

Brief Paper

Stability and observer designs using new variants of Halanay's inequality[☆]Frédéric Mazenc^{a,*}, Michael Malisoff^b, Miroslav Krstic^c^a EPI DISCO Inria-Saclay, Laboratoire des Signaux et Systèmes (L2S UMR CNRS 8506), CNRS, CentraleSupélec, Université Paris-Sud, 3 rue Joliot Curie, 91192, Gif-sur-Yvette, France^b Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA^c Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

ARTICLE INFO

Article history:

Received 7 February 2020

Received in revised form 23 May 2020

Accepted 28 August 2020

Available online 19 October 2020

Keywords:

Stability

Delay systems

Observers

ABSTRACT

We provide a generalization of Halanay's inequality, where the decay rate is constant but the gain multiplying the delayed term is time varying. While the usual Halanay's conditions require the decay rate to be strictly larger than an upper bound on the gain, our less restrictive results allow times when the gain can exceed the decay rate. This allows us to prove asymptotic stability in significant cases that were not amenable to previous Lyapunov function constructions, and in cases that violate the contraction requirement that was needed to prove asymptotic stability in previous trajectory based results. We apply our work to stability problems for linear continuous time systems with switched delays, and to observers for nonlinear systems with discrete measurements.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

This paper continues the development (which was begun in [Ahmed et al. \(2018\)](#), [Mazenc and Malisoff \(2015\)](#) and [Mazenc et al. \(2017, 2018\)](#)) of trajectory based and contractivity methods that can be used to prove asymptotic stability properties for control problems with delays and switching, in cases that may not lend themselves to standard Lyapunov functional methods. See for instance [Mazenc et al. \(2017, 2018\)](#) for applications to systems with discontinuous delays, and to switched systems for which some of the subsystems enjoy asymptotic stability properties while other subsystems may be unstable. One situation where trajectory based and contractivity methods have been useful is for systems whose vector field is not necessarily continuous that are encountered in many cases including systems that are asymptotically stabilized using piecewise constant feedback, systems with switched delays, and observers whose measurements are only available at discrete instants. For proving asymptotic

stability of these systems, some available tools include extensions of Razumikhin's theorem (e.g., from [Zhou and Egorov \(2016\)](#)), as well as Halanay's approach (as in [Halanay \(1966\)](#)).

While there is a large and growing literature on constructing Lyapunov functions (such as [Malisoff and Mazenc \(2009\)](#), [Zhou \(2019\)](#) and [Zhou et al. \(2020\)](#)), it is sometimes easier to find constants $\rho \in (0, 1)$ and $T_* > 0$ such that every solution ζ of a system satisfies an inequality of the type $|\zeta(t)| \leq \rho \sup_{l \in [t-T_*, t]} |\zeta(l)|$ for all $t \geq T_*$. In such cases, ρ is called a contractivity constant, and we say that the solutions of the system satisfy a contractivity condition. Contractivity conditions can often be verified, by first proving that the solutions satisfy a Halanay type inequality of the form $\dot{V}(\zeta(t)) \leq -cV(\zeta(t)) + d(t) \sup_{t-T \leq \ell \leq t} V(\zeta(\ell))$ for some nonnegative valued function V , some positive constants c (called a decay rate) and T , and some nonnegative valued function $d(t)$ (called a gain); see, e.g., [Fridman \(2014, Lemma 4.2\)](#), [Selivanov and Fridman \(2015, Lemma 1\)](#), or [Selivanov and Fridman \(2016, Lemma 1\)](#) for the usual Halanay's inequality conditions, which ensure that V converges exponentially to 0 if $c > \sup_t d(t)$. However, if $c \leq \sup_t d(t)$, then the usual Halanay's inequality conditions cannot be used to prove exponential stability, and then standard contractivity conditions cannot be used to prove exponential stability. As we will see below, the usual Halanay's inequality in conjunction with contractivity can lead to conservative results.

Therefore, in the present paper, we improve on several stability conditions available in the literature, by providing a relaxed version of Halanay's inequality. We are motivated by the

[☆] Supported by US National Science Grants 1711299 (Malisoff) and 1711373 (Krstic). A preliminary 4 page version [Mazenc et al. \(2020\)](#), consisting of Theorem 1 and an application to systems with switching delays, with only sketches of proofs and excluding observer designs, was accepted for presentation at the 24th International Symposium on Mathematical Theory of Networks and Systems (MTNS); see Section 1 below for a comparison of this work with the MTNS version. This paper was recommended for publication in revised form by Associate Editor Luca Zaccarian under the direction of Editor Daniel Liberzon.

* Corresponding author.

E-mail addresses: frédéric.mazenc@l2s.centralesupelec.fr (F. Mazenc), malisoff@lsu.edu (M. Malisoff), krstic@ucsd.edu (M. Krstic).

theoretical importance of Halanay's inequality and problems of convergence of observers with sampled data that were designed in the pioneering paper (Karafyllis & Kravaris, 2009). However, the present paper covers cases where the size of the sampling interval can violate the conditions in Karafyllis and Kravaris (2009), and where the contractivity conditions from Mazenc et al. (2017) cannot be satisfied. Our objectives differ significantly from other variants of Halanay's inequality, such as the notable works by Baker (2010) (which provide discrete time versions and nonlinear bounds) and Hien et al. (2015) (which use integral conditions involving time varying decay rates and time varying gains, which we do not use in this work). We also cover systems with sampled outputs with scarce arbitrarily long sampling intervals in the sense of Mazenc (2019), but our results give more easily checked sufficient conditions than the integral condition in Mazenc (2019, Assumption A3). Our less restrictive results allow the sampling to be more frequent outside those intervals where violations of the usual Halanay's conditions occur. Therefore, we use the sampling to compensate for the failure of the usual Halanay's conditions to hold, to apply our less restrictive version of Halanay's conditions. This paper improves on our conference version (Mazenc et al., 2020) by including proofs and an application to observers; the work (Mazenc et al., 2020) only provides sketches of proofs and did not include the material on observers.

In Section 2, we motivate our work by illustrating why the contractivity condition from Mazenc et al. (2017) is conservative. In Sections 3–4, we provide our generalization of Halanay's inequality and applications to systems with switching delays, and to observers with sampled measurements where some intervals between the sampling times can be arbitrarily large. We conclude in Section 5 by summarizing our findings and suggestions for future research.

We use standard notation, which is simplified when no confusion would arise from the context, and where the dimensions of our Euclidean spaces are arbitrary unless otherwise noted. The standard Euclidean 2-norm, and the induced matrix norm, are denoted by $|\cdot|$, $|\cdot|_S$ is the supremum over any set S , and $|\cdot|_\infty$ is the usual sup norm. We define \mathcal{E}_t by $\mathcal{E}_t(s) = \mathcal{E}(t+s)$ for all \mathcal{E} , $s \leq 0$, and $t \geq 0$ such that $t+s$ is in the domain of \mathcal{E} . We set $\mathbb{Z}_{\geq 0} = \{0, 1, \dots\}$ and $\mathbb{N} = \mathbb{Z}_{\geq 0} \setminus \{0\}$. Throughout the paper, we consider sequences $t_i \in [0, +\infty)$ such that $t_0 = 0$ and such that there are two constants $\bar{T} > 0$ and $\underline{T} > 0$ such that

$$\underline{T} \leq t_{i+1} - t_i \leq \bar{T} \quad (1)$$

for all $i \in \mathbb{Z}_{\geq 0}$. For square matrices M_1 and M_2 of the same size, we use $M_1 \leq M_2$ to mean that $M_2 - M_1$ is a nonnegative definite matrix, and I denotes the identity matrix in the dimension under consideration. For delay systems, our initial functions are assumed to be continuous.

2. Motivation: Limitation of contraction approach of Mazenc et al. (2017)

This section provides an example where a violation of the usual Halanay inequality condition may preclude the possibility of using contractivity arguments (such as those of Mazenc et al. (2017)) to prove asymptotic convergence results. Later (in Section 4.1), we show how to prove asymptotic convergence results in the setting of this section, using an alternative argument.

Let $T > 0$ be a constant and the sequence t_i satisfy the requirements from Section 1 with $\underline{T} > T$. Consider a function $v : [-T, +\infty) \rightarrow [0, +\infty)$ that satisfies

$$\dot{v}(t) = -v(t) + b(t) \sup_{\ell \in [t-T, t]} v(\ell) \quad (2)$$

for all $t \geq 0$, where $b : [0, +\infty) \rightarrow \{0, 2\}$ is defined by

$$b(t) = \begin{cases} 0, & \text{if } t \in \bigcup_{i \in \mathbb{Z}_{\geq 0}} [t_i + T, t_{i+1}) \\ 2, & \text{if } t \in \bigcup_{i \in \mathbb{Z}_{\geq 0}} [t_i, t_i + T) \end{cases} \quad (3)$$

The classical Halanay's result does not make it possible to conclude anything on the asymptotic behavior of the function v , because b takes values above the coefficient value 1 of the non-positive right side term in (2). On the other hand, we now show that without additional conditions on the sequence t_i , one cannot prove that the function $v(t)$ converges to zero via the trajectory based approach by simply integrating (2) over an interval $[t - g, t]$, where g is a positive constant that one can choose as in Mazenc et al. (2017).

Let us try to prove that $v(t)$ converges to zero by applying the trajectory based method from Mazenc et al. (2017). For any $i \in \mathbb{Z}_{\geq 0}$, we first integrate (2) over an interval $[t_i, t]$ with $t \in [t_i, t_{i+1})$ and obtain

$$\begin{aligned} v(t) &= e^{t_i - t} v(t_i) + \int_{t_i}^t e^{m-t} b(m) \sup_{\ell \in [m-T, m]} v(\ell) dm \\ &\leq e^{t_i - t} v(t_i) + \int_{t_i}^t e^{m-t} b(m) dm \sup_{\ell \in [t_i - T, t]} v(\ell). \end{aligned} \quad (4)$$

As an immediate consequence it follows that for any $t \in [t_i, t_i + T)$, we have

$$\begin{aligned} v(t) &\leq e^{t_i - t} v(t_i) + 2 \int_{t_i}^t e^{m-t} dm \sup_{\ell \in [t_i - T, t]} v(\ell) \\ &= e^{t_i - t} v(t_i) + 2[1 - e^{t_i - t}] \sup_{\ell \in [t_i - T, t]} v(\ell) \\ &\leq [2 - e^{t_i - t}] \sup_{\ell \in [t_i - T, t]} v(\ell). \end{aligned} \quad (5)$$

For any $t > t_i$, the inequality

$$2 - e^{t_i - t} > 1 \quad (6)$$

holds. It follows that one cannot deduce from (5) that the stability conditions of the usual contraction approach are satisfied, namely that there are a constant $g > 0$ and a constant $\rho \in [0, 1)$ such that

$$v(t) \leq \rho \sup_{\ell \in [t-g, t]} v(\ell) \quad (7)$$

for all $t \geq g$. Thus, the trajectory based approach does not make it possible to prove a stability result for (2). In Section 4.1, we prove that v asymptotically converges to 0 under suitable conditions on the t_i 's that ensure that T/\underline{T} is large enough.

3. Improvement of Halanay's inequality

This section provides an extension of Halanay's inequality, whose value lies in the fact that the analysis of switched systems with delays often leads to the study of generalized Halanay's inequalities of the type we consider in this section, as we will illustrate in Section 4.

3.1. Definitions and studied equation

Let t_i be a sequence of instants that satisfies the requirements of Section 1 for some constant $\underline{T} > 0$. Let

$$E = \bigcup_{i \in \mathbb{N}} [t_i, t_i + T) \quad (8)$$

where $T > 0$ is a constant such that

$$\underline{T} > 2T. \quad (9)$$

Condition (9) ensures that the intervals $[t_i, t_i + T)$ in the set E are disjoint. Let us introduce the constants

$$c > 0, \quad \bar{\epsilon} \in [0, c), \quad \text{and} \quad \bar{\varphi} > 0 \quad (10)$$

and the functions

$$\varphi(t) = \begin{cases} 0, & \text{if } t \notin E \\ \bar{\varphi}, & \text{if } t \in E \end{cases} \quad \text{and} \quad \epsilon(t) = \begin{cases} \bar{\epsilon}, & \text{if } t \notin E \\ 0, & \text{if } t \in E \end{cases} \quad (11)$$

Consider a continuous and piecewise C^1 function $v : [-\underline{T}, +\infty) \rightarrow [0, +\infty)$ such that

$$\dot{v}(t) \leq -cv(t) + [\epsilon(t) + \varphi(t)]|v|_{[t-\underline{T}, t]} \quad (12)$$

for all $t \geq 0$, where the derivatives in our differential inequalities should be understood in the Lebesgue almost everywhere sense, under the assumption:

Assumption 1. Either

$$\bar{\varphi} < c \quad (13)$$

or the inequality

$$\bar{\varphi} \left[e^{c(2T-\underline{T})} + \frac{\bar{\epsilon}}{c} \right] e^{2T\bar{\varphi}} + \frac{2T\bar{\varphi}}{\underline{T}} < c \quad (14)$$

is satisfied. \square

3.2. Main result

We are ready to state and prove the following result (but see [Remark 1](#) for construction of the constants \bar{C}_1 and \bar{C}_2):

Theorem 1. Let $v : [-\underline{T}, +\infty) \rightarrow [0, +\infty)$ be a continuous nonnegative valued solution of [\(12\)](#) under [Assumption 1](#). Then we can construct positive constants \bar{C}_1 and \bar{C}_2 such that

$$v(t) \leq \bar{C}_1 e^{-\bar{C}_2 t} |v|_{[-\underline{T}, 0]} \quad (15)$$

holds for all $t \geq 0$. \square

Remark 1. Basically, [Assumption 1](#) means that no matter how large the constants $\bar{\varphi}$ and T are, v exponentially converges to zero, provided that \underline{T} is sufficiently large and $\bar{\epsilon}$ is sufficiently small. The constant $\bar{\epsilon}$ can be interpreted to be the amount by which [\(12\)](#) differs from being a Lyapunov-like decay condition of the form

$$\dot{v}(t) \leq -cv(t) \quad (16)$$

with decay rate $c > 0$ at times $t \notin E$. Using [Fridman \(2014, Lemma 4.2\)](#), we can show that the requirements of [Theorem 1](#) are met with $\bar{C}_1 = e^{T(2\delta+\bar{\varphi}/2+\max\{\bar{\varphi}, \bar{\epsilon}\})}$ and $\bar{C}_2 = 2\delta$, where $\delta > 0$ is such that $\delta = \delta_0 - \delta_1 e^{2\delta \underline{T}}$, and $\delta_0 = 0.5(c - 2T\bar{\varphi}/\underline{T})$ and $\delta_1 = \frac{1}{2}\bar{\epsilon}e^{2T\bar{\varphi}}$; see [Appendix B](#) for details. \square

Remark 2. The intervals of E are still disjoint if we relax [\(9\)](#) to the assumption that $\underline{T} > T$. However, [\(9\)](#) is required in our proof of the theorem to ensure that $[t - T, t_j] \subseteq [t_{j-1} + T, t_j]$ holds for all $t \in [t_j, t_j + T]$ and $j \in \mathbb{N}$. We can extend [Theorem 1](#) to an inequality of the type

$$\dot{v}(t) \leq -cv(t) + [\epsilon(t) + \varphi(t)]|v|_{[t-r, t]} \quad (17)$$

with $r \in [0, T)$ because in this case [\(12\)](#) is satisfied. We can also extend this theorem to the case where $r \in (T, \underline{T}/2)$ and $\bar{\varphi} \geq \bar{\epsilon}$, by replacing the functions $\epsilon(t)$ and $\varphi(t)$ by functions $\epsilon_r(t)$ and $\varphi_r(t)$ defined by

$$\varphi_r(t) = \begin{cases} 0, & \text{if } t \notin E_r \\ \bar{\varphi}, & \text{if } t \in E_r \end{cases} \quad \text{and} \quad \epsilon_r(t) = \begin{cases} \bar{\epsilon}, & \text{if } t \notin E_r \\ 0, & \text{if } t \in E_r \end{cases} \quad (18)$$

with $E_r = \bigcup_{i \in \mathbb{N}} [t_i, t_i + r]$ because then any solution of [\(12\)](#) is a solution of [\(17\)](#). Our condition $r \in (T, \underline{T}/2)$ is more stringent than saying that T can be increased under the conditions of [Theorem 1](#), since it does not allow $r \geq \underline{T}/2$. \square

3.3. Proof of [Theorem 1](#)

Without loss of generality, we can assume that v is nonnegative valued and satisfies

$$\dot{v}(t) = -cv(t) + [\epsilon(t) + \varphi(t)]|v|_{[t-\underline{T}, t]} \quad (19)$$

for all $t \geq 0$, because if this equality is not satisfied then we can prove the exponential convergence of the functions satisfying [\(12\)](#) with the help of a comparison system of the type of the equality [\(19\)](#); see the [Appendix](#). Throughout the proof, we only consider the case where $\bar{\varphi} \geq c$, because the case $\bar{\varphi} < c$ is a consequence of the usual version of Halanay's inequality and our assumption that $\bar{\epsilon} < c$. We distinguish between two cases.

First case: $t \notin E$. Then [\(19\)](#) gives

$$\dot{v}(t) = -cv(t) + \bar{\epsilon}|v|_{[t-\underline{T}, t]} \quad (20)$$

Second case: $t \in E$ and $t \geq t_1$. Then, according to [\(19\)](#), there is a $j \in \mathbb{N}$ such that $t \in [t_j, t_j + T]$ and

$$\dot{v}(t) = -cv(t) + \bar{\varphi}|v|_{[t-\underline{T}, t]} \quad (21)$$

Then

$$\dot{v}(t) \leq -cv(t) + \bar{\varphi}|v|_{[t-\underline{T}, t_j]} + \bar{\varphi}|v|_{[t_j, t]} \quad (22)$$

Also, [\(21\)](#) gives $\dot{v}(t) \geq -cv(t) + \bar{\varphi}v(t) \geq 0$ for all $t \in [t_j, t_j + T]$ because $\bar{\varphi} \geq c$ and $v(t)$ is nonnegative for all $t \geq 0$. We deduce that $|v|_{[t_j, t]} = v(t)$ for all $t \in [t_j, t_j + T]$. Consequently, [\(22\)](#) gives

$$\dot{v}(t) \leq (\bar{\varphi} - c)v(t) + \bar{\varphi}|v|_{[t-\underline{T}, t_j]} \quad (23)$$

From [\(20\)](#), we deduce that for all $\ell \in [t_{j-1} + T, t_j]$ and $s \in [t_{j-1} + T, \ell]$, we have

$$v(\ell) = e^{c(s-\ell)}v(s) + \bar{\epsilon} \int_s^\ell e^{c(m-\ell)}|v|_{[m-T, m]}dm. \quad (24)$$

Let $\ell \in [t - T, t_j]$. Then, according to [\(9\)](#), we have $t \geq t_j \geq t_{j-1} + \underline{T} > t_{j-1} + 2T$, so $\ell \in [t_{j-1} + T, t_j]$. On the other hand, [\(9\)](#) implies that $t - T + T < t - T \leq \ell$. Also, we have $t - \underline{T} + T \geq t_j - \underline{T} + T \geq t_{j-1} + T$. Thus $t - \underline{T} + T \in [t_{j-1} + T, \ell]$. Thus, we can set $s = t - \underline{T} + T$ in [\(24\)](#) to get

$$\begin{aligned} v(\ell) &= e^{c(t-\underline{T}+T-\ell)}v(t - \underline{T} + T) \\ &\quad + \bar{\epsilon} \int_{t-\underline{T}+T}^\ell e^{c(m-\ell)}|v|_{[m-T, m]}dm \\ &\leq e^{c(2T-\underline{T})}v(t - \underline{T} + T) + \bar{\epsilon} \int_{t-\underline{T}+T}^\ell e^{c(m-\ell)}|v|_{[m-T, m]}dm \end{aligned} \quad (25)$$

because $\ell \geq t - T$. We deduce from [\(9\)](#) that

$$\begin{aligned} v(\ell) &\leq e^{c(2T-\underline{T})}v(t - \underline{T} + T) \\ &\quad + \bar{\epsilon} \int_{t-\underline{T}+T}^\ell e^{c(m-\ell)}dm|v|_{[t-\underline{T}, \ell]} \\ &\leq e^{c(2T-\underline{T})}v(t - \underline{T} + T) + \frac{\bar{\epsilon}}{c}|v|_{[t-\underline{T}, \ell]} \\ &\leq \left[e^{c(2T-\underline{T})} + \frac{\bar{\epsilon}}{c} \right] |v|_{[t-\underline{T}, \ell]} \end{aligned} \quad (26)$$

for all $\ell \in [t - T, t_j]$. As an immediate consequence,

$$|v|_{[t-\underline{T}, t_j]} \leq \left[e^{c(2T-\underline{T})} + \frac{\bar{\epsilon}}{c} \right] |v|_{[t-\underline{T}, t]} \quad (27)$$

Combining the last inequality with [\(23\)](#), we obtain

$$\dot{v}(t) \leq (\bar{\varphi} - c)v(t) + \bar{\varphi} \left[e^{c(2T-\underline{T})} + \frac{\bar{\epsilon}}{c} \right] |v|_{[t-\underline{T}, t]} \quad (28)$$

General case. We deduce from [\(20\)](#) and [\(28\)](#) that

$$\dot{v}(t) \leq (\varphi(t) - c)v(t) + \bar{\varphi}|v|_{[t-\underline{T}, t]} \quad (29)$$

with

$$\bar{\varphi} = \bar{\varphi} \left[e^{c(2T-\underline{T})} + \frac{\bar{\epsilon}}{c} \right] \quad (30)$$

for all $t \geq t_1$, because our condition $\bar{\varphi} \geq c$ implies that $\bar{\varphi} \frac{\bar{\epsilon}}{c} \geq \bar{\epsilon}$. Let us use (29) to prove the exponential convergence conclusion of the theorem.

To this end, first notice that

$$\frac{1}{T} \int_{t-T}^t \int_{\ell}^t \varphi(m) dm d\ell \leq \int_{t-T}^t \varphi(m) dm \leq 2T\bar{\varphi} \quad (31)$$

for all $t \geq T$, where the second inequality follows by the following argument. Let i be the largest index such that $t_i \leq t - T$. If $t_{i+1} > t$, then the maximum interval $J \subseteq [t - T, t]$ in which φ takes the value $\bar{\varphi}$ has length at most T . Otherwise, we have $t_i \leq t - T < t_{i+1} \leq t \leq t_{i+2}$ (because $t_{i+2} - t_{i+1} \geq T$), so $E \cap [t - T, t]$ has length at most $2T$.

Hence, the time derivative of the function

$$\mu(t) = e^{-\frac{1}{T} \int_{t-T}^t \int_{\ell}^t \varphi(m) dm d\ell} v(t) \quad (32)$$

satisfies

$$\begin{aligned} \dot{\mu}(t) &= e^{-\frac{1}{T} \int_{t-T}^t \int_{\ell}^t \varphi(m) dm d\ell} \left[\dot{v}(t) - \varphi(t)v(t) \right. \\ &\quad \left. + \frac{1}{T} \int_{t-T}^t \varphi(m) dm v(t) \right] \\ &\leq e^{-\frac{1}{T} \int_{t-T}^t \int_{\ell}^t \varphi(m) dm d\ell} \left[-cv(t) + \bar{\kappa}|v|_{[t-T, t]} \right. \\ &\quad \left. + \frac{1}{T} \int_{t-T}^t \varphi(m) dm v(t) \right] \\ &\leq \left(\frac{2T\bar{\varphi}}{T} - c \right) \mu(t) + \bar{\kappa}|v|_{[t-T, t]} \end{aligned} \quad (33)$$

for all $t \geq T$. It follows from (31) that

$$\dot{\mu}(t) \leq \left(\frac{2T\bar{\varphi}}{T} - c \right) \mu(t) + \bar{\kappa}e^{2T\bar{\varphi}}|\mu|_{[t-T, t]} \quad (34)$$

for all $t \geq T$. Assumption 1 ensures that

$$\bar{\kappa}e^{2T\bar{\varphi}} < c - \frac{2T\bar{\varphi}}{T}. \quad (35)$$

We deduce from the classical Halanay's result (e.g., Fridman (2014, Lemma 4.2)) that (34) and (35) imply that $\mu(t)$ converges exponentially to zero when t goes to $+\infty$. Since φ is nonnegative valued and upper bounded by $\bar{\varphi}$, the exponential convergence of μ implies exponential convergence of v . This allows us to conclude; see Appendix B for a construction of the constant \bar{C}_i 's from (15).

4. Applications

We provide three applications of Theorem 1. Our first one will illustrate how Theorem 1 provides useful sufficient conditions for (2) to satisfy asymptotic stability conditions. Then we apply Theorem 1 to a class of systems whose delays can switch between small and large values. Finally, we apply Theorem 1 to an observer design problem with sampled outputs, in which there are scarce arbitrarily large sampling intervals in the same sense that scarce was used in Mazenc (2019). However, unlike Mazenc (2019) where the systems did not contain delays, the systems in our observer design application are allowed to have arbitrarily long delays, and our assumptions are less restrictive than those of Mazenc (2019).

4.1. System (2)

Consider the system (2) under the condition that

$$T > 2T. \quad (36)$$

We apply Theorem 1. For the particular case we consider, we have

$$\bar{\varphi} = 2, \bar{\epsilon} = 0, \text{ and } c = 1. \quad (37)$$

Then Assumption 1 gives the stability condition

$$2e^{6T-T} + \frac{4T}{T} < 1. \quad (38)$$

Then from Theorem 1, we conclude that $\lim_{t \rightarrow +\infty} v(t) = 0$ when (38) holds.

4.2. Systems with switching delays

Let t_i be a sequence as defined in Section 1 and τ_l and τ_s be two constants such that $\tau_l > \tau_s$ and

$$T > 2(\tau_l + \tau_s). \quad (39)$$

Consider the family of systems

$$\dot{x}(t) = Mx(t) + Nx(t - \tau(t)) \quad (40)$$

where x valued in \mathbb{R}^n , τ is a time-varying piecewise continuous unknown delay such that

$$0 \leq \tau(t) \leq \tau_s \text{ if } t \notin E, \text{ and } 0 \leq \tau(t) \leq \tau_l \text{ if } t \in E \quad (41)$$

where E was defined by (8) for some constant $T \in (0, T/2)$, and where $M \in \mathbb{R}^{n \times n}$ and $N \in \mathbb{R}^{n \times n}$ are constant matrices.

We introduce these two assumptions, the second of which is a largeness condition on T and a smallness condition on τ_s :

Assumption 2. There are a symmetric positive definite matrix $Q \in \mathbb{R}^{n \times n}$ and a constant $q > 0$ such that

$$Q(M + N) + (M + N)^T Q \leq -qQ \quad (42)$$

and

$$I \leq Q \quad (43)$$

are satisfied. \square

Assumption 3. Either

$$|N^T QN| < \frac{q^2}{16} \quad (44)$$

or the inequality

$$\begin{aligned} |N^T QN| &\left[e^{q(2T-T)/2} + \frac{2L\tau_s^2}{q} \right] e^{\frac{16T|N^T QN|}{q}} + \frac{2T|N^T QN|}{T} \\ &< \frac{q^2}{16} \end{aligned} \quad (45)$$

with

$$L = \frac{2|N^T QN|(|M| + |N|)^2}{q} \quad (46)$$

is satisfied. Also, $L\tau_s^2 < q/2$. \square

We prove the following proposition:

Proposition 1. Let the system (40) satisfy Assumptions 2 and 3. Then its origin is a globally exponentially stable equilibrium point on \mathbb{R}^n . \square

Proof. For all $t \geq 0$, we have

$$\dot{x}(t) = (M + N)x(t) + N[x(t - \tau(t)) - x(t)]. \quad (47)$$

It follows from (42) that the time derivative of the positive definite function

$$U(x) = x^T Qx \quad (48)$$

along all trajectories of (47) satisfies

$$\begin{aligned} \dot{U}(t) &\leq -qU(x(t)) + \{2x(t)^T QN\delta(x_t)\} \\ &\leq -\frac{q}{2}U(x(t)) + \frac{2}{q}[\delta(x_t)]^T N^T QN\delta(x_t), \end{aligned} \quad (49)$$

where

$$\delta(x_t) = x(t - \tau(t)) - x(t) \quad (50)$$

and where we used the triangle inequality to get

$$\begin{aligned} 2 \left| \sqrt{q/2} \sqrt{Q} x(t) \right| \left| \frac{\sqrt{q}}{\sqrt{q/2}} N(x(t - \tau(t)) - x(t)) \right| \\ \leq \frac{q}{2} U(x(t)) + \frac{2}{q} \left| \sqrt{Q} N(x(t - \tau(t)) - x(t)) \right|^2 \end{aligned} \quad (51)$$

to bound the quantity in curly braces. It follows that

$$\begin{aligned} \dot{U}(t) &\leq -\frac{q}{2} U(x(t)) + \frac{2|N^T Q N|}{q} (|x(t - \tau(t))| + |x(t)|)^2 \\ &\leq -\frac{q}{2} U(x(t)) + \frac{8|N^T Q N|}{q} \sup_{l \in [t - \tau(t), t]} U(x(l)) \end{aligned} \quad (52)$$

where the last inequality is a consequence of (43). On the other hand, the last inequality in (49) gives

$$\begin{aligned} \dot{U}(t) &\leq -\frac{q}{2} U(x(t)) \\ &\quad + \frac{2}{q} \left[\int_{t - \tau(t)}^t \dot{x}(s) ds \right]^T N^T Q N \int_{t - \tau(t)}^t \dot{x}(s) ds \\ &\leq -\frac{q}{2} U(x(t)) + \frac{2}{q} |N^T Q N| \left| \int_{t - \tau(t)}^t \dot{x}(s) ds \right|^2 \\ &\leq -\frac{q}{2} U(x(t)) \\ &\quad + \frac{2}{q} q_N \left| \int_{t - \tau(t)}^t [Mx(s) + Nx(s - \tau(s))] ds \right|^2 \\ &\leq -\frac{q}{2} U(x(t)) \\ &\quad + \frac{2}{q} q_N \left| \int_{t - \tau(t)}^t [|M| + |N|] \sup_{m \in [s - \tau_t, s]} |x(m)| ds \right|^2 \end{aligned} \quad (53)$$

for all $t \geq 0$, where $q_N = |N^T Q N|$. Consequently, we can use Jensen's inequality to get

$$\begin{aligned} \dot{U}(t) &\leq -\frac{q}{2} U(x(t)) \\ &\quad + \frac{2|N^T Q N|(|M| + |N|)^2 \tau^2(t)}{q} \sup_{m \in [t - \tau_t - \tau(t), t]} U(x(m)). \end{aligned} \quad (54)$$

We deduce from the last inequality in (54) and the last inequality in (52) that

$$\dot{U}(t) \leq -\frac{q}{2} U(x(t)) + L \tau_s^2 \sup_{m \in [t - \tau_t - \tau_s, t]} U(x(m)) \quad (55)$$

with L defined in (46) when $t \notin E$, while

$$\dot{U}(t) \leq -\frac{q}{2} U(x(t)) + \frac{8|N^T Q N|}{q} \sup_{l \in [t - \tau_t, t]} U(x(l)) \quad (56)$$

when $t \in E$. **Assumption 3** ensures that Theorem 1 applies to $U(x(t))$ with $c = \frac{q}{2}$, $\bar{\epsilon} = L \tau_s^2$, and $\bar{\varphi} = 8|N^T Q N|/q$. It follows that $U(x(t))$ converges exponentially to zero. Since the function $U(x)$ is a positive definite quadratic function, we can conclude. \square

4.3. Observer for systems with discrete measurements

In this section, we revisit Mazenc (2019), where continuous-time systems with discrete measurements were studied using the technique of Karafyllis and Kravaris (2009). The work (Mazenc, 2019) designed converging observers in cases where the lengths of some intervals between the measurements can exceed the upper bound that ensures convergence of the observer that is provided in Karafyllis and Kravaris (2009, Equation (4.7)). This scarcity condition on the intervals in Mazenc (2019) is improved by the result that we give below, because our result below does not use the integral condition from Mazenc (2019, Assumption A3). Moreover, by contrast with Mazenc (2019), the system we consider has a delay.

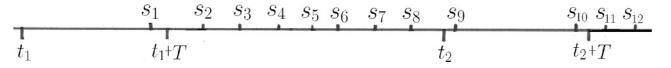


Fig. 1. Frequentness in the sampling points s_i outside the set $E = \cup_{i \in \mathbb{N}} [t_i, t_i + T]$ as required by our conditions.

4.3.1. Theoretical result

Let s_i be a strictly increasing sequence in $[0, +\infty)$ with $s_0 = 0$ such that there are two constants $s_{\sharp} > 0$ and $s_{\ell} > s_{\sharp}$ such that $s_{i+1} - s_i \in [s_{\sharp}, s_{\ell}]$ for all $i \in \mathbb{Z}_{\geq 0}$. We consider the system

$$\begin{cases} \dot{x}(t) = Hx(t) + Kx(t - \tau) + \Phi(Cx(t)), \\ y(t) = Cx(s_i) \text{ if } t \in [s_i, s_{i+1}] \text{ and } i \in \mathbb{Z}_{\geq 0}. \end{cases} \quad (57)$$

where x is valued in \mathbb{R}^n , $K \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{q \times n}$ are nonzero constant matrices, $\tau > 0$ is a known constant delay, H is a Hurwitz matrix, and Φ is a nonlinear function. The assumption that H is Hurwitz is not restrictive. This is because for any system $\dot{x}(t) = Ax(t) + \phi(Cx(t))$ such that (A, C) is observable, there is a matrix L such that the matrix $A + LC$ is Hurwitz. Then the system $\dot{x}(t) = Ax(t) + \phi(Cx(t))$ can be rewritten as $\dot{x}(t) = Hx(t) + \Phi(Cx(t))$ with $H = A + LC$ and $\Phi(q) = \phi(q) - Lq$ and this system is of the type (57). Since the matrix H is Hurwitz, there are constants $c_1 > 0$, $p_1 > 0$, and $p_2 > 0$ and a symmetric positive definite matrix $P \in \mathbb{R}^{n \times n}$ such that

$$PH + H^T P \leq -2c_1 P \text{ and } p_1 I \leq P \leq p_2 I. \quad (58)$$

We fix a matrix P and positive constants c_1 , p_1 , and p_2 satisfying the preceding conditions (which can be selected as design choices) in the rest of this subsection and assume:

Assumption 4. The function Φ is globally Lipschitz. \square

Assumption 5. There is a sequence of instants t_j that satisfies the requirements of Section 1, and constants $T \in (0, \underline{T}/2)$ and $\underline{s} \in (0, \underline{T} - T)$, such that with the choice (8) of the set E , the following two conditions hold: (A) $\sup_{j \geq 0} (s_{j+1} - s_j) \leq T$ and (B) $\max(s_{i+1} - s_i, s_i - s_{i-1}) \leq \underline{s}$ for all $i \in \mathbb{N}$ such that $s_i \notin E$. \square

Our key assumption in this section will be that \underline{s} is small enough as compared with the other parameters, which can be interpreted to mean that during each time interval $[t_k + T, t_{k+1})$ that is outside the union (8) that defines the set E , the sampling points s_i are close enough together, but this does not require any periodicity of the sampling interval lengths $s_{i+1} - s_i$. On the other hand, we allow \underline{T} and so also T to be arbitrarily large, which is a scarcity condition as described in Mazenc (2019) that allows the s_i 's to be further apart during the time intervals that define the set E ; see Fig. 1.

To specify our requirements, we use the constants

$$\begin{aligned} K^{\sharp} &= 2|P^{\frac{1}{2}} K P^{-\frac{1}{2}}|, \quad B^* = 4|C|k_{\phi}, \\ B^{\dagger} &= \frac{\max\{|Ck|^2, |CH|^2\}}{2|C|k_{\phi}p_1}, \end{aligned} \quad (59)$$

where $k_{\phi} > 0$ is a global Lipschitz constant for Φ ,

$$\begin{aligned} \bar{\beta} &= K^{\sharp} + 4 \left| P^{\frac{1}{2}} \right|^2 \frac{k_{\phi}^2 B^{\dagger}}{c_1 B^*} (e^{B^* T} - 1) \text{ and} \\ \underline{\beta} &= K^{\sharp} + 4 \left| P^{\frac{1}{2}} \right|^2 \frac{k_{\phi}^2 B^{\dagger}}{c_1 B^*} (e^{B^* \underline{s}} - 1). \end{aligned} \quad (60)$$

Our final assumption is as follows, and can be viewed as smallness conditions on K and \underline{s} and a largeness condition on \underline{T} :

Assumption 6. Either $\bar{\beta} < c_1$ or the inequality

$$\bar{\beta} \left[e^{c_1(2T - \underline{T})} + \frac{\bar{\beta}}{c_1} \right] e^{2T \bar{\beta}} + \frac{2T \bar{\beta}}{\underline{T}} < c_1 \quad (61)$$

holds. Also, $\underline{\beta} < c_1$ and $\tau + s_{\ell} \leq T$. \square

We use the dynamic extension

$$\begin{cases} \dot{\omega}(t) = CHz(t) + CKz(t - \tau) + C\Phi(\omega(t)) \\ \quad \text{if } t \in [s_i, s_{i+1}) \text{ and } i \in \mathbb{Z}_{\geq 0} \\ \omega(s_i) = Cx(s_i) \text{ if } i \in \mathbb{Z}_{\geq 0} \\ \dot{z}(t) = Hz(t) + Kz(t - \tau) + \Phi(\omega(t)) \end{cases} \quad (62)$$

with ω valued in \mathbb{R}^q and z valued in \mathbb{R}^n . This dynamic extension is similar to the one in [Karafyllis and Kravaris \(2009\)](#), but our allowing $\sup_i \{s_{i+1} - s_i\}$ to be arbitrarily large (by allowing T is arbitrarily large) puts our work outside the scope of [Karafyllis and Kravaris \(2009\)](#). We prove the following (whose proof will show that the convergence $\lim_{t \rightarrow \infty} (z(t) - x(t)) = 0$ is of exponential type):

Theorem 2. Assume that the system (57) satisfies [Assumptions 4 to 6](#). Then for all solutions $x(t)$ of (57) and all solutions (ω, z) of (62), we have $\lim_{t \rightarrow \infty} (z(t) - x(t)) = 0$. \square

Proof. We introduce the variables $e_\omega = \omega - Cx$ and $e_x = z - x$. Elementary calculations give

$$\begin{cases} \dot{e}_\omega(t) = CHe_x(t) + CKe_x(t - \tau) + C\Phi(\omega(t)) \\ \quad - C\Phi(Cx(t)) \text{ if } t \in [s_i, s_{i+1}) \text{ and } i \in \mathbb{Z}_{\geq 0} \\ e_\omega(s_i) = 0 \text{ if } i \in \mathbb{Z}_{\geq 0} \\ \dot{e}_x(t) = He_x(t) + Ke_x(t - \tau) + \Phi(\omega(t)) \\ \quad - \Phi(Cx(t)) \text{ if } t \in [s_i, s_{i+1}) \text{ and } i \in \mathbb{Z}_{\geq 0}. \end{cases} \quad (63)$$

Let us analyze (63) using the positive definite quadratic functions

$$V(e_x) = e_x^\top Pe_x \text{ and } U(e_\omega) = \frac{1}{2}|e_\omega|^2. \quad (64)$$

The inequality (58) and [Assumption 4](#) ensure that the time derivative of V along the trajectories of (63) satisfies

$$\dot{V}(t) \leq -2c_1 V(e_x(t)) + 2e_x(t)^\top PKe_x(t - \tau) + 2k_\phi |e_x(t)^\top P| |e_\omega(t)|$$

and therefore also

$$\begin{aligned} \dot{V}(t) &\leq -2c_1 V(e_x(t)) \\ &\quad + 2e_x(t)^\top P^{\frac{1}{2}} (P^{\frac{1}{2}} K P^{-\frac{1}{2}}) P^{\frac{1}{2}} e_x(t - \tau) \\ &\quad + 2k_\phi |e_x(t)^\top P^{\frac{1}{2}}| |P^{\frac{1}{2}}| |e_\omega(t)| \\ &\leq -2c_1 V(e_x(t)) \\ &\quad + 2|P^{\frac{1}{2}} K P^{-\frac{1}{2}}| \sqrt{V(e_x(t))} \sqrt{V(e_x(t - \tau))} \\ &\quad + \{\sqrt{2c_1 V(e_x(t))}\} \{k_\phi \sqrt{2/c_1} |P^{1/2}| |e_\omega(t)|\}. \end{aligned} \quad (65)$$

Here and in the rest of the proof, all equalities and inequalities are for all $t \geq 0$ unless otherwise noted.

Applying the triangle inequality to the terms in curly braces in (65) gives

$$\begin{aligned} \dot{V}(t) &\leq -c_1 V(e_x(t)) \\ &\quad + K^\sharp \sqrt{V(e_x(t))} \sqrt{V(e_x(t - \tau))} + \frac{2k_\phi^2}{c_1} \left| P^{\frac{1}{2}} \right|^2 U(e_\omega(t)) \end{aligned} \quad (66)$$

with K^\sharp defined in (59). On the other hand, since

$$\sqrt{2U(e_\omega(t))} = |e_\omega(t)|, \quad (67)$$

we get

$$\begin{aligned} \dot{U}(t) &\leq 2|C|k_\phi U(e_\omega(t)) \\ &\quad + \sqrt{2}|CK| \sqrt{U(e_\omega(t))} |e_x(t - \tau)| \\ &\quad + \sqrt{2}|CH| \sqrt{U(e_\omega(t))} |e_x(t)| \\ &\leq 4|C|k_\phi U(e_\omega(t)) \\ &\quad + \frac{\max\{|CK|^2, |CH|^2\}}{2|C|k_\phi} (|e_x(t)|^2 + |e_x(t - \tau)|^2) \\ &\leq B^* U(e_\omega(t)) + B^\dagger [V(e_x(t)) + V(e_x(t - \tau))] \end{aligned} \quad (68)$$

for all $t \in [s_i, s_{i+1})$ and $i \in \mathbb{Z}_{\geq 0}$ with B^* and B^\dagger defined in (59), using the triangle inequality to get the relation

$$\begin{aligned} &\sqrt{2}|CK| \sqrt{U(e_\omega(t))} |e_x(t - \tau)| \\ &= \{\sqrt{2}|C|k_\phi U(e_\omega(t))\} \left\{ \frac{|CK|}{\sqrt{k_\phi|C|}} |e_x(t - \tau)| \right\} \\ &\leq |C|k_\phi U(e_\omega(t)) + \frac{1}{2} \frac{|CK|^2}{k_\phi|C|} |e_x(t - \tau)|^2, \end{aligned} \quad (69)$$

and the same relation with K and $e_x(t - \tau)$ replaced by H and $e_x(t)$, respectively, and then using our condition on p_1 from (58).

By integrating the last inequality in (68) over the interval $[s_i, t)$ with $t \in [s_i, s_{i+1})$, and recalling that $e_\omega(s_i) = 0$ for all $i \in \mathbb{Z}_{\geq 0}$, we obtain

$$\begin{aligned} &U(e_\omega(t)) \leq \\ &B^\dagger \int_{s_i}^t e^{B^*(t-m)} [V(e_x(m)) + V(e_x(m - \tau))] dm. \end{aligned} \quad (70)$$

Combining (66) and (70), we obtain

$$\begin{aligned} \dot{V}(t) &\leq -c_1 V(e_x(t)) + K^\sharp \sqrt{V(e_x(t))} \sqrt{V(e_x(t - \tau))} \\ &\quad + \frac{2}{c_1} \left| P^{\frac{1}{2}} \right|^2 k_\phi^2 B^\dagger \int_{s_i}^t e^{B^*(t-m)} [V(e_x(m)) \\ &\quad + V(e_x(m - \tau))] dm, \text{ and so also} \end{aligned}$$

$$\begin{aligned} \dot{V}(t) &\leq -c_1 V(e_x(t)) + K^\sharp \left\{ \sqrt{\sup_{s \in [s_i, t]} V(e_x(s))} \right\} \\ &\quad \times \left\{ \sqrt{\sup_{s \in [s_i - \tau, t - \tau]} V(e_x(s))} \right\} \\ &\quad + \frac{2}{c_1} \left| P^{\frac{1}{2}} \right|^2 k_\phi^2 B^\dagger \int_{s_i}^t e^{B^*(t-m)} dm \\ &\quad \times \left[\sup_{s \in [s_i, t]} V(e_x(s)) + \sup_{s \in [s_i - \tau, t - \tau]} V(e_x(s)) \right]. \end{aligned} \quad (71)$$

It follows from applying the triangle inequality to the terms in curly braces in (71) that

$$\begin{aligned} \dot{V}(t) &\leq -c_1 V(e_x(t)) + \frac{K^\sharp}{2} \left[\sup_{s \in [s_i, t]} V(e_x(s)) \right. \\ &\quad \left. + \sup_{s \in [s_i - \tau, t - \tau]} V(e_x(s)) \right] \\ &\quad + \frac{2k_\phi^2 B^\dagger}{c_1} \left| P^{\frac{1}{2}} \right|^2 \frac{e^{B^*(t-s_i)} - 1}{B^*} \left[\sup_{s \in [s_i, t]} V(e_x(s)) \right. \\ &\quad \left. + \sup_{s \in [s_i - \tau, t - \tau]} V(e_x(s)) \right] \\ &\leq -c_1 V(e_x(t)) \\ &\quad + \left(K^\sharp + 4 \left| P^{\frac{1}{2}} \right|^2 \frac{k_\phi^2 B^\dagger}{c_1 B^*} (e^{B^*(t-s_i)} - 1) \right) \\ &\quad \times \sup_{s \in [s_i - \tau, t]} V(e_x(s)) \end{aligned} \quad (72)$$

for all $t \in [s_i, s_{i+1})$ and $i \in \mathbb{Z}_{\geq 0}$.

Now, we distinguish between 2 cases:

First case. $t \in E$ and $t \geq 0$. Choose $i \in \mathbb{Z}_{\geq 0}$ such that $s_i \leq t < s_{i+1}$. Thus

$$t - s_i < s_{i+1} - s_i \leq T \quad (73)$$

(where the last inequality is a consequence of [Assumption 5](#)). It follows that

$$\dot{V}(t) \leq -c_1 V(e_x(t)) + \bar{\beta} \sup_{s \in [s_i - \tau, t]} V(e_x(s)) \quad (74)$$

with $\bar{\beta}$ defined in (60).

Second case. $t \notin E$ and $t \geq 0$. Then there is an $i \in \mathbb{Z}_{\geq 0}$ such that

$$s_i \leq t < s_{i+1} \quad (75)$$

and such that either

$$s_i \notin E \text{ or } s_{i+1} \notin E, \quad (76)$$

because $s_{i+1} - s_i \leq T < \underline{T} - T$, and because the distance between any two points in distinct subintervals $[t_j, t_j + T]$ of E is at least $\underline{T} - T$. In either case, [Assumption 5](#) gives

$$s_{i+1} - s_i \leq \underline{s}. \quad (77)$$

It follows that $t - s_i \leq \underline{s}$. We deduce that

$$\dot{V}(t) \leq -c_1 V(e_x(t)) + \underline{\beta} \sup_{s \in [s_i - \tau, t]} V(e_x(s)) \quad (78)$$

with $\underline{\beta}$ defined in [\(60\)](#).

Now, we can apply [Theorem 1](#) with

$$c = c_1, \bar{\epsilon} = \underline{\beta}, \text{ and } \bar{\varphi} = \bar{\beta}, \quad (79)$$

because [Assumption 6](#) ensures that [Assumption 1](#) is satisfied. Then [Theorem 1](#) ensures that

$$\lim_{t \rightarrow +\infty} V(e_x(t)) = 0, \quad (80)$$

which provides the desired result. \square

4.3.2. Illustration

We illustrate [Theorem 2](#) by applying it to a pendulum model with friction, building on the corresponding analysis for the pendulum without friction from [Mazenc \(2019\)](#). We can derive conditions on the constants $\underline{T} > 0$ and $\underline{s} > 0$ and on the ratio $k/m > 0$ such that the assumptions of [Theorem 2](#) are satisfied for the pendulum dynamics with output

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{g}{l} \sin(x_1(t)) - \frac{k}{m} x_2(t) \\ y(t) = x_1(s_i) \text{ if } t \in [s_i, s_{i+1}] \text{ and } i \in \mathbb{Z}_{\geq 0}, \end{cases} \quad (81)$$

where the positive constants g , k , l , and m represent gravity, friction, length, and mass, respectively.

To this end, we first rewrite the dynamics from [\(81\)](#) as

$$\dot{x}(t) = Hx(t) + \Phi(x_1(t)), \quad (82)$$

where

$$\begin{aligned} H &= \begin{bmatrix} -2 & 1 \\ -1 & -\frac{k}{m} \end{bmatrix} \text{ and} \\ \Phi(x_1) &= \begin{bmatrix} 2x_1 \\ x_1 - \frac{g}{l} \sin(x_1) \end{bmatrix}. \end{aligned} \quad (83)$$

Then [Assumption 4](#) is satisfied with the global Lipschitz constant

$$k_\Phi = \sqrt{4 + \left(1 + \frac{g}{l}\right)^2} \quad (84)$$

for Φ . With the notation from [Theorem 2](#), we now choose

$$P = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix} \text{ and } C = [1 \ 0]. \quad (85)$$

Then our requirement

$$PH + H^\top P \leq -2c_1 P \quad (86)$$

is equivalent to the nonnegative definiteness of the matrix

$$M = \begin{bmatrix} 3 - 2c_1 & c_1 - 1 - \frac{k}{2m} \\ c_1 - 1 - \frac{k}{2m} & -2c_1 + 1 + \frac{2k}{m} \end{bmatrix}. \quad (87)$$

The preceding nonnegative definiteness condition will be satisfied if

$$\frac{k}{m} \in (0, 20.39) \quad (88)$$

and $c_1 > 0$ is small enough, because the matrix valued function

$$M_0(\ell) = \begin{bmatrix} 3 & -1 - \frac{\ell}{2} \\ -1 - \frac{\ell}{2} & 1 + 2\ell \end{bmatrix} \quad (89)$$

is positive definite for all $\ell \in (0, 20.39)$. However, the preceding bound depends on the choice of P in [\(85\)](#), which also affects the choice of c_1 . Hence, it may be useful in practice to consider different choices of P to allow larger bounds on k/m .

Then we can choose

$$K = 0, p_1 = \frac{1}{2}, p_2 = 1.5, K^\sharp = 0, |P^{1/2}| = 1.224, \quad (90)$$

and

$$B^* = 4\sqrt{4 + \left(1 + \frac{g}{l}\right)^2} \text{ and } B^\dagger = \frac{5}{\sqrt{4 + \left(1 + \frac{g}{l}\right)^2}}. \quad (91)$$

The preceding choices give the values

$$\begin{aligned} \bar{\beta} &= 4(1.224)^2 \frac{k_\Phi^2 B^\dagger}{c_1 B^*} \left(e^{B^* \underline{T}} - 1 \right) \\ &= \frac{7.49088}{c_1} \left(e^{4\sqrt{4 + \left(1 + \frac{g}{l}\right)^2} \underline{T}} - 1 \right) \end{aligned} \quad (92)$$

and

$$\begin{aligned} \underline{\beta} &= 4(1.224)^2 \frac{k_\Phi^2 B^\dagger}{c_1 B^*} \left(e^{B^* \underline{s}} - 1 \right) \\ &= \frac{7.49088}{c_1} \left(e^{4\sqrt{4 + \left(1 + \frac{g}{l}\right)^2} \underline{s}} - 1 \right) \end{aligned} \quad (93)$$

and [Assumption 6](#) requires that $\bar{\beta} < c_1$ or

$$\bar{\beta} \left[e^{c_1(2T - \underline{T})} + \frac{\underline{\beta}}{c_1} \right] e^{2T \bar{\beta}} + \frac{2T \bar{\beta}}{T} < c_1. \quad (94)$$

For each fixed c_1 , the preceding formulas then show how our requirements from [Assumption 6](#) will be satisfied if $\underline{s} > 0$ is small enough and \underline{T} is large enough. Then [Theorem 2](#) applies. Thus, with the constants we have selected,

$$\begin{cases} \dot{\omega}(t) = -2z_1(t) + z_2(t) + 2\omega(t), \\ \quad \text{if } t \in [s_i, s_{i+1}] \text{ and } i \in \mathbb{Z}_{\geq 0} \\ \omega(t_i) = x_1(s_i) \text{ if } i \in \mathbb{Z}_{\geq 0} \\ \dot{z}_1(t) = -2z_1(t) + z_2(t) + 2\omega(t) \\ \dot{z}_2(t) = -z_1(t) - \frac{k}{m} z_2(t) + \omega(t) - \frac{g}{l} \sin(\omega(t)) \end{cases} \quad (95)$$

provides an asymptotic observer for the system [\(81\)](#), because for all solutions (ω, z) of [\(95\)](#) and all solutions of [\(81\)](#), we have $\lim_{t \rightarrow \infty} (z(t) - x(t)) = 0$, and the convergence is global (i.e., for all initial conditions) and of exponential type.

In [Fig. 2](#), we plot the convergence of the components $z_1(t) - x_1(t)$ and $z_2(t) - x_2(t)$ of the estimation error for [\(81\)](#), which was generated from [\(81\)](#) and [\(95\)](#) using NDSolve in Mathematica. We used the initial state $x(0) = (1, 1)$ of [\(81\)](#), and with the initial states $\omega(0) = 0$ and $z(0) = (2, 1)$ (in red), $z(0) = (-2, -1)$ (in green), and $z(0) = (4, -2)$ (in blue) for the observer [\(95\)](#). We chose $l = 17$, $g = 9.8$, $c_1 = 2.5$, $T = 0.1$, $k = 1$, $m = 1$, $\underline{T} = 1$, $\underline{s} = 0.1$, and $s_j = 0.1j$ for all $j \in \mathbb{Z}_0$, which satisfy the preceding requirements, and then E is defined by the construction [\(8\)](#). Since the plot shows rapid convergence of the observation error to zero, it helps to validate our method, in the special case of the pendulum dynamics [\(81\)](#).

5. Conclusion

The well known Halanay's inequality condition plays an important role in the analysis of dynamics with switching or delays,

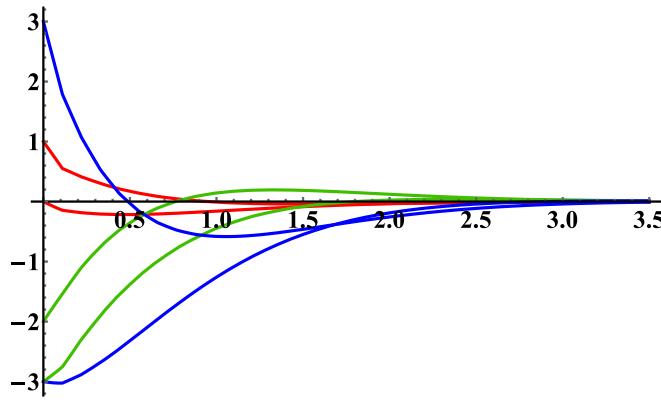


Fig. 2. Observer error $z(t) - x(t) = (z_1(t) - x_1(t), z_2(t) - x_2(t))$ converging to 0 with initial state $x(0) = (1, 1)$ for (81) and initial states $z(0) = (2, 1)$ (in red), $z(0) = (-2, -1)$ (in green), and $z(0) = (4, -2)$ (in blue) for observer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

since it provides an alternative to the oftentimes difficult task of constructing Lyapunov functions. We proposed new stability analysis results which complement both the Halanay's and the trajectory based approach. This is significant, because our less restrictive conditions (which allow the gain on the delayed term to exceed the decay rate in Halanay's inequality) broadened the range of applicability of trajectory based approaches to proving asymptotic stability properties. We have shown the usefulness of our new approach, in the context of switched systems with delays, and observers for systems with discrete measurements. A key feature of our work is that it allows cases where some of the sampling intervals can be arbitrarily long, provided they occur in the scarce sense from the work (Mazenc, 2019) and as explained above. In future work, we hope to find methods to maximize the rates of convergence in our theorems.

Appendix A. Comparison lemma

Lemma 1. Let $v : [-T, +\infty) \rightarrow [0, +\infty)$ be a nonnegative valued continuous solution of

$$\dot{v}(t) \leq -cv(t) + \Lambda(t)|v|_{[t-T,t]} \quad (\text{A.1})$$

where $T > 0$ and $c > 0$ are constants, and where Λ is a piecewise constant function such that there is a constant $\underline{\Lambda} > 0$ such that $\Lambda(t) > \underline{\Lambda}$ for all $t \geq 0$. Let w be a nonnegative valued solution of

$$\dot{w}(t) = -cw(t) + \Lambda(t)|w|_{[t-T,t]} \quad (\text{A.2})$$

for all $t \geq 0$ such that there is a constant $t_0 \geq 0$ such that

$$v(m) < w(m) \text{ for all } m \in [t_0 - T, t_0]. \quad (\text{A.3})$$

Then for all $t \geq t_0$, the inequality $v(t) < w(t)$ is satisfied. \square

Proof. For any continuous function $w : [t_0 - T, t_0] \rightarrow [0, +\infty)$, the solution of (A.2) is continuous and uniquely defined on $[t_0 - T, +\infty)$; see Hale and Verduyn Lunel (1993, Chapt. 2). Consider v and w such that (A.3) holds for all $t \in [t_0 - T, t_0]$. We proceed by contradiction. Suppose for the sake of obtaining a contradiction that the conclusion $v(t) < w(t)$ does not hold for all $t \geq t_0$. Then

the continuity of v and w implies that there is a $t_c > t_0$ such that $v(m) < w(m)$ for all $m \in [t_0 - T, t_c]$ (A.4)

and $v(t_c) = w(t_c)$. Also, (A.1) and (A.2) imply that for all $t \in [t_0, t_c]$, the function

$$\tilde{w}(t) = w(t) - v(t) \quad (\text{A.5})$$

satisfies

$$\dot{\tilde{w}}(t) \geq -c\tilde{w}(t) + \Lambda(t)[|w|_{[t-T,t]} - |v|_{[t-T,t]}]. \quad (\text{A.6})$$

Let

$$\varsigma(t) = e^{ct}\tilde{w}(t). \quad (\text{A.7})$$

Then

$$\dot{\varsigma}(t) \geq e^{ct}\Lambda(t)[|w|_{[t-T,t]} - |v|_{[t-T,t]}], \quad (\text{A.8})$$

which we can integrate over $[t, t_c]$ with $t \in [t_0, t_c]$ to get

$$\varsigma(t_c) - \varsigma(t) \geq \int_t^{t_c} e^{cm}\Lambda(m)[|w|_{[m-T,m]} - |v|_{[m-T,m]}]dm \quad (\text{A.9})$$

for all $t \in [t_0, t_c]$. Since $v(t_c) = w(t_c)$, we have $\varsigma(t_c) = 0$. It follows that

$$\varsigma(t) \leq -\int_t^{t_c} e^{cm}\Lambda(m)[|w|_{[m-T,m]} - |v|_{[m-T,m]}]dm \quad (\text{A.10})$$

for all $t \in [t_0, t_c]$. Since (A.4) and the continuity of v imply that $v(\ell) < |w|_{[m-T,m]}$ for all $\ell \in [m - T, m]$ and so also

$$|w|_{[m-T,m]} - |v|_{[m-T,m]} > 0 \quad (\text{A.11})$$

for all $m \in [t_0, t_c]$, we deduce that

$$\varsigma(t) \leq -\underline{\Lambda}e^{ct}\int_t^{t_c} [|w|_{[m-T,m]} - |v|_{[m-T,m]}]dm \quad (\text{A.12})$$

for all $t \in [t_0, t_c]$. Thus,

$$\tilde{w}(t) \leq -\underline{\Lambda}\int_t^{t_c} [|w|_{[m-T,m]} - |v|_{[m-T,m]}]dm < 0 \quad (\text{A.13})$$

for all $t \in [t_0, t_c]$. Hence, $w(t) - v(t) < 0$ for all $t \in [t_0, t_c]$. This contradicts (A.4), allowing us to conclude. \square

Appendix B. Construction of \bar{C}_1 and \bar{C}_2 in (15)

To explicitly construct the constants \bar{C}_1 and \bar{C}_2 in our statement of Theorem 1, first note that by combining our decay estimate (34) on the function μ from (32) with our condition (35), it follows that we can apply (Fridman, 2014, Lemma 4.2) to the function μ with the choices $\delta_0 = 0.5(c - 2T\bar{\varphi}/\underline{T})$, $\delta_1 = \frac{1}{2}\bar{\kappa}e^{2T\bar{\varphi}}$, and $h = t_0 = \underline{T}$ to get

$$\mu(t) \leq e^{-2\delta(t-\underline{T})}|\mu|_{[0,\underline{T}]} \quad (\text{B.1})$$

for all $t \geq \underline{T}$, where δ satisfies the requirements from Remark 1. Also, for all $t \geq 0$, our condition (12) gives

$$\dot{v}(t) \leq \bar{\epsilon}^\sharp|v|_{[t-T,t]}, \quad (\text{B.2})$$

where $\bar{\epsilon}^\sharp = \max\{\bar{\epsilon}, \bar{\varphi}\}$. Recalling that $\underline{T} > T$, it follows that

$$v(t) \leq v(0) + \bar{\epsilon}^\sharp \int_0^t |v|_{[\ell-\underline{T},\ell]}d\ell \quad (\text{B.3})$$

for all $t \in [0, \underline{T}]$. Hence, for all $t \in [0, \underline{T}]$, the continuous function $v_s(\ell) = |v|_{[\ell-\underline{T},\ell]}$ satisfies

$$v_s(t) \leq v_s(0) + \bar{\epsilon}^\sharp \int_0^t v_s(\ell)d\ell \quad (\text{B.4})$$

and so also

$$v(t) \leq v_s(t) \leq v_s(0)e^{\underline{\epsilon}t} \quad (\text{B.5})$$

where (B.5) followed from Gronwall's inequality. Also, the non-negative valuedness of φ and our formula (32) for μ gives

$$e^{-\bar{\varphi}T/2}v(t) \leq \mu(t) \leq v(t) \quad (\text{B.6})$$

for all $t \in [0, T]$. Combining (B.5)–(B.6) with (B.1) gives

$$v(t) \leq e^{\bar{\varphi}T/2}e^{-2\delta(t-T)}|v|_{[-T, 0]}e^{T \max\{\bar{\epsilon}, \bar{\varphi}\}} \quad (\text{B.7})$$

for all $t \geq 0$, which allows us to use the choices $\bar{C}_1 = e^{T(2\delta + \bar{\varphi}/2 + \max\{\bar{\varphi}, \bar{\epsilon}\})}$ and $\bar{C}_2 = 2\delta$ as specified in Remark 1.

References

Ahmed, S., Mazenc, F., & Ozbay, H. (2018). Dynamic output feedback stabilization of switched linear systems with delay via a trajectory based approach. *Automatica*, 93, 92–97.

Baker, C. (2010). Development and application of Halanay-type theory: Evolutionary differential and difference equations with time lag. *Journal of Computational and Applied Mathematics*, 234(9), 2663–2682.

Fridman, E. (2014). *Introduction to time-delay systems*. Boston, MA: Birkhauser.

Halanay, A. (1966). *Differential equations: Stability, oscillations, time lags*. New York, NY: Academic Press.

Hale, J., & Verduyn Lunel, S. (1993). *Introduction to functional differential equations*. New York, NY: Springer-Verlag.

Hien, L., Phat, V., & Trinh, H. (2015). New generalized Halanay inequalities with applications to stability of nonlinear non-autonomous time-delay systems. *Nonlinear Dynamics*, 82, 563–575.

Karafyllis, I., & Kravaris, C. (2009). From continuous-time design to sampled-data design of observers. *IEEE Transactions on Automatic Control*, 54(9), 2169–2174.

Malisoff, M., & Mazenc, F. (2009). *Constructions of strict Lyapunov functions*. New York, NY: Springer.

Mazenc, F. (2019). Sampled-data observers: scarce arbitrarily large sampling intervals. In *Proceedings of the 23rd international conference on system theory, control and computing* (pp. 287–291). Sinaia, Romania.

Mazenc, F., & Malisoff, M. (2015). Trajectory based approach for the stability analysis of nonlinear systems with time delays. *IEEE Transactions on Automatic Control*, 60(6), 1716–1721.

Mazenc, F., Malisoff, M., & Krstic, M. (2020). Stability analysis using new variant of Halanay's inequality. In *Proceedings of the 24th international symposium on mathematical theory of networks and systems*. in press, <https://www.math.lsu.edu/~malisoff/>.

Mazenc, F., Malisoff, M., & Niculescu, S.-I. (2017). Stability and control design for time-varying systems with time-varying delays using a trajectory-based approach. *SIAM Journal on Control and Optimization*, 55(1), 533–556.

Mazenc, F., Malisoff, M., & Ozbay, H. (2018). Stability and robustness analysis for switched systems with time-varying delays. *SIAM Journal on Control and Optimization*, 56(1), 158–182.

Selivanov, A., & Fridman, E. (2015). Distributed event-triggered control of transport-reaction systems. *IFAC PapersOnLine*, 48(11), 593–597.

Selivanov, A., & Fridman, E. (2016). Distributed event-triggered control of diffusion semilinear PDEs. *Automatica*, 68, 344–351.

Zhou, B. (2019). Construction of strict Lyapunov-Krasovskii functionals for time-varying time-delay systems. *Automatica*, 107, 382–397.

Zhou, B., & Egorov, A. (2016). Time-varying Razumikhin and Krasovskii stability theorems for time-varying delay systems. *Automatica*, 71, 281–292.

Zhou, B., Tian, Y., & Lam, J. (2020). On construction of Lyapunov functions for scalar linear time-varying systems. *Systems & Control Letters*, 135(104591), 1–10.

Frédéric Mazenc received his Ph.D. in Automatic Control and Mathematics from the CAS at Ecole des Mines de Paris in 1996. He was a Postdoctoral Fellow at CESAME at the University of Louvain in 1997. From 1998 to 1999, he was a Postdoctoral Fellow at the Centre for Process Systems Engineering at Imperial College. He was a CR at INRIA Lorraine from October 1999 to January 2004. From 2004 to 2009, he was a CR1 at INRIA Sophia-Antipolis. Since 2010, he has been first a CR1 and next a DR2 at INRIA Saclay. He received a best paper award from the IEEE Transactions on Control Systems Technology at the 2006 IEEE Conference on Decision and Control. His current research interests include nonlinear control theory, differential equations with delay, robust control, and microbial ecology. He has more than 200 peer reviewed publications. Together with Michael Malisoff, he authored a research monograph entitled *Constructions of Strict Lyapunov Functions* in the Springer Communications and Control Engineering Series.

Michael Malisoff earned his Ph.D. in Mathematics at Rutgers University in New Brunswick, NJ in 2000. He received the First Place Student Best Paper Award at the 1999 IEEE Conference on Decision and Control, and was a postdoctoral researcher at Washington University in St. Louis. In 2001, he joined the professorial faculty in the Department of Mathematics at Louisiana State University in Baton Rouge, LA, where he currently holds the Roy P. Daniels Professorship #3 in the College of Science. His research is on systems and control, with an emphasis on engineering applications. He is currently an associate editor for Asian Journal of Control, European Journal of Control, Discrete and Continuous Dynamical Systems Series B, Journal of Control and Decision, and SIAM Journal on Control and Optimization.

Miroslav Krstic is a Distinguished Professor of mechanical and aerospace engineering, holds the Alspach Endowed Chair, and is the founding Director of the Cymer Center for Control Systems and Dynamics, UC San Diego (UCSD), San Diego, CA, USA, where he also serves as a Senior Associate Vice Chancellor for Research. He has coauthored 13 books on adaptive, nonlinear, and stochastic control, extremum seeking, control of PDE systems, including turbulent flows, and control of delay systems. Dr. Krstic has been elected as a fellow of the seven scientific societies IEEE, IFAC, ASME, SIAM, AAAS, IET (U.K.), and AIAA (Associate Fellow) and a Foreign Member of the Serbian Academy of Sciences and Arts and the Academy of Engineering of Serbia. He won the UC Santa Barbara Best Dissertation Award and Student Best Paper Awards at CDC and ACC as a Graduate Student. He received the SIAM Reid Prize, the ASME Oldenburger Medal, the Nyquist Lecture Prize, the Paynter Outstanding Investigator Award, the IFAC TC Nonlinear Control Systems Award, the Ragazzini Education Award, the Chestnut Textbook Prize, the Control Systems Society Distinguished Member Award, the PECASE, the NSF CAREER Award, the ONR Young Investigator Award, the Axelby and Schuck Paper Prizes, and the first UCSD Research Award given to an engineer. He was also awarded the Springer Visiting Professorship at UC Berkeley, the Distinguished Visiting Fellowship of the Royal Academy of Engineering, and the Invitation Fellowship of the Japan Society for the Promotion of Science. He serves as the Editor-in-Chief for Systems and Control Letters and a Senior Editor for Automatica and as an editor for two Springer book series, and has served as a Senior Editor for IEEE Transactions on Automatic Control and Vice President for Technical Activities of the IEEE Control Systems Society and as the Chair of the IEEE CSS Fellow Committee.