Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Fast Fourier Sparsity Testing

Grigory Yaroslavtsev*

Samson Zhou'

October 31, 2019

Abstract

A function f : Fy — R is s-sparse if it has at most s non-zero
Fourier coefficients. Motivated by applications to fast sparse
Fourier transforms over Fy, we study efficient algorithms for
the problem of approximating the f2-distance from a given
function to the closest s-sparse function. While previous
works (e.g., Gopalan et al. SICOMP 2011) study the problem
of distinguishing s-sparse functions from those that are far
from s-sparse under Hamming distance, to the best of our
knowledge no prior work has explicitly focused on the more
general problem of distance estimation in the ¢2 setting, which
is particularly well-motivated for noisy Fourier spectra. Given
the focus on efficiency, our main result is an algorithm that
solves this problem with query complexity O (s) for constant
accuracy and error parameters, which is only quadratically
worse than applicable lower bounds.

1 Introduction

The Fourier representation of the function f:F3 — R
is the function f : FJ — R defined by the forward
Fourier transform f(oz) = Eeerp[f(#)xa(x)] and its
inverse f(x) Zaew f(a)xa(z), where for each
a € Fg', the function x, : F3 — R is defined by
Ya(z) = (—1)Zi=1 2% The values f(«) are the Fourier
coefficients of f. When f has at most s non-zero
Fourier coefficients, we say that it is Fourier s-sparse,
or just s-sparse for short. The Fourier sparsity of
functions plays an important role in many different
areas of computer science, including error-correcting
codes [9, 1], learning theory [15, 17], communication
complexity [26, 4, 18, 24], property testing [10, 25], and
parity decision tree complexity [27, 23].

There has also been renewed interest in the Fourier
sparsity of functions over various finite abelian groups
with the recent development of specialized Fourier
transform algorithms for such functions [12, 13]. These
algorithms improve on the efficiency of the standard
Fast Fourier Transform algorithms for functions with

*Indiana University, Bloomington & The Alan Turing Institute,

London, UK. E-mail: gyarosla@iu.edu
fIndiana University, Bloomington. E-mail: samsonzhou@gmail.
com

57

sparse Fourier transforms by taking advantage of this
sparsity itself. Since many functions (and/or signals) in
practical applications do display Fourier sparsity, this
line of research has yielded many exciting applications as
well as theoretical contributions (see [11] for details). For
example, much of the recent work on the sparse Fourier
transform has focused on functions over fundamental
domains, such as the line or the hypergrid. Meanwhile, a
sparse Fourier transform for functions over FJ' has been
known for over twenty years as the Goldreich—Levin [9]
and Kushilevitz—Mansour [15] algorithm. This algorithm
can learn functions that are (close to) s-sparse, using
time and query complexity poly(n, s). Since many classes
of functions over FJ' are known to be close to being s-
sparse for a certain value of s (e.g., monotone functions,
decision trees, r-DNF formulas, etc.), the sparse Fourier
transform given by the GL/KM-algorithm is one of the
cornerstones of computational learning theory.

One of the main limitations of the sparse Fourier
transform as a technique is the fact that its efficiency is
conditional on the assumption that the data of interest
can be sparsely represented in the Fourier domain.
Hence in order to reliably use sparse Fourier transform
algorithms it is beneficial to have a way to test if a
function is s-sparse or, more generally, to estimate the
distance of a function to the closest s-sparse function.
For such tasks property testing algorithms often come
into play as a preprocessing step (see, e.g., [22]) since they
typically require a much smaller number of samples and
other resources such as time and space. An important
consideration when using property testing is the fact
that presence of two kinds of noise in the data must be
tolerated: small fraction of errors/outliers [20] (noise
of small Hamming weight) as well as arbitrary noise
with small £,-norm [3]. Since the performance of sparse
FFT algorithms is conditioned on the sparsity under £3-
distance, the subject of our study is to what extent can
sparsity under /3 distance be tested. The fundamental
reason why ¢3-distance plays a special role in the Fourier
domain is its relation to the energy of the signal that
is proportional to the sum of squares of the Fourier
coeflicients according to Parseval’s theorem.

Formally, we define the ¢3-distance between f and g

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

mailto:gyarosla@iu.edu
mailto:samsonzhou@gmail.com
mailto:samsonzhou@gmail.com

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

as dist3(f, 9) = |If — 9l = 3w Ypemy (f(2) — g(2)) and
the ¢3-distance between f and a class P of functions as
dist3(f, P) = mingep dist3(f, g). The distance to Fourier
s-sparsity is the latter distance when P is the set of
functions with Fourier sparsity at most s. We denote the
class of all Fourier s-sparse functions as F,. Hence our
main goal is to estimate dist3(f, Fs) up to an additive
error d-e. We refer to it as £3-distance estimation problem
and to the closely related decision version as tolerant
£3-testing.

We also reserve the name of non-tolerant £3-testing
for an easier promise problem of distinguishing functions
with Fourier sparsity at most s from those that are e-far
from having such sparsity, i.e., dist3(f, Fs) > e. Note
that when working with noisy Fourier spectra, where
most of the Fourier coefficients are non-zero, this decision
can be trivial when s < 2", as an {3-testing algorithm
can just always reject. Hence the distance estimation
problem described above can be substantially harder for
such spectra. To simplify presentation, we call a class
e-testable with ¢ queries if there exists an algorithm
which makes ¢ queries and achieves the above guarantee
with constant probability. We will also use Hamming
distance while keeping the rest of the definitions the
same in order to describe some of the previous work in
the area of property testing. In this case the distance
between f and g is defined as Prpry[f(z) # g(z)] and
all the definitions above are changed accordingly.

1.1 Previous work The most direct approach for £2-
distance estimation and £3-testing is to use the testing-by-
learning approach established by Goldreich, Goldwasser,
and Ron [8]. Using the Goldreich-Levin / Kushilevitz—
Mansour algorithm [9, 15], we can learn an s-sparse
function h that will be essentially as close to f as possible.
We can then estimate the distance between f and h to get
a good approximation of the distance from f to Fourier
s-sparsity. This approach requires O (sn) queries in
order to achieve constant error € (see, e.g., the textbook
exposition in [7, 19]). An improvement to this approach
would be to use hashing to reduce the dimension down to
a subspace of size O (s?) (thus introducing no collisions
between the top s coefficients) and then run GL/KM
within the subspace. The complexity of this approach
would be O (slogs) queries for constant €, where the
log s factor results from using O (32) buckets to avoid
collisions among the top s coefficients. Other related
previous work (e.g. [2] who study testing sparsity over
known and unknown bases, including the Fourier basis)
also incurs extra factors in query complexity. !

TAlso, since [2] handles a much more general problem in order

to handle arbitrary design matrices, the running time of their

58

The first specialized algorithm for the problem of
testing Fourier sparsity under Hamming distance was de-
veloped by Gopalan et al. [10]. They give a non-tolerant
tester for Fourier s-sparsity under Hamming distance
with a number of queries to f that is independent of
n and polynomial in s and 1/e. More precisely, the fo-
cus of [10] was a slightly different problem where the
class P of interest is defined to contain only Boolean
s-sparse functions. Below we will refer to this class as
F2/1 2 However, in fact [10] show that with some loss in
parameters, this problem can be reduced to estimating
£3-distance from Fj, the problem that we study in this
paper. Thus an implicit ingredient of the [10] algorithm
is a £3-distance estimation algorithm for F, with query
complexity O (poly(s)) for any constant additive error.

An active line of previous work focuses on toler-
ant testing under Hamming distance. Wimmer and
Yoshida [25] showed that the general approach of [10]
can be extended to yield tolerant testers for Fourier s-
sparsity of Boolean functions. Specifically, they give an
algorithm that distinguishes between functions that are
€/3-close to Fourier s-sparse from those that are e-far
from Fourier s-sparse under Hamming distance, using
poly(s) queries. This allows one to approximate the
distance to Fourier s-sparsity up to some multiplicative
factor. The polynomial dependence on s is fairly large
and the result does not extend to additive error. Algo-
rithms for estimating the Hamming distance to Fourier
s-sparsity up to an additive error can be also derived
through a general framework of Hatami and Lovett [14].
However, the instantiation of the [14] framework results
in power tower dependency on s.

1.2 Owur Contributions We introduce two new al-
gorithms for testing Fourier s-sparsity with respect to
¢3-distance. Our first main result shows that one can
approximate the distance to Fourier s-sparsity in £3-
distance with a number of non-adaptive queries that is
in fact linear in s. This result is proved in Section 3.

THEOREM 1.1. (Approzimating (3-distance to s-
sparsity) For any s > 1 and ¢ > 0, there is an
algorithm that given mon-adaptive query access to a
function f : F3 — R with unit l3-norm takes at most
O (% logllog}) queries and approzimates dist3(f, Fs)
up to an additive error te with probability 1 — § and
running time O (Zlog 1) (see Section 3.)

algorithms translates to polynomial in 2" in our case, which can
be prohibitively large for our application.

2While .7:2/1 C Fs in general there is no known relationship
between testing and distance estimation query complexities of
classes and their subclasses.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Here, the O notation suppresses polylogarithmic factors
in s and %

As mentioned before, the main challenge in testing
Fourier s-sparsity with respect to £2-distance instead of
Hamming distance seems to be the accurate estimation
of a large number of possibly small nonzero Fourier
coeflicients using a small number of queries. Whereas a
function can only be e-far from Fourier s-sparsity with
respect to Hamming distance by having a large number
of nonzero Fourier coefficients, a function can be e-far
from Fourier s-sparsity with respect to ¢2-distance by
either having too many large Fourier coefficients or a
large number of small nonzero Fourier coefficients.

Instead of estimating these small Fourier coefficients,
we randomly partition the set of Fourier coefficients into
a number of cosets by first picking a random subspace
H and measuring the energy (the sum of the squared
Fourier coefficients) in each coset. If H has sufficiently
large codimension, then the top Fourier coefficients are
partitioned into separate cosets, so the estimation of the
energy in the top cosets is a good estimation of the energy
of the top Fourier coefficients. To estimate the energy
in each coset, we query the function at a number of
random locations to obtain an empirical estimate within
an additive factor of €2| f||3 with constant probability.
We then bound the probability of two sources of errors:
the hashing error, which originates from drawing a
subspace in which large Fourier coefficients collide, and
the estimation error, which results from inaccurate
empirical estimations. Putting things together, we show
that our estimator approximately captures the Fourier
s-sparse function closest to f in £3-distance and hence
gives a good approximation of the distance from f to
the closest Fourier s-sparse function.

We also show a lower bound of Q(1/s) for f3-testing
of Fs for non-adaptive query algorithms.

THEOREM 1.2. For any s < 2"‘1, there exists a con-
stant ¢ > 0 such that any non-adaptive algorithm given
query access to f: FY — R such that ||f]|3 = 1 £ € that
distinguishes whether f is s-sparse or f is %—far from
s-sparse in {3 with probability at least 2/3 has to make
at least cv/s queries to f (see Section 4.1).

Our lower bound results from designing two distribu-
tions Dy gs and Dy, where the distribution Dy gg is
the set of Fourier s-sparse functions whose Fourier coeffi-
cients are scaled Gaussian random variables whereas the
Dyo distribution is the set of functions with support on
all Fourier coefficients. The Fourier coefficients in the
Dyo distribution are Gaussian random variables with a,
different scaling, such that the total variation distance
between the Dy ggs and Dy distributions restricted to
a small query set is also small.

59

[10] gives an ©(4/s) property testing lower bound for
.7-"2 /1 Their results can be extended to Fs, provided that
s < 2" for a specific constant ¢ > 0, whereas our results
covers the full range of values of s. Thus our results in
Theorem 1.1 above are at most a quadratic factor away
from optimal. We consider closing the quadratic gap in
query complexity of £3-distance estimation for F as the

main open problem posed by our work.

2 Preliminaries

For a finite set S we denote the uniform distribution

over S as U(9).

2.1 Fourier Analysis We consider functions from
Fg' to R. For any fixed n > 1, the space of these functions
forms an inner product space with the inner product
(f,9) = Every [f(2)9(2)] = 5 X perp f(2)g(x). The lr-

norm of f : F3' = Riis |2 = (/. [) = VEal/(2)?]
and the /o-distance between two functions f,g: FJ' —
R is the fy-norm of the function f — g. We write
diste(f, g) = ||f — gll2- Tt is, in other words, ||f — g||2 =
VIF=0.7=0) = g/ Laesp @) - 9(@)*

For a € Fy, the character xo : F3 — {—1,1} is
the function defined by xo(x) = (—=1)*?®. The Fourier
coefficient of f : Fg' — R corresponding to « is
f(a) = Eo[f(2)xa(x)]. The Fourier transform of f is
the function f : FJ — R that returns the value of each

Fourier coefficient of f. The set of Fourier transforms
of functions mapping F3' — R forms an inner product

space with inner product <f,§> = Eaeﬁ?; f(a)g(a).

7 =
ZQGF; f(a)?. Note that the inner product and /-
norm are weighted differently for a function f:Fg" — R
and its Fourier transform f : F3® — R. We refer to
the quantity f(«)? as the energy of a Fourier coefficient
fla).
FACT 2.1. (PARSEVAL'S IDENTITY) For any f : F3' —
R it holds that || fll2 = || fll2 = \/ X serp ()

A function f : F3' — R is Fourier s-sparse for some
sparsity s if the number of non-zero Fourier coefficients
of f is at most s. We let F, denote the set of all Fourier
s-sparse functions.

The corresponding fy-norm is | f|ls =

2.2 Property Testing We study algorithms that
make queries to a given function f. In this setting two
different query access models are typicaly considered. If
all queries must be chosen in advance without access
to the values of f, we call the corresponding algorithm

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

non-adaptive or equivalently, using non-adaptive queries.
Otherwise, the algorithm is adaptive, and uses adaptive
queries, i.e. the queries made by the algorithm might
depend on all previously queried values of f. In
this paper, both our upper and lower bounds apply
specifically to the non-adaptive query model.

We use the following standard definition of property
testing under Hamming distance:

DEFINITION 1. (PROPERTY TESTING [8]) An algo-
rithm A is a property tester with parameter ¢ > 0 for
a class C of functions f : F} — {—1,1} if given query
access to f it distinguishes with probability at least 2/3
whether f € C or mingec Pro gy [f(x) # g(x)] > €. If
neither of the two conditions hold then A can output an
arbitrary answer.

The notions of £3-tester and distance approximator
are defined below. In order to make ¢ be a scale-
free parameter we assume that ||f||3 = 1 throughout
this paper unless otherwise specified. For example,
for Boolean functions f: Fy — {—1,1} this holds
automatically and for real-valued functions this can be
achieved by an appropriate scaling. The f5-distance from
a function f : Fg* — R to a class C of functions mapping
F3' to R is dista(f,C) = mingec || f — gl|2-

DEFINITION 2. ({3-TESTING [3]) An algorithm A is an
(3-tester with parameter € > 0 for a class C of functions
f:F3 — R if given query access to f with unit lo-norm
it distinguishes with probability at least 2/3 whether f € C
or dist3(f,C) > e.

In order to simplify presentation we say that a
function f is e-far from a class C in some distance (e.g.
Hamming or £3) if the closest function from C is at
distance at least € from f.

Generalizing the notion of ¢3-testing we define a
notion of ¢3-distance approximation as follows:

DEFINITION 3. ({3-DISTANCE APPROXIMATOR) An al-
gorithm A is an (3-distance approximator with param-
eter € > 0 for a class C of functions f : Fg¥ — R if
given query access to f with unit fo-norm it outputs an
estimate & such that with probability at least 2/3 it holds
that ‘5 - dist%(f,C)’ <e.

2.3 Fourier Hashing We use notation H < FJ
to denote a subspace H of Fy'. For H < F3 we
use notation H+ for the orthogonal subspace of H:
H+ :={z€F}|Vh € H,z-h =0} where - denotes inner
product for vectors. Given a € FJ', the coset a + H is
defined by the set of points a + H := {a + hlh € H}.
Note that a random subspace of dimension d can be

60

generated by selecting d independent nonzero vectors of
FJ uniformly at random. We say a subspace of [F3' has
codimension d if the subspace has dimension n — d.

DEFINITION 4. For a subspace H < F3', an element
a € HY, and a function f : F& — R, define the
projected function f|,4+g : F3¥ — R to be the function
that satisfies florm(z) = e%i[f(x + 2)xa(z)] for

each z € F3'. Given a subset A C H*Y, we define
flave =2 uca flatn-

From this definition, we observe that the values f|q g (2)
can all be computed simultaneously

PROPOSITION 2.1. The set of queries {f(z + 2)}recms
can be used to compute f|a+m(z) for each of the cosets
a+ H of H simultaneously.

We give more details about the number of queries
required for computation of f|,+m in Lemma 3.3. We
note that the projection of f onto the cosets of a linear
subspace H yields a partition of the Fourier spectrum
of f. Moreover, the projection of f to a coset a + H is
a function that zeroes out all Fourier coefficients not in
a+ H.

We now recall the following Poisson summation
formula. For a reference, see Section 3.3 in [19]. We also
give the proof of Proposition 2.2 in Appendix A.2, for
completeness.

PROPOSITION 2.2. (Poisson Summation Formula) Fizx
any subspace H < F3 and element a € F3'. Then for
the projected function flavm:

(1) flayr(2) = gearn [(B)xs(2)
f(a) ifa€a+ H
0 otherwise.

(2) Floinla) = {

Proposition 2.2 allows the following definition.

DEFINITION 5. The total energy of fla+m is defined as

Y acarm F(@)? = | flarml.

Facrt 2.2. If H < F3 is drawn uniformly at random

from the set of subspaces of codimension d, then for any
distinct a,b € F3\{0}, it holds that Pr[b € a+H] = 2%

Fact 2.2 allows one to think of the projections
{fla+H }acm+ as ahashing process applied to the Fourier
coefficients of f. In fact, it is also known (for example,
by Proposition 2.9 in [10]) that random projections
correspond to a pairwise independent hashing process.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

3 [(3-Distance Approximation and Sparsity
Testing

Recall that the property testing model, initiated by [8],
requires an algorithm to accept objects that have some
property P and reject objects that are at Hamming
distance at least € from having property P for some input
parameter € > 0 . In particular, in the property testing
problem for s-sparsity, one would like to differentiate
whether a given function f: F3* — R with ||f]] = 1
is in the class Fy of Fourier s-sparse functions, or has
distance at least € from F,.

PROBLEM 1. (Property Testing for s-Sparsity) Let F
be the class of s-sparse functions mapping from FJ' to
R. Given query access to a function f : F3 — R with
l|fll2 = 1 and parameter € > 0, we call an algorithm
A a property tester with query complexity q if using at
most q queries, A accepts f if f € Fs and rejects if
: 2
min(|f —glz > e.

We now define the problem of energy estimation for
the top s Fourier coefficients, which also allows to solve
the property testing problem. Note that this energy
estimation problem for functions with unit ¢5-norm is
equivalent to the £3-distance approximation problem in
Definition 3 since both are defined in terms of additive
error approximation.

PROBLEM 2. (Energy Estimation of top s Fourier Coef-
ficients) Let Fq be the class of s-sparse functions map-
ping from FJ to R. Given non-adaptive query access
to a function f : F* — R with ||f|l2 = 1 and param-
eters s > 0 and 0 < ¢ < 1, we call an algorithm A
an e-estimator of the energy of the top s Fourier coeffi-
cients if using at most q queries, A outputs & such that

§ —Max|s|—s Y acs fla)?| <e

The energy estimation problem can be used to solve
the property testing problem above easily with roughly
the same query complexity (see Fact A.1).

Our Algorithm 1 estimates the energy of the top s
Fourier coefficients by first picking a random subspace
H of codimension d = log % uniformly at random. The
intuition is that by picking the codimension to be large
enough, the top s Fourier coefficients are partitioned
into cosets with only a few collisions, so the estimation
of the energy in the top s cosets is a good estimation of
the energy of the top s Fourier coefficients. To estimate
the energy in the top s cosets, Algorithm 1 samples
v =0 (%|flI3) pairs (z,2 + z) to obtain an empirical
estimate of the energy in each coset within an additive
factor of €%||f||3 with constant probability. This yields
the proof of Theorem 1.1.

61

Algorithm 1: ENERGY ESTIMATION(e, s)

Draw H <3 of codimension d = log %
uniformly at random;
for j =1 toﬁz@(log%) do
Z; < set of pairs (z,z + z) of size
v =0 (& fl3), where
z~U[FP), z~UHLY);
for cach a € H+ do
yfle 0
for each (z,x + z) € Z; do
| v vt) f @) fa+2)

end
end
end
Return: £ := MaxXgCHL:|S|=s ZaES
. 1 2 [
median (3/((1+)Ha yz(szH7 R y((ngH) :

Similarly, Algorithm 2 gives a property tester for
s-sparsity. The success probability for each of these
algorithms can be increased to 1 — § for any § > 0 by
taking the median of O (log %) parallel repetitions.

Algorithm 2: FAST FOURIER SPARSITY
TEST (FFST)(e, s)

Let f be some function with known || f|s.

€

Let £ be the output of Algorithm 1 on input §
and sparsity s.
1€ < (1 5) |1f13, reject.

Otherwise, accept.

Our analysis deals with two possible sources of error
in the energy estimation. In Section 3.1, we consider the
error caused by collisions in the hashing scheme and in
Section 3.2, we consider the error caused by sampling
variance in the energy estimates. Note that we perform
worst-case analysis (over all possible sets of size s) for
the hashing error as in the last step of the algorithm we
adaptively select the largest subset.

3.1 Hashing Error We first analyze the error intro-
duced into our estimator by hashing the Fourier coeffi-
cients across multiple cosets (assuming all estimates of
energies in the cosets are exact). Thus the first technical
component of the analysis of the sparsity distance ap-
proximator shows that for a random choice of subspace
H of codimension log %, the union of the top s cosets
of H has total energy that is close to the sum of the
Fourier mass of the s coefficients largest in magnitude.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Let & > > Eon be the true values of the
energies of the 2" Fourier coefficients corresponding to
the function f : F3* — R. Let h be some pairwise
independent hash function with domain [2"] and range
[24], which can be viewed as partitioning the 2" Fourier
coefficients across the 2% cosets, which we refer to as
buckets. We denote the overall energy in the i-th bucket
as y;, where we assume that the hash function is clear
from the context. Let the buckets be indexed in the non-
increasing order by energy, so that y; > y2 > - -+ > yqa.
Furthermore, let y; denote the energy of the largest
coefficient hashing into the i-th bucket. Formally, if
index 4 corresponds to coset a + H, then we let

S OFB? oy = max f(B)

BEatH Aea+H

DEFINITION 6. (HASHING ERROR) We define the hash-
ing error of h as errj(E1,...,Em) => 0 1 yi — & to be
the difference between the overall energy in the top s
buckets and the energy of the top s coefficients.

Note that the hashing error is always non-negative as
there are at most s buckets containing the top s Fourier
coefficients. The contribution to the energy of the i"

bucket from the largest Fourier coefficient hashing into
this bucket is denoted as y;. We have:

yEan) = Zyz =&
N .
=d vyt Yy &
i=1 =1

i=1

erry (&q, ...

where we used the fact that Y ;_ yr <37 | &

We can bound the hashing error across any set of
s buckets, rather than just the hashing error across the
buckets containing the top s Fourier coefficients.

LeEMMA 3.1. (EXPECTED HASHING ERROR BOUND)
Let H < FJ' be a subspace of codimension d drawn
uniformly at random. Let z; = y; — y; be the “collision
error” in the i™ bucket. Then

=1

2s
< ﬁ”f”%

Proof By the Cauchy-Schwarz inequality, > 7 ; z; <

NV i1 z . Let d;; be the indicator variable for the
event that Fourler coefﬁc1ents &; and & collide and let
D; be the indicator variable for the event that &; is not

62

the largest coefficient in its hash bucket. Then we have:

s 24 24
SN =D (wi—yp)?
1=1 =1 =1
= Y &&rdpD;Dy
Ji.ke[2m]
< Y Ei&biD;,
jke(27]

where the first inequality holds since the s buckets is a
subset of the 2¢ buckets, and the second inequality holds
because either D, = 0 or Dy, = 1.

Taking expectation over H we have:

E > Ei&wbiD; =E > &Dp

J,kel2n] Je2"]

+E > &iEdiD;| < E » &b
J#ke(2m] Jj€l2n]
on 2
(Zj:l 5]’)
+ T,
where we used Fact 2.2 and pairwise independence, so

that %[5]»;@] = Note that by Fact 2.2, pairwise

j—1
=1 < 55

1
24 -
independence and a union bound, Pr[D
and hence for the first term we have:

271, . 271,] 1
ZSZ <Zj2d J—dezg&“
jE[2n] j=1k=1
n 2
=T

Putting things together, we have

E
H

gzi] S\/EIE

on
2s
<o 36 yliE

where we recall that the first inequality is by Cauchy-
Schwarz, the second is by Jensen and the third is from
the bound on]E [ZZ 1%] derived above. O

Now we give an upper bound on the variance of the
difference between the energies of the top s buckets and
their respective largest Fourier coefficients:

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

LEMMA 3.2. (VARIANCE OF THE HASHING ERROR)
Let H < F3' be a subspace of codimension d drawn
uniformly at random. Let z; = y; — y! be the “collision
error” in the i" bucket. Then

Proof : By pairwise independence we have:
s 2¢ 24
Vgr 4 zil < Vgr Zzl = ' V}z}r[zi}

=1 =1 i=1

z 2T, €)° _ 201/

S]E [Z?] S =1 — 2

H 2d 2d 7

=1

where the last inequality follows using the same argument
as in the proof of Lemma 3.1. O

We now give a bound on the hashing error.

COROLLARY 3.1. If 24 =28 and 0 < € < 1/2, then

15
PHr errs (&, .., Em) <53 fI3] > 6
Proof : Recall that errj(&1,...,8m) = >0 yi — &

Let z; = y;—y; be the collision error in the i bucket and
let Z=>3"7_, 7 and ||€]; =Y., &. From Lemma 3.1,
Lemma 3.2, and Chebyshev’s inequality, we have that
for any a > 0:

2s 2 1
Z 2/ 271||f\|§ +a 2d|f||31 < 2

Pr

For 2% = 2§ we have Pr[Z > (1 + %)62|‘f||3] < 1/a?.

Recall from (3.1):

Zyi—&zzyi—y;%—zyf—& SZyi—yZ‘,
i=1 i=1 i=1 i=1

since Y ;_; yr <37 &. Taking a = 4 and noting that
s > 1, it follows that

Sy - & <5elf113

=1

with probability at least 15/16. 0

3.2 Estimation Error We now analyze the error
introduced to our estimator through sampling used to
approximate the true bucket energies. Our intuition
stems from the following standard fact to estimate the
total energy via sampling.

63

Fact 3.1. (FACT 2.5 IN [10]) S, coyp fla)? =
E (@) f(@)f(z+2)].

x€F ,ze H+

Using Fact 3.1, the energy > ..y f(@)? in each
bucket ¢ + H can be approximated by repeatedly
querying f using the following Lemma 3.3, whose proof
is similar to Proposition 2.6 in [10]. We include the full
proofs to formalize the dependency on ||f]|s.

In the language of Lemma 3.3, suppose y; is the
energy of bucket a + H and Z; is a set of pairs (z,z + z)
of size v, as in Algorithm 1. Then the estimate y; ;
corresponding to a sample Z; is:

1
Yij = |T Z

J (z,z+2)€L;

Xa(®)f(2)(z + 2).

We now bound the expected squared distance
between y; ; and y; by the inverse of the sample size.

LEMMA 3.3. Given a subspace H < FJ, let y1 > yo >
... > Yoa be the true energies in each of the buckets and
Yi,; be the estimate of y; given sample Z; of size y. Then
using v = O (Z||f]13) queries to f,

2 e 2
E[s }<7 _
B [lves =] < 1111

Proof : Given a subspace H < F3', let =,y € Fg'

2 2 -
so that |f(x)f(y)| < LW < L) f[3. Thus, an

empirical estimation of Xa(2)f(z)f(z+ 2)],
z€FJ,zeHL

with O (6% log %) queries to f, is within an additive factor
of €||f||3 with probability at least 1 — § by standard
Chernoff bounds.

Let C be a constant such that %log% samples
suffice to estimate y; j —y; within an additive €|| f||3 with
probability at least 1 — §. Equivalently for any 6 > 0,
the probability that |y; ; — y;| > 6 using v samples is at

462
- 4
most e €M1z Then we have:

Bl o] = [ol —ul > 6] d
:/ Pr [\yi,j — il > x/E] dt
0

oo + 4
S/ ¢ et gy = ISz
0 gl

Hence, for v = O (%||f||3), we have E [|y;,; — vi[*] <

%HfH%, as desired. .

Note that the estimate y; ; is exactly the estimate

yéﬂz g in Algorithm 1, where bucket a 4+ H is the bucket
with the i largest Fourier coefficient. We use two

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

different notations to refer to the same quantity since
it is more convenient to use the notation y; ; to index
estimates by magnitude of Fourier coefficient, whereas
the notation yc(iz y 1s more convenient to index by coset.
Moreover, observe that we can obtain estimates y; ; of
the energies y; simultaneously, by Proposition 2.1.

As before, let y; denote the contribution to the en-
ergy of the i" bucket from the largest Fourier coefficient
hashing into this bucket.

LEMMA 3.4. Let € >0 and H be a random subspace of
codimension d = log % and let y1 > ya > ... > yga be
the true energies in each of the buckets. Let £ = O (log %)
be the number of random samples. Then for any n > 0,

/2
%Au5>/

Prily; —yi> > 1] < <
s1)

where the probability is taken over all samples of size £.

Proof : By applying Markov’s inequality to
Lemma 3.3, it follows that for each pair of ¢ and j,
41 £112
il
Pr[|y; — yil> > n] < s 2

Then the probability that at least half of the £ samples
returns such estimates is

|) ¢ LA
Ny i — |2 > 5 < -
Pr {7« lyi —wil” = 0} > 2} - <€/2) (51)

£/2
S(Rﬂﬁ@>/7

sn

where the second inequality follows from the well-known
bound on the binomial coefficient (Z) < (%)k for all
1 <k < n. The claim then follows from the fact that y;
is the median of y; ; across all j. O

LEMMA 3.5. Let H be a random subspace of codimen-
sion d = log % Then the expected value of the estima-
tion error satisfies

S

E > Iy —wil?| <& [IfI5.
i=1
4
Proof : Let 8= 2 UL Then E [Iy - uil?]
equals

| [wins. o b~ vl >)]

< /000 min(s, B [|{i: [y; — il > nl}])dn

64

o) 9 4 2 6/2
S/‘mn&ﬂ<%an i

0 81

B 0 %eet 2\ £/2
S/ Sdn+/ 2d(€€ ||f||2> d’l7,

0 B 81

where the second inequality follows from Lemma 3.4.
Thus B (>0 1 lyr — wil?] is at most

/2 0/2—
2ecIf113 , pa (2ecIFIBY7* 2 (1)
e/t s -2\

SRR g (R 2

€4/t s Aty —2

e - |If113- o

Hence for £ = © (log 1), we have % >y —wil?] <

3.3 Proof of Theorem 1.1 Recall that our algo-
rithm returns an estimate £ of the sum of the s buckets
with the largest energy. Since the estimation error is
small by Lemma 3.5, £ is a good estimate of the actual
sum of the s buckets with the largest energy. Because
the hashing error is small by Corollary 3.1, £ is also
a good approximation of the energy of the s Fourier
coeflicients 1, ..., 8s € F3 with the largest energy. We
define the function f* so that the Fourier transforms of
f* and f have the same values at the Fourier coefficients
{B:}. However, the Fourier transform of f* has value
zero at the remaining coefficients outside of {3;}. Thus
by Parseval’s identity, f* is the s-sparse function closest
to f. Hence, ¢ is a good estimate of ||f*||2.

For each random sample Z; of size
vy o= (9(8”%”3» let yL(LQH be the corre-
sponding estimate of (f|apm)2. Let S* =
o e O LY

where { = O (log %) is the number of repetitions. Let

ﬁj*c‘aJrH = argmax,c,, g f(a)2 and define the function
h:FJ — R by setting

ﬁ(ﬁ;a+4{>::sgn<f<ﬂ;CkFH>>-rnedhul{ ygﬁff}

for each @ € S* to be the only non-zero Fourier
coefficients of h. Let 81, 82,..., s be defined so that

FB1), F(Ba), -, F(Bs)

are the largest s Fourier coefficients of f. Define the
function f* :F3 — R by setting

f*(8:) = £(8)

for each 1 < ¢ < s to be the only non-zero Fourier
coefficients of f*.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

LEMMA 3.6. Let £ be the output of Algorithm 1 and f*
and h be defined as above. Then

&= 17713) < 2017 = Bllal1S -

Proof : Observe that Algorithm 1 outputs

2
£ = Z median {yaJrH,yL(H)H, . >3/a2H}
acS*

= Z E(ﬁ;|a+H)2 = ||h\|§

aeS*

Therefore,

&= 11118] = [1A113 = 1111
= (Al = 1177 IaD) (k112 + 117[12])

By triangle inequality, |||h||2 — ||f*|2] < ||f* — k|2 and

All2 + £ 12| < [|h]l2 + || £*]|2- Thus,

€= 11£718] < 17 = Al inlls + 117°112)

Since ||h]l2 + [|f*]|2 < 2]|f]|2, then it remains to bound
[Lf* = Rll2. =

LEMMA 3.7. Let £ be the output of Algorithm 1 and f*
be defined as above. Then

* 12 2 7

Pr [|¢ - [17°113] < 14€ll7113] = <.

Proof : Let g : F3' — R be the s-sparse function
defined by setting

f(ﬂ;|a+H)

for each a € S* to be the only non-zero Fourier
coefficients of f*. Then by triangle inequality,

1" = hlla < {1F" = gll2 + [lg — Rl]2.

Recall that & > --- > &= are the true values of the
energies of the 2™ Fourier coefficients corresponding to
function f : F3' — R and y; is the contribution to
the energy of the " bucket from the largest Fourier
coefficient hashing into this bucket. Let S be the set of
indices corresponding to the buckets with nonzero energy
in f* and g and observe that |S| < s. Thus, ||f* —g||3 is
at most) ;. o(y; —&;), where y; is the total energy in the
i" bucket. By Corollary 3.1, >, o (y; — &) < 5€%|| f]|3
with probability at least 1—2

On the other hand, [lg — h|3 < 16€*||f][3 with

probability at least % by Lemma 3.5 and Markov’s

inequality. Thus, ||f*—h||s < (\/5—1—4) ellfll2 < Tellfll2

g(ﬁ;m-&-H) =

65

and by Lemma 3.6, ‘5 — ||f*||§‘ < 14de||f]3 with
probability at least %. O

By Lemma 3.3, it suffices to use O (% f[13) queries
to bound the expected squared error of an estimator.
Since Algorithm 1 take the median of ¢/ = O (log%)
estimators to bound the failure probability by a constant,
then the total number of queries is O (|| f||31og £ log %)
to obtain failure probability 1 — §. Hence, the query
complexity follows as we assume || f||2 =1

Algorithm 1 runs through ¢ = (;) iterations,
each time sampling f at v = (%) pairs of points

S

and updating each of the 2¢ = O (—4) cosets. Hence,

Algorithm 1 runs in O (3—8 og i) time. To boost the

failure probability up to 1 — 9, the total running time is
@) (‘Z—z log % log %)

We do not attempt to optimize runtime in Algo-
rithm 1, as further optimizations can be made using
standard sparse Hadamard transform techniques, e.g.
page 163 in [6] or in [16, 21] to update the empirical es-
timation of each coset, which improves the total running
time to O (log & log Log 5)

4 Lower Bounds for /3-Testing of s-Sparsity

To the best of our knowledge the only lower bound
known for the s-sparsity testing problem is due to [10].
Formally, they construct a hard distribution that is far
from s-sparse in Hamming distance but since the support
of the distribution is Boolean functions this also implies a
lower bound under ¢2. Under #3-distance their Theorem
2 can be restated as follows:

THEOREM 4.1. (Lower bound for (2 testing of Fourier
sparsity [10]) Fiz any constant T > 0. Let C(1) =
O (log1/7) and s < 2™/C(7) | There exists a constant c(T)
so that any algorithm, which given non-adaptive query
access to f: Fy — {—1,1}, that distinguishes s-sparse
functions from functions that are c(T)-far from s-sparse
in (3 distance with probability at least 2/3 requires Q(+/s)
queries.

Below we extend this result to larger values of s for
non-adaptive testers of real-valued functions.

4.1 Q(y/s) Lower Bound for Non-adaptive
Testers We show a lower bound by designing two dis-
tributions Dy gg and Dy, the former supported on the
class of interest and the latter being far from it, such that
the total variation distance between these distributions
restricted to the query set is at most §. This implies that
the query set cannot distinguish the two distributions

with probability greater than -5=.

DEFINITION 7. (TOTAL VARIATION DISTANCE)

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

The total wariation distance between two random
variables Py and P, with corresponding probability
density functions pi(x),p2(x) € R™ is defined as
dry (P1, P2) = 5 [gu [P1(2) = pa(2)| dz.

THEOREM 4.2. For any s < 2"‘1, there exists a con-
stant ¢ > 0 such that any non-adaptive algorithm given
query access to f: FY — R such that ||f]|3 = 1 £ € that
distinguishes whether f is s-sparse or f is %—far from
s-sparse in (3 with probability at least 2/3 has to make
at least c\/s queries to f.

Proof : We define two distributions Dy gs and Dyo
where Dy gg is supported on s-sparse functions only and
Dno is supported on functions that are far from s-sparse.
Then by Yao’s principle it suffices to show that if the size
of the query set @ is at most ¢y/s then the total variation
distance between the two distributions restricted on the
query set dry (Dyrs(Q), Dno(Q)) < 1/3.

We now define the Dy gg distribution. For each
z € 2 let g, ~ N(0,1) be an independent zero
mean and unit variance Gaussian random variable. Let
S C 2 be a random subset of fixed size s chosen
uniformly at random from the collection of all subsets
of size exactly s. Our distribution Dy gg corresponds to
a random family of functions fg defined as follows:

Z g-x-(x

zES

The distribution Dy is defined similarly, except that
we fix § = 2[ie. we set:

== /2 > glxa(x

ze2[nl

where g/, ~ N(0, 1) are again independent and identically
distributed standard normal variables.

Note that by standard Chernoff bounds with high
probability functions sampled from both distributions
satisfy || f||3 = 1 £ e. Furthermore by Chernoff bounds,
with high probability functions in the support of Dyo
are at least +-far in £3 from s-sparse for s < 27! (their
expected distance is at least 1/2). Consider any non-
adaptive randomized algorithm that makes g queries. By
Yao’s principle we can fix the set of queries to form a set
@ C F3 or size g. The values of fg on @ form a vector
with (possibly correlated) zero mean Gaussian entries.

Fix any S of size s. If x = y then we have:

Eglfs(x)fs(y)] = Eg[fs(x)?] = Eg[fs(x)?]

(Z 821 X1 (x))
zZ1ES

66

-1 (Z Eg[g;1> -1,
z1ES

Computing the values of the off-diagonal entries in the
covariance matrix of fg for x # y, then Eg[fs(z) fs(y)] =

sEe [X., 580X (7) X e5 82Xz ()], which equals

1
gEg { Z g?Xz (m) Z 82 XZ1 gZQXZQ()}
z€S z1#£22€8
(z X- (@)X (1) Eg [82]
z€S
+ Z XZ1 XZQ)Eg [gzlgzz])
z1#£22€8
1
== (D o x=(@)x:(y)
z€S
Y X (@)X () [Ele-a))
z1#22€8
1
= - Xz(x)Xz(y)
z€S
Let &1,...,&, be the inputs in the query set). For

any fixed z € 2["] define a, € {—1,1}7 to be a column
vector with entries a.; = x.(&). Then the covariance
matrix of fg(&1),. .. fs(&,) under the distribution Dy gg
is given by a random family of matrices Mg € R9*¢
defined as follows:

1 T
Mg = 3 Zazaz

z€S

Similarly for Dyo the covariance matrix of
f(&), ., f(&g) is 2% 2o aza; = 1.

The following standard fact allows to bound the total
variation distance between two zero mean Gaussians with
known covariance matrices.

Fact 4.1. (See e.g. Corollary 2.14 in [5]) Let § > 0 be
sufficiently small and let N'(0,%1) and N(0,X2) be nor-
mal distributions with zero mean and covariance matrices
31 and 3o respectively. If ||I — 22_1/22122_1/2HF <4
then:

dTV(N(Ov El)vN(O’ E2)) < @ (5) :

Using the above fact and setting ¥; = Mg and
Y9 = I in order to show an upper bound on the total
variation distance it suffices to bound the expected
Frobenius norm of the difference Eg [||I — Ms||).
Thus Eg [[|[I — 1 Y. g azal|] equals

Es | Y. <5z’j - iZXz(&)Xz(fj)>

1<i,j<q z€S

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

= Z Es <1—iZXz(f¢)2>

1<i<q z€S
2
1<i#j<q z€S
1
= 2 Z Es [(Z Xz1 (gi)Xm (§J)>
1<i#j<q z1€8
: (Z Xoa (60) X2 @-))]
z2 €S
1
=2 Z Es lz Xz(fi)QXZ(gj)zl
1<i#j<q z€8
+ Es Z Xz1 (gi)le (éj)Xzz (&')Xzz (5])
z1#22€S
<L
S
Thus if q < Vs we have

drv(Dyes(Q),Pno(Q)) < O(8). By picking §
to be a sufficiently small constant it follows that no
algorithm that makes less than ¢4/s queries for some
constant ¢ > 0 can distinguish Dy gg and Dyo with
high probability. O

Acknowledgements

The authors would like to thank Piotr Indyk and Eric
Price for multiple helpful discussions of this topic as well
as Andrew Arnold, Arturs Backurs, Eric Blais, Michael
Kapralov and Krzysztof Onak for their participation in
earlier versions of this work.

References

[1] Adi Akavia, Shafi Goldwasser, and Shmuel Safra.
Proving hard-core predicates using list decoding. In
44th Symposium on Foundations of Computer Science
(FOCS 2003), Proceedings, pages 146-157, 2003. 1

[2] Siddharth Barman, Arnab Bhattacharyya, and
Suprovat Ghoshal. Testing sparsity over known and
unknown bases. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML, pages
500-509, 2018. 1.1, 1

[3] Piotr Berman, Sofya Raskhodnikova, and Grigory
Yaroslavtsev. Lp-testing. In Symposium on Theory
of Computing, STOC, pages 164-173, 2014. 1, 2

[4] Anna Bernasconi and Bruno Codenotti. Spectral
analysis of boolean functions as a graph eigenvalue
problem. IEEE Trans. Computers, 48(3):345-351, 1999.
1

67

[5] Hias Diakonikolas, Gautam Kamath, Daniel M. Kane,
Jerry Li, Ankur Moitra, and Alistair Stewart. Robust
estimators in high dimensions without the computa-
tional intractability. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS, pages
655—664, 2016. 4.1

[6] Oded Goldreich. Modern cryptography, probabilistic
proofs and pseudorandomness, 2000. 3.3

[7] Oded Goldreich. The Foundations of Cryptography -
Volume 1, Basic Techniques. Cambridge University
Press, 2001. 1.1

[8] Oded Goldreich, Shafi Goldwasser, and Dana Ron.
Property testing and its connection to learning and
approximation. J. ACM, 45(4):653-750, 1998. 1.1, 1, 3

[9] Oded Goldreich and Leonid A. Levin. A hard-core
predicate for all one-way functions. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing,
STOC, pages 25-32, 1989. 1, 1.1

[10] Parikshit Gopalan, Ryan O’Donnell, Rocco A. Serve-
dio, Amir Shpilka, and Karl Wimmer. Testing
Fourier dimensionality and sparsity. SIAM J. Com-
put., 40(4):1075-1100, 2011. 1, 1.1, 1.2, 2.3, 3.1, 3.2, 4,
4.1

[11] Haitham Hassanieh, Piotr Indyk, Michael
Kapralov, Dina Katabi, Eric Price, and Lixin
Shi. SFFT: Sparse Fast Fourier Transform.
http://groups.csail.mit.edu/netmit/sFFT /index.html,
2013. [Online; accessed 07-July-2015]. 1

[12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and
Eric Price. Nearly optimal sparse Fourier transform.
In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC, pages 563578, 2012. 1

[13] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric
Price. Simple and practical algorithm for sparse Fourier
transform. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1183-1194, 2012. 1

[14] Hamed Hatami and Shachar Lovett. Estimating the
distance from testable affine-invariant properties. In
54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 237-242, 2013. 1.1

[15] Eyal Kushilevitz and Yishay Mansour. Learning
decision trees using the Fourier Spectrum. SIAM J.
Comput., 22(6):1331-1348, 1993. 1, 1.1

[16] Leonid A Levin. Randomness and nondeterminism. In
Proceedings of the International Congress of Mathemati-
cians, pages 1418-1419. Springer, 1995. 3.3

[17] Nathan Linial, Yishay Mansour, and Noam Nisan. Con-
stant depth circuits, Fourier transform, and learnability.
J. ACM, 40(3):607-620, 1993. 1

[18] Ashley Montanaro and Tobias Osborne. On the
communication complexity of XOR functions. CoRR,
abs/0909.3392, 2009. 1

[19] Ryan O’Donnell. Analysis of Boolean Functions. Cam-
bridge University Press, 2014. 1.1, 2.3

[20] Michal Parnas, Dana Ron, and Ronitt Rubinfeld.
Tolerant property testing and distance approximation.
J. Comput. Syst. Sci., 72(6):1012-1042, 2006. 1

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 11/26/21 to 173.73.152.180 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

[21] Eric Price. Private communication. 3.3

[22] Dana Ron. Property testing: A learning theory
perspective. Foundations and Trends in Machine
Learning, 1(3):307-402, 2008. 1

[23] Amir Shpilka, Avishay Tal, and Ben lee Volk. On the
structure of boolean functions with small spectral norm.
In Innovations in Theoretical Computer Science, ITCS,
pages 37-48, 2014. 1

[24] Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and
Shengyu Zhang. Fourier sparsity, spectral norm, and
the log-rank conjecture. In 54th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS,
pages 658667, 2013. 1

[25] Karl Wimmer and Yuichi Yoshida. Testing linear-

invariant function isomorphism. In Proceedings of the

40th International Conference on Automata, Languages,

and Programming - Volume Part I, ICALP’13, pages

840-850, 2013. 1, 1.1

Zhiqgiang Zhang and Yaoyun Shi. Communication

complexities of symmetric XOR functions. Quantum

Information €& Computation, 9(3):255-263, 2009. 1

Zhigiang Zhang and Yaoyun Shi. On the parity

complexity measures of boolean functions. Theor.

Comput. Sci., 411(26-28):2612-2618, 2010. 1

[26

27

A Appendix
A.1 Basic Facts

Fact A.1. (Reduction of Property Testing to Energy
Estimation of Top s Fourier Coefficients) Suppose we
are given query access to some function f : F3 — R
with ||f||3 = 1. Given an energy estimator of the top s
Fourier coefficients that uses qs(€) queries, there exists a
property tester for s-sparsity with parameter € that uses
qs (%) queries, where gs(+) is some function that depends
on €.

Proof : Let Fs be the class of s-sparse functions
mapping from FJ to R. Trivially if f € F;, then the
sum of the top s Fourier coefficients is || f||3 and so an §-
energy estimator of the top s Fourier coefficients outputs
a value € with & > [| 3 — 51113

On the other hand, if for any s-sparse function g, it
holds that ||f — g||3 > €||f||3, then the energy of the top
s Fourier coefficients of f is at most (1 — €)||f||3. Then

€

an g-energy estimator of the top s Fourier coefficients

outputs a value ¢ with

| fsgl‘aXZf

so the energy estimator outputs a value £ with & <
1113 = 511113

Thus, the energy estimator can differentiate whether
f € Fs or fis e-far from s-sparsity, using g (;) queries.
O

€
< I/,

68

A.2 DPoisson Summation Formula Recall the
proof of the Poisson summation formula:

Proof of Proposition 2.2: For any z € FJ', we have

that
f\a+H<z>:w€Hl[> FBxala+2) - xalo)]
BEFS
= > F®xs(2) E | [xoral@)].
BeEFS

Since E B [XBJFG(:U)} equals 1 when 84+ a € H and 0
zeH

otherwise, we obtain

flavm(z) =Y f(8
B€a+H
and hence
f|a+H(a) = an [f'a-i—H(x)Xa(x)]
TEts
= E | 3 fOxsnalo)
® | Bca+H
- > (0B, bo@nalo)) = fla)
z€eFy
BE€a+H
O
Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Previous work
	Our Contributions

	Preliminaries
	Fourier Analysis
	Property Testing
	Fourier Hashing

	22-Distance Approximation and Sparsity Testing
	Hashing Error
	Estimation Error
	Proof of Theorem 1.1

	Lower Bounds for 22-Testing of s-Sparsity
	(s) Lower Bound for Non-adaptive Testers

	Appendix
	Basic Facts
	Poisson Summation Formula

