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Abstract

A function f : Fn
2 → R is s-sparse if it has at most s non-zero

Fourier coefficients. Motivated by applications to fast sparse

Fourier transforms over Fn
2 , we study efficient algorithms for

the problem of approximating the `2-distance from a given

function to the closest s-sparse function. While previous

works (e.g., Gopalan et al. SICOMP 2011) study the problem

of distinguishing s-sparse functions from those that are far

from s-sparse under Hamming distance, to the best of our

knowledge no prior work has explicitly focused on the more

general problem of distance estimation in the `2 setting, which

is particularly well-motivated for noisy Fourier spectra. Given

the focus on efficiency, our main result is an algorithm that

solves this problem with query complexity O (s) for constant

accuracy and error parameters, which is only quadratically

worse than applicable lower bounds.

1 Introduction

The Fourier representation of the function f : Fn2 → R
is the function f̂ : Fn2 → R defined by the forward

Fourier transform f̂(α) = Ex∈Fn2 [f(x)χα(x)] and its

inverse f(x) =
∑
α∈Fn2

f̂(α)χα(x), where for each

α ∈ Fn2 , the function χα : Fn2 → R is defined by

χα(x) = (−1)
∑n
i=1 αixi . The values f̂(α) are the Fourier

coefficients of f . When f has at most s non-zero
Fourier coefficients, we say that it is Fourier s-sparse,
or just s-sparse for short. The Fourier sparsity of
functions plays an important role in many different
areas of computer science, including error-correcting
codes [9, 1], learning theory [15, 17], communication
complexity [26, 4, 18, 24], property testing [10, 25], and
parity decision tree complexity [27, 23].

There has also been renewed interest in the Fourier
sparsity of functions over various finite abelian groups
with the recent development of specialized Fourier
transform algorithms for such functions [12, 13]. These
algorithms improve on the efficiency of the standard
Fast Fourier Transform algorithms for functions with
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sparse Fourier transforms by taking advantage of this
sparsity itself. Since many functions (and/or signals) in
practical applications do display Fourier sparsity, this
line of research has yielded many exciting applications as
well as theoretical contributions (see [11] for details). For
example, much of the recent work on the sparse Fourier
transform has focused on functions over fundamental
domains, such as the line or the hypergrid. Meanwhile, a
sparse Fourier transform for functions over Fn2 has been
known for over twenty years as the Goldreich–Levin [9]
and Kushilevitz–Mansour [15] algorithm. This algorithm
can learn functions that are (close to) s-sparse, using
time and query complexity poly(n, s). Since many classes
of functions over Fn2 are known to be close to being s-
sparse for a certain value of s (e.g., monotone functions,
decision trees, r-DNF formulas, etc.), the sparse Fourier
transform given by the GL/KM-algorithm is one of the
cornerstones of computational learning theory.

One of the main limitations of the sparse Fourier
transform as a technique is the fact that its efficiency is
conditional on the assumption that the data of interest
can be sparsely represented in the Fourier domain.
Hence in order to reliably use sparse Fourier transform
algorithms it is beneficial to have a way to test if a
function is s-sparse or, more generally, to estimate the
distance of a function to the closest s-sparse function.
For such tasks property testing algorithms often come
into play as a preprocessing step (see, e.g., [22]) since they
typically require a much smaller number of samples and
other resources such as time and space. An important
consideration when using property testing is the fact
that presence of two kinds of noise in the data must be
tolerated: small fraction of errors/outliers [20] (noise
of small Hamming weight) as well as arbitrary noise
with small `p-norm [3]. Since the performance of sparse
FFT algorithms is conditioned on the sparsity under `22-
distance, the subject of our study is to what extent can
sparsity under `22 distance be tested. The fundamental
reason why `22-distance plays a special role in the Fourier
domain is its relation to the energy of the signal that
is proportional to the sum of squares of the Fourier
coefficients according to Parseval’s theorem.

Formally, we define the `22-distance between f and g
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as dist22(f, g) = ‖f − g‖22 = 1
2n

∑
x∈Fn2

(f(x)− g(x))2 and

the `22-distance between f and a class P of functions as
dist22(f,P) = ming∈P dist22(f, g). The distance to Fourier
s-sparsity is the latter distance when P is the set of
functions with Fourier sparsity at most s. We denote the
class of all Fourier s-sparse functions as Fs. Hence our
main goal is to estimate dist22(f,Fs) up to an additive
error±ε. We refer to it as `22-distance estimation problem
and to the closely related decision version as tolerant
`22-testing.

We also reserve the name of non-tolerant `22-testing
for an easier promise problem of distinguishing functions
with Fourier sparsity at most s from those that are ε-far
from having such sparsity, i.e., dist22(f,Fs) ≥ ε. Note
that when working with noisy Fourier spectra, where
most of the Fourier coefficients are non-zero, this decision
can be trivial when s� 2n, as an `22-testing algorithm
can just always reject. Hence the distance estimation
problem described above can be substantially harder for
such spectra. To simplify presentation, we call a class
ε-testable with q queries if there exists an algorithm
which makes q queries and achieves the above guarantee
with constant probability. We will also use Hamming
distance while keeping the rest of the definitions the
same in order to describe some of the previous work in
the area of property testing. In this case the distance
between f and g is defined as Prx∼Fn2 [f(x) 6= g(x)] and
all the definitions above are changed accordingly.

1.1 Previous work The most direct approach for `22-
distance estimation and `22-testing is to use the testing-by-
learning approach established by Goldreich, Goldwasser,
and Ron [8]. Using the Goldreich–Levin / Kushilevitz–
Mansour algorithm [9, 15], we can learn an s-sparse
function h that will be essentially as close to f as possible.
We can then estimate the distance between f and h to get
a good approximation of the distance from f to Fourier
s-sparsity. This approach requires O (sn) queries in
order to achieve constant error ε (see, e.g., the textbook
exposition in [7, 19]). An improvement to this approach
would be to use hashing to reduce the dimension down to
a subspace of size O

(
s2
)

(thus introducing no collisions
between the top s coefficients) and then run GL/KM
within the subspace. The complexity of this approach
would be O (s log s) queries for constant ε, where the
log s factor results from using O

(
s2
)

buckets to avoid
collisions among the top s coefficients. Other related
previous work (e.g. [2] who study testing sparsity over
known and unknown bases, including the Fourier basis)
also incurs extra factors in query complexity. 1

1Also, since [2] handles a much more general problem in order
to handle arbitrary design matrices, the running time of their

The first specialized algorithm for the problem of
testing Fourier sparsity under Hamming distance was de-
veloped by Gopalan et al. [10]. They give a non-tolerant
tester for Fourier s-sparsity under Hamming distance
with a number of queries to f that is independent of
n and polynomial in s and 1/ε. More precisely, the fo-
cus of [10] was a slightly different problem where the
class P of interest is defined to contain only Boolean
s-sparse functions. Below we will refer to this class as

F0/1
s .2 However, in fact [10] show that with some loss in

parameters, this problem can be reduced to estimating
`22-distance from Fs, the problem that we study in this
paper. Thus an implicit ingredient of the [10] algorithm
is a `22-distance estimation algorithm for Fs with query
complexity O (poly(s)) for any constant additive error.

An active line of previous work focuses on toler-
ant testing under Hamming distance. Wimmer and
Yoshida [25] showed that the general approach of [10]
can be extended to yield tolerant testers for Fourier s-
sparsity of Boolean functions. Specifically, they give an
algorithm that distinguishes between functions that are
ε/3-close to Fourier s-sparse from those that are ε-far
from Fourier s-sparse under Hamming distance, using
poly(s) queries. This allows one to approximate the
distance to Fourier s-sparsity up to some multiplicative
factor. The polynomial dependence on s is fairly large
and the result does not extend to additive error. Algo-
rithms for estimating the Hamming distance to Fourier
s-sparsity up to an additive error can be also derived
through a general framework of Hatami and Lovett [14].
However, the instantiation of the [14] framework results
in power tower dependency on s.

1.2 Our Contributions We introduce two new al-
gorithms for testing Fourier s-sparsity with respect to
`22-distance. Our first main result shows that one can
approximate the distance to Fourier s-sparsity in `22-
distance with a number of non-adaptive queries that is
in fact linear in s. This result is proved in Section 3.

Theorem 1.1. (Approximating `22-distance to s-
sparsity) For any s ≥ 1 and ε > 0, there is an
algorithm that given non-adaptive query access to a
function f : Fn2 → R with unit `2-norm takes at most
O
(
s
ε4 log 1

ε log 1
δ

)
queries and approximates dist22(f,Fs)

up to an additive error ±ε with probability 1 − δ and
running time Õ

(
s
ε4 log 1

δ

)
(see Section 3.)

algorithms translates to polynomial in 2n in our case, which can
be prohibitively large for our application.

2While F0/1
s ⊆ Fs in general there is no known relationship

between testing and distance estimation query complexities of
classes and their subclasses.
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Here, the Õ notation suppresses polylogarithmic factors
in s and 1

ε .
As mentioned before, the main challenge in testing

Fourier s-sparsity with respect to `22-distance instead of
Hamming distance seems to be the accurate estimation
of a large number of possibly small nonzero Fourier
coefficients using a small number of queries. Whereas a
function can only be ε-far from Fourier s-sparsity with
respect to Hamming distance by having a large number
of nonzero Fourier coefficients, a function can be ε-far
from Fourier s-sparsity with respect to `22-distance by
either having too many large Fourier coefficients or a
large number of small nonzero Fourier coefficients.

Instead of estimating these small Fourier coefficients,
we randomly partition the set of Fourier coefficients into
a number of cosets by first picking a random subspace
H and measuring the energy (the sum of the squared
Fourier coefficients) in each coset. If H has sufficiently
large codimension, then the top Fourier coefficients are
partitioned into separate cosets, so the estimation of the
energy in the top cosets is a good estimation of the energy
of the top Fourier coefficients. To estimate the energy
in each coset, we query the function at a number of
random locations to obtain an empirical estimate within
an additive factor of ε2‖f‖22 with constant probability.
We then bound the probability of two sources of errors:
the hashing error, which originates from drawing a
subspace in which large Fourier coefficients collide, and
the estimation error, which results from inaccurate
empirical estimations. Putting things together, we show
that our estimator approximately captures the Fourier
s-sparse function closest to f in `22-distance and hence
gives a good approximation of the distance from f to
the closest Fourier s-sparse function.

We also show a lower bound of Ω(
√
s) for `22-testing

of Fs for non-adaptive query algorithms.

Theorem 1.2. For any s ≤ 2n−1, there exists a con-
stant c > 0 such that any non-adaptive algorithm given
query access to f : Fn2 → R such that ‖f‖22 = 1± ε that
distinguishes whether f is s-sparse or f is 1

3 -far from
s-sparse in `22 with probability at least 2/3 has to make
at least c

√
s queries to f (see Section 4.1).

Our lower bound results from designing two distribu-
tions DY ES and DNO, where the distribution DY ES is
the set of Fourier s-sparse functions whose Fourier coeffi-
cients are scaled Gaussian random variables whereas the
DNO distribution is the set of functions with support on
all Fourier coefficients. The Fourier coefficients in the
DNO distribution are Gaussian random variables with a
different scaling, such that the total variation distance
between the DY ES and DNO distributions restricted to
a small query set is also small.

[10] gives an Ω(
√
s) property testing lower bound for

F0/1
s . Their results can be extended to Fs, provided that

s ≤ 2cn for a specific constant c > 0, whereas our results
covers the full range of values of s. Thus our results in
Theorem 1.1 above are at most a quadratic factor away
from optimal. We consider closing the quadratic gap in
query complexity of `22-distance estimation for Fs as the
main open problem posed by our work.

2 Preliminaries

For a finite set S we denote the uniform distribution
over S as U(S).

2.1 Fourier Analysis We consider functions from
Fn2 to R. For any fixed n ≥ 1, the space of these functions
forms an inner product space with the inner product
〈f, g〉 = Ex∈Fn2 [f(x)g(x)] = 1

2n

∑
x∈Fn2

f(x)g(x). The `2-

norm of f : Fn2 → R is ‖f‖2 =
√
〈f, f〉 =

√
Ex[f(x)2]

and the `2-distance between two functions f, g : Fn2 →
R is the `2-norm of the function f − g. We write
dist2(f, g) = ‖f − g‖2. It is, in other words, ‖f − g‖2 =√
〈f − g, f − g〉 = 1√

|Fn2 |

√∑
x∈Fn2

(f(x)− g(x))2.

For α ∈ Fn2 , the character χα : Fn2 → {−1, 1} is
the function defined by χα(x) = (−1)α·x. The Fourier
coefficient of f : Fn2 → R corresponding to α is

f̂(α) = Ex[f(x)χα(x)]. The Fourier transform of f is

the function f̂ : Fn2 → R that returns the value of each
Fourier coefficient of f . The set of Fourier transforms
of functions mapping Fn2 → R forms an inner product

space with inner product
〈
f̂ , ĝ
〉

=
∑
α∈Fn2

f̂(α)ĝ(α).

The corresponding `2-norm is ‖f̂‖2 =

√〈
f̂ , f̂

〉
=√∑

α∈Fn2
f̂(α)2. Note that the inner product and `2-

norm are weighted differently for a function f : Fn2 → R
and its Fourier transform f̂ : Fn2 → R. We refer to

the quantity f̂(α)2 as the energy of a Fourier coefficient

f̂(α).

Fact 2.1. (Parseval’s identity) For any f : Fn2 →
R it holds that ‖f‖2 = ‖f̂‖2 =

√∑
α∈Fn2

f̂(α)2.

A function f : Fn2 → R is Fourier s-sparse for some
sparsity s if the number of non-zero Fourier coefficients
of f is at most s. We let Fs denote the set of all Fourier
s-sparse functions.

2.2 Property Testing We study algorithms that
make queries to a given function f . In this setting two
different query access models are typicaly considered. If
all queries must be chosen in advance without access
to the values of f , we call the corresponding algorithm
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non-adaptive or equivalently, using non-adaptive queries.
Otherwise, the algorithm is adaptive, and uses adaptive
queries, i.e. the queries made by the algorithm might
depend on all previously queried values of f . In
this paper, both our upper and lower bounds apply
specifically to the non-adaptive query model.

We use the following standard definition of property
testing under Hamming distance:

Definition 1. (Property testing [8]) An algo-
rithm A is a property tester with parameter ε > 0 for
a class C of functions f : Fn2 → {−1, 1} if given query
access to f it distinguishes with probability at least 2/3
whether f ∈ C or ming∈C Prx∼Fn2 [f(x) 6= g(x)] ≥ ε. If
neither of the two conditions hold then A can output an
arbitrary answer.

The notions of `22-tester and distance approximator
are defined below. In order to make ε be a scale-
free parameter we assume that ‖f‖22 = 1 throughout
this paper unless otherwise specified. For example,
for Boolean functions f : Fn2 → {−1, 1} this holds
automatically and for real-valued functions this can be
achieved by an appropriate scaling. The `2-distance from
a function f : Fn2 → R to a class C of functions mapping
Fn2 to R is dist2(f, C) = ming∈C ‖f − g‖2.

Definition 2. (`22-testing [3]) An algorithm A is an
`22-tester with parameter ε > 0 for a class C of functions
f : Fn2 → R if given query access to f with unit `2-norm
it distinguishes with probability at least 2/3 whether f ∈ C
or dist22(f, C) ≥ ε.

In order to simplify presentation we say that a
function f is ε-far from a class C in some distance (e.g.
Hamming or `22) if the closest function from C is at
distance at least ε from f .

Generalizing the notion of `22-testing we define a
notion of `22-distance approximation as follows:

Definition 3. (`22-distance approximator) An al-
gorithm A is an `22-distance approximator with param-
eter ε > 0 for a class C of functions f : Fn2 → R if
given query access to f with unit `2-norm it outputs an
estimate ξ such that with probability at least 2/3 it holds
that

∣∣ξ − dist22(f, C)
∣∣ ≤ ε.

2.3 Fourier Hashing We use notation H ≤ Fn2
to denote a subspace H of Fn2 . For H ≤ Fn2 we
use notation H⊥ for the orthogonal subspace of H:
H⊥ := {z ∈ Fn2 | ∀h ∈ H, z ·h = 0} where · denotes inner
product for vectors. Given a ∈ Fn2 , the coset a+H is
defined by the set of points a + H := {a + h|h ∈ H}.
Note that a random subspace of dimension d can be

generated by selecting d independent nonzero vectors of
Fn2 uniformly at random. We say a subspace of Fn2 has
codimension d if the subspace has dimension n− d.

Definition 4. For a subspace H ≤ Fn2 , an element
a ∈ H⊥, and a function f : Fn2 → R, define the
projected function f |a+H : Fn2 → R to be the function
that satisfies f |a+H(z) = E

x∈H⊥

[
f(x + z)χa(x)

]
for

each z ∈ Fn2 . Given a subset A ⊆ H⊥, we define
f |A+H =

∑
a∈A f |a+H .

From this definition, we observe that the values f |a+H(z)
can all be computed simultaneously

Proposition 2.1. The set of queries {f(x+ z)}x∈H⊥
can be used to compute f |a+H(z) for each of the cosets
a+H of H simultaneously.

We give more details about the number of queries
required for computation of f |a+H in Lemma 3.3. We
note that the projection of f onto the cosets of a linear
subspace H yields a partition of the Fourier spectrum
of f . Moreover, the projection of f to a coset a+H is
a function that zeroes out all Fourier coefficients not in
a+H.

We now recall the following Poisson summation
formula. For a reference, see Section 3.3 in [19]. We also
give the proof of Proposition 2.2 in Appendix A.2, for
completeness.

Proposition 2.2. (Poisson Summation Formula) Fix
any subspace H ≤ Fn2 and element a ∈ Fn2 . Then for
the projected function f |a+H :

(1) f |a+H(z) =
∑
β∈a+H f̂(β)χβ(z)

(2) f̂ |a+H(α) =

{
f̂(α) if α ∈ a+H

0 otherwise.

Proposition 2.2 allows the following definition.

Definition 5. The total energy of f |a+H is defined as∑
α∈a+H f̂(α)2 = ‖f̂ |a+H‖22.

Fact 2.2. If H ≤ Fn2 is drawn uniformly at random
from the set of subspaces of codimension d, then for any
distinct a, b ∈ Fn2 \{0}, it holds that Pr[b ∈ a+H] = 2−d.

Fact 2.2 allows one to think of the projections
{f |a+H}a∈H⊥ as a hashing process applied to the Fourier
coefficients of f . In fact, it is also known (for example,
by Proposition 2.9 in [10]) that random projections
correspond to a pairwise independent hashing process.
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3 `22-Distance Approximation and Sparsity
Testing

Recall that the property testing model, initiated by [8],
requires an algorithm to accept objects that have some
property P and reject objects that are at Hamming
distance at least ε from having property P for some input
parameter ε > 0 . In particular, in the property testing
problem for s-sparsity, one would like to differentiate
whether a given function f : Fn2 → R with ||f ||2 = 1
is in the class Fs of Fourier s-sparse functions, or has
distance at least ε from Fs.

Problem 1. (Property Testing for s-Sparsity) Let Fs
be the class of s-sparse functions mapping from Fn2 to
R. Given query access to a function f : Fn2 → R with
||f ||2 = 1 and parameter ε > 0, we call an algorithm
A a property tester with query complexity q if using at
most q queries, A accepts f if f ∈ Fs and rejects if
min
g∈Fs
||f − g||22 ≥ ε.

We now define the problem of energy estimation for
the top s Fourier coefficients, which also allows to solve
the property testing problem. Note that this energy
estimation problem for functions with unit `2-norm is
equivalent to the `22-distance approximation problem in
Definition 3 since both are defined in terms of additive
error approximation.

Problem 2. (Energy Estimation of top s Fourier Coef-
ficients) Let Fs be the class of s-sparse functions map-
ping from Fn2 to R. Given non-adaptive query access
to a function f : Fn2 → R with ||f ||2 = 1 and param-
eters s > 0 and 0 < ε ≤ 1, we call an algorithm A
an ε-estimator of the energy of the top s Fourier coeffi-
cients if using at most q queries, A outputs ξ such that∣∣∣ξ −max|S|=s

∑
α∈S f̂(α)2

∣∣∣ ≤ ε.
The energy estimation problem can be used to solve

the property testing problem above easily with roughly
the same query complexity (see Fact A.1).

Our Algorithm 1 estimates the energy of the top s
Fourier coefficients by first picking a random subspace
H of codimension d = log 2s

ε4 uniformly at random. The
intuition is that by picking the codimension to be large
enough, the top s Fourier coefficients are partitioned
into cosets with only a few collisions, so the estimation
of the energy in the top s cosets is a good estimation of
the energy of the top s Fourier coefficients. To estimate
the energy in the top s cosets, Algorithm 1 samples
γ = O

(
s
ε4 ‖f‖

2
2

)
pairs (x, x+ z) to obtain an empirical

estimate of the energy in each coset within an additive
factor of ε2‖f‖22 with constant probability. This yields
the proof of Theorem 1.1.

Algorithm 1: Energy Estimation(ε, s)

Draw H ≤ Fn2 of codimension d = log 2s
ε4

uniformly at random;

for j = 1 to ` = O
(
log 1

ε

)
do

Ij ← set of pairs (x, x+ z) of size
γ = O

(
s
ε4 ‖f‖

2
2

)
, where

x ∼ U(Fn2 ), z ∼ U(H⊥);

for each a ∈ H⊥ do

y
(j)
a+H ← 0;

for each (x, x+ z) ∈ Ij do
y
(j)
a+H ← y

(j)
a+H+ 1

|Ij |χa(z)f(x)f(x+z)

end

end

end
Return: ξ := maxS⊆H⊥:|S|=s

∑
a∈S

median
(
y
(1)
a+H , y

(2)
a+H , . . . , y

(`)
a+H

)
.

Similarly, Algorithm 2 gives a property tester for
s-sparsity. The success probability for each of these
algorithms can be increased to 1 − δ for any δ > 0 by
taking the median of O

(
log 1

δ

)
parallel repetitions.

Algorithm 2: Fast Fourier Sparsity
Test (FFST)(ε, s)

Let f be some function with known ||f ||2.

Let ξ be the output of Algorithm 1 on input ε
2

and sparsity s.

If ξ ≤
(
1− ε

2

)
||f ||22, reject.

Otherwise, accept.

Our analysis deals with two possible sources of error
in the energy estimation. In Section 3.1, we consider the
error caused by collisions in the hashing scheme and in
Section 3.2, we consider the error caused by sampling
variance in the energy estimates. Note that we perform
worst-case analysis (over all possible sets of size s) for
the hashing error as in the last step of the algorithm we
adaptively select the largest subset.

3.1 Hashing Error We first analyze the error intro-
duced into our estimator by hashing the Fourier coeffi-
cients across multiple cosets (assuming all estimates of
energies in the cosets are exact). Thus the first technical
component of the analysis of the sparsity distance ap-
proximator shows that for a random choice of subspace
H of codimension log 2s

ε4 , the union of the top s cosets
of H has total energy that is close to the sum of the
Fourier mass of the s coefficients largest in magnitude.
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Let E1 ≥ · · · ≥ E2n be the true values of the
energies of the 2n Fourier coefficients corresponding to
the function f : Fn2 → R. Let h be some pairwise
independent hash function with domain [2n] and range
[2d], which can be viewed as partitioning the 2n Fourier
coefficients across the 2d cosets, which we refer to as
buckets. We denote the overall energy in the i-th bucket
as yi, where we assume that the hash function is clear
from the context. Let the buckets be indexed in the non-
increasing order by energy, so that y1 ≥ y2 ≥ · · · ≥ y2d .
Furthermore, let y∗i denote the energy of the largest
coefficient hashing into the i-th bucket. Formally, if
index i corresponds to coset a+H, then we let

yi =
∑

β∈a+H

f̂(β)2, y∗i = max
β∈a+H

f̂(β)2.

Definition 6. (Hashing Error) We define the hash-
ing error of h as errsh(E1, . . . , E2n) =

∑s
i=1 yi − Ei to be

the difference between the overall energy in the top s
buckets and the energy of the top s coefficients.

Note that the hashing error is always non-negative as
there are at most s buckets containing the top s Fourier
coefficients. The contribution to the energy of the ith

bucket from the largest Fourier coefficient hashing into
this bucket is denoted as y∗i . We have:

errsh(E1, . . . , E2n) =
s∑
i=1

yi − Ei

=
s∑
i=1

yi − y∗i +
s∑
i=1

y∗i − Ei

≤
s∑
i=1

yi − y∗i ,(3.1)

where we used the fact that
∑s
i=1 y

∗
i ≤

∑s
i=1 Ei.

We can bound the hashing error across any set of
s buckets, rather than just the hashing error across the
buckets containing the top s Fourier coefficients.

Lemma 3.1. (Expected Hashing Error Bound)
Let H ≤ Fn2 be a subspace of codimension d drawn
uniformly at random. Let zi = yi − y∗i be the “collision
error” in the ith bucket. Then

E
H

[
s∑
i=1

zi

]
≤
√

2s

2d
||f ||22.

Proof : By the Cauchy-Schwarz inequality,
∑s
i=1 zi ≤√

s
√∑s

i=1 z
2
i . Let δjk be the indicator variable for the

event that Fourier coefficients Ej and Ek collide and let
Dj be the indicator variable for the event that Ej is not

the largest coefficient in its hash bucket. Then we have:

s∑
i=1

z2i ≤
2d∑
i=1

z2i =
2d∑
i=1

(yi − y∗i )2

=
∑

j,k∈[2n]

EjEkδjkDjDk

≤
∑

j,k∈[2n]

EjEkδjkDj ,

where the first inequality holds since the s buckets is a
subset of the 2d buckets, and the second inequality holds
because either Dk = 0 or Dk = 1.

Taking expectation over H we have:

E
H

 ∑
j,k∈[2n]

EjEkδjkDj

 = E
H

 ∑
j∈[2n]

E2jDj


+ E
H

 ∑
j 6=k∈[2n]

EjEkδjkDj

 ≤ E
H

 ∑
j∈[2n]

E2jDj


+

(∑2n

j=1 Ej
)2

2d
,

where we used Fact 2.2 and pairwise independence, so
that E

H
[δjk] = 1

2d
. Note that by Fact 2.2, pairwise

independence and a union bound, Pr[Dj = 1] ≤ j−1
2d

and hence for the first term we have:

E
H

 ∑
j∈[2n]

E2jDj

 ≤ 2n∑
j=1

j − 1

2d
E2j ≤

1

2d

2n∑
j=1

j−1∑
k=1

EjEk

≤

(∑2n

j=1 Ej
)2

2d

Putting things together, we have

E
H

[
s∑
i=1

zi

]
≤
√
s · E

H

√√√√ s∑
i=1

z2i

 ≤ √s ·
√√√√E
H

[
s∑
i=1

z2i

]

≤
√

2s

2d

2n∑
j=1

Ej =

√
2s

2d
||f ||22,

where we recall that the first inequality is by Cauchy-
Schwarz, the second is by Jensen and the third is from
the bound on E

H

[∑s
i=1 z

2
i

]
derived above. 2

Now we give an upper bound on the variance of the
difference between the energies of the top s buckets and
their respective largest Fourier coefficients:
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Lemma 3.2. (Variance of the Hashing Error)
Let H ≤ Fn2 be a subspace of codimension d drawn
uniformly at random. Let zi = yi − y∗i be the “collision
error” in the ith bucket. Then

Var
H

[
s∑
i=1

zi

]
≤ 2||f ||42

2d
.

Proof : By pairwise independence we have:

Var
H

[
s∑
i=1

zi

]
≤ Var

H

 2d∑
i=1

zi

 =
2d∑
i=1

Var
H

[zi]

≤
2d∑
i=1

E
H

[
z2i
]
≤

2(
∑n
i=1 Ei)2

2d
=

2||f ||42
2d

,

where the last inequality follows using the same argument
as in the proof of Lemma 3.1. 2

We now give a bound on the hashing error.

Corollary 3.1. If 2d = 2s
ε4 and 0 < ε ≤ 1/2, then

Pr
H

[
errsh(E1, . . . , E2n) ≤ 5ε2||f ||22

]
≥ 15

16
.

Proof : Recall that errsh(E1, . . . , E2n) =
∑s
i=1 yi − Ei.

Let zi = yi−y∗i be the collision error in the ith bucket and
let Z =

∑s
i=1 zi and ‖E‖1 =

∑n
i=1 Ei. From Lemma 3.1,

Lemma 3.2, and Chebyshev’s inequality, we have that
for any α > 0:

Pr

[
Z ≥

√
2s

2d
||f ||22 + α

√
2

2d
||f ||22

]
≤ 1

α2
.

For 2d = 2s
ε4 we have Pr[Z ≥ (1 + α√

s
)ε2||f ||22] ≤ 1/α2.

Recall from (3.1):

s∑
i=1

yi − Ei =
s∑
i=1

yi − y∗i +
s∑
i=1

y∗i − Ei ≤
s∑
i=1

yi − y∗i ,

since
∑s
i=1 y

∗
i ≤

∑s
i=1 Ei. Taking α = 4 and noting that

s ≥ 1, it follows that

s∑
i=1

yi − Ei ≤ 5ε2||f ||22

with probability at least 15/16. 2

3.2 Estimation Error We now analyze the error
introduced to our estimator through sampling used to
approximate the true bucket energies. Our intuition
stems from the following standard fact to estimate the
total energy via sampling.

Fact 3.1. (Fact 2.5 in [10])
∑
α∈a+H f̂(α)2 =

E
x∈Fn2 ,z∈H⊥

[χa(z)f(x)f(x+ z)].

Using Fact 3.1, the energy
∑
α∈a+H f̂(α)2 in each

bucket a + H can be approximated by repeatedly
querying f using the following Lemma 3.3, whose proof
is similar to Proposition 2.6 in [10]. We include the full
proofs to formalize the dependency on ||f ||2.

In the language of Lemma 3.3, suppose yi is the
energy of bucket a+H and Ij is a set of pairs (x, x+ z)
of size γ, as in Algorithm 1. Then the estimate yi,j
corresponding to a sample Ij is:

yi,j =
1

|Ij |
∑

(x,x+z)∈Ij

χa(x)f(z)(x+ z).

We now bound the expected squared distance
between yi,j and yi by the inverse of the sample size.

Lemma 3.3. Given a subspace H ≤ Fn2 , let y1 ≥ y2 ≥
. . . ≥ y2d be the true energies in each of the buckets and
yi,j be the estimate of yi given sample Ij of size γ. Then
using γ = O

(
s
ε4 ||f ||

2
2

)
queries to f ,

E
Ij

[
|yi,j − yi|2

]
≤ ε4

s
||f ||22.

Proof : Given a subspace H ≤ Fn2 , let x, y ∈ Fn2
so that |f(x)f(y)| ≤ f2(x)+f2(y)

2 ≤ 1
2 ||f ||

2
2. Thus, an

empirical estimation of E
x∈Fn2 ,z∈H⊥

[χa(z)f(x)f(x+ z)],

withO
(

1
ε2 log 1

δ

)
queries to f , is within an additive factor

of ε||f ||22 with probability at least 1 − δ by standard
Chernoff bounds.

Let C be a constant such that C
ε2 log 1

δ samples
suffice to estimate yi,j−yi within an additive ε||f ||22 with
probability at least 1 − δ. Equivalently for any θ > 0,
the probability that |yi,j − yi| ≥ θ using γ samples is at

most e
− γθ2

C||f||42 . Then we have:

E
[
|yi,j − yi|2

]
=

∫ ∞
0

Pr
[
|yi,j − yi|2 ≥ t

]
dt

=

∫ ∞
0

Pr
[
|yi,j − yi| ≥

√
t
]
dt

≤
∫ ∞
0

e
− γt

C||f||42 dt =
C||f ||42
γ

.

Hence, for γ = O
(
s
ε4 ||f ||

2
2

)
, we have E

[
|yi,j − yi|2

]
≤

ε4

s ||f ||
2
2, as desired. 2

Note that the estimate yi,j is exactly the estimate

y
(j)
a+H in Algorithm 1, where bucket a+H is the bucket

with the ith largest Fourier coefficient. We use two

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited63

D
ow

nl
oa

de
d 

11
/2

6/
21

 to
 1

73
.7

3.
15

2.
18

0 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



different notations to refer to the same quantity since
it is more convenient to use the notation yi,j to index
estimates by magnitude of Fourier coefficient, whereas

the notation y
(j)
a+H is more convenient to index by coset.

Moreover, observe that we can obtain estimates yi,j of
the energies yi simultaneously, by Proposition 2.1.

As before, let y∗i denote the contribution to the en-
ergy of the ith bucket from the largest Fourier coefficient
hashing into this bucket.

Lemma 3.4. Let ε > 0 and H be a random subspace of
codimension d = log 2s

ε4 and let y1 ≥ y2 ≥ . . . ≥ y2d be
the true energies in each of the buckets. Let ` = O

(
log 1

ε

)
be the number of random samples. Then for any η > 0,

Pr[|y∗i − yi|2 ≥ η] ≤
(

2eε4||f ||22
sη

)`/2
,

where the probability is taken over all samples of size `.

Proof : By applying Markov’s inequality to
Lemma 3.3, it follows that for each pair of i and j,

Pr
[
|yi,j − yi|2 ≥ η

]
≤ ε4||f ||22

sη
.

Then the probability that at least half of the ` samples
returns such estimates is

Pr

[
|{j : |yi,j − yi|2 ≥ η}| >

`

2

]
≤
(
`

`/2

)(
ε4||f ||22
sη

)`/2
≤
(

2eε4||f ||22
sη

)`/2
,

where the second inequality follows from the well-known

bound on the binomial coefficient
(
n
k

)
≤
(
n·e
k

)k
for all

1 ≤ k ≤ n. The claim then follows from the fact that y∗i
is the median of yi,j across all j. 2

Lemma 3.5. Let H be a random subspace of codimen-
sion d = log 2s

ε4 . Then the expected value of the estima-
tion error satisfies

E
H

[
s∑
i=1

|y∗i − yi|2
]
≤ ε2 · ||f ||22.

Proof : Let β =
2eε4||f ||22
sε4/`

. Then E
H

[∑s
i=1 |y∗i − yi|2

]
equals

E
H

[∫ ∞
0

min(s, |{a : |y∗a − ya|2 ≥ η|})dη
]

≤
∫ ∞
0

min(s,E
[
|{i : |y∗i − yi|2 ≥ η|}

]
)dη

≤
∫ ∞
0

min

(
s, 2d

(
2eε4||f ||22

sη

)`/2)
dη

≤
∫ β

0

s dη +

∫ ∞
β

2d
(

2eε4||f ||22
sη

)`/2
dη,

where the second inequality follows from Lemma 3.4.
Thus E

H

[∑s
i=1 |y∗i − yi|2

]
is at most

2eε4||f ||22
ε4/`

+ 2d
(

2eε4||f ||22
s

)`/2
2

`− 2

(
1

β

)`/2−1
=

2eε4||f ||22
ε4/`

+ 2d
(

2eε4||f ||22
s

)
ε2

ε4/`
2

`− 2
.

Hence for ` = Θ
(
log 1

ε

)
, we have E

H

[∑s
i=1 |y∗i − yi|2

]
≤

ε2 · ||f ||22. 2

3.3 Proof of Theorem 1.1 Recall that our algo-
rithm returns an estimate ξ of the sum of the s buckets
with the largest energy. Since the estimation error is
small by Lemma 3.5, ξ is a good estimate of the actual
sum of the s buckets with the largest energy. Because
the hashing error is small by Corollary 3.1, ξ is also
a good approximation of the energy of the s Fourier
coefficients β1, . . . , βs ∈ Fn2 with the largest energy. We
define the function f∗ so that the Fourier transforms of
f∗ and f have the same values at the Fourier coefficients
{βi}. However, the Fourier transform of f∗ has value
zero at the remaining coefficients outside of {βi}. Thus
by Parseval’s identity, f∗ is the s-sparse function closest
to f . Hence, ξ is a good estimate of ||f∗||22.

For each random sample Ij of size

γ = O
(
s‖f‖22
ε4

)
, let y

(j)
a+H be the corre-

sponding estimate of (f̂ |a+H)2. Let S∗ =

argmax|S|=s
∑
a∈S median{y(1)a+H , y

(2)
a+H , . . . , y

(`)
a+H},

where ` = O
(
log 1

ε

)
is the number of repetitions. Let

β∗f |a+H = argmaxα∈a+H f̂(α)2 and define the function
h : Fn2 → R by setting

ĥ(β∗f |a+H) = sgn(f̂(β∗f |a+H)) ·median

{√
y
(i)
a+H

}
for each a ∈ S∗ to be the only non-zero Fourier
coefficients of h. Let β1, β2, . . . , βs be defined so that

f̂(β1), f̂(β2), . . . , f̂(βs)

are the largest s Fourier coefficients of f . Define the
function f∗ : Fn2 → R by setting

f̂∗(βi) = f̂(βi)

for each 1 ≤ i ≤ s to be the only non-zero Fourier
coefficients of f∗.
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Lemma 3.6. Let ξ be the output of Algorithm 1 and f∗

and h be defined as above. Then∣∣∣ξ − ||f∗||22∣∣∣ ≤ 2||f∗ − h||2||f ||2.

Proof : Observe that Algorithm 1 outputs

ξ =
∑
a∈S∗

median
{
y
(1)
a+H , y

(2)
a+H , . . . , y

(i)
a+H

}
=
∑
a∈S∗

ĥ(β∗f |a+H)2 = ||h||22.

Therefore,∣∣∣ξ − ||f∗||22∣∣∣ =
∣∣||h||22 − ||f∗||22∣∣

= (|||h||2 − ||f∗||2|) (|||h||2 + ||f∗||2|) .

By triangle inequality, |||h||2 − ||f∗||2| ≤ ||f∗ − h||2 and
|||h||2 + ||f∗||2| ≤ ||h||2 + ||f∗||2. Thus,∣∣∣ξ − ||f∗||22∣∣∣ ≤ ||f∗ − h||2(||h||2 + ||f∗||2).

Since ||h||2 + ||f∗||2 ≤ 2||f ||2, then it remains to bound
||f∗ − h||2. 2

Lemma 3.7. Let ξ be the output of Algorithm 1 and f∗

be defined as above. Then

Pr
[∣∣∣ξ − ||f∗||22∣∣∣ ≤ 14ε||f ||22

]
≥ 7

8
.

Proof : Let g : Fn2 → R be the s-sparse function
defined by setting

ĝ(β∗f |a+H) = f̂(β∗f |a+H)

for each a ∈ S∗ to be the only non-zero Fourier
coefficients of f∗. Then by triangle inequality,

||f∗ − h||2 ≤ ||f∗ − g||2 + ||g − h||2.

Recall that E1 ≥ · · · ≥ E2n are the true values of the
energies of the 2n Fourier coefficients corresponding to
function f : Fn2 → R and y∗i is the contribution to
the energy of the ith bucket from the largest Fourier
coefficient hashing into this bucket. Let S be the set of
indices corresponding to the buckets with nonzero energy
in f∗ and g and observe that |S| ≤ s. Thus, ||f∗−g||22 is
at most

∑
i∈S(yi−Ei), where yi is the total energy in the

ith bucket. By Corollary 3.1,
∑
i∈S(yi − Ei) ≤ 5ε2||f ||22

with probability at least 15
16 .

On the other hand, ||g − h||22 ≤ 16ε2||f ||22 with
probability at least 15

16 by Lemma 3.5 and Markov’s

inequality. Thus, ||f∗−h||2 ≤
(√

5 + 4
)
ε||f ||2 ≤ 7ε||f ||2

and by Lemma 3.6,
∣∣∣ξ − ||f∗||22∣∣∣ ≤ 14ε||f ||22 with

probability at least 7
8 . 2

By Lemma 3.3, it suffices to use O
(
s
ε4 ‖f‖

2
2

)
queries

to bound the expected squared error of an estimator.
Since Algorithm 1 take the median of ` = O

(
log 1

ε

)
estimators to bound the failure probability by a constant,
then the total number of queries is O

(
s
ε4 ‖f‖

2
2 log 1

ε log 1
δ

)
to obtain failure probability 1 − δ. Hence, the query
complexity follows as we assume ‖f‖22 = 1.

Algorithm 1 runs through ` = O
(
log 1

ε

)
iterations,

each time sampling f at γ = O
(
s
ε4

)
pairs of points

and updating each of the 2d = O
(
s
ε4

)
cosets. Hence,

Algorithm 1 runs in O
(
s2

ε8 log 1
ε

)
time. To boost the

failure probability up to 1− δ, the total running time is

O
(
s2

ε8 log 1
ε log 1

δ

)
.

We do not attempt to optimize runtime in Algo-
rithm 1, as further optimizations can be made using
standard sparse Hadamard transform techniques, e.g.
page 163 in [6] or in [16, 21] to update the empirical es-
timation of each coset, which improves the total running
time to O

(
s
ε4 log s

ε4 log 1
ε log 1

δ

)
.

4 Lower Bounds for `22-Testing of s-Sparsity

To the best of our knowledge the only lower bound
known for the s-sparsity testing problem is due to [10].
Formally, they construct a hard distribution that is far
from s-sparse in Hamming distance but since the support
of the distribution is Boolean functions this also implies a
lower bound under `22. Under `22-distance their Theorem
2 can be restated as follows:

Theorem 4.1. (Lower bound for `22 testing of Fourier
sparsity [10]) Fix any constant τ > 0. Let C(τ) =
O (log 1/τ) and s ≤ 2n/C(τ). There exists a constant c(τ)
so that any algorithm, which given non-adaptive query
access to f : Fn2 → {−1, 1}, that distinguishes s-sparse
functions from functions that are c(τ)-far from s-sparse
in `22 distance with probability at least 2/3 requires Ω(

√
s)

queries.

Below we extend this result to larger values of s for
non-adaptive testers of real-valued functions.

4.1 Ω(
√
s) Lower Bound for Non-adaptive

Testers We show a lower bound by designing two dis-
tributions DY ES and DNO, the former supported on the
class of interest and the latter being far from it, such that
the total variation distance between these distributions
restricted to the query set is at most δ. This implies that
the query set cannot distinguish the two distributions
with probability greater than 1+δ

2 .

Definition 7. (Total Variation Distance)
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The total variation distance between two random
variables P1 and P2 with corresponding probability
density functions p1(x), p2(x) ∈ Rn is defined as
dTV (P1, P2) = 1

2

∫
Rn |p1(x)− p2(x)| dx.

Theorem 4.2. For any s ≤ 2n−1, there exists a con-
stant c > 0 such that any non-adaptive algorithm given
query access to f : Fn2 → R such that ‖f‖22 = 1± ε that
distinguishes whether f is s-sparse or f is 1

3 -far from
s-sparse in `22 with probability at least 2/3 has to make
at least c

√
s queries to f .

Proof : We define two distributions DY ES and DNO
where DY ES is supported on s-sparse functions only and
DNO is supported on functions that are far from s-sparse.
Then by Yao’s principle it suffices to show that if the size
of the query set Q is at most c

√
s then the total variation

distance between the two distributions restricted on the
query set dTV (DY ES(Q),DNO(Q)) < 1/3.

We now define the DY ES distribution. For each
z ∈ 2[n] let gz ∼ N(0, 1) be an independent zero
mean and unit variance Gaussian random variable. Let
S ⊆ 2[n] be a random subset of fixed size s chosen
uniformly at random from the collection of all subsets
of size exactly s. Our distribution DY ES corresponds to
a random family of functions fS defined as follows:

fS(x) :=
1√
s

∑
z∈S

gzχz(x).

The distribution DNO is defined similarly, except that
we fix S = 2[n], i.e. we set:

f(x) =
1

2n/2

∑
z∈2[n]

g′zχz(x),

where g′z ∼ N(0, 1) are again independent and identically
distributed standard normal variables.

Note that by standard Chernoff bounds with high
probability functions sampled from both distributions
satisfy ‖f‖22 = 1± ε. Furthermore by Chernoff bounds,
with high probability functions in the support of DNO
are at least 1

3 -far in `22 from s-sparse for s ≤ 2n−1 (their
expected distance is at least 1/2). Consider any non-
adaptive randomized algorithm that makes q queries. By
Yao’s principle we can fix the set of queries to form a set
Q ⊆ Fn2 or size q. The values of fS on Q form a vector
with (possibly correlated) zero mean Gaussian entries.

Fix any S of size s. If x = y then we have:

Eg[fS(x)fS(y)] = Eg[fS(x)2] = Eg[fS(x)2]

=
1

s
Eg

(∑
z1∈S

gz1χz1(x)

)2


=
1

s

(∑
z1∈S

Eg[g2
z1 ]

)
= 1.

Computing the values of the off-diagonal entries in the
covariance matrix of fS for x 6= y, then Eg[fS(x)fS(y)] =
1
sEg

[∑
z1∈S gz1χz1(x)

∑
z2∈S gz2χz2(y)

]
, which equals

1

s
Eg

[∑
z∈S

g2
zχz(x)χz(y) +

∑
z1 6=z2∈S

gz1χz1(x)gz2χz2(y)
]

=
1

s

(∑
z∈S

χz(x)χz(y)Eg

[
g2
z

]
+

∑
z1 6=z2∈S

χz1(x)χz2(y)Eg [gz1gz2 ]
)

=
1

s

(∑
z∈S

χz(x)χz(y)

+
∑

z1 6=z2∈S

χz1(x)χz2(y)Eg [gz1 ]Eg[gz2 ]
)

=
1

s

∑
z∈S

χz(x)χz(y).

Let ξ1, . . . , ξq be the inputs in the query set Q. For
any fixed z ∈ 2[n] define az ∈ {−1, 1}q to be a column
vector with entries az,i = χz(ξi). Then the covariance
matrix of fS(ξ1), . . . fS(ξq) under the distribution DY ES
is given by a random family of matrices MS ∈ Rq×q
defined as follows:

MS =
1

s

∑
z∈S

aza
T
z .

Similarly for DNO the covariance matrix of
f(ξ1), . . . , f(ξq) is 1

2n

∑
z∈2[n] aza

T
z = I.

The following standard fact allows to bound the total
variation distance between two zero mean Gaussians with
known covariance matrices.

Fact 4.1. (See e.g. Corollary 2.14 in [5]) Let δ > 0 be
sufficiently small and let N (0,Σ1) and N (0,Σ2) be nor-
mal distributions with zero mean and covariance matrices
Σ1 and Σ2 respectively. If ‖I − Σ

−1/2
2 Σ1Σ

−1/2
2 ‖F ≤ δ

then:
dTV (N (0,Σ1),N (0,Σ2)) ≤ O (δ) .

Using the above fact and setting Σ1 = MS and
Σ2 = I in order to show an upper bound on the total
variation distance it suffices to bound the expected
Frobenius norm of the difference ES [‖I −MS‖F ].

Thus ES

[∥∥I − 1
s

∑
z∈S aza

T
z

∥∥
F

]
equals

ES

 ∑
1≤i,j≤q

(
δij −

1

s

∑
z∈S

χz(ξi)χz(ξj)

)2

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=
∑

1≤i≤q

ES

(1− 1

s

∑
z∈S

χz(ξi)
2

)2


+
∑

1≤i 6=j≤q

ES

(1

s

∑
z∈S

χz(ξi)χz(ξj)

)2


=
1

s2

∑
1≤i6=j≤q

ES

[(∑
z1∈S

χz1(ξi)χz1(ξj)

)

·

(∑
z2∈S

χz2(ξi)χz2(ξj)

)]
=

1

s2

∑
1≤i6=j≤q

ES

[∑
z∈S

χz(ξi)
2χz(ξj)

2

]

+ ES

 ∑
z1 6=z2∈S

χz1(ξi)χz1(ξj)χz2(ξi)χz2(ξj)


≤ q2

s
.

Thus if q <
√
δs we have

dTV (DY ES(Q),DNO(Q)) ≤ O (δ). By picking δ
to be a sufficiently small constant it follows that no
algorithm that makes less than c

√
s queries for some

constant c > 0 can distinguish DY ES and DNO with
high probability. 2
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A Appendix

A.1 Basic Facts

Fact A.1. (Reduction of Property Testing to Energy
Estimation of Top s Fourier Coefficients) Suppose we
are given query access to some function f : Fn2 → R
with ||f ||22 = 1. Given an energy estimator of the top s
Fourier coefficients that uses qs(ε) queries, there exists a
property tester for s-sparsity with parameter ε that uses
qs
(
ε
2

)
queries, where qs(·) is some function that depends

on ε.

Proof : Let Fs be the class of s-sparse functions
mapping from Fn2 to R. Trivially if f ∈ Fs, then the
sum of the top s Fourier coefficients is ||f ||22 and so an ε

2 -
energy estimator of the top s Fourier coefficients outputs
a value ξ with ξ ≥ ||f ||22 − ε

2 ||f ||
2
2.

On the other hand, if for any s-sparse function g, it
holds that ||f − g||22 ≥ ε||f ||22, then the energy of the top
s Fourier coefficients of f is at most (1− ε)||f ||22. Then
an ε

2 -energy estimator of the top s Fourier coefficients
outputs a value ξ with∣∣∣∣∣ξ − max

|S|=s

∑
α∈S

f̂(α)2

∣∣∣∣∣ ≤ ε

2
||f ||22,

so the energy estimator outputs a value ξ with ξ ≤
||f ||22 − ε

2 ||f ||
2
2.

Thus, the energy estimator can differentiate whether
f ∈ Fs or f is ε-far from s-sparsity, using qs

(
ε
2

)
queries.

2

A.2 Poisson Summation Formula Recall the
proof of the Poisson summation formula:

Proof of Proposition 2.2: For any z ∈ Fn2 , we have
that

f |a+H(z) = E
x∈H⊥

[ ∑
β∈Fn2

f̂(β)χβ(x+ z) · χa(x)
]

=
∑
β∈Fn2

f̂(β)χβ(z) · E
x∈H⊥

[χβ+a(x)] .

Since E
x∈H⊥

[
χβ+a(x)

]
equals 1 when β + a ∈ H and 0

otherwise, we obtain

f |a+H(z) =
∑

β∈a+H

f̂(β)χβ(z)

and hence

f̂ |a+H(α) = E
x∈Fn2

[f |a+H(x)χα(x)]

= E
x∈Fn2

 ∑
β∈a+H

f̂(β)χβ(x)χα(x)


=

∑
β∈a+H

(
f̂(β) E

x∈Fn2
[χβ(x)χα(x)]

)
= f̂(α).

2
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