-

rameter ω ∈ (0, 1] and gap(IT ) = H . Consider running

SQuARM-SGD for T iterations with consensus step-size γ =
2δω

64δ+δ2+16λ2+8δλ2−16δω , (where λ = maxi{1 − λi(W)}), a

threshold sequence ct ≤ c0
η1−ǫ for all t where ǫ ∈ (0, 1) and c0

is a constant, momentum coefficient β ∈ [0, 1), and constant

learning rate η = (1 − β)
√

n
T . Let the algorithm generate

{x(t)
i }T−1

t=0 for i ∈ [n]. Then, we have:

• [Non-convex:] For T ≥ max{16L2n, 8L2β4n
(1−β)2 }, the aver-

aged iterates x(t) := 1
n

∑n
i=0 x

(t)
i satisfy:

∑T−1
t=0 E‖∇f(x(t))‖22

T
= O

(
J2 + σ̄2

√
nT

)

+O
(
c0n

(1+ǫ)/2

δ2T (1+ǫ)/2
+

nH2G2

Tδ4ω2
+

β4σ̄2

T (1− β)2

)
,

where J2 < ∞ is such that E[f(x(0))]− f∗ ≤ J2.

• [Convex:] If {fi}i∈[n] are convex, then for T ≥
max{(8L)2n, (8β2L)4n

(1−β)2 }, we have:

E[f(x(T )
avg)]− f∗ = O

(
‖x(0) − x∗‖2 + σ̄2

√
nT

)

+O
(
c0n

(1+ǫ)/2

δ2T (1+ǫ)/2
+

n3/4β2G2

(1− β)3/2T 3/4
+

nH2G2

δ4ω2T

)
,

where x(T )
avg := 1

T

∑T−1
t=0 x(t) for x(t) = 1

n

∑n
i=1 x

(t)
i and

x∗ is an optimizer of f attaining optimal value f∗.

We have used simplified convergence rate expressions in the

above results, and provide precise rate expressions in the

proofs provided in Appendix E and Appendix F for non-

convex and convex objectives, respectively.

C. Effects of parameters on convergence

The factors arising due to communication efficiency – H
(and c0 for Theorem 2) for the event-triggered communi-

cation, ω for compression, and δ for the connectivity of

the underlying graph – do not affect the dominant terms in

convergence rate for either Theorem 1 or Theorem 2 and

appear only in the higher order terms. This implies that if

we run SQuARM-SGD for sufficiently long, precisely, for at

least Tw0
= Cw0

×
(

n3

δ4ω4

(1−β2)2H4[(M2+1)G+σ2]
2

[J2+σ2+(M2+n)G2]2

)
where

G, σ,M are defined in the weaker set of assumptions provided

in Subsection III-A and Cw0
is a sufficiently large constant,

then SQuARM-SGD converges at a rate O (1/
√
T) . Similarly,

if we consider the stronger set of assumptions stated in

Subsection III-B, and run SQuARM-SGD for at least Ts0 :=

Cs0 ×max

{(
c20n

(2+ǫ)

(J2+σ̄2)2δ4

)1/ǫ

, n
(J2+σ̄2)2

(
nG2H2

ω2δ4 + β4σ̄2

(1−β)2

)2}

iterations for non-convex objectives and for Ts1 :=

Cs1 × max

{(
c20n

2+ǫ

δ4(‖x(0)−x∗‖2+σ̄2)2

)1/ǫ

, n3H4G2

δ8ω4(‖x(0)−x∗‖2+σ̄2)2
,

n5G8β8

(1−β)6(‖x(0)−x∗‖2+σ̄2)4

}
for convex objectives with suf-

ficiently large constants Cs0 and Cs1 , respectively, then

SQuARM-SGD converges at a rate of O (1/
√
nT). Note that

this is the convergence rate of distributed vanilla SGD with

the same speed-up w.r.t. the number of nodes n in both these

settings. Thus, we essentially converge at the same rate as that

of vanilla SGD, while saving significantly in terms of total

communicated bits; this can also be seen in our numerical

results in Section VI.
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IV. PRELIMINARIES

In this section, we first establish a matrix notation which would

be used throughout the proofs. We then state SQuARM-SGD

in matrix notation (which is equivalent to Algorithm 1) and

list important facts regarding our updates. We conclude this

section with a brief discussion of technical challenges involved

in the proofs.

Matrix notation. Consider the set of parameters {x(t)
i }ni=1

at all nodes at timestep t as well as the estimates of the

parameters {x̂(t)
i }ni=1. The matrix notation is given by:

X(t) := [x
(t)
1 , . . . ,x(t)

n ] ∈ R
d×n

X̂(t) := [x̂
(t)
1 , . . . , x̂(t)

n ] ∈ R
d×n

X̄(t) := [x̄(t), . . . , x̄(t)] ∈ R
d×n

V(t) := [v
(t)
1 ,v

(t)
2 , . . . ,v(t)

n ] ∈ R
d×n

∇F (X(t), ξ(t)):=[∇F1(x
(t)
1 , ξ

(t)
1 ), . . .,∇Fn(x

(t)
n , ξ(t)n )] ∈Rd×n

Here, ∇Fi(x
(t)
i , ξ

(t)
i ) denotes the stochastic gradient at node

i at timestep t and the vector x̄(t) := 1
n

∑n
i=1 x

(t)
i denotes

the average of node parameters at time t. Let Γ(t) ⊆ [n] be

the set of nodes that do not communicate at time t. We define

P(t) ∈ R
n×n, a diagonal matrix with P

(t)
ii = 0 for i ∈ Γ(t)

and P
(t)
ii = 1 otherwise.

SQuARM-SGD in matrix notation. Consider

Algorithm 1 with synchronization indices given by the

set IT = {0, H, 2H . . . ,mH, . . .} ⊆ [T ] for some constant

H ∈ N. Using the above notation, the sequence of parameters’

updates from synchronization index mH to (m+ 1)H is:

V(t) = βV(t−1) +∇F (X(t), ξ(t)) (5)

X((m+1/2)H)=XI(t)−
(m+1)H−1∑

t′=mH

η(βV(t′) +∇F (X(t′), ξ(t
′)))

(6)

X̂((m+1)H)=X̂(mH)+C((X((m+1/2)H)−X̂(mH))P((m+1)H−1))
(7)

X((m+1)H) = X((m+1/2)H) + γX̂((m+1)(W − I) (8)

where C(.) denotes the compression operator applied column-

wise to the argument matrix and I is the identity matrix. Note

that in the update rule for X̂((m+1)H), we used (i) the fact

that P is a diagonal matrix and that C is applied column-

wise to write C(X((m+1/2)H) − X̂(mH))P((m+1)H−1) =
C((X((m+1/2)H) − X̂(mH))P((m+1)H−1)), and (ii) that

X̂((m+1)H−1) = X̂(mH), because X̂ does not change in

between the synchronization indices.

We now note some useful properties of the iterates in matrix

notation which would be used throughout the paper:

1) Since W ∈ [0, 1]n×n is a doubly stochastic matrix, we

have: W = WT ,W1 = 1 and 1TW = 1T (where 1 is

the all ones vector in R
n). This also gives us:

X̄(t) := X(t) 1

n
11T , X̄(t)W = X̄(t) (9)

where the first expression follows from the definition

of X̄(t) and the second expression follows because

W 11T

n = 11T

n W = 1
n11

T .

2) The average of the iterates in Algorithm 1 follows :

X̄(t+1) = X̄(t+ 1
2 ) + 1(t+1)∈IT

[
γX̂(t+1)(W − I)

1

n
11T

]

= X̄(t+ 1
2 ) (10)

where IT denotes the set of synchronization indices of

Algorithm 1. We use (W−I) 1n11
T = W 11T

n − 11T

n = 0.

Proposition 1 (Variance Reduction with Independent Sam-

ples). Consider the variance bound (3) on the stochastic

gradient for nodes. If ξ(t) = {ξ(t)1 , ξ
(t)
2 , . . . , ξ

(t)
n } denotes the

collection of independent stochastic samples for the nodes at

any time-step t. Then we have:

Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

∇
(
Fi(x

(t)
i , ξ

(t)
i )−∇fi(x

(t)
i )
)
∥∥∥∥∥

2

≤ σ2

n
+

M2

n2

n∑

i=1

∥∥∥∇fi(x
(t)
i )
∥∥∥
2

2
. (11)

Proposition 2. For any t, E
∥∥V(t)

∥∥2
F

is bounded as follows:

(1−β)E‖V(t)‖2F ≤ Λ(t) :=

t∑

k=0

βt−k
E‖∇F (X(k), ξ(k))‖2F

(12)

We prove the above propositions in Appendix B.

Technical Challenges: We focus on two major aspects of our

work to compare with existing literature: (i) Analysis of com-

pressed decentralized training with triggered communication

with mild assumptions. (ii) Performing the resulting analysis

by taking into account the momentum updates.

The assumption on bounded second moment of stochastic

gradients is commonly used in communication efficient decen-

tralized training literature [19]–[22], and is also used to derive

the result of Theorem 2 in our paper. However, this assumption

can be quite strong for settings where the data distribution

among clients is heterogeneous, as the gradient dissimilarity

between clients can be bounded trivially using the second

moment bound (see the note on comparison of assumptions in

Remark 1 on page 4). In contrast, in Theorem 1, we work with

a much weaker set of assumptions (see Section III-A) by not

assuming any uniform bound on norm of stochastic gradients,

and further allow both the gradient diversity and the variance

of stochastic gradients to scale with the norm of gradients

compared to existing works [28]. Performing the analyses with

these relaxed assumptions is challenging, as it requires us

to carefully consider the error due to quantization and local

iterations per communication round and construct a recursion

equation for it (see Lemmas 2, 3 on page 8) and then delicately

handle the recursion to bound the error for any time index

(see Lemma 4 on page 8). We remark that the assumptions

considered for Theorem 1 in our paper have appeared in

literature before in [32] to study decentralized optimization

with only local iterations; our work is a significant extension of

their results and analyses as we incorporate compression and

momentum while achieving a convergence rate of O (1/
√
T).
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While momentum updates are almost always used in prac-

tice to empirically speedup the training process and to improve

generalization performance, it has remained unclear whether

convergence with linear speedup with number of nodes n
(as in the case of SGD without momentum [12], [19], [32],

[44]) is still possible when using momentum. Recently, [28],

[34] provided a positive answer to this question, where [28]

studies local SGD with momentum in a decentralized setup,

but without any compressed or event-triggered communication,

and [34] studies compressed distributed SGD with momentum

for non-convex objectives, but without local iterations or event-

triggered communication. Our result in Theorem 2 is the first

to provide convergence rates showing linear speedup with n
for compressed decentralized optimization using momentum

while incorporating local iteration and triggered communi-

cation in the analysis (see Section III-B for the conver-

gence result and the assumptions made). To achieve this,

our convergence proofs require the use of virtual sequences

as defined in (13) on page 7. Proving convergence results

using virtual sequences has been promising lately in stochastic

optimization; see, for example, [5], [6], [10], [12], [28], [34].

We would like to emphasize that even without momentum

and local iterations, analyzing compression in decentralized

optimization [19]–[21] (whose analysis does not require virtual

sequences) is significantly more involved and requires differ-

ent technical tools than analyzing compression in distributed

optimization [6], [10]. One of the main reasons for this is

as follows: In a decentralized setup, we need to separately

show that nodes eventually reach to the same parameters (i.e.,

consensus happens), which happens trivially in a distributed

setup, because in each iteration all worker nodes have the same

parameters sent by the master node. On top of that, incor-

porating momentum updates (which has only been analyzed

with compression in distributed setups so far) in decentralized

setting is non-trivial and gives similar challenges.

As a consequence, it is not surprising that our proofs are

fundamentally different and significantly more challenging

from existing works, including [19]–[21], [28], [32], [34],

as we study momentum updates for decentralized setup with

compression, local iterations and event-triggered communica-

tion to save on communication bits. Unlike [34], we allow

heterogeneous setting, where different nodes may have differ-

ent datasets. Moreover, with all these, we achieve vanilla SGD

like convergence rates for non-convex and convex objectives.

V. RESULTS WITH RELAXED ASSUMPTIONS: PROOF OF

THEOREM 1

In order to prove Theorem 1, we define a virtual sequence

x̃
(t)
i for each node i ∈ [n], as follows:

x̃
(t)
i = x

(t)
i − ηβ2

(1− β)
v
(t−1)
i ; x̃

(0)
i := x

(0)
i . (13)

This remaining section is divided into seven subsections. In

Section V-A, we derive an SGD like update rule for the

virtual sequence. In Section V-B, we provide a proof-outline of

Theorem 1. The remaining subsections are dedicated to prove

the lemmas stated in the proof outline given in Section V-B.

A. Deriving an SGD-Like Update Rule for the Virtual Sequene

In (13), x
(t)
i is the true local parameter at node i at the t’th

iteration, which is equal to (see line 16 of Algorithm 1):

x
(t)
i = x

(t− 1
2 )

i + ✶{t∈IT }γ
n∑

j=1

wij(x̂
(t)
j − x̂

(t)
i ),

where x
(t− 1

2 )
i = x

(t−1)
i − η(βv

(t−1)
i + ∇Fi(x

(t−1)
i , ξ

(t−1)
i ))

(line 5 in Algorithm 1). Note that we changed the summation

from j ∈ Ni to j = 1 to n; this is because wij = 0 whenever

j /∈ Ni.

Let x(t) = 1
n

∑n
i=1 x

(t)
i denote the average of the local

iterates at time t. Now we argue that x(t) = x(t− 1
2 ). This

trivially holds when t /∈ IT . For the other case, i.e., t ∈ IT ,

this follows because
∑n

i=1

∑n
j=1 wij(x̂

(t)
j − x̂

(t)
i ) = 0, which

uses the fact that W is a doubly stochastic matrix. Thus, we

have

x(t) = x(t−1) − η

n

n∑

i=1

(
βv

(t−1)
i +∇Fi(x

(t−1)
i , ξ

(t−1)
i )

)
.

(14)

Taking average over all the nodes in (13) and defining x̃(t) :=
1
n

∑n
i=1 x̃

(t)
i , we get

x̃(t) = x(t) − ηβ2

(1− β)

1

n

n∑

i=1

v
(t−1)
i .

We now note a recurrence relation for the sequence x̃(t+1):

x̃(t+1) = x(t+1) − ηβ2

(1− β)

1

n

n∑

i=1

v
(t)
i

= x(t)− η

n

n∑

i=1

(
βv

(t)
i +∇Fi(x

(t)
i , ξ

(t)
i )
)
− ηβ2

(1− β)

1

n

n∑

i=1

v
(t)
i

= x(t)− η

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )−

(
ηβ+

ηβ2

(1− β)

)
1

n

n∑

i=1

v
(t)
i

= x(t)− η

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )− ηβ

(1− β)

1

n

n∑

i=1

βv
(t−1)
i

− ηβ

(1− β)

1

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

= x̃(t) − η

(1− β)

1

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i ) (15)

B. Proof Outline of Theorem 1

The proof is divided into four lemmas. The first lemma

(stated in Lemma 1) derives the required convergence bound,

however, the RHS depends on the deviation of local parameter

vectors from the average parameter vector (i.e., Ξ(t) :=
∑n

i=1 E

∥∥∥x(t)
i − x(t)

∥∥∥
2

2
), which we have to bound. The remain-

ing three lemmas are dedicated to bounding this quantity.

Note that bounding this in the distributed setup is not

difficult, as at synchronization indices all parameters are the

same because it is coordinated by a central server. This means

that at any time index t ∈ [T ], there is always a time index

t−H ≤ t′ ≤ t when x
(t′)
i for all i ∈ [n] are the same, and we
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have a reference point no too far in the past. However, in the

decentralized setup, there is no central server for coordinating

the updates, and hence there is no reference point in the

past when the local parameters are the same. Moreover, our

assumptions are arguably the weakest in literature, and we also

are working with compression and momentum updates. Thus,

bounding Ξ(t) in our setup is highly non-trivial, and is one of

the major technical contributions of our work.

Lemma 1. Under the setting of Theorem 1, when η ≤
min

{
2(1−β)3

9β4 , 2(1−β)2

3β2L

√
n

M2+n ,
(1−β)2

6β2LB

√
n

2(M2+n)

}
, we get:

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ 16ηL

(1− β)

(σ2 + 2(M2 + n)G2

n

)

+
16(1−β)(f(x(0))−f∗)

ηT
+

64L2

n

1

T

T−1∑

t=0

n∑

i=1

E‖x(t)
i −x(t)‖22

We provide a proof for Lemma 1 in Section V-C.

Consider any arbitrary t ∈ [T ]. We bound Ξ(t) =
∑n

i=1 E

∥∥∥x(t)
i − x(t)

∥∥∥
2

2
via another quantity S(t) defined as

S(t) := Ξ(t)+E‖X(t)−X̂((m+1)H)‖2F , where m = ⌊ t
H ⌋−1.

We derive two upper bounds on S(t) depending on the value

of t. Note that in both the following lemmas, m = ⌊ t
H ⌋ − 1.

Lemma 2. Consider any t ∈ [T ]. Then for m = ⌊ t
H ⌋− 1, we

have the following bound for (m+1)H ≤ t ≤ (m+2)H−1:

S(t) ≤
(
1− γδ

4

)
S(mH) + 2c1η

2H2n
(
2(M2 + 1)G2 + σ2

)

+c1η
2Hβ2

t−1∑

t′=mH

E‖V(t′)‖2F+2c1η
2H(M2+1)L2

t−1∑

t′=mH

S(t′)

+2c1η
2H(M2 + 1)nB2

t−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

2
, where

c1 ≤ 2(1+γδ
4 )
(

3
γδ+

9λ2

δ2 + 45γλ2

δω + 104γ2λ2

ω2 + 4
ω−2

)
+4(1+ 4

γδ ).

We provide a proof of Lemma 2 in Section V-E.

Lemma 3. For mH ≤ t̂ < (m+ 1)H , we have:

S(t̂) ≤
(
1 +

γδ

4

)
S(mH) + 2c1η

2H2n
(
2(M2 + 1)G2 + σ2

)

+c1η
2Hβ2

t̂−1∑

t′=mH

E‖V(t′)‖2F+2c1η
2H(M2+1)L2

t̂−1∑

t′=mH

S(t′)

+ 2c1η
2H(M2 + 1)nB2

t̂−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

2
,

where c1 is exactly the same as in Lemma 2.

We prove Lemma 3 in Section V-F. Using both these

lemmas, we will be able to bound Ξ(t). We state the result

in the following lemma, which we prove in Section V-G.

Lemma 4. Under setting of Theorem 1, when η ≤
min

{√
γδ

512c1H2(M2+1)L2 ,
√

α(1−β)
128DH(M2+1)L2

}
, we have:

1

T

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

2
=

1

T

T−1∑

t=0

S(t)

≤ 2η2J1 + 2η2J2
1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

,

where J1 =
(

32HA
α +

(
32DH

α

) ( 2(M2+1)nG2+nσ2

(1−β)

))
and

J2 =
(

32CH
α +

(
32DH

α

) 2(M2+1)nB2

(1−β)

)
, where A =

2c1H
2n
(
2(M2 + 1)G2 + σ2

)
, C = 2c1H(M2+1)nB2, and

D = c1Hβ2

(1−β) , and c1 is exactly the same as in Lemma 2.

Substituting the bounds from Lemma 4 into Lemma 1 and

choosing η = (1 − β)
√

n
T (and running the algorithm for a

sufficiently long time) completes the proof. Details with exact

numbers are provided in Appendix C-F.

C. Proof of Lemma 1

Consider the quantity Eξ(t) [f(x̃
(t+1))] where expectation is

taken w.r.t. the sampling at time t. From the recurrence relation

of the virtual sequence (15), we have:

Eξ(t) [f(x̃
(t+1))] = Eξ(t)f

(
x̃(t)− η

n(1−β)

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

)

(a)

≤ f(x̃(t))−
〈
∇f(x̃(t)),

η

(1− β)

1

n

n∑

i=1

∇fi(x
(t)
i )

〉

︸ ︷︷ ︸
=: P1

+
L

2

η2

(1− β)2
Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

∥∥∥∥∥

2

︸ ︷︷ ︸
=: P2

, (16)

where (a) follows from the L-smoothness of f . We show the

following bounds on P1 and P2 in Appendix C-A.

P1 ≤ −η‖∇f(x̃(t))‖2
2(1− β)

+
ηL2

2n(1− β)

n∑

i=1

‖x̃(t)−x
(t)
i ‖2 (17)

P2 ≤ σ2

n
+

2(M2 + n)L2

n2

n∑

i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥
2

2

+
2(M2 + n)

n

(
G2 +B2

∥∥∥∇f(x̃(t))
∥∥∥
2

2

)
(18)

Substituting the bounds (17) and (18) in (16), we get:

Eξ(t) [f(x̃
(t+1))] ≤ f(x̃(t)) +

η2L

2(1−β)2

(σ2+2(M2+n)G2

n

)

+
( ηL2

2n(1− β)
+

η2L3(M2 + n)

n2(1− β)2

) n∑

i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥
2

2

−
( η

2(1− β)
− η2L(M2 + n)B2

n(1− β)2

)∥∥∥∇f(x̃(t))
∥∥∥
2

2
. (19)

When η ≤ n(1−β)
2L(M2+n) , we get

(
ηL2

2n(1−β) + η2L3(M2+n)
n2(1−β)2

)
≤

ηL2

n(1−β) ; and when η ≤ n(1−β)
4LB2(M2+n) , we get(

η
2(1−β) − η2L(M2+n)B2

n(1−β)2

)
≥ η

4(1−β) . Therefore, when

η ≤ min{ n(1−β)
2L(M2+n) ,

n(1−β)
4LB2(M2+n)}, we get

Eξ(t) [f(x̃
(t+1))] ≤ f(x̃(t)) +

η2L

2(1−β)2

(σ2+2(M2+n)G2

n

)
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+
ηL2

n(1−β)

n∑

i=1

∥∥∥x(t)
i −x̃(t)

∥∥∥
2

2
− η

4(1−β)
‖∇f(x̃(t))‖22 (20)

By Jensen’s inequality and L-smoothness of f , we

have

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ 2

∥∥∥∇f(x(t))−∇f(x̃(t))
∥∥∥
2

2
+

2
∥∥∇f(x̃(t))

∥∥2
2

≤ 2L2
∥∥∥x(t) − x̃(t)

∥∥∥
2

2
+ 2

∥∥∇f(x̃(t))
∥∥2
2
.

Rearranging this gives
∥∥∇f(x̃(t))

∥∥2
2

≥ 1
2

∥∥∥∇f(x(t))
∥∥∥
2

2
−

L2
∥∥∥x(t) − x̃(t)

∥∥∥
2

2
. Substituting this in (20) and rearranging:

η

8(1− β)

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ f(x̃(t))− Eξ(t) [f(x̃

(t+1))]

+
η2L

2(1− β)2

(σ2+2(M2+n)G2

n

)
+

ηL2

4(1− β)
‖x(t) − x̃(t)‖22

+
ηL2

n(1− β)

n∑

i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥
2

2

≤ f(x̃(t))−Eξ(t) [f(x̃
(t+1))]+

η2L

2(1− β)2
σ2+2(M2+n)G2

n

+
2ηL2

n(1− β)

n∑

i=1

‖x(t)
i −x(t)‖22+

9ηL2

4(1− β)
‖x(t)−x̃(t)‖22 (21)

Now we bound

∥∥∥x(t) − x̃(t)
∥∥∥
2

2
in the following lemma, which

we prove in Appendix C-A in supplementary material:

Lemma 5. Consider the deviation of the global average

parameter x(t) and the virtual sequence x̃(t) defined in (13)

for constant stepsize η. Then at any time step t, we have:

‖x(t)−x̃(t)‖2 ≤ β4η2

(1−β)3

t−1∑

τ=0

βt−τ−1‖ 1
n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )‖2

Substituting the bound from Lemma 5 into (21) and then

taking the expectation w.r.t. the entire past and average over

t = 0 to t = T − 1 gives

η

8T (1− β)

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ η2L

2(1−β)2
σ2+2(M2+n)G2

n

+
1

T
E[f(x̃(0))− f(x̃(T ))]+

T−1∑

t=0

2ηL2

Tn(1−β)

n∑

i=1

E‖x(t)
i −x(t)‖22

+
9η3β4L2

4T (1−β)4

T−1∑

t=0

t−1∑

τ=0

βt−τ−1
E‖ 1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )‖2

(22)

In the following lemma (which we prove in Appendix C-A)

we bound the last term of (22).

Lemma 6. Under setting of Theorem 1, it follows that:

1

T

T−1∑

t=0

t−1∑

τ=0


βt−τ−1

E

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2

 ≤ σ2

n(1−β)

+
2(M2 + n)

n(1− β)

(
G2 +

L2

T

T−2∑

τ=0

n∑

i=1

E

∥∥∥x(τ)
i − x(τ)

∥∥∥
2

2

)

+
2(M2 + n)B2

n(1− β)

1

T

T−2∑

τ=0

E‖∇f(x(τ))‖22. (23)

Substituting the bound from (23) into (120) and noting that

x̃(0) = x(0) and f(x̃(T )) ≥ f∗, where f∗ = f(x∗), we get

η

8(1− β)

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ f(x(0))− f∗

T
+

η2σ2L

2n(1− β)2

+
η2L(M2 + n)G2

n(1− β)2
+

2ηL2

n(1− β)

1

T

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

2

+
9η3β4L4(M2+n)

2(1− β)5n2

1

T

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i −x(t)

∥∥∥
2

2
+
9η3β4L2σ2

4n(1− β)5

+
9η3β4L2(M2+n)

2n(1− β)5

(
G2 +

B2

T

T−1∑

τ=0

E‖∇f(x(τ))‖22

)

=
f(x(0))−f∗

T
+

η2L

2(1−β)2

(σ2+2(M2+n)G2

n

)(
1+

9ηβ4

2(1−β)3

)

+

(
2ηL2

n(1−β)
+
9η3β4L4(M2 + n)

2n2(1− β)5

)
1

T

T−1∑

t=0

n∑

i=1

E‖x(t)
i −x(t)‖22

+
9η3β4L2(M2 + n)B2

2n(1− β)5
1

T

T−1∑

τ=0

E‖∇f(x(τ))‖22 (24)

Note that (i) when η ≤ 2(1−β)3

9β4 , we have(
1 + 9ηβ4

2(1−β)3

)
≤ 2; (ii) when η ≤ 2(1−β)2

3β2L

√
n

M2+n ,

we have
(

2ηL2

n(1−β) +
9η3β4L2

4(1−β)4
2(M2+n)L2

n2(1−β)

)
≤ 4ηL2

n(1−β) ;

and (iii) when η ≤ (1−β)2

6β2LB

√
n

2(M2+n) , we

have 9η3β4L2

4(1−β)4
2(M2+n)B2

n(1−β) ≤ η
16(1−β) . So, when

η ≤ min{ 2(1−β)3

9β4 , 2(1−β)2

3β2L

√
n

M2+n ,
(1−β)2

6β2LB

√
n

2(M2+n)},

we get

η

8(1− β)

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ f(x(0))− f∗

T
+

η2σ2L

n(1− β)2

+
2(M2 + n)G2η2L

n(1− β)2
+

η

16(1− β)

1

T

T−1∑

τ=0

E‖∇f(x(τ))‖22

+
4ηL2

n(1− β)

1

T

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

2
(25)

Taking η
16(1−β)

1
T

∑T−1
τ=0 E‖∇f(x(τ))‖22 to the LHS and mul-

tiplying both sides by
16(1−β)

η gives

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ 16(1− β)(f(x(0))− f∗)

ηT

+
16ηL

(1−β)

(σ2+2(M2+n)G2

n

)
+
64L2

nT

T−1∑

t=0

n∑

i=1

E‖x(t)
i − x(t)‖22

(26)

D. Useful Lemmas

The following two lemmas (which we prove in Appendix C-B)

will be useful for proving Lemma 2 and Lemma 3.

Lemma 7. Under the setting of Theorem 1, for any m ∈ N:

E

∥∥∥X((m+1)H) −X
((m+1)H)

∥∥∥
2

F
≤ a1E

∥∥∥X(mH) −X
(mH)

∥∥∥
2

F
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+ a2E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F

+ a3η
2
E

∥∥∥
∑(m+1)H−1

t′=mH βV(t′) +∇F (X(t′), ξ(t
′))
∥∥∥
2

F
, (27)

where a1 = (1 + α−1
5 )R1, a2 = (1 + α−1

5 )R2(1 +
τ1)(1 − ω)(1 + τ2), and a3 = (R1 + R2)(1 + α5) +
(1+α−1

5 )R2

(
(1 + τ−1

1 ) + (1 + τ1)(1− ω)(1 + τ−1
2 )
)
. Here,

τ1, τ2, α5 > 0 are arbitrary numbers, R1 = (1 + α1)(1 −
γδ)2, R2 = (1+α−1

1 )γ2λ2, α1 > 0, δ is the spectral gap, H is

synchronization gap, γ is consensus step-size, λ := ‖W − I‖2
where W is a doubly stochastic mixing matrix.

Lemma 8. Under the setting of Theorem 1, for any m ∈ N:

E‖X((m+1)H) − X̂((m+1)H)‖2F ≤ b1E‖X(mH) −X
(mH)‖2F

+ b2E‖X(mH) − X̂(mH)‖2F
+ b3η

2
E

∥∥∥
∑(m+1)H−1

t′=mH βV(t′) +∇F (X(t′), ξ(t
′))
∥∥∥
2

F
, (28)

where b1 = (1+ τ−1
3 )γ2λ2(1+ τ5)(1+ τ6), b2 = (1+ τ3)(1−

ω)(1 + τ4) + (1 + τ−1
3 )γ2λ2(1 + τ5)(1 + τ−1

6 )(1 + τ7)(1 −
ω)(1+τ8), b3 = (1+τ3)(1−ω)(1+τ−1

4 )+(1+τ−1
3 )γ2λ2(1+

τ5)(1+ τ−1
6 )

(
(1 + τ−1

7 ) + (1 + τ7)(1− ω)(1 + τ−1
8 )
)
+(1+

τ−1
3 )γ2λ2(1 + τ−1

5 ). Here, τ3, τ4, τ5, τ6, τ7, τ8 > 0 are free

parameters.

E. Proof of Lemma 2

For any t ∈ [T ], define m ∈ ⌊ t
H ⌋ − 1. This implies that

(m+ 1)H ≤ t < (m+ 2)H . Now we note that:

Ξ(t) := E

∥∥∥X(t) −X
(t)
∥∥∥
2

F

= E

∥∥∥X(t) −X
((m+1)H) −

(
X

(t) −X
((m+1)H)

)∥∥∥
2

F
(a)

≤ E

∥∥∥X(t) −X
((m+1)H)

∥∥∥
2

F
(29)

≤ (1 + ν1)E
∥∥∥X((m+1)H) −X

((m+1)H)
∥∥∥
2

F

+ (1+ν−1
1 )η2E

∥∥∥∥∥∥

t−1∑

t′=(m+1)H

(
βV(t′)+∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F
(b)

≤ (1+ν1)(a1Ξ
(mH) + a2E‖X(mH)−X̂(mH)‖2F )

+ (1+ν1)a3η
2
E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

βV(t′)+∇F (X(t′), ξ(t
′))

∥∥∥∥∥∥

2

F

+ (1+ν−1
1 )η2E

∥∥∥∥∥∥

t−1∑

t′=(m+1)H

βV(t′)+∇F (X(t′), ξ(t
′))

∥∥∥∥∥∥

2

F

≤ (1+ν1)(a1Ξ
(mH) + a2E‖X(mH)−X̂(mH)‖2F )

+ (1+ν1)a3η
2H

t−1∑

t′=mH

E‖βV(t′)+∇F (X(t′), ξ(t
′))‖2F

+ (1+ν−1
1 )η2H

t−1∑

t′=mH

E‖βV(t′)+∇F (X(t′), ξ(t
′))‖2F

≤ (1 + ν1)a1Ξ
(mH) + (1 + ν1)a2E‖X(mH) − X̂(mH)‖2F

+ 2
(
(1+ν1)a3+(1+ν−1

1 )
)
η2H

t−1∑

t′=mH

E‖∇F (X(t′), ξ(t
′))‖2F

+ 2
(
(1+ν1)a3+(1+ν−1

1 )
)
η2H

t−1∑

t′=mH

β2
E

∥∥∥V(t′)
∥∥∥
2

F
(30)

Here, (a) follows from the inequality:
1
n

∑n
i=1

∥∥ai − 1
n

∑n
i=1 ai

∥∥2
2

≤ 1
n

∑n
i=1 ‖ai‖

2
2 and (b)

follows from (27) (in Lemma 7). The coefficients a1, a2, a3
in the RHS of (b) are defined in Lemma 7.

Proposition 3. For any t′, we have:

E

∥∥∥∇F (X(t′), ξ(t
′))
∥∥∥
2

F
≤ 2(M2 + 1)(L2Ξ(t′) + nG2)

+ 2(M2 + 1)nB2
E

∥∥∥∇f(x(t′))
∥∥∥
2

2
+ nσ2 (31)

Substituting (31) into (30), for (m+ 1)H ≤ t < (m+ 2)H:

Ξ(t) ≤ (1 + ν1)

(
a1Ξ

(mH) + a2E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F

)

+2c2η
2H2n

(
2(M2+1)G2+σ2

)
+c2η

2Hβ2
t−1∑

t′=mH

E‖V(t′)‖2F

+2c2η
2H(M2+1)

t−1∑

t′=mH

L2Ξ(t′)+nB2
E‖∇f(x(t′))‖2 (32)

where c2 = 2
(
(1 + ν1)a3 + (1 + ν−1

1 )
)
. For any j ∈ [T ] and

m′ = ⌊ j
H ⌋ − 1, define

S(j) := Ξ(j) + E

∥∥∥X(j) − X̂((m′+1)H)
∥∥∥
2

F
. (33)

By definition, we have S(mH) = Ξ(mH) +

E

∥∥∥X(mH) − X̂(mH)
∥∥∥
2

F
and also that Ξ(t′) ≤ S(t′) for

any t′. Using these in (32), we get

Ξ(t) ≤ (1 + ν1)

(
a1Ξ

(mH) + a2E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F

)

+2c2η
2H2n

(
2(M2+1)G2+σ2

)
+c2η

2Hβ2
t−1∑

t′=mH

E‖V(t′)‖2F

+2c2η
2H(M2+1)

t−1∑

t′=mH

L2S(t′)+nB2
E‖∇f(x(t′))‖22 (34)

Our aim is to get an upper-bound on S(t), which is defined

in (33) as S(t) = Ξ(t) + E

∥∥∥X(t) − X̂(⌊t/H⌋H)
∥∥∥
2

F
. However,

in (34), we have only derived an upper-bound on Ξ(t) in

terms of S(t′) for t′ < t. So„ we need to derive a similar

upper-bound on the other term E

∥∥∥X(t) − X̂(⌊t/H⌋H)
∥∥∥
2

F
, and

then we will add both the upper-bounds to get an upper-

bound on S(t). In the following, we derive an upper bound

on E

∥∥∥X(t) − X̂(⌊t/H⌋H)
∥∥∥
2

F
. Let m = ⌊ t

H ⌋ − 1, we have:

E

∥∥∥X(t) − X̂((m+1)H)
∥∥∥
2

F
= E

∥∥∥X((m+1)H) − X̂((m+1)H)

−η

t−1∑

t′=(m+1)H

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F



11

≤ (1 + ν1)E
∥∥∥X((m+1)H) − X̂((m+1)H)

∥∥∥
2

F

+ (1+ν−1
1 )η2E

∥∥∥∥∥∥

t−1∑

t′=(m+1)H

(
βV(t′)+∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F
(a)

≤ (1+ν1)(b1Ξ
(mH) + b2E‖X(mH)−X̂(mH)‖2F )

+ (1+ν1)b3η
2
E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

(
βV(t′)+∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

+ (1+ν−1
1 )η2E

∥∥∥∥∥∥

t−1∑

t′=(m+1)H

(
βV(t′)+∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

≤ (1 + ν1)

(
b1Ξ

(mH) + b2E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F

)

+ 2
(
(1 + ν1)b3 + (1 + ν−1

1 )
)
η2H

t−1∑

t′=mH

β2
E‖V(t′)‖2F

+ 2
(
(1+ν1)b3+(1+ν−1

1 )
)
η2H

t−1∑

t′=mH

E‖∇F (X(t′), ξ(t
′))‖2F

(b)

≤ (1 + ν1)

(
b1Ξ

(mH) + b2E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F

)

+2c4η
2H2n

(
2(M2+1)G2+σ2

)
+c4η

2Hβ2
t−1∑

t′=mH

E‖V(t′)‖2F

+2c4η
2H(M2+1)

t−1∑

t′=mH

L2Ξ(t′)+nB2
E‖∇f(x(t′))‖22 (35)

where (a) follows from (28) in Lemma 8 and the coefficients

b1, b2, b3 in the RHS of (a) are defined in Lemma 8, and (b)

follows from substituting the bound from (31) (in Proposi-

tion 3). In the RHS of (b), c4 = 2
(
(1 + ν1)b3 + (1 + ν−1

1 )
)
.

Adding (34), (35) for S(t) = Ξ(t) + E‖X(t) − X̂((m+1)H)‖2F :

S(t) ≤ (1 + ν1)max{a1 + b1, a2 + b2}S(mH) + 2c1η
2H2Γ

+c1η
2Hβ2

t−1∑

t′=mH

E‖V(t′)‖2F+2c1η
2H(M2+1)L2

t−1∑

t′=mH

S(t′)

+2c1η
2H(M2 + 1)nB2∑t−1

t′=mH E

∥∥∥∇f(x(t′))
∥∥∥
2

2
(36)

where Γ = n
(
2(M2 + 1)G2 + σ2

)
and c1 = c2 +

c4 with c2 = 2
(
(1 + ν1)a3 + (1 + ν−1

1 )
)

and c4 =
2
(
(1 + ν1)b3 + (1 + ν−1

1 )
)
. Here, ν1 > 0 is a free coefficient,

and a1, a2, a3 and b1, b2, b3 are defined in Lemma 7 and

Lemma 8, respectively. We will set the free variables such

that the coefficients of S(t′) for any t′ = mH, ..., t− 1 on the

RHS become strictly less than one.

In Appendix C-C, we show that if we set the free parameters

to be the following:

τi =
ω

4
, for i = 1, 2, 3, 4, 5, 7, 8; τ6 =

4

ω
; ν1 =

γ∗δ

4
;

α1 =
γδ

2
; α−1

5 =
γδ

2
; γ =

2δω3

(128λ2 + 24λ2ω2 + 4δ2ω2)
;

Then we get

(1+ν1)max{a1+b1, a2+b2} ≤ 1−γ∗δ

4
≤ 1−δ2ω3

1224
, (37)

c1 ≤ 2(1 +
γδ

4
)

(
3

γδ
+

9λ2

δ2
+

45γλ2

δω
+

104γ2λ2

ω2
+

4

ω
− 2

)

+ 4(1 +
4

γδ
). (38)

Putting these bounds back into (36), we get the following

upper bound for (m+ 1)H ≤ t ≤ (m+ 2)H − 1:

S(t) ≤
(
1− γδ

4

)
S(mH) + 2c1η

2H2n
(
2(M2 + 1)G2 + σ2

)

+c1η
2Hβ2

t−1∑

t′=mH

E‖V(t′)‖2F+2c1η
2H(M2+1)L2

t−1∑

t′=mH

S(t′)

+ 2c1η
2H(M2 + 1)nB2

t−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

2
. (39)

F. Proof of Lemma 3

For any fixed t ∈ [T ] and the corresponding m ∈ ⌊ t
H ⌋ − 1,

in Section V-E, we derived an upper-bound on S(t̂) all t̂ ∈ [T ]
such that (m + 1)H ≤ t̂ < (m + 2)H (note that t and t̂
will give exactly the same terms in Section V-E, so we just

kept t everywhere). In this section, we consider the case when

mH ≤ t̂ < (m+ 1)H .

Ξ(t̂)
(a)

≤ E

∥∥∥X(t̂) −X
(mH)

∥∥∥
2

F
(40)

≤ (1 + ν3)E
∥∥∥X(mH) −X

(mH)
∥∥∥
2

F

+ (1 + ν−1
3 )η2E

∥∥∥∥∥∥

t̂−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

(b)

≤ (1 + ν3)Ξ
(mH) + 2(1 + ν−1

3 )η2Hβ2
t̂−1∑

t′=mH

E

∥∥∥V(t′)
∥∥∥
2

F

+ 2(1 + ν−1
3 )η2H

t̂−1∑

t′=mH

E

∥∥∥∇F (X(t′), ξ(t
′))
∥∥∥
2

F

(c)

≤ (1 + ν3)Ξ
(mH) + 2(1 + ν−1

3 )η2Hβ2
t̂−1∑

t′=mH

E

∥∥∥V(t′)
∥∥∥
2

F

+ 4(M2 + 1)(1 + ν−1
3 )η2H

∑t̂−1
t′=mH

(
L2Ξ(t′) + nG2

)

+2(1+ν−1
3 )η2H

t̂−1∑

t′=mH

(
2(M2+1)nB2

E

∥∥∥∇f(x(t′))
∥∥∥
2

2
+nσ2

)

≤ (1 + ν3)Ξ
(mH) + 2(1 + ν−1

3 )η2H2n
(
2(M2 + 1)G2 + σ2

)

+4(1+ν−1
3 )η2H(M2+1)

t̂−1∑

t′=mH

L2Ξ(t′)+nB2
E

∥∥∥∇f(x(t′))
∥∥∥
2

2

+ 2(1 + ν−1
3 )η2Hβ2∑t̂−1

t′=mH E

∥∥∥V(t′)
∥∥∥
2

F
(41)

where (a) follows from the same reasoning using which we

obtained (29), (b) uses Ξ(mH) = E

∥∥∥X(mH) −X
(mH)

∥∥∥
2

F
, and

(c) follows from (31) (in Proposition 3).

As mentioned in Section V-E, our aim is to get an upper-

bound on S(t̂), which is defined in (33) as S(t̂) = Ξ(t̂) +
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E

∥∥∥X(t̂) − X̂(⌊t̂/H⌋H)
∥∥∥
2

F
. However, in (41), we have only de-

rived an upper-bound on Ξ(t̂). So, we need to derive a similar

upper-bound on the other term E

∥∥∥X(t̂) − X̂(⌊t̂/H⌋H)
∥∥∥
2

F
, and

then adding both the upper-bounds gives a bound on S(t̂).

Note that since mH ≤ t̂ < (m + 1)H , we have ⌊ t̂
H ⌋ = m.

In order to upper-bound E

∥∥∥X(t̂) − X̂(mH)
∥∥∥
2

F
, we can follow

the same steps that we used from (40) to (41) (just replace

X
(mH)

with X̂(mH)). This would give the following bound:

E

∥∥∥X(t̂) − X̂(mH)
∥∥∥
2

F
≤ (1 + ν3)E

∥∥∥X(mH) − X̂(mH)
∥∥∥
2

F

+ 2(1+ν−1
3 )η2H2[n

(
2(M2+1)G2+σ2

)
+β2

t̂−1∑

t′=mH

E‖V(t′)‖2F ]

+ 4(1 + ν−1
3 )η2H(M2 + 1)nB2

t̂−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

2

+ 4(1 + ν−1
3 )η2H(M2 + 1)L2

t̂−1∑

t′=mH

Ξ(t′) (42)

Adding (41) and (42), and using the definition that S(t̂) =

Ξ(t̂) + E

∥∥∥X(t̂) − X̂(⌊t̂/H⌋H)
∥∥∥
2

F
together with that Ξ(t′) ≤

S(t′), and taking ν3 = γδ
4 , we get:

S(t̂) ≤ (1 +
γδ

4
)S(mH)+4(1+

4

γδ
)η2H2n

(
2(M2+1)G2+σ2

)

+8(1+
4

γδ
)η2H(M2 + 1)

t̂−1∑

t′=mH

(L2S(t′)+nB2
E‖∇f(x(t′))‖22)

+4(1+
4

γδ
)η2Hβ2

t̂−1∑

t′=mH

E‖V(t′)‖2F (43)

In order to make our calculations less cluttered later, we would

like to write all terms (except the first one) in the RHS above

in the same form as given in (39). Indeed, it can be verified

easily that 4(1+ 4
γδ ) ≤ c1, where c1 is exactly the same as in

(39). Substituting this in (43) above yields the bound below

for mH ≤ t̂ < (m+ 1)H , where m ∈ ⌊ t
H ⌋ − 1:

S(t̂) ≤ (1 +
γδ

4
)S(mH) + 2c1η

2H2n
(
2(M2 + 1)G2 + σ2

)

+ 2c1η
2H(M2 + 1)

t̂−1∑

t′=mH

(L2S(t′) + nB2
E

∥∥∥∇f(x(t′))
∥∥∥
2

2
)

+ c1η
2Hβ2

t̂−1∑

t′=mH

E

∥∥∥V(t′)
∥∥∥
2

F
(44)

where c1 is exactly the same as in (39).

G. Proof of Lemma 4

Let A = 2c1H
2n
(
2(M2+1)G2+σ2

)
, D = c1Hβ2

(1−β) ,C =

2c1H(M2+1)nB2, and Λ(t′) = (1− β)E
∥∥V(t)

∥∥2
F

, where c1

is the same as in (104). Since η ≤
√

γδ
512c1H2(M2+1)L2 , we

have 2c1η
2H(M2 + 1)L2 ≤ γδ

4
1

64H .

Take any t ∈ [T ] and let m = ⌊ t
H ⌋ − 1. With these

substitutions and letting α = γδ
4 , the bound from (39) for

any t such that (m+ 1)H ≤ t ≤ (m+ 2)H − 1 becomes:

S(t) ≤
(
1− α

2

)
S(mH) +Aη2 +

α

64H

t−1∑

t′=mH

S(t′)

+ Cη2
t−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

+Dη2
t−1∑

t′=mH

Λ(t′). (45)

And for any t̂ such that mH ≤ t̂ < (m + 1)H , the bound

from (44) becomes:

S(t̂) ≤
(
1− α

2

)
S(mH) +Aη2 +

α

64H

t̂−1∑

t′=mH

S(t′)

+ Cη2
t̂−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

+Dη2
t̂−1∑

t′=mH

Λ(t′). (46)

Consider (45). Substituting the value of S(t−1) recursively in

the RHS of (45), we get:

S(t) ≤
(
1− α

2

)
S(mH) +Aη2 +

α

64H

t−2∑

t′=mH

S(t′)

+ Cη2
t−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

+Dη2
t−1∑

t′=mH

Λ(t′)

+
α

64H

((
1− α

2

)
S(mH) +Aη2 +

α

64H

t−2∑

t′=mH

S(t′)

+Cη2
t−2∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

+Dη2
t−2∑

t′=mH

Λ(t′)

)

=
(
1−α

2

)(
1+

α

64H

)
S(mH) +A

(
1 +

α

64H

)
η2 +Dη2Λt−1

+
α

64H

(
1+

α

64H

) t−2∑

t′=mH

S(t′)+
(
1+

α

64H

)
Dη2

t−2∑

t′=mH

Λ(t′)

+
(
1+

α

64H

)
Cη2

t−2∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

+Cη2E
∥∥∥∇f(x(t−1))

∥∥∥
2

Substituting the values in the RHS till (m+ 1)H , we get:

S(t) ≤
(
1− α

2

)(
1 +

α

64H

)H
S(mH) +A

(
1 +

α

64H

)H
η2

+
α

64H

(
1 +

α

64H

)H (m+1)H−1∑

t′=mH

S(t′)

+
(
1 +

α

64H

)H
η2

(m+1)H−1∑

t′=mH

(CE

∥∥∥∇f(x(t′))
∥∥∥
2

+DΛ(t′))

+ η2
t−1∑

t′=(m+1)H

(
1+

α

64H

)t−1−t′

(CE‖∇f(x(t′))‖2 +DΛ(t′))

Now consider t′ such that mH ≤ t′ < (m+1)H . Substituting

the value of S((m+1)H−1) from (46) int the R.H.S above gives:

S(t) ≤
(
1− α

2

)(
1 +

α

64H

)H
S(mH) +A

(
1 +

α

64H

)H
η2
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+
α

64H

(
1 +

α

64H

)H (m+1)H−2∑

t′=mH

S(t′)

+
(
1 +

α

64H

)H
η2

(m+1)H−1∑

t′=mH

(CE

∥∥∥∇f(x(t′))
∥∥∥
2

+DΛ(t′))

+
α

64H

(
1+

α

64H

)H

(1+α

2
)S(mH)+

α

64H

(m+1)H−2∑

j=mH

S(j)

+Cη2
(m+1)H−2∑

j=mH

E‖∇f(x(j))‖2+Dη2
(m+1)H−2∑

j=mH

Λ(j)+Aη2




+η2
t−1∑

t′=(m+1)H

(
1+

α

64H

)t−1−t′

(CE‖∇f(x(t′))‖2 +DΛ(t′))

≤
((

1− α

2

)
+

α

64H

(
1 +

α

2

))(
1 +

α

64H

)H
S(mH)

+A
(
1+

α

64H

)H+1

η2+
α

64H

(
1+

α

64H

)H+1
(m+1)H−2∑

t′=mH

S(t′)

+
(
1 +

α

64H

)H+1

η2
(m+1)H−2∑

t′=mH

(CE‖∇f(x(t′))‖2 +DΛ(t′))

+η2
t−1∑

t′=(m+1)H

(
1+

α

64H

)t−1−t′

(CE

∥∥∥∇f(x(t′))
∥∥∥
2

+DΛ(t′))

+η2
(
1+

α

64H

)H
(CE‖∇f(x((m+1)H−1))‖2+DΛ((m+1)H−1))

Now we note that for 0 < α ≤ 1, α
64H

(
1 + α

2

)
≤(

1− α
2

)
α

16H . Using this fact in the first term and (1+ α
64H ) ≤

(1 + α
16H ), and

(
1 + α

64H

)t−1−t′ ≤ (1 + α
16H )H for all

t′ ∈ {(m+ 1)H, . . . , t− 1} in the RHS above gives:

S(t) ≤
(
1−α

2

)(
1+

α

16H

)H+1

S(mH)+A
(
1+

α

16H

)H+1

η2

+
α

64H

(
1 +

α

16H

)H+1
(m+1)H−2∑

t′=mH

S(t′)

+
(
1 +

α

16H

)H+1

η2
(m+1)H−2∑

t′=mH

(CE

∥∥∥∇f(x(t′))
∥∥∥
2

+DΛ(t′))

+ η2
(
1 +

α

16H

)H t−1∑

t′=(m+1)H

(CE

∥∥∥∇f(x(t′))
∥∥∥
2

+DΛ(t′))

+η2
(
1+

α

16H

)H
(CE

∥∥∥∇f(x((m+1)H−1))
∥∥∥
2

+DΛ((m+1)H−1))

Using
(
1 + α

16H

)H ≤
(
1 + α

16H

)H+1
in the last two terms

and then clubbing together terms respectively with C and D:

S(t) ≤
(
1−α

2

)(
1+

α

16H

)H+1

S(mH)+A
(
1+

α

16H

)H+1

η2

+
(
1+

α

16H

)H+1

η2
t−1∑

t′=mH

(CE

∥∥∥∇f(x(t′))
∥∥∥
2

+DΛ(t′))

+
α

64H

(
1 +

α

16H

)H+1
(m+1)H−2∑

t′=mH

S(t′)

Recursively substituting the values till mH gives us:

S(t) ≤
(
1− α

2

)(
1 +

α

16H

)2H
S(mH) +A

(
1 +

α

16H

)2H
η2

+
(
1 +

α

16H

)2H
η2

t−1∑

t′=mH

(CE

∥∥∥∇f(x(t′))
∥∥∥
2

+DΛ(t′))

For α ≤ 1, we note that
(
1 + α

16H

)2H ≤ e
α
8 ≤ 1+α

4 . Plugging

this in the first term on the RHS and using
(
1− α

2

) (
1 + α

4

)
≤(

1− α
4

)
and

(
1 + α

16H

)2H ≤ 1+ α
4 ≤ 2 gives us the following

recursion equation for any t ∈ [T ]:

S(t) ≤
(
1− α

4

)
S(mH) + 2Aη2

+ 2Cη2
t−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

+ 2Dη2
t−1∑

t′=mH

Λ(t′) (47)

Unrolling recursion equation in (47) for S(mH) till 0, we get:

S(t) ≤ 2Aη2
m−1∑

j=0

(
1− α

4

)j
+ 2Dη2

t−1∑

j=0

(
1− α

4

)⌊ t−j

H
⌋
Λ(j)

+ 2Cη2
t−1∑

j=0

(
1− α

4

)⌊ t−j

H
⌋
E

∥∥∥∇f(x(j))
∥∥∥
2

(48)

Note that
∑m−1

j=0

(
1− α

4

)j ≤ 4
α . Using this and the bound

(
1− α

4

)⌊ t−j

H
⌋ ≤ 2

(
1− α

8H

)t−j
(proved in Appendix C-E)

into (48) gives us:

S(t) ≤ 8Aη2

α
+ 4Cη2

t−1∑

j=0

(
1− α

8H

)t−j

E

∥∥∥∇f(x(j))
∥∥∥
2

+ 4Dη2
t−1∑

j=0

(
1− α

8H

)t−j

Λ(j)

Taking summation from t = 0 to T − 1, we get:

T−1∑

t=0

S(t) ≤ 4Cη2
T−1∑

t=0

t−1∑

j=0

(
1− α

8H

)t−j

E

∥∥∥∇f(x(j))
∥∥∥
2

+ 4Dη2
T−1∑

t=0

t−1∑

j=0

(
1− α

8H

)t−j

Λ(j) +
8Aη2

α
T

≤ 8Aη2

α
T + 4Cη2

T−1∑

j=0

T−1∑

t=j+1

(
1− α

8H

)t−j

E

∥∥∥∇f(x(j))
∥∥∥
2

+ 4Dη2
T−1∑

j=0

T−1∑

t=j+1

(
1− α

8H

)t−j

Λ(j)

≤ 8Aη2T

α
+
32Cη2H

α

T−1∑

t=0

E‖∇f(x(t))‖2+32DHη2

α

T−1∑

t=0

Λ(t′)

(49)

To bound the last term in the RHS of (49), from the definition

of Λ(t′) in (12), note that:

T−1∑

t=0

Λ(t′) =

T−1∑

t=0

t∑

j=0

βt−j
E

∥∥∥∇F (X(j), ξ(j))
∥∥∥
2

F
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SGD or vanilla SGD training as demonstrated in Figure 2b.
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APPENDIX A

PRELIMINARIES

Notation. Unless specified otherwise, for a vector u, we write ‖u‖ to denote the ℓ2-norm ‖u‖2.

A. Vector and matrix inequalities

Fact 1. Let M ∈ R
p×q be a matrix with entries [mij ], i ∈ [p], j ∈ [q]. The Frobenius norm of M is given by :

‖M‖F =

√√√√
p∑

i=1

q∑

j=1

|mij |2

Consider any two matrices A ∈ R
d×n, B ∈ R

n×n. Then the following holds:

‖AB‖F ≤ ‖A‖F ‖B‖2 (51)

Fact 2. For any set of n vectors {a1, . . . ,an} where ai ∈ R
d, we have:

∥∥∥∥∥

n∑

i=1

ai

∥∥∥∥∥

2

≤ n

n∑

i=1

‖ai‖2 (52)

Fact 3. For any two vectors a,b ∈ R
d, for all γ > 0, we have:

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 (53)

Fact 4. For any two vectors a,b ∈ R
d, for all α > 0, we have:

‖a+ b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 (54)

Similar inequality holds for matrices in Frobenius norm, i.e., for any two matrices A,B ∈ R
p×q and for any α > 0 , we have

‖A+B‖2F ≤ (1 + α) ‖A‖2F + (1 + α−1) ‖B‖2F

B. Properties of functions

Definition 2 (Smoothness). A differentiable function f : Rd → R is L-smooth with parameter L ≥ 0 if

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L

2
‖y − x‖2, ∀x,y ∈ R

d (55)

Lemma 9. Let f be an L-smooth function with global minimizer x∗. We have

‖∇f(x)‖2 ≤ 2L(f(x)− f(x∗)). (56)

Proof. By definition of L-smoothness, we have

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L

2
‖y − x‖2.

Taking infimum over y yields:

inf
y

f(y) ≤ inf
y

(
f(x) + 〈∇f(x),y − x〉+ L

2
‖y − x‖2

)

(a)
= inf

v:‖v‖=1
inf
t

(
f(x) + t〈∇f(x),v〉+ Lt2

2

)

(b)
= inf

v:‖v‖=1

(
f(x)− 1

2L
〈∇f(x),v〉2

)

(c)
=

(
f(x)− 1

2L
‖∇f(x)‖2

)

The value of t that minimizes the RHS of (a) is t = − 1
L 〈∇f(x),v〉, this implies (b); (c) follows from the Cauchy-Schwartz

inequality: 〈u,v〉 ≤ ‖u‖‖v‖, where equality is achieved whenever u = v. Now, substituting inf
y

f(y) = f(x∗) in the RHS of

(c) yields the result.



17

APPENDIX B

PRELIMINARIES FOR CONVERGENCE WITH RELAXED ASSUMPTIONS

Proof of Proposition 1. This simply follows from the independence of the randomness used in sampling stochastic gradients

at different workers.

Proof of Proposition 2. We want to show the following bound on E
∥∥V(t)

∥∥2
F

for any t:

E

∥∥∥V(t)
∥∥∥
2

F
≤ 1

(1− β)

t∑

k=0

βt−k
E

∥∥∥∇F (X(k), ξ(k))
∥∥∥
2

F
.

For any t, let θt =
∑t

k=0 β
t−k.

E

∥∥∥V(t)
∥∥∥
2

F
= E

∥∥∥∥∥

t∑

k=0

βt−k∇F (X(k), ξ(k))

∥∥∥∥∥

2

F

= θ2tE

∥∥∥∥∥

t∑

k=0

βt−k

θt
∇F (X(k), ξ(k))

∥∥∥∥∥

2

F

≤ θt

t∑

k=0

βt−k
E

∥∥∥∇F (X(k), ξ(k))
∥∥∥
2

F

≤ 1

1− β

t∑

k=0

βt−k
E

∥∥∥∇F (X(k), ξ(k))
∥∥∥
2

F
. (57)

APPENDIX C

OMITTED DETAILS FROM SECTION V

A. Omitted Details from Section V-C

Lemma 10. We have the following bounds on P1 and P2 (which are defined in (16)):

P1 ≤ − η

2(1− β)

∥∥∥∇f(x̃(t))
∥∥∥
2

+
ηL2

2n(1− β)

n∑

i=1

∥∥∥x̃(t) − x
(t)
i

∥∥∥
2

,

P2 ≤ σ2

n
+

2(M2 + n)L2

n2

n∑

i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥
2

2
+

2(M2 + n)

n

(
G2 +B2

∥∥∥∇f(x̃(t))
∥∥∥
2

2

)
.

Proof.

P1 = −
〈
∇f(x̃(t)),

η

(1− β)

1

n

n∑

i=1

∇fi(x
(t)
i )

〉

= −
〈
∇f(x̃(t)),

η

(1− β)

1

n

n∑

i=1

(
∇fi(x

(t)
i )−∇fi(x̃

(t)) +∇fi(x̃
(t))
)〉

= −
〈
∇f(x̃(t)),

η

(1− β)
∇f(x̃(t))

〉
+

η

(1− β)

1

n

n∑

i=1

〈
∇f(x̃(t)),∇fi(x̃

(t))−∇fi(x
(t)
i )
〉

(b)

≤ − η

(1− β)

∥∥∥∇f(x̃(t))
∥∥∥
2

+
η

2(1− β)

∥∥∥∇f(x̃(t))
∥∥∥
2

+
η

2(1− β)

1

n

n∑

i=1

∥∥∥∇fi(x̃
(t))−∇fi(x

(t)
i )
∥∥∥
2

(c)

≤ − η

2(1− β)

∥∥∥∇f(x̃(t))
∥∥∥
2

+
ηL2

2n(1− β)

n∑

i=1

∥∥∥x̃(t) − x
(t)
i

∥∥∥
2

,

where (b) follows from 〈a,b〉 ≤ 1
2 (‖a‖2 + ‖b‖2) and (c) follows from the L-smoothness of fi.

For bounding P2, we will use Proposition 1.

P2 = Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

∥∥∥∥∥

2

(d)
= Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

(
∇Fi(x

(t)
i , ξ

(t)
i )−∇fi(x

(t)
i )
)
∥∥∥∥∥

2

+

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2
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(e)

≤ σ2

n
+

M2

n2

n∑

i=1

∥∥∥∇fi(x
(t)
i )
∥∥∥
2

2
+

1

n

n∑

i=1

∥∥∥∇fi(x
(t)
i )
∥∥∥
2

=
σ2

n
+

(M2 + n)

n2

n∑

i=1

∥∥∥∇fi(x
(t)
i )
∥∥∥
2

2
(58)

≤ σ2

n
+

2(M2 + n)

n2

n∑

i=1

∥∥∥∇fi(x
(t)
i )−∇fi(x̃

(t))
∥∥∥
2

2
+

2(M2 + n)

n2

n∑

i=1

∥∥∥∇fi(x̃
(t))
∥∥∥
2

2

(f)

≤ σ2

n
+

2(M2 + n)L2

n2

n∑

i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥
2

2
+

2(M2 + n)

n

(
G2 +B2

∥∥∥∇f(x̃(t))
∥∥∥
2

2

)

Here, (d) follows because the randomness used for sampling the unbiased stochastic gradients across workers is independent

of each other, (e) follows from (11), and (f) follows from the L-smoothness of fi and (4).

Lemma (Restating Lemma 5). Consider the deviation of the global average parameter x(t) and the virtual sequence x̃(t)

defined in (13) for constant stepsize η. Then at any time step t, the following holds:

∥∥∥x(t) − x̃(t)
∥∥∥
2

≤ β4η2

(1− β)3

t−1∑

τ=0


βt−τ−1

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2

 (59)

Proof. Using the definition of x̃(t) as in (13), we have:

∥∥∥x̄(t) − x̃(t)
∥∥∥
2

=
∥∥∥x̄(t) − x̃(t)

∥∥∥
2

=
β4η2

(1− β)2

∥∥∥∥∥
1

n

n∑

i=1

v
(t−1)
i

∥∥∥∥∥

2

Define θt−1 =
∑t−1

k=0 β
1−t−k = 1−βt

1−β . Thus we can expand the term in the norm as:

=
β4η2

(1− β)2
θ2t−1

∥∥∥∥∥

t−1∑

k=0

βt−1−k

θt−1

1

n

n∑

i=1

∇F (x
(k)
i , ξ

(k)
i )

∥∥∥∥∥

2

≤ β4η2

(1− β)2
θ2t−1

t−1∑

k=0

βt−1−k

θt−1

∥∥∥∥∥
1

n

n∑

i=1

∇F (x
(k)
i , ξ

(k)
i )

∥∥∥∥∥

2

=
β4η2

(1− β)2
θt−1

t−1∑

k=0

βt−1−k

∥∥∥∥∥
1

n

n∑

i=1

∇F (x
(k)
i , ξ

(k)
i )

∥∥∥∥∥

2

≤ β4η2

(1− β)3

t−1∑

τ=0


βt−τ−1

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2



Where the first inequality follows from Jensen’s inequality and the second inequality follows from noting that θt ≤ 1
1−β . This

completes the proof.

Proof of Lemma 6. We have already bounded the expectation term in (18) – the same bound holds when expectation is taken

w.r.t. the entire past. Substituting that bound – i.e.,

E

∥∥∥ 1
n

∑n
i=1 ∇Fi(x

(τ)
i , ξ

(τ)
i )
∥∥∥
2

≤ σ2

n + (M2+n)
n2

∑n
i=1 E

∥∥∥∇fi(x
(τ)
i )
∥∥∥
2

2
– from (58) into (23) gives

1

T

T−1∑

t=0

t−1∑

τ=0


βt−τ−1

E

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2

 ≤ 1

T

T−1∑

t=0

t−1∑

τ=0

βt−τ−1σ
2

n

+
1

T

T−1∑

t=0

t−1∑

τ=0

βt−τ−1 (M
2 + n)

n2

n∑

i=1

E

∥∥∥∇fi(x
(τ)
i )
∥∥∥
2

2
(60)

Now we bound both the terms of (60) separately.

1

T

T−1∑

t=0

t−1∑

τ=0

βt−τ−1σ
2

n
=

σ2

n

1

T

T−1∑

t=0

t−1∑

τ=0

βt−τ−1 ≤ σ2

n(1− β)
. (61)

1

T

T−1∑

t=0

t−1∑

τ=0

βt−τ−1 (M
2 + n)

n2

n∑

i=1

E

∥∥∥∇fi(x
(τ)
i )
∥∥∥
2

2
=

1

T

T−2∑

τ=0

T−1∑

t=τ+1

βt−τ−1 (M
2 + n)

n2

n∑

i=1

E

∥∥∥∇fi(x
(τ)
i )
∥∥∥
2

2



19

=
(M2 + n)

n2

1

T

T−2∑

τ=0

n∑

i=1

E

∥∥∥∇fi(x
(τ)
i )
∥∥∥
2

2

T−1∑

t=τ+1

βt−τ−1

≤ (M2 + n)

n2(1− β)

1

T

T−2∑

τ=0

n∑

i=1

E

∥∥∥∇fi(x
(τ)
i )
∥∥∥
2

2

≤ 2(M2 + n)

n2(1− β)

1

T

T−2∑

τ=0

n∑

i=1

E

∥∥∥∇fi(x
(τ)
i )−∇fi(x

(τ))
∥∥∥
2

2
+

2(M2 + n)

n2(1− β)

1

T

T−2∑

τ=0

n∑

i=1

E

∥∥∥∇fi(x
(τ))
∥∥∥
2

2

≤ 2(M2 + n)

n2(1− β)

1

T

T−2∑

τ=0

n∑

i=1

L2
E

∥∥∥x(τ)
i − x(τ)

∥∥∥
2

2
+

2(M2 + n)

n(1− β)

1

T

T−2∑

τ=0

(
G2 +B2

E‖∇f(x(τ))‖22
)

≤ 2(M2 + n)L2

n2(1− β)

1

T

T−2∑

τ=0

n∑

i=1

E

∥∥∥x(τ)
i − x(τ)

∥∥∥
2

2
+

2(M2 + n)G2

n(1− β)
+

2(M2 + n)B2

n(1− β)

1

T

T−2∑

τ=0

E‖∇f(x(τ))‖22 (62)

Substituting the bounds from (61), (62) into (60) yields (23), which proves Lemma 6.

B. Omitted Details from Section V-D

1) Proof of Lemma 7: In this section we will prove Lemma 7.

Proof. We show the following bound in Lemma 11 (provided at the end of this section):

E

∥∥∥X((m+1)H) −X
((m+1)H)

∥∥∥
2

F
≤ ϑ1E

∥∥∥X(mH) −X
(mH)

∥∥∥
2

F
+ ϑ2E

∥∥∥X(mH) − X̂((m+1)H)
∥∥∥
2

F

+ ϑ3η
2
E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

βV(t′) +∇F (X(t′), ξ(t
′))

∥∥∥∥∥∥

2

F

, (63)

where ϑ1 = (1 + α−1
5 )R1, ϑ2 = (1 + α−1

5 )R2, and ϑ3 = (R1 +R2)(1 + α5).

We want to write the second expectation term E

∥∥∥X(mH) − X̂((m+1)H)
∥∥∥
2

F
on the RHS of (63) in terms of

E

∥∥∥X(mH) − X̂(mH)
∥∥∥
2

F
. For that, first we define

X((m+1/2)H) := X(mH) − η

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
. (64)

E

∥∥∥X(mH) − X̂((m+1)H)
∥∥∥
2

F
= E

∥∥∥X(mH) −
(
X̂(mH) + C

(
X((m+1/2)H) − X̂(mH)

))∥∥∥
2

F

= E

∥∥∥X((m+1/2)H) − X̂(mH) − C
(
X((m+1/2)H) − X̂(mH)

)
+X(mH) −X((m+1/2)H)

∥∥∥
2

F

≤ (1 + τ1)(1− ω)E
∥∥∥X((m+1/2)H) − X̂(mH)

∥∥∥
2

F
+ (1 + τ−1

1 )E
∥∥∥X(mH) −X((m+1/2)H)

∥∥∥
2

F

= (1 + τ1)(1− ω)E
∥∥∥X((m+1/2)H) −X(mH) +X(mH) − X̂(mH)

∥∥∥
2

F

+ (1 + τ−1
1 )E

∥∥∥X(mH) −X((m+1/2)H)
∥∥∥
2

F

≤ (1 + τ1)(1− ω)(1 + τ2)E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F

+
(
(1 + τ−1

1 ) + (1 + τ1)(1− ω)(1 + τ−1
2 )
)
E

∥∥∥X(mH) −X((m+1/2)H)
∥∥∥
2

F

≤ χ1E

∥∥∥X(mH) − X̂(mH)
∥∥∥
2

F
+ χ2η

2
E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

, (65)

where χ1 = (1 + τ1)(1− ω)(1 + τ2) and χ2 =
(
(1 + τ−1

1 ) + (1 + τ1)(1− ω)(1 + τ−1
2 )
)
.

Substituting this back in (63) yields (27), which proves Lemma 7.

Lemma 11. We have

E‖X((m+1)H) − X̄((m+1)H)‖2F ≤ R1(1 + α−1
5 )E

∥∥∥X̄(mH) −X(mH)
∥∥∥
2

+R2(1 + α−1
5 )E

∥∥∥X̂((m+1)H) −X(mH)
∥∥∥
2
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+ (1 + α5)(R1 +R2)η
2

∥∥∥∥∥∥

((m+1)H)−1∑

t′=(mH)

(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

Proof. Using the update equations of X((m+1)H) in matrix form given in (5)-(8) in Section IV, we have:

‖X((m+1)H) − X̄((m+1)H)‖2F = ‖X((m+1/2)H) − X̄((m+1)H) + γX̂((m+1)H)(W − I)‖2F

Noting that X̄((m+1)H) = X̄((m+1/2)H) (from (10)) and X̄((m+1/2)H)(W − I) = 0 (from (9)), we get:

‖X((m+1)H) − X̄((m+1)H)‖2F = ‖(X((m+1/2)H) − X̄((m+1/2)H))((1− γ)I

+ γW) + γ(X̂((m+1)H) −X((m+1/2)H))(W − I)‖2F
For any positive constant10 α1, we have:

‖X((m+1)H) − X̄((m+1)H)‖2F ≤ (1 + α1)‖(X((m+1/2)H) − X̄((m+1/2)H))((1− γ)I+ γW)‖2F
+ (1 + α−1

1 )‖γ(X̂((m+1)H) −X((m+1/2)H))(W − I)‖2F

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 for any matrices A,B, we have:

‖X((m+1)H) − X̄((m+1)H)‖2F ≤ (1 + α1)‖(X((m+1/2)H) − X̄((m+1/2)H))((1− γ)I+ γW)‖2F
+ (1 + α−1

1 )γ2‖(X̂((m+1)H) −X((m+1/2)H))‖2F .‖(W − I)‖22 (66)

To bound the first term in (150), we use the triangle inequality for Frobenius norm, giving us:

‖(X((m+1/2)H) − X̄((m+1/2)H))((1− γ)I+ γW)‖F ≤ (1− γ)‖X((m+1/2)H) − X̄((m+1/2)H)‖F
+ γ‖(X((m+1/2)H) − X̄((m+1/2)H))W‖F

Since
(
X((m+1/2)H) − X̄((m+1/2)H)

)
11T

n = 0 (from (9)), adding this inside the last term above, we get:

‖(X((m+1/2)H) − X̄((m+1/2)H))((1− γ)I+ γW)‖F ≤ (1− γ)‖X((m+1/2)H) − X̄((m+1/2)H)‖F

+ γ

∥∥∥∥(X
((m+1/2)H) − X̄((m+1/2)H))

(
W − 11T

n

)∥∥∥∥
F

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 and then using (112) from Fact 3 with k = 1, we can simplify the above to:

‖(X((m+1/2)H) − X̄((m+1/2)H))((1− γ)I+ γW)‖F ≤ (1− γδ)‖X((m+1/2)H) − X̄((m+1/2)H)‖F
Substituting the above in (150) and using λ = maxi{1− λi(W)} ⇒ ‖W − I‖22 ≤ λ2, we get:

‖X((m+1)H) − X̄((m+1)H)‖2F ≤ (1 + α1)(1− γδ)2‖X((m+1/2)H) − X̄((m+1/2)H)‖2F
+ (1 + α−1

1 )γ2λ2‖X((m+1/2)H) − X̂((m+1)H)‖2F
Taking expectation w.r.t. the entire process, we have:

E‖X((m+1)H) − X̄((m+1)H)‖2F ≤ (1 + α1)(1− γδ)2E‖X((m+1/2)H) − X̄((m+1/2)H)‖2F
+ (1 + α−1

1 )γ2λ2
E‖X((m+1/2)H) − X̂((m+1)H)‖2F

Define R1 = (1 + α1)(1 − γδ)2, R2 = (1 + α−1
1 )γ2λ2. Using the update steps of algorithm given in equations (6) and (10)

(given in Section IV), we have:

E‖X((m+1)H) − X̄((m+1)H)‖2F ≤ R1E

∥∥∥∥∥∥
X̄(mH) −X(mH) −

(m+1)H−1∑

t′=mH

η(βV(t′) +∇F (X(t′), ξ(t
′)))

(
11T

n
− I

)∥∥∥∥∥∥

2

F

+R2E

∥∥∥∥∥∥
X̂((m+1)H) −X(mH) +

(m+1)H−1∑

t′=mH

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

10For any two matrices A,B ∈ R
p×q and for any α > 0 , we have the following relationship for the Frobenius norm:

‖A+B‖2F ≤ (1 + α) ‖A‖2F + (1 + α−1) ‖B‖2F
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Thus, for any α5 > 0 (using Footnote 11), we have:

E‖X((m+1)H) − X̄((m+1)H)‖2F ≤ R1(1 + α−1
5 )E

∥∥∥X̄(mH) −X(mH)
∥∥∥
2

+R2(1 + α−1
5 )E

∥∥∥X̂((m+1)H) −X(mH)
∥∥∥
2

+R1(1 + α5)E

∥∥∥∥∥∥

((m+1)H)−1∑

t′=(mH)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

(
11T

n
− I

)∥∥∥∥∥∥

2

F

+R2(1 + α5)E

∥∥∥∥∥∥

((m+1)H)−1∑

t′=(mH)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 to split the third term, and then using the bound

∥∥∥11T

n − I

∥∥∥
2
= 1 (which is shown in Claim 2

in Appendix D in supplementary), the above can be rewritten as:

E‖X((m+1)H) − X̄((m+1)H)‖2F ≤ R1(1 + α−1
5 )E

∥∥∥X̄(mH) −X(mH)
∥∥∥
2

+R2(1 + α−1
5 )E

∥∥∥X̂((m+1)H) −X(mH)
∥∥∥
2

+ (1 + α5)(R1 +R2)η
2

∥∥∥∥∥∥

((m+1)H)−1∑

t′=(mH)

(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

2) Proof of Lemma 8: In this section, we prove Lemma 8.

Proof.

E

∥∥∥X((m+1)H) − X̂((m+1)H)
∥∥∥
2

F
= E

∥∥∥X((m+1)H) −
(
X̂(mH) + C

(
X((m+1/2)H) − X̂(mH)

))∥∥∥
2

F

= E

∥∥∥X((m+1/2)H) − X̂(mH) − C
(
X((m+1/2)H) − X̂(mH)

)
+X((m+1)H) −X((m+1/2)H)

∥∥∥
2

F

≤ (1 + τ3)(1− ω)E
∥∥∥X((m+1/2)H) − X̂(mH)

∥∥∥
2

F︸ ︷︷ ︸
=: T1

+(1 + τ−1
3 )E

∥∥∥X((m+1)H) −X((m+1/2)H)
∥∥∥
2

F︸ ︷︷ ︸
=: T2

(67)

Now we bound T1 and T2.

T1 = E

∥∥∥X((m+1/2)H) − X̂(mH)
∥∥∥
2

F

= E

∥∥∥∥∥∥
X(mH) − η

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
− X̂(mH)

∥∥∥∥∥∥

2

F

≤ (1 + τ4)E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F
+ (1 + τ−1

4 )η2E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

(68)

T2 = E

∥∥∥X((m+1)H) −X((m+1/2)H)
∥∥∥
2

F

= E

∥∥∥X((m+1/2)H) + γX̂((m+1)H)(W − I)−X((m+1/2)H)
∥∥∥
2

F

= γ2
E

∥∥∥X̂((m+1)H)(W − I)
∥∥∥
2

F

= γ2
E

∥∥∥
(
X̂((m+1)H) −X

((m+1/2)H)
)
(W − I)

∥∥∥
2

F
(Since X

((m+1/2)H)
(W − I) = 0)

≤ γ2λ2
E

∥∥∥X̂((m+1)H) −X
((m+1/2)H)

∥∥∥
2

F
(Since ‖W − I‖2 = λ)

= γ2λ2
E

∥∥∥∥∥∥
X̂((m+1)H) −


X

(mH) − η

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)


∥∥∥∥∥∥

2

F

≤ φ1 E

∥∥∥X̂((m+1)H) −X
(mH)

∥∥∥
2

F︸ ︷︷ ︸
=: T3

+φ2η
2
E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

, (69)
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where φ1 = γ2λ2(1 + τ5) and φ2 = γ2λ2(1 + τ−1
5 ).

T3 = E

∥∥∥X̂((m+1)H) −X
(mH)

∥∥∥
2

F

= E

∥∥∥X̂((m+1)H) −X(mH) +X(mH) −X
(mH)

∥∥∥
2

F

≤ (1 + τ6)E
∥∥∥X(mH) −X

(mH)
∥∥∥
2

F
+ (1 + τ−1

6 )E
∥∥∥X̂((m+1)H) −X(mH)

∥∥∥
2

F
(a)

≤ (1 + τ6)E
∥∥∥X(mH) −X

(mH)
∥∥∥
2

F
+ (1 + τ−1

6 )(1 + τ7)(1− ω)(1 + τ8)E
∥∥∥X(mH) − X̂(mH)

∥∥∥
2

F

+ φη2E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

, (70)

where φ3 = (1 + τ−1
6 )

(
(1 + τ−1

7 ) + (1 + τ7)(1− ω)(1 + τ−1
8 )
)
, (a) follows from (65) for bounding

E

∥∥∥X̂((m+1)H) −X(mH)
∥∥∥
2

F
. Observe that since we are bounding this quantity separately for (a), we can use different

coefficients here. In the above bound on E

∥∥∥X̂((m+1)H) −X(mH)
∥∥∥
2

F
from (65), instead of using the same τ1, τ2, we used

τ7, τ8, respectively.

Substituting the above bound on T3 into (69) and the substituting the resulting bound on T2 from (69) and on T1 from (68)

into (67) gives

E

∥∥∥X((m+1)H) − X̂((m+1)H)
∥∥∥
2

F
≤ b1E

∥∥∥X(mH) −X
(mH)

∥∥∥
2

F
+ b2E

∥∥∥X(mH) − X̂(mH)
∥∥∥
2

F

+ b3η
2
E

∥∥∥∥∥∥

(m+1)H−1∑

t′=mH

(
βV(t′) +∇F (X(t′), ξ(t

′))
)
∥∥∥∥∥∥

2

F

, (71)

where b1 = (1+τ−1
3 )γ2λ2(1+τ5)(1+τ6), b2 = (1+τ3)(1−ω)(1+τ4)+(1+τ−1

3 )γ2λ2(1+τ5)(1+τ−1
6 )(1+τ7)(1−ω)(1+τ8),

b3 = (1+τ3)(1−ω)(1+τ−1
4 )+(1+τ−1

3 )γ2λ2(1+τ5)(1+τ−1
6 )

(
(1 + τ−1

7 ) + (1 + τ7)(1− ω)(1 + τ−1
8 )
)
+(1+τ−1

3 )γ2λ2(1+
τ−1
5 ).

C. Setting up parameters

We need to set the parameters such that we get (1 + ν1)max{a1 + b1, a2 + b2} < 1, this will give a contractive recursion

in (36) and will lead to our convergence results. Recall the definitions of a1, a2 and b1, b2 from Lemma 7 and Lemma 8,

respectively.

a1 = (1 + α−1
5 )(1 + α1)(1− γδ)2, (72)

a2 = (1 + α−1
5 )(1 + α−1

1 )γ2λ2(1 + τ1)(1− ω)(1 + τ2), (73)

b1 = (1 + τ−1
3 )γ2λ2(1 + τ5)(1 + τ6), (74)

b2 = (1 + τ3)(1− ω)(1 + τ4) + (1 + τ−1
3 )γ2λ2(1 + τ5)(1 + τ−1

6 )(1 + τ7)(1− ω)(1 + τ8). (75)

Here, ω, δ, λ are fixed parameters and are given to us. Among the rest, there is no trade-off when choosing

α5, τ1, τ2, τ4, τ5, τ7, τ8, and we can chose them without any constraints. We need to carefully choose the remaining parameters

α1, τ3, τ6, γ as they contribute differently to different terms in the above equations. We will set all these parameters as follows:

τi =
ω

4
, for i = 1, 2, 3, 4, 5, 7, 8; τ6 =

4

ω
; (76)

α1 =
γδ

2
; α−1

5 =
γδ

2
; γ∗ =

2δω3

(128λ2 + 24λ2ω2 + 4δ2ω2)
. (77)

Now we substitute these values into (72)-(75).

• For a1, we will use α−1
5 ≤ γδ

2 and (1 + γδ
2 )(1− γδ) ≤ (1− γδ

2 ) (since γδ ≤ 1 which is true for γ = γ∗).

a1 ≤ (1 +
γδ

2
)2(1− γδ)2 ≤ (1− γδ

2
)2. (78)

• For a2, we will use α−1
5 ≤ ω

4 (which holds because γδ
2 ≤ ω

4 for γ = γ∗), (1 + ω
4 )

3(1− ω) ≤ (1− ω
4 ), and 1

γδ ≥ 1.

a2 ≤ (1 +
ω

4
)(1 +

2

γδ
)γ2λ2(1 +

ω

4
)(1− ω)(1 +

ω

4
) ≤ 3γλ2

δ
(1− ω

4
). (79)
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• For b1, we will use (1 + 4
ω ) ≤ 5

ω , (1 + ω
4 ) ≤ 5

4 , and 125
4 ≤ 32.

b1 = (1 +
4

ω
)γ2λ2(1 +

ω

4
)(1 +

4

ω
) ≤ γ2λ2 25

ω2

5

4
≤ γ2λ2 32

ω2
. (80)

• For b2, we will use (1+ ω
4 )

2(1−ω) ≤ (1+ ω
4 )

3(1−ω) ≤ (1− ω
4 ) in the first inequality, and (1+ 4

ω ) ≤ 5
ω and (1+ ω

4 ) ≤ 5
4

in the second inequality.

b2 = (1 +
ω

4
)2(1− ω) + (1 +

4

ω
)γ2λ2(1 +

ω

4
)4(1− ω)

≤ (1− ω

4
) + (1 +

4

ω
)γ2λ2(1 +

ω

4
)(1− ω

4
)

≤ (1− ω

4
)

(
1 +

5

ω
γ2λ2 5

4

)

= (1− ω

4
)

(
1 + γ2λ2 25

4ω

)
. (81)

Bounding (a1 + b1). Adding the bounds in (78) and (80), we get

a1 + b1 ≤ (1− γδ

2
)2 + γ2λ2 32

ω2︸ ︷︷ ︸
=: h1(γ)

. (82)

It can be verified that h1(γ) is a convex function in γ and attains minima at γ′ = 2δω2

128λ2+δ2ω2 with value h1(γ
′) = 128λ2

128λ2+δ2ω2 <
1.

Putting this γ′ in the expression for a2 + b2 will not give a quantity that is less than one. In the following, we will derive

a value of γ∗ that works for both a1 + b1 and a2 + b2. Let γ∗ = sγ′ for some s ∈ [0, 1]. We will derive the value of s (and

of γ∗).

By the convexity of h, we have

h1(γ
∗) = h1(sγ

′) = h1((1− s)0 + sγ′)

≤ (1− s)h1(0) + sh1(γ
′)

≤ (1− s) + s
128λ2

128λ2 + δ2ω2

= 1− s
δ2ω2

128λ2 + δ2ω2
. (83)

Bounding (a2 + b2). Adding the bounds in (79) and (81) gives:

a2 + b2 ≤ (1− ω

4
)

(
1 +

3γλ2

δ
+ γ2λ2 25

4ω

)

≤ (1− ω

4
) +

(
3γλ2

δ
+ γ2λ2 25

4ω

)

︸ ︷︷ ︸
=: h2(γ)

. (84)

Putting γ = γ∗ = sγ′ = 2δω2s
D , where D = (128λ2 + δ2ω2), we get

h2(γ
∗) ≤ (1− ω

4
) +

(
3λ2 2ω

2s

D
+

25λ2

4ω

4δ2ω4s2

D2

)

≤ (1− ω

4
) +

s

D

(
6λ2ω2 +

25λ2δ2ω3s

D

)

≤ (1− ω

4
) +

s

D

(
6λ2ω2 + 25λ2

)
(Since D ≥ δ2ω2 ≥ δ2ω3s because ω, s ≤ 1)

≤ (1− ω

4
) +

s

D

(
6λ2ω2 + 32λ2

)
. (85)

Equating the upper bounds on h1(γ
∗) and h2(γ

∗), we get

1− s
δ2ω2

D
= (1− ω

4
) +

s

D

(
6λ2ω2 + 32λ2

)

⇐⇒ ω

4
=

s

D
(32λ2 + 6λ2ω2 + δ2ω2)
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⇐⇒ s =
ωD

(128λ2 + 24λ2ω2 + 4δ2ω2)
< 1. (86)

With this, we have γ∗ = sγ′ = 2δω2s
D = 2δω3

(128λ2+24λ2ω2+4δ2ω2) .

Substituting the value of s from (86) into (83), we get

h1(γ
∗) ≤ 1− δ2ω3

(128λ2 + 24λ2ω2 + 4δ2ω2)
= 1− γ∗δ

2
. (87)

Thus we have

max{a1 + b1, a2 + b2} ≤ max{h1(γ
∗), h2(γ

∗)} ≤ 1− γ∗δ

2
.

Taking ν1 = γ∗δ
4 and using the inequality (1 + x/2)(1− x) ≤ (1− x/2) (for x = γ∗δ

2 ≤ 1), we get

(1 + ν1)max{a1 + b1, a2 + b2} ≤ 1− γ∗δ

4
≤ 1− δ2ω3

1224
, (88)

where the last inequality follows by substituting the trivial upper bounds of λ ≤ 2 and δ, ω ≤ 1 in the denominator of the

expression of γ∗.

Bounding c2 + c4 in (36).

c2 = 2(1 + ν1)(a31 + a32) + 2(1 + ν−1
1 ), (89)

c4 = 2(1 + ν1)(b31 + b32 + b33) + 2(1 + ν−1
1 ), (90)

where

a31 = (1 + α1)(1− γδ)2(1 + α5) + (1 + α−1
1 )γ2λ2(1 + α5), (91)

a32 = (1 + α−1
5 )(1 + α−1

1 )γ2λ2
(
(1 + τ−1

1 ) + (1 + τ1)(1− ω)(1 + τ−1
2 )
)
, (92)

b31 = (1 + τ3)(1− ω)(1 + τ−1
4 ), (93)

b32 = (1 + τ−1
3 )γ2λ2(1 + τ5)(1 + τ−1

6 )
(
(1 + τ−1

7 ) + (1 + τ7)(1− ω)(1 + τ−1
8 )
)
, (94)

b33 = (1 + τ−1
3 )γ2λ2(1 + τ−1

5 ). (95)

Now we substituting the parameter setting from (76), (77) into the above equations.

• For a31, we will use (1 + γδ
2 )(1− γδ)2 ≤ (1− γδ

2 )(1− γδ) ≤ 1 and (1 + 2
γδ ) ≤ 3

γδ (both follow from γδ ≤ 1).

a31 = (1 +
γδ

2
)(1− γδ)2(1 +

2

γδ
) + (1 +

2

γδ
)2γ2λ2

≤ 3

γδ
+ (

3

γδ
)2γ2λ2 =

3

γδ

(
1 +

3γλ2

δ

)
(96)

• For a32, we will use (1 + γδ
2 ) ≤ 3

2 , (1 + 2
γδ ) ≤ 3

γδ , and (1 + ω
4 )(1− ω) ≤ (1− 3ω

4 ) ≤ 1 and (1 + 4
ω ) ≤ 5

ω .

a32 = (1 +
γδ

2
)(1 +

2

γδ
)γ2λ2

(
(1 +

4

ω
) + (1 +

ω

4
)(1− ω)(1 +

4

ω
)

)

≤ 3

2

3

γδ
γ2λ2 10

ω
=

45γλ2

δω
. (97)

• For b31, we will use (1 + ω
4 )(1− ω) ≤ (1− 3ω

4 ).

b31 = (1 +
ω

4
)(1− ω)(1 +

4

ω
) ≤ (1− 3ω

4
)(1 +

4

ω
) ≤ 4

ω
− 2. (98)

• For b32, we will use (1 + 4
ω ) ≤ 5

ω , (1 + ω
4 ) ≤ 5

4 , and
(
(1 + 4

ω ) + (1 + ω
4 )(1− ω)(1 + 4

ω )
)
≤ 10

ω as in a32.

b32 = (1 +
4

ω
)γ2λ2(1 +

ω

4
)(1 +

ω

4
)

(
(1 +

4

ω
) + (1 +

ω

4
)(1− ω)(1 +

4

ω
)

)

≤ 5

ω
γ2λ2(

5

4
)2
10

ω
=

625

8

γ2λ2

ω2
≤ 79γ2λ2

ω2
. (99)

• For b33, we will use

b33 = (1 +
4

ω
)γ2λ2(1 +

4

ω
) ≤ 25γ2λ2

ω2
. (100)
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Substituting the bounds on a31, a32 from (96), (97), respectively, and ν1 = γδ
4 (where γ = γ∗ is defined in (77)) into (89), we

get:

c2 ≤ 2(1 +
γδ

4
)

(
3

γδ

(
1 +

3γλ2

δ

)
+

45γλ2

δω

)
+ 2(1 +

4

γδ
). (101)

Similarly, substituting the bounds on b31, b32, b33 from (98), (99), (100), respectively, and ν1 = γδ
4 (where γ = γ∗ is defined

in (77)) into (90), we get:

c4 ≤ 2(1 +
γδ

4
)

(
4

ω
− 2 +

104γ2λ2

ω2

)
+ 2(1 +

4

γδ
). (102)

Adding the bounds on c2 and c4 gives

c2 + c4 ≤ 2(1 +
γδ

4
)

(
3

γδ
+

9λ2

δ2
+

45γλ2

δω
+

104γ2λ2

ω2
+

4

ω
− 2

)
+ 4(1 +

4

γδ
). (103)

Putting the bounds from (88) and (103) back into (36), we get

S(t) ≤
(
1− γδ

4

)
S(mH) + 2c1η

2H2n
(
2(M2 + 1)G2 + σ2

)
+ c1η

2Hβ2
t−1∑

t′=mH

E

∥∥∥V(t′)
∥∥∥
2

F

+ 2c1η
2H(M2 + 1)L2

t−1∑

t′=mH

S(t′) + 2c1η
2H(M2 + 1)nB2

t−1∑

t′=mH

E

∥∥∥∇f(x(t′))
∥∥∥
2

2
, (104)

where c1 = c2 + c4 and the bound on c2 + c4 is given in (103), and γ = γ∗ is defined in (77).

D. Omitted Details from Section V-E

Proof of Proposition 3.

E

∥∥∥∇F (X(t′), ξ(t
′))
∥∥∥
2

F
= E

∥∥∥∇f(X(t′))
∥∥∥
2

F
+ E

∥∥∥∇F (X(t′), ξ(t
′))−∇f(X(t′))

∥∥∥
2

F

= E

∥∥∥∇f(X(t′))
∥∥∥
2

F
+ E

n∑

i=1

∥∥∥∇F (x
(t′)
i , ξ

(t′)
i )−∇f(x

(t′)
i )

∥∥∥
2

2

(a)

≤ E

∥∥∥∇f(X(t′))
∥∥∥
2

F
+ nσ2 +M2

E

∥∥∥∇f(X(t′))
∥∥∥
2

F

= (M2 + 1)E
∥∥∥∇f(X(t′))

∥∥∥
2

F
+ nσ2

= (M2 + 1)E
∥∥∥∇f(X(t′))−∇f(X

(t′)
) +∇f(X

(t′)
)
∥∥∥
2

F
+ nσ2 (Where ∇f(X

(t′)
) = [∇f1(x

(t′)) . . .∇fn(x
(t′))])

≤ 2(M2 + 1)

(
E

∥∥∥∇f(X(t′))−∇f(X
(t′)

)
∥∥∥
2

F
+ E

∥∥∥∇f(X
(t′)

)
∥∥∥
2

F

)
+ nσ2

(b)

≤ 2(M2 + 1)

(
L2

E

∥∥∥X(t′) −X
(t′)
∥∥∥
2

F
+ E

n∑

i=1

∥∥∥∇fi(x
(t′))

∥∥∥
2

2

)
+ nσ2

(c)

≤ 2(M2 + 1)

(
L2

E

∥∥∥X(t′) −X
(t′)
∥∥∥
2

F
+ nG2 + nB2

E

∥∥∥∇f(x(t′))
∥∥∥
2

2

)
+ nσ2

= 2(M2 + 1)

(
L2Ξ(t′) + nG2 + nB2

E

∥∥∥∇f(x(t′))
∥∥∥
2

2

)
+ nσ2

where (a) follows from Assumption 2, (b) follows from the L-smoothness of f , and (c) follows from Assumption 3.

E. Omitted Details from Section V-G

Claim 1. We have
(
1− α

4

)⌊ t−j

H
⌋ ≤ 2

(
1− α

8H

)t−j
.

Proof. First note that (1− α
4 )

1/H ≤ exp(− α
4H ) ≤ 1− α

8H and also that ⌊ t−j
H ⌋ ≥ t−j

H − 1.

(
1− α

4

)⌊ t−j

H
⌋
=

[(
1− α

4

)1/H]H⌊ t−j

H
⌋
≤
(
1− α

8H

)H⌊ t−j

H
⌋

≤
(
1− α

8H

)t−j (
1− α

8H

)−H

≤ 2
(
1− α

8H

)t−j

.
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In the last inequality we used
(
1− α

8H

)−H ≤ 2, which can be shown as follows:

(
1− α

8H

)−H

=

(
1

1− α
8H

)H
(a)

≤
(
1 +

α

4H

)H
≤ exp(

α

4
) ≤ 2,

where (a) holds because α
8H ≤ 1

2 .

F. Completing the Convergence Proof

Note that Ξ(t)
∑n

i=1 E

∥∥∥x(t)
i − x(t)

∥∥∥
2

2
≤ S(t) for any t ∈ [T ]. Substituting this and the bound from (50) in the last term of

(26), we get

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ 16(1− β)(f(x(0))− f∗)

ηT
+

16ηL

(1− β)

(σ2 + 2(M2 + n)G2

n

)

+ η2
128L2J1

n
+ η2

128L2J2
n

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

. (105)

where J1 =
(

8Aη2

α +
(
32DH

α

) ( 2(M2+1)nG2+nσ2

(1−β)

))
and J2 =

(
32CH

α +
(
32DH

α

) 2(M2+1)nB2

(1−β)

)
, A =

2c1H
2n
(
2(M2 + 1)G2 + σ2

)
, C = 2c1H(M2 + 1)nB2, and D = c1Hβ2

(1−β) and c1 defined below. If η ≤
√

n
256L2J2

,

then taking the last term on the LHS gives

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

2
≤ 32(1− β)(f(x(0))− f∗)

ηT
+

32ηL

(1− β)

(σ2 + 2(M2 + n)G2

n

)

+ η2
256L2J1

n
. (106)

Choosing η = (1 − β)
√

n
T and running the algorithm for T ≥ max{U1, U2, U3, U4, U5} iterations completes the proof of

Theorem 1.

Here, U1 = 81nβ8

4(1−β)4 , U2 = 9(M2+n)β4L2

4(1−β2) , U3 = 72(M2+n)β2L2B2

(1−β)2 , U4 = 256L2J2(1 − β)2 and U5 = 512DH(M2+1)L2(1−β)n
δγ ,

with J2 = 128CH
γδ +

(
128DH

γδ

)(
2(M2+1)nB2

1−β

)
, D = c1Hβ2

(1−β) ,

C = 2c1H(M2 + 1)nB2 and c1 = 2(1 + γδ
4 )
(

3
γδ + 9λ2

δ2 + 45γλ2

δω + 104γ2λ2

ω2 + 4
ω − 2

)
.

APPENDIX D

PRELIMINARIES FOR CONVERGENCE WITH RELAXED ASSUMPTIONS

Fact 5. Consider the variance bound on the stochastic gradient for nodes i ∈ [n]:

Eξi ‖∇Fi(x, ξi)−∇fi(x)‖2 ≤ σ2
i ,

where Eξi [∇Fi(x, ξi)] = ∇fi(x), then:

Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

(
∇fj(x

(t)
j )−∇Fj(x

(t)
j , ξ

(t)
j )
)
∥∥∥∥∥∥

2

≤ σ̄2

n
(107)

where ξ(t) = {ξ(t)1 , ξ
(t)
2 , . . . , ξ

(t)
n } denotes the stochastic sample for the nodes at any timestep t and

∑n
j=1 σ2

j

n = σ̄2

Proof.

Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

∇fj(x
(t)
j )− 1

n

n∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j )

∥∥∥∥∥∥

2

=
1

n2

n∑

j=1

Eξ(t)‖∇fj(x
(t)
j )−∇Fj(x

(t)
j , ξ

(t)
j )‖2

+
1

n2

∑

i 6=j

Eξ(t)

〈
∇fi(x

(t)
i )−∇Fi(x

(t)
i , ξ

(t)
j ),∇fj(x

(t)
j )−∇Fj(x

(t)
j , ξ

(t)
j )
〉

Since ξi is independent of ξj , the second term is zero in expectation, thus the above reduces to:

Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

∇fj(x
(t)
j )− 1

n

n∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j )

∥∥∥∥∥∥

2

=
1

n2

n∑

j=1

Eξ(t)‖∇fj(x
(t)
j )−∇Fj(x

(t)
j , ξ

(t)
j )‖2
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≤ 1

n2

n∑

j=1

σ2
j =

σ̄2

n

Fact 6. Consider the set of synchronization indices {I(1), I(2), . . . , I(k), . . .} ∈ IT . We assume that the maximum gap between

any two consecitive elements in IT is bounded by H . Let ξ(t) = {ξ(t)1 , ξ
(t)
2 , . . . , ξ

(t)
n } denote the stochastic samples for the

nodes at any timestep t. Consider any two consecutive synchronization indices I(k) and I(k+1), then for learning rate η, we

have:

E




∥∥∥∥∥∥

I(k+1)−1∑

t′=I(k)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F


 ≤ 2nH2G2η2

(
1 +

β2

(1− β)2

)
. (108)

Proof. Using the fact that the sequence gap is bounded by H , we have I(t+1) − I(t) ≤ H for all synchronization indices

I(t) ∈ IT . Thus we have:

E




∥∥∥∥∥∥

I(k+1)−1∑

t′=I(k)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F


 ≤ Hη2

I(k+1)−1∑

t′=I(k)

E

∥∥∥βV(t′) +∇F (X(t′), ξ(t
′))
∥∥∥
2

F

≤ 2Hη2
I(k+1)−1∑

t′=I(k)

[
E

∥∥∥βV(t′)
∥∥∥
2

F
+ E

∥∥∥∇F (X(t′), ξ(t
′))
∥∥∥
2

F

]

Using the bounded gradient assumption and definition of gap H , we can bound the above as:

E




∥∥∥∥∥∥

I(k+1)−1∑

t′=I(k)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F


 ≤ 2Hη2β2

I(k+1)−1∑

t′=I(k)

E

∥∥∥V(t′)
∥∥∥
2

F
+ 2nH2G2η2

=2Hη2β2

I(k+1)−1∑

t′=I(k)

n∑

i=1

E

∥∥∥v(t′)
i

∥∥∥
2

+ 2nH2G2η2 (109)

Now we show that E

∥∥∥v(t)
i

∥∥∥
2

≤ G2

(1−β)2 for all i ∈ [n] and for every t ≥ 0. Fix an arbitrary i ∈ [n] and t ≥ 0. Define

θt =
∑t

k=0 β
k, we then have:

E

∥∥∥v(t)
i

∥∥∥
2

= θ2tE

∥∥∥∥∥

t∑

k=0

βt−k

θt
∇F (x

(k)
i , ξ

(k)
i )

∥∥∥∥∥

2

≤ θt

t∑

k=0

βt−k
E

∥∥∥∇F (x
(k)
i , ξ

(k)
i )
∥∥∥
2

≤ θt

t∑

k=0

[
βt−kG2

]

= G2θ2t

Here the first inequality follows from the Jensen’s inequality and the second inequality follows from the bounded gradient

assumption. We now note the following bound for θt:

θt =

t∑

k=0

βk ≤
∞∑

k=0

βk ≤ 1

(1− β)

Thus, for all t and all i ∈ [n], we have:

E

∥∥∥v(t)
i

∥∥∥
2

≤ G2

(1− β)2
(110)

Substituting the bound E‖v(t)
i ‖2 ≤ G2

(1−β)2 in (109) gives

E




∥∥∥∥∥∥

I(k+1)−1∑

t′=I(k)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F


 ≤ 2H2η2β2n

G2

(1− β)2
+ 2nH2G2η2.
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This completes the proof of Fact 6.

Fact 7 (Triggering rule, [19]). Consider the set of nodes Γ(t) which do not communicate at time t. For a threshold sequence

{ct}T−1
t=0 , the triggering rule in Algorithm 1 dictates that

‖x(t+ 1
2 )

i − x̂
(t)
i ‖2 ≤ ctη

2 ∀i ∈ Γ(t).

Using the matrix notation, this implies that:
∥∥∥(X(t+ 1

2 ) − X̂(t))(I−P(t))
∥∥∥
2

F
≤ nctη

2. (111)

Fact 8 (Lemma 16, [21]). For doubly stochastic matrix W with second largest eigenvalue 1− δ = |λ2(W)| < 1, we have:
∥∥∥∥W

k − 1

n
11T

∥∥∥∥ = (1− δ)k (112)

for any non-negative integer k.

Claim 2. For any n ∈ N, we have

∥∥∥11T

n − I

∥∥∥
2
= 1 where 1 = [1 1 . . . 1]T1×n

Proof. Note that 11T

n is a symmetric doubly stochastic matrix with eigenvalues 1 and 0 (with algebraic multiplicity n − 1).

Thus, it has the eigen-decomposition 11T

n = UDUT where columns of U are orthogonal and D = diag([1 0 . . . 0]), which

gives us:

∥∥∥∥
11T

n
− I

∥∥∥∥
2

=
∥∥∥UDUT −UUT

∥∥∥
2
= ‖D− I‖2 =

∥∥∥∥∥∥∥∥∥∥




1 0 . . . 0

0 0 . . . 0

...
...

. . . 0

0 0 . . . 0



−




1 0 . . . 0

0 1 . . . 0

...
...

. . . 0

0 0 . . . 1




∥∥∥∥∥∥∥∥∥∥
2

= 1

APPENDIX E

PROOF OF THEOREM 2 (NON-CONVEX OBJECTIVE)

From the recurrence relation of the virtual sequence (15), we have:

Eξ(t) [f(x̃
(t+1))] = Eξ(t)f

(
x̃(t) − η

(1− β)

1

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

)

≤ f(x̃(t))−
〈
∇f(x̃(t)),

η

(1− β)

1

n

n∑

i=1

Eξ(t) [∇Fi(x
(t)
i , ξ

(t)
i )]

〉

+
L

2

η2

(1− β)2
Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i )

∥∥∥∥∥

2

≤ f(x̃(t))−
〈
∇f(x̃(t)),

η

(1− β)

1

n

n∑

i=1

∇fi(x
(t)
i )

〉
+

L

2

η2

(1− β)2

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

+
L

2

η2

(1− β)2
Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

(∇fi(x
(t)
i )−∇Fi(x

(t)
i , ξ

(t)
i )

∥∥∥∥∥

2

≤ f(x̃(t))−
〈
∇f(x̃(t)),

η

(1− β)

1

n

n∑

i=1

∇fi(x
(t)
i )

〉
+

L

2

η2

(1− β)2

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

+
Lη2σ̄2

2n(1− β)2
(113)

We now focus on bounding the second term in (113). First, note the following:
〈
∇f(x̃(t)),

1

n

n∑

i=1

∇fi(x
(t)
i )

〉
=

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

−
〈
1

n

n∑

i=1

∇fi(x
(t)
i )−∇f(x̃(t)),

1

n

n∑

i=1

∇fi(x
(t)
i )

〉

=

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

−
〈
1

n

n∑

i=1

(∇fi(x
(t)
i )−∇fi(x̃

(t))),
1

n

n∑

i=1

∇fi(x
(t)
i )

〉
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≥ 1

2

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

− L2

2n

n∑

i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥
2

(114)

where in the last inequality, we’ve used the fact that 2〈a,b〉 ≤ ‖a‖2 + ‖b‖2 for any a,b ∈ R
d and the L−smoothness

assumption for objectives {fi}ni=1. We now state how to bound the last term on R.H.S. of (114). First, note the bound:

n∑

i=1

∥∥∥x(t)
i − x̃(t)

∥∥∥
2

≤ 2

n∑

i=1

∥∥∥x(t)
i − x(t)

∥∥∥
2

+ 2

n∑

i=1

∥∥∥x(t) − x̃(t)
∥∥∥
2

(115)

Using Lemma 5 to bound the second term in (115), we get:

n∑

i=1

∥∥∥x(t)
i −x̃(t)

∥∥∥
2

≤ 2

n∑

i=1

∥∥∥x(t)
i −x(t)

∥∥∥
2

+
2nβ4η2

(1−β)3

t−1∑

τ=0


βt−τ−1

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2

 (116)

Using the bound (116) in (114) and substituting it in (113), we have the following bound:

Eξ(t) [f(x̃
(t+1))] ≤ f(x̃(t)) +

Lη2σ̄2

2n(1−β)2
+

Lη2

2(1−β)2

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

− η

2(1−β)

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

+
η

(1−β)

L2

n

n∑

i=1

∥∥∥x(t)
i − x(t)

∥∥∥
2

+
L2η3β4

(1− β)4

t−1∑

τ=0


βt−τ−1

Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2



Rearranging the terms, we can write:

(
η

2(1− β)
− Lη2

2(1− β)2

)∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

≤ f(x̃(t))− Eξ(t)f(x̃
(t+1)) +

Lη2σ̄2

2n(1− β)2

+
L2η

(1− β)n

n∑

i=1

∥∥∥x(t)
i − x(t)

∥∥∥
2

+
L2η3β4

(1− β)4

t−1∑

τ=0


βt−τ−1

Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2



Summing from t = 0 to T gives us:

(
η

2(1− β)
− Lη2

2(1− β)2

) T−1∑

t=0

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

≤ f(x̃(0))− Eξ(t)f(x̃
(T )) +

Lη2σ̄2T

2n(1− β)2
+

L2η

(1− β)n

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

+
L2η3β4

(1− β)4

T−1∑

t=0

t−1∑

τ=0


βt−τ−1

Eξ(t)

∥∥∥∥∥
1

n

n∑

i=1

∇Fi(x
(τ)
i , ξ

(τ)
i )

∥∥∥∥∥

2



Using the fact that Eξ(t) [∇Fi(x
(t)
i , ξ

(t)
i )] = ∇fi(x

(t)
i ) for all i ∈ [n] and for all t ∈ [T ], we have

Eξ(t)

∥

∥

∥

1
n

∑n

i=1 ∇Fi(x
(t)
i , ξ

(t)
i )

∥

∥

∥

2

= Eξ(t)

∥

∥

∥

1
n

∑n

i=1 ∇fi(x
(t)
i )

∥

∥

∥

2

+ Eξ(t)

∥

∥

∥

1
n

∑n

i=1(∇fi(x
(t))−∇Fi(x

(t)
i , ξ

(t)
i ))

∥

∥

∥

2

. Using this equation

along with the variance bound (107) from Fact 5, the fact that
∑T−1

t=0

∑t−1
τ=0 β

t−τ−1 ≤ T/1−β for β ∈ (0, 1) and taking

expectation w.r.t. the entire process:

≤ f(x̃(0))− Ef(x̃(T )) +
Lη2σ̄2T

2n(1− β)2
+

L2η

(1− β)n

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

+
L2η3β4σ̄2T

n(1− β)5
+

L2η3β4

(1− β)4

T−1∑

t=0

t−1∑

τ=0


βt−τ−1

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(τ)
i )

∥∥∥∥∥

2

 (117)

To bound the last term in (117), we note that:

T−1∑

t=0

t−1∑

τ=0

βt−τ−1
E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(τ)
i )

∥∥∥∥∥

2

=

T−2∑

τ=0

T−1∑

t=τ+1

βt−τ−1
E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(τ)
i )

∥∥∥∥∥

2

≤ 1

(1− β)

T−2∑

τ=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(τ)
i )

∥∥∥∥∥

2
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≤ 1

(1− β)

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

Substituting the above bound in (117) and rearranging terms, we finally get:

(
η

2(1− β)
− Lη2

2(1− β)2
− L2η3β4

(1− β)5

) T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

≤ f(x̃(0))−Ef(x̃(T )) +
Lη2σ̄2T

2n(1−β)2
+

L2η

(1− β)n

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

+
L2η3β4σ̄2T

n(1−β)5
(118)

If we select η ≤ min
{

(1−β)
4L , (1−β)2

2
√
2Lβ2

}
, it can be shown that

(
η

2(1−β) −
Lη2

2(1−β)2 − L2η3β4

(1−β)5

)
≥ η

4(1−β) . This gives:

η

4(1− β)

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

≤ f(x̃(0))− E[f(x̃(T ))] +
Lη2σ̄2T

2n(1− β)2
++

L2η3β4σ̄2T

n(1− β)5

+
L2η

(1− β)n

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

Multiplying both sides by
4(1−β)

ηT and noting that E[f(x̃(T ))] ≥ f∗, we have:

1

T

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

≤ 4(1− β)

η

(f(x(0))− f∗)

T
+

2Lησ̄2

n(1− β)

+
4L2

nT

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

+
4L2η2β4σ̄2

n(1− β)4
(119)

Now consider the time average of gradients evaluated at the global average x(t):

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

=
1

T

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t))

∥∥∥∥∥

2

=
1

T

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

(∇fi(x
(t))−∇fi(x

(t)
i )) +

1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

≤ 2

T

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

(∇fi(x
(t))−∇fi(x

(t)
i ))

∥∥∥∥∥

2

+
2

T

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

≤ 2L2

nT

T−1∑

t=0

n∑

i=1

E

∥∥∥x(t) − x
(t)
i

∥∥∥
2

+
2

T

T−1∑

t=0

E

∥∥∥∥∥
1

n

n∑

i=1

∇fi(x
(t)
i )

∥∥∥∥∥

2

(120)

where in the first inequality follows from Jensen’s inequality and the second inequality follows from the L−smoothness

assumption. We can bound the last term in (120) using (119) which gives us:

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

≤ 8(1− β)

η

(f(x(0))− f∗)

T
+

4Lησ̄2

n(1− β)

+

(
8L2

nT
+

2L2

nT

) T−1∑

t=0

n∑

i=1

E

∥∥∥x(t)
i − x(t)

∥∥∥
2

+
8L2η2β4σ̄2

n(1− β)4
(121)

Note that in our matrix form, E
∥∥X̄(t) −X(t)

∥∥2
F
=
∑n

i=1 E

∥∥∥x(t)
i − x(t)

∥∥∥
2

. Let I(t+1)0 ∈ IT denote the latest synchronization

step before or equal to (t+ 1). Then we have:

X(t+1) = XI(t+1)0 −∑t
t′=I(t+1)0

η(βV(t′) +∇F (X(t′), ξ(t
′)))

X̄(t+1) = X̄I(t+1)0 −∑t
t′=I(t+1)0

η(βV(t′) +∇F (X(t′), ξ(t
′)))11

T

n

Thus the following holds:

E‖X(t+1)−X̄(t+1)‖2F = E

∥∥∥XI(t+1)0−X̄I(t+1)0−∑t
t′=I(t+1)0

η(βV(t′) +∇F (X(t′), ξ(t
′)))
(
I− 1

n11
T
)∥∥∥

2

F
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≤ 2E‖XI(t+1)0−X̄I(t+1)‖2F+2E
∥∥∥
∑t

t′=I(t+1)0
η(βV(t′) +∇F (X(t′), ξ(t

′)))
(
I− 1

n11
T
)∥∥∥

2

F

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 to split the second term in R.H.S. of above along with (112) from Fact 3 (with k = 0) and

further using the bound (108), we get:

E‖X(t+1) − X̄(t+1)‖2F ≤ 2E‖XI(t+1)0 − X̄I(t+1)0 ‖2F + 4η2H2nG2

(
1 +

β2

(1− β)2

)
(122)

We bound the first term in R.H.S. of (122) by Lemma 12 stated below and proved in Appendix G.

Lemma 12. (Consensus) Let {x(i)
t }T−1

t=0 be generated according to Algorithm 1 under assumptions of Theorem 2 with constant

stepsize η, a threshold sequence ct ≤ c0
η(1−ǫ) for all t where ǫ ∈ (0, 1) and c0 is constant, and define xt := 1

n

∑n
i=1 x

(i)
t .

Consider the set of synchronization indices IT = {I(1), I(2), . . . , I(t), . . .}. Then for any I(t) ∈ IT , we have:

E

n∑

j=1

∥∥∥xI(t) − x
I(t)
j

∥∥∥
2

= E‖XI(t) − X̄I(t)‖2F ≤ 4nAη2

p2

for constant A = p
2

(
2H2G2

(
1 + β2

(1−β)2

)(
16
ω + 4

p

)
+ 2c0ω

η(1−ǫ)

)
where p = δγ

8 , δ := 1−|λ2(W)|, ω is compression parameter

for operator C.

Substituting the bound from Lemma 12 in (122) and using the fact that p ≤ 1, we have:

E‖X(t+1) − X̄(t+1)‖2F ≤ 2η2

p

(
2H2nG2

(
1 +

β2

(1− β)2

)(
16

ω
+

8

p

)
+

2c0ωn

η(1−ǫ)

)
(123)

for the same constant ǫ > 0 as in Lemma 12. Note that the above bound holds for all values of t.
Define Λ := 2

p

(
2H2nG2

(
1 + β2

(1−β)2

)(
16
ω + 8

p

)
+ 2ωc0n

η(1−ǫ)

)
. Substituting (123) in (121) gives us:

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

≤ 8(1−β)

η

(f(x(0))− f∗)

T
+

4Lησ̄2

n(1− β)
+

10L2Λη2

n
+

8L2η2β4σ̄2

n(1−β)4

Expanding on the value of Λ, we have:

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

≤ 8(1− β)

η

(f(x(0))− f∗)

T
+

4Lησ̄2

n(1− β)

+
20η2L2

pn

(
2H2nG2

(
1 +

β2

(1− β)2

)(
16

ω
+

8

p

))

+
40L2ωnc0η

(1+ǫ)

pn
+

8L2η2β4σ̄2

n(1− β)4

Substituting the value of η = (1− β)
√

n
T , we get:

1

T

T−1∑

t=0

E

∥∥∥∇f(x(t))
∥∥∥
2

≤ 1√
nT

(
8(f(x(0))− f∗) + 4Lσ̄2

)
+

40L2(1− β)(1+ǫ)ωc0n
(1+ǫ)/2

pT (1+ǫ)/2

+
20(1− β)2L2

Tp

(
2H2nG2

(
1 +

β2

(1− β)2

)(
16

ω
+

8

p

))
+

8L2β4σ̄2

T (1− β)2

≤ 1√
nT

(
8(f(x(0))− f∗) + 4Lσ̄2

)
+

40L2ωc0n
(1+ǫ)/2(1− β)(1+ǫ)

pT (1+ǫ)/2

+
80nL2H2G2

Tp

(
16

ω
+

8

p

)
+

8L2β4σ̄2

T (1− β)2

where in the last inequality, we’ve used the fact that (1 − β)r ≤ 1 , βr ≤ 1 for r > 0. Note that we require

η ≤ min
{

(1−β)
4L , (1−β)2

2
√
2Lβ2

}
, thus for η = (1 − β)

√
n
T , we need to run our algorithm for T ≥ max

{
16L2n, 8L2β4n

(1−β)2

}
for

the above rate expression to hold. We finally use the fact that p ≤ ω (as δ ≤ 1 and p := γ∗δ
8 with γ∗ ≤ ω). This completes

proof of the non-convex part of Theorem 2. We can further use the fact that p ≥ δ2ω
644 (proved in Lemma 15) to get the

expression given in the theorem statement.
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APPENDIX F

PROOF OF THEOREM 2 (CONVEX OBJECTIVE)

We start with the same virtual sequence defined in (15). Consider the quantity Eξ(t)‖x̃(t+1) − x∗‖2, where expectation is

taken over sampling across all the nodes at the t’th iteration:

Eξ(t)‖x̃(t+1) − x∗‖2 = Eξ(t)

∥∥∥∥∥∥
x̃(t) − η

(1− β)n

n∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j )− x∗

∥∥∥∥∥∥

2

= Eξ(t)

∥∥∥∥∥∥
x̃(t)−x∗− η

(1− β)n

n∑

j=1

∇fj(x
(t)
j )+

η

(1−β)n

n∑

j=1

∇fj(x
(t)
j )− η

n(1−β)

n∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j )

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
x̃(t)−x∗− η

(1− β)n

n∑

j=1

∇fj(x
(t)
j )

∥∥∥∥∥∥

2

+
η2

(1− β)2
Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

∇fj(x
(t)
j )− 1

n

n∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j )

∥∥∥∥∥∥

2

+
2η

(1− β)n
Eξ(t)

〈
x̃(t) − x∗ − η

(1− β)n

n∑

j=1

∇fj(x
(t)
j ),

n∑

j=1

∇fj(x
(t)
j )−

n∑

j=1

∇Fj(x
(t)
j , ξ

(t)
j )

〉

≤

∥∥∥∥∥∥
x̃(t) − x∗ − η

(1− β)n

n∑

j=1

∇fj(x
(t)
j )

∥∥∥∥∥∥

2

+
η2σ̄2

(1− β)2n
(124)

Where to get the last inequality we used the fact that E
ξ
(t)
i

[∇Fi(x
(t)
i , ξ

(t)
i )] = ∇fi(x

(t)
i ) for all i ∈ [n] and the variance

bound (107) from Fact 5. Now we thus consider the first term in (124):

∥∥∥∥∥∥
x̃(t) − x∗ − η

(1− β)n

n∑

j=1

∇fj(x
(t)
j )

∥∥∥∥∥∥

2

= ‖x̃(t) − x∗‖2 + η2

(1− β)2

∥∥∥∥∥∥
1

n

n∑

j=1

∇fj(x
(t)
j )

∥∥∥∥∥∥

2

︸ ︷︷ ︸
T1

− 2η

(1− β)

〈
x̃(t) − x∗,

1

n

n∑

j=1

∇fj(x
(t)
j )

〉

︸ ︷︷ ︸
T2

(125)

To bound T1 in (125), note that:

T1 =

∥∥∥∥∥∥
1

n

n∑

j=1

(∇fj(x
(t)
j )−∇fj(x

(t)) +∇fj(x
(t))−∇fj(x

∗))

∥∥∥∥∥∥

2

≤ 2

n

n∑

j=1

‖∇fj(x
(t)
j )−∇fj(x

(t))‖2 + 2

∥∥∥∥∥∥
1

n

n∑

j=1

∇fj(x
(t))− 1

n

n∑

j=1

∇fj(x
∗)

∥∥∥∥∥∥

2

≤ 2L2

n

n∑

j=1

‖x(t)
j − x(t)‖2 + 4L(f(x(t))− f∗) (126)

where in the last inequality, we used L−Lipschitz gradient property of objectives {fj}nj=1 to bound the first term

and optimality of x∗ for f (i.e., ∇f(x∗) = 0) and L−smoothness property of f to bound the second term as:∥∥∥ 1
n

∑n
j=1 ∇fj(x

(t))− 1
n

∑n
j=1 ∇fj(x

∗)
∥∥∥
2

=
∥∥∥∇f(x(t))−∇f(x∗)

∥∥∥
2

≤ 2L
(
f(x(t))− f∗

)
.

To bound T2 in (125), note that:

−2T2 = −2

〈
x̃(t) − x(t),

1

n

n∑

j=1

∇fj(x
(t)
j )

〉
− 2

n

n∑

j=1

〈
x(t) − x∗,∇fj(x

(t)
j )
〉

= 2
β2

(1− β)

〈
η

n

n∑

i=1

v
(t−1)
i ,

1

n

n∑

j=1

∇fj(x
(t)
j )

〉
− 2

n

n∑

j=1

〈
x(t) − x∗,∇fj(x

(t)
j )
〉

(127)
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In (127), we used the definition of x̃(t) from (13) to write x̃(t) − x(t) = − ηβ2

(1−β)
1
n

∑n
i=1 v

(t−1)
i . Now we note a simple trick

for inner-products:
〈
η

n

n∑

i=1

v
(t−1)
i ,

1

n

n∑

j=1

∇fj(x
(t)
j )

〉
=

〈
(η)3/4

n

n∑

i=1

v
(t−1)
i ,

(η)1/4

n

n∑

j=1

∇fj(x
(t)
j )

〉
. (128)

This trick is crucial to getting a speedup of n – the number of worker nodes – in our final convergence rate. Using 2〈a,b〉 ≤
‖a‖2 + ‖b‖2 for bounding (128) and then substituting that in (127) gives

−2T2 ≤ β2

(1−β)


(η)3/2

∥∥∥∥∥
1

n

n∑

i=1

v
(t−1)
i

∥∥∥∥∥

2

+(η)
1/2

∥∥∥∥∥∥
1

n

n∑

j=1

∇fj(x
(t)
j )

∥∥∥∥∥∥

2

− 2

n

n∑

j=1

〈
x(t)−x∗,∇fj(x

(t)
j )
〉

(129)

Note that the second term of (129) is the same as T1 from (125) and we have already bounded that in (126). We now focus on

bounding the last term of (129). Using expression for convexity and L-smoothness for fj , j ∈ [n] respectively, we can bound

this as follows:

− 2

n

n∑

j=1

〈x(t)−x∗,∇fj(x
(t)
j )〉 = − 2

n

n∑

j=1

[〈
x(t) − x

(t)
j ,∇fj(x

(t)
j )
〉
+
〈
x
(t)
j − x∗,∇fj(x

(t)
j )
〉]

≤ − 2

n

n∑

j=1

[
fj(x

(t))− fj(x
(t)
j )− L

2
‖x(t) − x

(t)
j ‖2 + fj(x

(t)
j )− fj(x

∗)

]

= −2(f(x(t))− f(x∗)) +
L

n

n∑

j=1

‖x(t) − x
(t)
j ‖2 (130)

Substituting the bounds for the second and the last terms of (129) from (126) and (130), respectively, we get

−2T2 ≤ (η)3/2β2

(1− β)

∥∥∥∥∥
1

n

n∑

i=1

v
(t−1)
i

∥∥∥∥∥

2

+
(η)1/2β2

(1− β)


2L2

n

n∑

j=1

‖x(t)
j − x(t)‖2 + 4L(f(x(t))− f∗)




− 2(f(x(t))− f(x∗)) +
L

n

n∑

j=1

‖x(t) − x
(t)
j ‖2

Thus we finally have:

− 2η

(1− β)
T2 ≤ η5/2β2

(1− β)2

∥∥∥∥∥
1

n

n∑

i=1

v
(t−1)
i

∥∥∥∥∥

2

+

(
2η3/2β2L2

(1− β)2
+

ηL

(1− β)

)
1

n

n∑

j=1

‖x(t)
j − x(t)‖2

+

(
4η3/2β2L

(1− β)2
− 2η

(1− β)

)(
f(x(t))− f∗

)
(131)

Substituting (126), (131) in (125) and using the resulting bound back in (124), and then taking expectation w.r.t. the entire

process, we get:

E‖x̃(t+1) − x∗‖2 ≤ E‖x̃(t) − x∗‖2 + η5/2β2

(1− β)2
E

∥∥∥∥∥
1

n

n∑

i=1

v
(t−1)
i

∥∥∥∥∥

2

+
η2σ̄2

(1− β)2n

+

(
2η2L2

(1− β)2
+

2η3/2β2L2

(1− β)2
+

ηL

(1− β)

)
1

n

n∑

j=1

E‖x(t)
j − x(t)‖2

+

(
4η2L

(1− β)2
+

4η3/2β2L

(1− β)2
− 2η

(1− β)

)(
Ef(x(t))− f∗

)
(132)

Using the fact that E

∥∥∥ 1
n

∑n
j=1 v

(t)
j

∥∥∥
2

≤ G2

(1−β)2 for all t ≥ 1 (see proof of Fact 6), we have:

E‖x̃(t+1) − x∗‖2 ≤ E‖x̃(t) − x∗‖2 + η5/2β2G2

(1− β)4
+

η2σ̄2

(1− β)2n

+

(
2η2L2

(1− β)2
+

2η3/2β2L2

(1− β)2
+

ηL

(1− β)

)
1

n

n∑

j=1

E‖x(t)
j − x(t)‖2

+

(
4η2L

(1− β)2
+

4η3/2β2L

(1− β)2
− 2η

(1− β)

)(
Ef(x(t))− f∗

)
(133)
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If we take η ≤ min
{

(1−β)
8L , (1−β)2

(8Lβ2)2

}
, then we have:

(
2η2L2

(1− β)2
+

2η3/2β2L2

(1− β)2
+

ηL

(1− β)

)
≤ 3ηL

2(1− β)
(134)

(
4η2L

(1− β)2
+

4η3/2β2L

(1− β)2
− 2η

(1− β)

)
≤ − η

(1− β)
(135)

Substituting the bounds from (134) and (135) to (133) gives

E‖x̃(t+1) − x∗‖2 ≤ E‖x̃(t) − x∗‖2 + η5/2β2G2

(1− β)4
+

η2σ̄2

(1− β)2n
+

3ηL

2(1− β)

1

n

n∑

j=1

E‖x(t)
j − x(t)‖2

− η

(1− β)

(
Ef(x(t))− f∗

)
(136)

We can now bound the second last term in R.H.S. of (136) similar to (123) in the proof of non-convex part of Theorem 2

given in Appendix E. This gives us the bound:

E‖X(t+1) − X̄(t+1)‖2F ≤ 2η2

p

(
2H2nG2

(
1 +

β2

(1− β)2

)(
16

ω
+

8

p

)
+

2c0ωn

η(1−ǫ)

)

Using above bound for the term
∑n

j=1 E‖x
(t)
j − x(t)‖2 in (136) we get:

E‖x̃(t+1) − x∗‖2 ≤ E‖x̃(t) − x∗‖2 + η5/2β2G2

(1− β)4
+

η2σ̄2

(1− β)2n
− η

(1− β)

(
Ef(x(t))− f∗

)

+
3η3L

p(1− β)

(
2H2G2

(
1 +

β2

(1− β)2

)(
16

ω
+

8

p

)
+

2c0ω

η(1−ǫ)

)
(137)

By rearranging terms in (137) and noting that p ≤ ω (as δ ≤ 1 and p := γ∗δ
8 with γ∗ ≤ ω) and the fact that

(
1 + β2

(1−β)2

)
≤

2
(1−β)2 (because β < 1), we get:

E‖x̃(t+1) − x∗‖2 ≤ E‖x̃(t) − x∗‖2 + η5/2β2G2

(1− β)4
+

η2σ̄2

(1− β)2n
− η

(1− β)

(
Ef(x(t))− f∗

)

+
288η3LH2G2

p2(1− β)3
+

6c0ωLη
(2+ǫ)

p(1− β)
(138)

Summing (138) from t = 0 to T − 1, rearranging terms and diving by T both sides gives us:

T−1∑

t=0

(
Ef(x(t))− f∗

)

T
≤ (1− β)

η

T−1∑

t=0

(
E‖x̃(t) − x∗‖2 − E‖x̃(t+1) − x∗‖2

)

T
+

η3/2β2G2

(1− β)3
+

ησ̄2

(1− β)n

+
288η2LH2G2

p2(1− β)2
+

6c0ωLη
(1+ǫ)

p

Using Jensen’s inequality for convex function f on the L.H.S. and setting η = (1− β)
√

n
T for T ≥ max{(8L)2n, (8β2L)4n

(1−β)2 },

for x(T )
avg := 1

T

∑T−1
t=0 x̄(t) we have that:

Ef(x(T )
avg)− f∗ ≤

(
E‖x̃(0) − x∗‖2 − E‖x̃(T ) − x∗‖2

)
√
nT

+
n3/4β2G2

(1− β)3/2T 3/4
+

σ̄2

√
nT

+
288LH2G2

p2T
+

6c0ωL(1− β)(1+ǫ)n(1+ǫ)/2

pT (1+ǫ)/2

Using the fact that x̃(0) = x(0) and ǫ, β ∈ (0, 1) we have:

Ef(x(T )
avg)− f∗ ≤ ‖x(0) − x∗‖2 + σ̄2

√
nT

+
n3/4β2G2

(1− β)3/2T 3/4
+

384nLH2G2

p2T
+

6c0ωLn
(1+ǫ)/2

pT (1+ǫ)/2

This completes proof of convex part of Theorem 2. We can further use the fact that p ≥ δ2ω
644 to get the expression given in

the theorem statement.
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APPENDIX G

PROOF OF LEMMA 12 (CONSENSUS)

In this section, we provide a proof of Lemma 12, which states that
∑n

j=1 E

∥∥∥x̄I(t) − x
I(t)
j

∥∥∥
2

– the difference between the

local and the average iterates at the synchronization indices – is bounded by a constant times the learning rate η, which can

effectively be made small by running the algorithm for larger number of iterations T as we choose η = (1 − β)
√

n
T . Thus,

this result shows that the nodes achieve a consensus towards the average parameter vector as the algorithm progresses.

We first provide a high level idea of the proof to aid the reader. Our interest is in providing a bound for e
(1)
I(t)

:=
∑n

j=1 E

∥∥∥x̄I(t) − x
I(t)
j

∥∥∥
2

. We show this by setting up a contracting recursion for e
(1)
I(t)

. First we prove that

e
(1)
I(t+1)

≤ (1− α1)e
(1)
I(t)

+ (1− α1)e
(2)
I(t)

+ c1η
2, (139)

where e
(2)
I(t)

:=
∑n

j=1 E

∥∥∥x̂I(t+1) − x
I(t)
j

∥∥∥
2

, α1 ∈ (0, 1), and c1 is a constant that depends on n, δ, β,H,G. The quantity e
(2)
I(t)

relates to the expected deviation of local node parameters and their copies. Note that (139) gives a contracting recursion in

e
(1)
I(t)

, but it also gives the other term e
(2)
I(t)

, which we have to bound. It turns out that we can prove a similar inequality for

e
(2)
I(t)

:

e
(2)
I(t+1)

≤ (1− α2)e
(1)
I(t)

+ (1− α2)e
(2)
I(t)

+ c2η
2, (140)

where α2 ∈ (0, 1); furthermore, we can choose α1, α2 such that α1 + α2 > 1.

Define eI(t) := e
(1)
I(t)

+ e
(2)
I(t)

. Adding (139) and (140) gives the following recursion with α ∈ (0, 1):

eI(t+1)
≤ (1− α)eI(t) + c3η

2. (141)

From (141), we can show that eI(t) ≤ Cη2 for some C that depends on n, δ, β,H,G, ω, c0. The result of Lemma 12 follows

from this because
∑n

j=1 E

∥∥∥x̄I(t) − x
I(t)
j

∥∥∥
2

= e
(1)
I(t)

≤ eI(t) .

We first state the above-mentioned recursion results for e
(1)
I(t+1)

and e
(2)
I(t+1)

below in Lemma 13 and Lemma 14, respectively,

and then using that we prove Lemma 12. The proofs of Lemma 13 and Lemma 14 are provided in Appendix H.

Lemma 13. Under the setting of Theorem 2, e
(1)
I(t+1)

:=
∑n

j=1 E

∥∥∥x̄I(t+1) − x
I(t+1)

j

∥∥∥
2

satisfies:

e
(1)
I(t+1)

≤ (1 + α−1
5 )R1e

(1)
I(t)

+ (1 + α−1
5 )R2e

(2)
I(t)

+Q1η
2,

where R1 = (1+α1)(1− γδ)2, R2 = (1+α−1
1 )γ2λ2 and Q1 = 2H2nG2

(
1 + β2

(1−β)2

)
(1+α5)(R1 +R2). Here α1, α5 > 0,

δ is the spectral gap, H is the synchronization gap, γ is the consensus stepsize, and λ := ‖W − I‖2 where W is a doubly

stochastic mixing matrix.

Lemma 14. Under the setting of Theorem 2, e
(2)
I(t+1)

:=
∑n

j=1 E

∥∥∥x̂I(t+2) − x
I(t+1)

j

∥∥∥
2

satisfies:

e
(2)
I(t+1)

≤ (1 + α−1
5 )R3e

(2)
I(t)

+ (1 + α−1
5 )R4e

(1)
I(t)

+ η2Q2,

where R3 = (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1 − ω) , R4 = γ2λ2(1 + α−1
4 )(1 + α3)(1 + α2)(1 − ω) and Q2 =

2H2nG2
(
1 + β2

(1−β)2

)
((1 + α5)(R3 + R4) + (1 + α−1

2 ) + (1 + α−1
3 )(1 + α2)(1 − ω)) + (1 + α2)ωn

c0
η(1−ǫ) . Note that Q2

depends on t (as captured by cI(t) in the expression) as we allow for our triggering threshold to change with time. Here

α2, α3, α4 > 0, α5 > 0 are the same as those used in Lemma 13, δ is the spectral gap, H is the synchronization gap, γ is the

consensus stepsize, and λ = ‖W − I‖2 where W is a doubly stochastic mixing matrix.

Proof of Lemma 12. Having established the bounds on e
(1)
I(t+1)

and e
(2)
I(t+1)

, we are now ready to prove Lemma 12. Consider

the following expression:

eI(t+1)
= E‖XI(t+1) − X̄I(t+1)‖2F︸ ︷︷ ︸

e
(1)
I(t+1)

+E‖XI(t+1) − X̂I(t+2)‖2F︸ ︷︷ ︸
e
(2)
I(t+1)

(142)

We note that Lemma 13 and Lemma 14 provide bounds for the first and the second term in the RHS of (142). Substituting

them in (142) gives:

eI(t+1)
≤ R1(1 + α−1

5 )E
∥∥X̄I(t) −XI(t)

∥∥2 +R2(1 + α−1
5 )E

∥∥∥X̂I(t+1) −XI(t)
∥∥∥
2
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+R4(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2 +R3(1 + α−1

5 )E
∥∥∥X̂I(t+1) −XI(t)

∥∥∥
2

+ (Q1 +Q2)η
2 (143)

Define the following:

π1(γ) := R2 +R3 = γ2λ2(1 + α−1
1 ) + (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1− ω) (144)

π2(γ) := R1 +R4 = (1− δγ)2(1 + α1) + γ2λ2(1 + α−1
4 )(1 + α3)(1 + α2)(1− ω) (145)

π0 :=Q1 +Q2 ≤ 2H2nG2

(
1 +

β2

(1− β)2

)
(1 + α5)(R1 +R2 +R3 +R4)

+2H2nG2

(
1 +

β2

(1− β)2

)
((1 + α−1

2 ) + (1− ω)(1 + α−1
3 )(1 + α2)) + (1 + α2)

ωnc0
η(1−ǫ)

(146)

The bound on eI(t+1)
in (143) can be rewritten as:

eI(t+1)
≤ (1 + α−1

5 )
[
π1(γ)E‖XI(t) − X̂I(t+1)‖2F + π2(γ)E‖XI(t) − X̄I(t)‖2F

]
+ π0η

2

≤ (1 + α−1
5 )max{π1(γ), π2(γ)}E

[
‖XI

(t+1
2
) − X̂I(t+1)‖2F + ‖XI

(t+1
2
) − X̄

I
(t+1

2
)‖2F
]
+ π0η

2 (147)

Calculation of max{π1(γ), π2(γ)} and π0 is given in Lemma 15 in Appendix G-A, where we show that:

max{π1(γ), π2(γ)} ≤ (1− p) and π0 ≤
(
2H2nG2

(
1 + β2

(1−β)2

)(
16
ω + 4

p

)
+ 2ωn c0

η(1−ǫ)

)
, where p := γ∗δ

8 . Here γ∗ =
2δω

64δ+δ2+16λ2+8δλ2−16δω is the consensus step-size. Substituting these bounds and α5 = 2
p in (147) gives:

eI(t+1)
≤ (1 +

p

2
) (1− p)E

[
‖XI(t) − X̂I(t+1)‖2F + ‖XI(t) − X̄I(t)‖2F

]

+

(
2H2nG2

(
1 +

β2

(1− β)2

)(
16

ω
+

4

p

)
+ 2ωn

c0
η(1−ǫ)

)
η2. (148)

Note that eI(t) = E

[
‖XI(t) − X̄I(t)‖2F + ‖XI(t) − X̂I(t+1)‖2F

]
. We can write (148) as a recurrence relation for eI(t) as:

eI(t+1)
≤
(
1− p

2

)
eI(t) +

2nA

p
η2. (149)

where A := p
2n

(
2H2nG2

(
1 + β2

(1−β)2

)(
16
ω + 4

p

)
+ 2ωn c0

η(1−ǫ)

)
. Using (149), it can be shown (proved in Lemma 16 in

Appendix G-A below) that for all I(t) ∈ IT , we have:

eI(t) ≤
4nAη2

p2

Note that we also have: E‖X̄I(t) −XI(t)‖2F ≤ E

[
‖X̄I(t) −XI(t)‖2F + ‖X̂I(t+1) −XI(t)‖2F

]
= eI(t) . Thus, we get the following

result for any synchronization index I(t) ∈ IT :

E‖X̄I(t) −XI(t)‖2F ≤ 4nAη2

p2
,

where A = p
2

(
2H2G2

(
1 + β2

(1−β)2

)(
16
ω + 4

p

)
+ 2ω c0

η1−ǫ

)
for p = δγ∗

8 , ǫ > 0 and γ∗ = 2δω
64δ+δ2+16β2+8δβ2−16δω is the

chosen consensus step size. This completes the proof for Lemma 12

A. Supporting Lemmas for Proving Lemma 12

Lemma 15. Consider the following variables:

π1(γ) := γ2λ2(1 + α−1
1 ) + (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1− ω)

π2(γ) := (1− δγ)2(1 + α1) + γ2λ2(1 + α−1
4 )(1 + α3)(1 + α2)(1− ω)

π0 := 2H2nG2

(
1 +

β2

(1− β)2

)
(1 + α5)(π1(γ) + π2(γ))

+ 2H2nG2

(
1 +

β2

(1− β)2

)
((1 + α−1

2 ) + (1− ω)(1 + α−1
3 )(1 + α2)) + (1 + α2)ωn

c0
η(1−ǫ)

and the following choice of variables:

α1 :=
γδ

2
, α2 :=

ω

4
, α3 :=

ω

4
, α4 :=

ω

4
, α5 :=

2

p
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p :=
δγ∗

8
, γ∗ :=

2δω

64δ + δ2 + 16λ2 + 8δλ2 − 16δω

Then, it can be shown that:

max{π1(γ
∗), π2(γ

∗)} ≤ 1− δ2ω

644
, π0 ≤ 2H2nG2

(
1 +

β2

(1− β)2

)(
16

ω
+

4

p

)
+ 2ωn

c0
η(1−ǫ)

Proof. We adapt a part of the proof of [Theorem 1] [19] to prove Lemma 15. Consider:

(1 + α4)(1 + α3)(1 + α2)(1− ω) = (1 +
ω

4
)3(1− ω)

=

(
1− ω4

64
− 11ω3

64
− 9ω2

16
− ω

4

)

≤
(
1− ω

4

)

This gives us:

π1(γ) ≤ γ2λ2

(
1 +

2

γδ

)
+ (1 + γλ)2

(
1− ω

4

)

Noting that γ2 ≤ γ (for γ ≤ 1 which is true for γ∗ ) and λ ≤ 2, we have:

π1(γ) ≤ λ2

(
γ +

2γ

δ

)
+ (1 + 8γ)

(
1− ω

4

)

Substituting value of γ∗ in above, it can be shown that:

π1(γ
∗) ≤ 1− δ2ω

4(64δ + δ2 + 16λ2 + 8δλ2 − 16δω)

Now we note that:

π2(γ) = (1− δγ)2
(
1 +

δγ

2

)
+ γ2λ2

(
1 +

4

ω

)(
1 +

ω

4

)2
(1− ω)

Noting the fact that for x = δγ ≤ 1, we have (1− x)2
(
1 + x

2

)
≤ (1− x)

(
1− x

2

)
,

π2(γ) ≤
(
1− γδ

2

)2

+ γ2λ2

(
1 +

4

ω

)(
1 +

ω

4

)2
(1− ω)

=

(
1− γδ

2

)2

+ γ2λ2

(
3 +

3ω

4
+

ω2

16
+

4

ω

)
(1− ω)

≤
(
1− γδ

2

)2

+ γ2λ2 4

ω
=: ζ(γ)

Note that ζ(γ) is convex and quadratic in γ, and attains minima at γ′ = 2δω
16λ2+δ2ω with value ζ(γ′) = 16λ2

16λ2+ωδ2 .

By the Jensen’s inequality, we note that for any s ∈ [0, 1]

ζ(sγ′) ≤ (1− s)ζ(0) + sζ(γ′) = 1− s
δ2ω

16λ2 + δ2ω

For the choice s = 16λ2+ωδ2

64δ+δ2+16λ2+8δλ2−16δω , it can be seen that sγ′ = γ∗. Thus we get:

π2(γ
∗) ≤ ζ(sγ′) ≤ 1− δ2ω

(64δ + δ2 + 16λ2 + 8δλ2 − 16δω)

≤ 1− δ2ω

4(64δ + δ2 + 16λ2 + 8δλ2 − 16δω)

Thus we have:

max{π1(γ
∗), π2(γ

∗)} ≤ 1− δ2ω

4(64δ + δ2 + 16λ2 + 8δλ2 − 16δω)
.
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Using the value of γ∗ given in the lemma statement, we have δ2ω
4(64δ+δ2+16λ2+8δλ2−16δω) =

δγ∗

8 . Define p := γ∗δ
8 . Using crude

estimates δ ≤ 1, ω ≥ 0, λ ≤ 2, we can lower-bound p as p ≥ δ2ω
644 . Thus we have

max{π1(γ
∗), π2(γ

∗)} ≤ 1− δ2ω

644
.

Now we upper-bound the value of π0:

π0 := 2H2nG2

(
1 +

β2

(1− β)2

)
(1 + α5)(π1(γ) + π2(γ)) + (1 + α2)ωn

c0
η(1−ǫ)

+ 2H2nG2

(
1 +

β2

(1− β)2

)
((1 + α−1

2 ) + (1− ω)(1 + α−1
3 )(1 + α2))

≤ 4H2nG2

(
1 +

β2

(1− β)2

)
(1 +

2

p
)(1− p) + (1 +

ω

4
)ωn

c0
η(1−ǫ)

+ 2H2nG2

(
1 +

β2

(1− β)2

)
((1 +

4

ω
) + (1− ω)(1 +

4

ω
)(1 +

ω

4
))

≤ 4H2nG2

(
1 +

β2

(1− β)2

)
2

p
+ (1 +

ω

4
)ωn

c0
η(1−ǫ)

+ 2H2nG2

(
1 +

β2

(1− β)2

)
(1 +

8

ω
)

Where in the first inequality we have used the fact that π1(γ) + π2(γ) ≤ 2(1 − p). In the second inequality, we use the fact

that (1 + 2
p )(1− p) ≤ 2

p and (1− ω)(1 + 4
ω )(1 +

ω
4 ) ≤ 4

ω . Noting that for ω ≤ 1, we have (1 + ω
4 ) ≤ 2 and

(
1 + 8

ω

)
≤ 16

ω .

Using these, we have:

π0 ≤ 2H2nG2

(
1 +

β2

(1− β)2

)(
4

p
+

16

ω

)
+ 2ωnHct.

This completes the proof of Lemma 15.

Lemma 16. Consider the sequence {eI(t)} given by

eI(t+1)
≤
(
1− p

2

)
eI(t) +

2nA

p
η2,

where IT = {I(1), I(2), . . . , I(t), . . .} ∈ [T ] denotes the set of synchronization indices. For a parameter p > 0, positive constants

A and η , we have:

eI(t) ≤
4nA

p2
η2

Proof. The proof uses an induction argument. Note that the base case is satisfied as e0 = 0. Assuming the bound holds for

eI(t) , for eI(t+1)
, we have:

eI(t+1)
≤ (1− p

2
)
4nAη2

p2
+

2nAη2

p

=
4nAη2

p2

Thus eI(t) ≤ 4nA
p2 η2 for all I(t) ∈ IT from induction argument, which completes the proof.

APPENDIX H

SUPPORTING LEMMAS FOR PROOF OF LEMMA 12

As discussed in Appendix G, the proof for Lemma 12 relies on establishing a recurrence relation between two quantities of

interest: e
(1)
I(t)

:=
∑n

j=1 E

∥∥∥x̄I(t) − x
I(t)
j

∥∥∥
2

– the average deviation of local parameter copies and the global parameter – and

e
(2)
I(t)

:=
∑n

j=1 E

∥∥∥x̂I(t+1) − x
I(t)
j

∥∥∥
2

– the average deviation of the local parameter and their copies. In this section, we provide

a recursion relation for both e
(1)
I(t+1)

and e
(2)
I(t+1)

, each in terms of e
(1)
I(t)

and e
(2)
I(t)

. These results are stated in Lemma 13 and

14, respectively, which we prove below. In order to prove these lemmas we use some techniques from proof of Lemma 1 and

Lemma 2 in [19].

In matrix notation, these quantities are given by:

e
(1)
I(t+1)

= E‖XI(t+1) − X̄I(t+1)‖2F
e
(2)
I(t+1)

= E‖XI(t+1) − X̂I(t+2)‖2F
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A. Proof of Lemma 13

Using the update equations of XI(t+1) in matrix form given in (5)-(8) in Section IV, we have:

‖XI(t+1) − X̄I(t+1)‖2F = ‖XI
(t+1

2
) − X̄I(t+1) + γX̂I(t+1)(W − I)‖2F

Noting that X̄I(t+1) = X̄
I
(t+1

2
) (from (10)) and X̄

I
(t+1

2
)(W − I) = 0 (from (9)), we get:

‖XI(t+1) − X̄I(t+1)‖2F = ‖(XI
(t+1

2
) − X̄

I
(t+1

2
))((1− γ)I+ γW) + γ(X̂I(t+1) −X

I
(t+1

2
))(W − I)‖2F

For any positive constant11 α1, we have:

‖XI(t+1) − X̄I(t+1)‖2F ≤ (1 + α1)‖(X
I
(t+1

2
) − X̄

I
(t+1

2
))((1− γ)I+ γW)‖2F

+ (1 + α−1
1 )‖γ(X̂I(t+1) −X

I
(t+1

2
))(W − I)‖2F

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 for any matrices A,B, we have:

‖XI(t+1) − X̄I(t+1)‖2F ≤ (1 + α1)‖(X
I
(t+1

2
) − X̄

I
(t+1

2
))((1− γ)I+ γW)‖2F

+ (1 + α−1
1 )γ2‖(X̂I(t+1) −X

I
(t+1

2
))‖2F .‖(W − I)‖22 (150)

To bound the first term in (150), we use the triangle inequality for Frobenius norm, giving us:

‖(XI
(t+1

2
) − X̄

I
(t+1

2
))((1− γ)I+ γW)‖F ≤ (1− γ)‖XI

(t+1
2
) − X̄

I
(t+1

2
)‖F + γ‖(XI

(t+1
2
) − X̄

I
(t+1

2
))W‖F

Since
(
X

I
(t+1

2
) − X̄

I
(t+1

2
)

)
11T

n = 0 (from (9)), adding this inside the last term above, we get:

‖(XI
(t+1

2
) − X̄

I
(t+1

2
))((1− γ)I+ γW)‖F ≤ (1− γ)‖XI

(t+1
2
) − X̄

I
(t+1

2
)‖F

+ γ

∥∥∥∥(X
I
(t+1

2
) − X̄

I
(t+1

2
))

(
W − 11T

n

)∥∥∥∥
F

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 and then using (112) from Fact 3 with k = 1, we can simplify the above to:

‖(XI
(t+1

2
) − X̄

I
(t+1

2
))((1− γ)I+ γW)‖F ≤ (1− γδ)‖XI

(t+1
2
) − X̄

I
(t+1

2
)‖F

Substituting the above in (150) and using λ = maxi{1− λi(W)} ⇒ ‖W − I‖22 ≤ λ2, we get:

‖XI(t+1) − X̄I(t+1)‖2F ≤ (1 + α1)(1− γδ)2‖XI
(t+1

2
) − X̄

I
(t+1

2
)‖2F + (1 + α−1

1 )γ2λ2‖XI
(t+1

2
) − X̂I(t+1)‖2F

Taking expectation w.r.t. the entire process, we have:

E‖XI(t+1) − X̄I(t+1)‖2F ≤ (1 + α1)(1− γδ)2E‖XI
(t+1

2
) − X̄

I
(t+1

2
)‖2F + (1 + α−1

1 )γ2λ2
E‖XI

(t+1
2
) − X̂I(t+1)‖2F

Define R1 = (1 + α1)(1 − γδ)2, R2 = (1 + α−1
1 )γ2λ2. Using the update steps of algorithm given in equations (6) and (10)

(given in Section IV), we have:

E‖XI(t+1) − X̄I(t+1)‖2F ≤ R1E

∥∥∥∥∥∥
X̄I(t) −XI(t) −

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

(
11T

n
− I

)∥∥∥∥∥∥

2

F

+R2E

∥∥∥∥∥∥
X̂I(t+1) −XI(t) +

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

Thus, for any α5 > 0 (using Footnote 11), we have:

E‖XI(t+1) − X̄I(t+1)‖2F ≤ R1(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2 +R2(1 + α−1

5 )E
∥∥∥X̂I(t+1) −XI(t)

∥∥∥
2

+R1(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

(
11T

n
− I

)∥∥∥∥∥∥

2

F

11For any two matrices A,B ∈ R
p×q and for any α > 0 , we have the following relationship for the Frobenius norm:

‖A+B‖2F ≤ (1 + α) ‖A‖2F + (1 + α−1) ‖B‖2F
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+R2(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 to split the third term, and then using the bound

∥∥∥11T

n − I

∥∥∥
2
= 1 (which is shown in Claim 2

in Appendix D), and further using the bound in (108) for the third and the fourth terms, the above can be rewritten as:

E‖XI(t+1) − X̄I(t+1)‖2F ≤ R1(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2 +R2(1 + α−1

5 )E
∥∥∥X̂I(t+1) −XI(t)

∥∥∥
2

+ 2η2H2nG2

(
1 +

β2

(1− β)2

)
(1 + α5)(R1 +R2)

Defining Q1 = 2H2nG2
(
1 + β2

(1−β)2

)
(1 + α5)(R1 +R2) completes the proof of Lemma 13.

B. Proof of Lemma 14

Since X̂I(t+2) = X̂I(t+1) + C((XI
(t+3

2
) − X̂I(t+1))P(I(t+2)−1)) (from (7) in Section IV), we have:

e
(2)
I(t+1)

= E‖XI(t+1) − X̂I(t+2)‖2F = E‖XI(t+1) − X̂I(t+1) − C((XI
(t+3

2
) − X̂I(t+1))P(I(t+2)−1))‖2F

= E‖XI
(t+3

2
) − X̂I(t+1) +XI(t+1) −X

I
(t+3

2
) − C((XI

(t+3
2
) − X̂I(t+1))P(I(t+2)−1))‖2F

For any α2 > 0, using result from Footnote 11, we have:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α2)E‖X
I
(t+3

2
) − X̂I(t+1) − C((XI

(t+3
2
) − X̂I(t+1))P(I(t+2)−1))‖2F

+ (1 + α−1
2 )E‖XI(t+1) −X

I
(t+3

2
)‖2F (151)

The last term in R.H.S. of (151) can be bounded by using the update step (6) and then using (108) from Fact 6, which gives:

E‖XI(t+1) −X
I
(t+3

2
)‖2F ≤ 2η2H2nG2

(
1 +

β2

(1− β)2

)
(152)

Using the bound (152) in (151), we get:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α2)E‖X
I
(t+3

2
) − X̂I(t+1) − C((XI

(t+3
2
) − X̂I(t+1))P(I(t+2)−1))‖2F

+ (1 + α−1
2 )2η2H2nG2

(
1 +

β2

(1− β)2

)

Note that both P(I(t+2)−1) and I − P(I(t+2)−1) are diagonal matrices, with disjoint support on the diagonal entries, which

implies that E‖XI
(t+3

2
) − X̂I(t+1)‖2F = E‖(XI

(t+3
2
) − X̂I(t+1))P(I(t+2)−1)‖2F +E‖(XI

(t+3
2
) − X̂I(t+1))(I−P(I(t+2)−1))‖2F . We

get:

E‖XI(t+1)−X̂I(t+2)‖2F ≤ (1 + α2)E‖(X
I
(t+3

2
) − X̂I(t+1))P(I(t+2)−1) − C((XI

(t+3
2
) − X̂I(t+1))P(I(t+2)−1))‖2F

+ (1 + α2)E‖(X
I
(t+3

2
) − X̂I(t+1))(I−P(I(t+2)−1))‖2F + 2(1 + α−1

2 )η2H2nG2

(
1 +

β2

(1− β)2

)

Using the compression property (2) of operator C, we have:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α2)(1− ω)E‖(XI
(t+3

2
) − X̂I(t+1))P(I(t+2)−1)‖2F

+ (1 + α2)E‖(X
I
(t+3

2
) − X̂I(t+1))(I−P(I(t+2)−1))‖2F + 2(1 + α−1

2 )η2H2nG2

(
1 +

β2

(1− β)2

)

Adding and subtracting (1 + α2)(1− ω)E‖(XI
(t+3

2
) − X̂I(t+1))(I−P(I(t+2)−1))‖2F , we get:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α2)(1− ω)E‖XI
(t+3

2
) − X̂I(t+1)‖2F + (1 + α−1

2 )2η2H2nG2

(
1 +

β2

(1− β)2

)

+ (1 + α2)ωE‖(X
I
(t+3

2
) − X̂I(t+1))(I−P(I(t+2)−1))‖2F

To bound the third term in the RHS above, note that X̂I(t+2)−1 = X̂I(t+1) , because X̂ does not change in between the synchro-

nization indices, which implies that E‖(XI
(t+3

2
) −X̂I(t+1))(I−P(I(t+2)−1))‖2F = E‖(XI

(t+3
2
) −X̂I(t+2)−1)(I−P(I(t+2)−1))‖2F ,

which we can upper-bound using (111) by ncI(t+2)−1η
2. Using ct ≤ c0

η(1−ǫ) for all t, we get:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α2)(1− ω)E‖XI
(t+3

2
) − X̂I(t+1)‖2F + (1 + α2)ωnc0η

(1+ǫ)
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+ (1 + α−1
2 )2η2H2nG2

(
1 +

β2

(1− β)2

)
(153)

We now bound the first term in the R.H.S. of (153). From the update equation (6), we have:

E‖XI
(t+3

2
)−X̂I(t+1)‖2F = E

∥∥∥∥∥∥
XI(t+1) −

I(t+2)−1∑

t′=I(t+1)

η(βV(t′) +∇F (X(t′), ξ(t
′)))− X̂I(t+1)

∥∥∥∥∥∥

2

F

≤ (1 + α3)E‖XI(t+1) − X̂I(t+1)‖2F + (1 + α−1
3 )2η2H2nG2

(
1 +

β2

(1− β)2

)
(154)

where for the last inequality, α3 is any positive constant (from Footnote 11) and we have used (108) from Fact 6. Substituting

the bound (154) in (153), we have:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α3)(1 + α2)(1− ω)E‖XI(t+1) − X̂I(t+1)‖2F
+ (1 + α−1

3 )(1 + α2)(1− ω)2η2H2nG2

(
1 +

β2

(1− β)2

)

+ (1 + α2)ωnc0η
(1+ǫ) + (1 + α−1

2 )2η2H2nG2

(
1 +

β2

(1− β)2

)
(155)

We now bound the first term in R.H.S. of (155). From the update equation (8) and using the fact that X̄
I
(t+1

2
)(W − I) = 0,

we have:

E‖XI(t+1) − X̂I(t+1)‖2F = E‖(XI
(t+1

2
) − X̂I(t+1))((1 + γ)I− γW) + γ(X

I
(t+1

2
) − X̄

I
(t+1

2
))(W − I)‖2F

≤ (1 + α4)(1 + γλ)2E‖XI
(t+1

2
) − X̂I(t+1)‖2F + γ2λ2(1 + α−1

4 )E‖XI
(t+1

2
) − X̄

I
(t+1

2
)‖2F (156)

where α4 is any positive constant (from Footnote 11) and the fact that ‖(1+γ)I−γW‖2 = ‖I+γ(I−W)‖2 = 1+γ‖I−W‖2 =
1 + γλ (by definition of λ = maxi{1 − λi(W)}) and ‖I−W‖2 = λ along with ‖AB‖F ≤ ‖A‖F ‖B‖2. Using the bound

from (156) in (155), we get:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1− ω)E‖XI
(t+1

2
) − X̂I(t+1)‖2F

+ γ2λ2(1 + α−1
4 )(1 + α3)(1 + α2)(1− ω)E‖XI

(t+1
2
) − X̄

I
(t+1

2
)‖2F

+ 2
(
(1 + α−1

2 ) + (1 + α−1
3 )(1 + α2)(1− ω)

)
η2H2nG2

(
1 +

β2

(1− β)2

)

+ (1 + α2)ωnc0η
(1+ǫ)

Define R3 = (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1 − ω) , R4 = γ2λ2(1 + α−1
4 )(1 + α3)(1 + α2)(1 − ω) and R5 =

2
(
(1 + α−1

2 ) + (1 + α−1
3 )(1 + α2)(1− ω)

)
H2nG2

(
1 + β2

(1−β)2

)
+ (1 + α2)ωn

c0
η(1−ǫ) , then the above can be rewritten as :

E‖XI(t+1) − X̂I(t+2)‖2F ≤ R3E‖X
I
(t+1

2
) − X̂I(t+1)‖2F +R4E‖X

I
(t+1

2
) − X̄

I
(t+1

2
)‖2F +R5η

2

Using the update steps of algorithm given in equations (6) and (10) (given in Section IV):

E‖XI(t+1)−X̂I(t+2)‖2F ≤ R3E

∥∥∥∥∥∥
X̂I(t+1) −XI(t) +

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

+R4E

∥∥∥∥∥∥
X̄I(t) −XI(t) −

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

(
11T

n
− I

)∥∥∥∥∥∥

2

F

+R5η
2

For the same α5 > 0 (from result in Footnote 11) used in proof of Lemma 13, we get:

E‖XI(t+1) − X̂I(t+2)‖2F ≤ R3(1 + α−1
5 )E

∥∥∥X̂I(t+1) −XI(t)
∥∥∥
2

+R4(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2

+R4(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

(
11T

n
− I

)∥∥∥∥∥∥

2

F

+R3(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

η(βV(t′) +∇F (X(t′), ξ(t
′)))

∥∥∥∥∥∥

2

F

+R5η
2
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Using ‖AB‖F ≤ ‖A‖F ‖B‖2 to split the third term and then using

∥∥∥11T

n − I

∥∥∥ ≤ 1 (from Claim 2 in supplementary material),

and further using the bound in (108) for the third and fourth term, the above can be rewritten as:

E‖XI(t+1) − X̄I(t+2)‖2F ≤ R3(1 + α−1
5 )E

∥∥∥X̂I(t+1) −XI(t)
∥∥∥
2

+R4(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2

+ 2η2H2nG2

(
1 +

β2

(1− β)2

)
(1 + α5)(R3 +R4) +R5η

2

Defining Q2 = 2H2nG2
(
1 + β2

(1−β)2

)
(1 + α5)(R3 +R4) +R5 completes the proof of Lemma 14.

APPENDIX I

MEMORY-EFFICIENT VERSION OF SQUARM-SGD

In this section, we provide our memory efficient version of SQuARM-SGD proposed in the main paper in Algorithm 1.

Algorithm 2 Memory-Efficient SQuARM-SGD

Parameters: G = ([n], E), W

1: Initialize: For every i ∈ [n], set arbitrary x
(0)
i ∈ R

d, x̂
(0)
i := 0, s

(0)
i := 0, v

(−1)
i := 0. Fix the momentum coefficient β, consensus

step-size γ, learning rate η, triggering thresholds {ct}
T
t=0, and synchronization set IT .

2: for t = 0 to T − 1 in parallel for all workers i ∈ [n] do

3: Sample ξ
(t)
i , stochastic gradient g

(t)
i := ∇Fi(x

(t)
i , ξ

(t)
i )

4: v
(t)
i = βv

(t−1)
i + g

(t)
i

5: x
(t+ 1

2
)

i := x
(t)
i − η(βv

(t)
i + g

(t)
i )

6: if (t+ 1) ∈ IT then
7: for neighbors j ∈ Ni do

8: if ‖x
(t+ 1

2
)

i − x̂
(t)
i ‖22 > ctη

2 then

9: Compute q
(t)
i := C(x

(t+ 1
2
)

i − x̂
(t)
i )

10: Send q
(t)
i to worker j and receive q

(t)
j

11: else
12: Assign q

(t)
i := 0

13: Send q
(t)
i to worker j and receive q

(t)
j

14: end if
15: end for
16: x̂

(t+1)
i := q

(t)
i + x̂

(t)
j

17: s
(t+1)
i := s

(t)
i +

n
∑

j=1

wijq
(t)
j

18: x
(t+1)
i = x

(t+ 1
2
)

i + γ
(

ŝ
(t+1)
i − x̂

(t+1)
i

)

19: else

20: x̂
(t+1)
i = x̂

(t)
i , x

(t+1)
i = x

(t+ 1
2
)

i , s
(t+1)
i = s

(t)
i

21: end if
22: end for

The parameter s
(t)
i for i ∈ [n] stores the weighted sum of all neighbor copies which is then used in the consensus step.

Thus, the requirement for storing copies of all neighbors at a node as in algorithm given in main paper is relaxed.

APPENDIX J

ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments for comparison of schemes when training a ResNet-20 model on the

CIFAR-10 dataset, with the same setting as Section VI in the main paper.






