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Abstract: We provide new reduced order observers for continuous-time nonlinear systems,
first in the case where there are continuous output measurements and next in the case where
there are only discrete output measurements. When continuous measurements are available, we
provide observers that converge in finite time. When only discrete measurements are available,
we provide observers that do not converge in finite time, but which do converge asymptotically
with a rate of convergence that is proportional to the negative of the logarithm of the size of
the sampling interval. We illustrate our results in a pendulum example.
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1. INTRODUCTION

Finite-time observers are efficient in practice because they
provide the exact value of the state of a studied system
in finite time. Many types of finite-time observers are
available; see in particular the contributions by Ahmed
et al. (2019), Engel and Kreisselmeier (2002), Lebastard
et al. (2006), Lopez-Ramirez et al. (2018), Mazenc et al.
(2015), Menard et al. (2010), Raff et al. (2005), Sanchez-
Torres et al. (2012), and Sauvage et al. (2007). Some
of them use sliding mode, or homogeneous functions, or
delays, or dynamic extensions. The contribution by Raff
and Allgower (2008) is significantly different from the
others. It provides a continuous-discrete observer that
possesses a key advantage, namely, it does not incorporate
delays and therefore may be easier to implement than
observers that incorporate delays. However, it presents the
two limitations that it only applies to linear systems and
that although it has continuous-discrete type, it requires
values of a continuous output, which is problematic when
only discrete measurements are available.

Here, we revisit the main approach of Raff and Allgower
(2008). We consider a family of nonlinear continuous-
time systems and provide a twofold contribution. First, we
propose a reduced order version of the observer in Raff and
Allgower (2008) when the measurements are continuous.
The observer converges in finite time, after a positive
instant which can be selected by the user. The limitation
of this result is that it does not apply when the mea-
surements are only available at discrete instants. Second,
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for a narrower family of nonlinear systems (that satisfy
a Lipschitzness condition), we combine our first design
with the key approach of Karafyllis and Kravaris (2009)
(which is also used in Karafyllis and Jiang (2013)), to
handle the case (which is important in practice) where the
measurements are only available at discrete instants. The
price for considering discrete measurements is that this
second observer does not converge in finite time. However,
it is also of reduced order and is efficient in terms of speed
of convergence when the size of the sampling intervals is
small, insofar that its convergence speed is proportional
to the negative of the logarithm of the size of the largest
sampling interval, which improves on asymptotic observers
(e.g., from Besancon (2007)) that did not provide such
convergence rate guarantees. Our work also contrasts with
the observers from Tranninger et al. (2018) (which are not
of reduced order type) and Kang et al. (2019) (which do
not provide arbitrarily fast convergence).

We establish convergence for our second observer through
a proof which relies on a recent stability analysis technique
called the trajectory based approach that is developed in
particular in the papers Ahmed et al. (2018) and Mazenc
et al. (2017). We show the efficiency of our approach by
applying it to a pendulum model that was discussed in
Dinh et al. (2015) in the full order observer case.

The paper is organized as follows. The studied class of
systems is presented in Section 2. A first observer is
proposed in Section 3. A second observer is proposed in
Section 4. An illustrative example is given in Section 5.
Concluding remarks are drawn in Section 6.
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Notation. We use standard notation, which is simplified
when no confusion would arise, and where the dimensions
of our Euclidean spaces are arbitrary unless otherwise
noted. The standard Euclidean 2-norm, and the induced
matrix norm, are denoted by |- |, | - |s is the essential
supremum over any set S, |- |w is the usual Lo sup
norm, N ={1,2,...}, and Z>¢ = {0} UN. For a piecewise
continuous locally bounded function ¢ : [0, +00) — R™,
we let ¢(c™) be the left limit ¢(c™) = limy_, .- ¢(t).

2. STUDIED SYSTEM

We consider the system
B(t) = Ax(t) + f(r(t), u(t)) (1)
with z(t) valued in R™, the input w(t) is locally bounded

and piecewise continuous and valued in R?, and A € R™*™,
where f is a locally Lipschitz nonlinear function such that

£(0,0) =0 and
r(t) = Cx(t) (2)
with 7(¢) valued in R? and C' € RP*"™, and p < n.

We will first consider the case where the output is con-
tinuous, i.e. y(t) = r(t), and next (in Section 4) the case
where it is discrete. Throughout the paper, we assume:

Assumption A1: The rank of C is full. The pair (A4, C’)
observable.

For forty years, it has been well-known that, under As-
sumption Al, the system (1) can be transformed through
a linear change of coordinates of the type

x, (T
()-s0 o
with an invertible matrix U into a system of the form

#(t) = Fuar(t) + Fioze(t) + f1(r(t), u(?)) (4)
& (t) = Forr(t) + Foox,(t) + fo(r(t), u(t))

with Fi; € RPXP, [y € RPX(=p) Fy e R(P)XP apd
Fyy € RO=P)X(n=P) where the pair (Fag, F12) is observ-
able; see pp.304-306 in Luenberger (1979). In Mazenc et al.
(2015), it is proved that in this case, there are a matrix
L € R"=»>? and a constant v > 0 (which can be taken to
be arbitrarily large) such that with the choice

H = Fyy + LFy5 € RO-PX(=p), (5)
the matrix
E = e—Fzgl/ _ e—Hu (6)
is invertible. We now introduce the sequence t; = iv for
all i € Zx(, the matrices
G = Fy1 — FyoL+ LFyy — LF5L
= Fy + LF;, — HL € R—P)*p

Ry = E e VP2 ¢ RO-PIX(n=p) 9 (7)
Ry = _E~le vH ¢ R(n—p)x(n-p)
and the R™"P-valued function f3 = fo + Lf;.
3. OBSERVER WHEN THE OUTPUT IS
CONTINUOUS

In this section, we consider the system (1) with a contin-
uous output y(t) = Cz(t). Then (4) gives

{0 = Euat + Bant - O g
& (t) = Fory(t) + Foox,(t) + fo(y(t),u(t)).

3.1 Observer

We consider the following dynamic extension:

21(t) = Fory(t) + Fazz1(t) + fa(y(t), u(t))
if te [tk;tk+1)

Za(t) = Hzo(t) + Gy(t) + f3(y(t), u(t))
if te [tk,tk+1)

21(tg1) = Rizi(tyy) + Reza(ty ) ©)
—RoLy(try1) — B~ Ly(ty)

22(ths1) = Rz (t;+1) + R2Z2(tl;+1)
—RoLy(te+1) — B~ Ly(ty)

for all integers k > 0, with 21(0) = 22(0) = 0 (but our
results remain true if we fix any other initial states for
the z;’s at time 0). Here z;(t,.,) denotes the final state
obtained by integrating the ith system of (9) on [t,tg+1)
for i = 1,2, and then the z;’s are reset at times ¢;1 using
the last two equations of (9). This defines solutions z; on
[0,00) in a recursive way. We state and prove:

Theorem 1: Let the system (1) with the output y(¢) =
Cz(t) satisfy Assumption Al and let it be forward com-
plete. Then the solutions of (8)-(9) are such that

z1(t) = z(t) (10)
for all t > 2v. O

Remark 1. The main difference between the observer (9)
and the one proposed in Raff and Allgower (2008) is that
the dimension of the z-subsystem in (9) is 2(n—p), whereas
the dimension of the corresponding system in Raff and
Allgower (2008) is 2n. O

Remark 2. Since y(t) and z1(t) are known for all ¢ > o,
Theorem 1 implies that z(t) is known for all t > ¢5 because

2(t) = 5! (2((;))) (11)
for all ¢ > to, by (3). O

3.2 Proof of Theorem 1

Since we assume that (1) is forward complete, all the
solutions of (8)-(9) are defined over [0,400). We use the
variable £(t) = x,(t) + Ly(t). Simple calculations give

§(t) = (Fau + LF11)y(t) + (Fao + LF1p)a,(t)
= (Fo1 + LFn)y(t ) + (Fao
+LF12)(§(t) — Ly(t)) + f3(y(t), u(?)).
Thus we get
{I'r_(t) = Fory(t) + Faow, () + f2(y(t), u(?)) (13)
§(t) = HE(t) + Gy(t) + f3(y(t), u(t)).

For k€Z>(, we integrate (9) and (13) on
e 22, (thg) = 2 (th)
+ftk+l (the1—L—v)Fao [Fory(€) + fa(y(£),u())] de
and e "He(ty ) = E(ty)
I I [Gyl6) + fy(y(0),u(0))]
and e V™22 (ti, ) = 21(tk)
+ftk+1 e(thr1—L—v) Faz [F21y(€) + fz(y(ﬁ),u(ﬁ))] ds
and e VH (tk:+1) = ZQ(tk)
+ [ et =D H [Gy(0) + fa(y(0),

n [tg,tr41) to get

(14)

u(0))] de.
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The first two equalities of (14) and our choice (6) of E give
Ex,(tp1) — e T Ly(tpi1) + Ly(ty)
= [ [etmOFa ) — eO=DH G y(0)de
+ [ [t fo (y(0), u())
e D i (y(0),u(e))| e,

since & = x, + Ly. Since 21(tg) = 22(tx) for all k > 1, we
deduce from the last two equations of (14) that

(15)

€7VF2221 (t}’;%l) _ 671/H22(t’;+1)

_ f;’““ [e(tr[)pzsz _ e(trz)Hg] y(6)de
+ [ (et mOF2 o (y(0), u(2))
O (), u(e))] de

for all k£ > 1. Combining (15)-(16) gives

Ew,(tgp1) — eV Ly(tiyr) + Ly(tr)
= e vy (tep1) — e*”HZQ(t,;H).
Since F is invertible, we have
r(tre1) = B~ e "M Ly(tysr) — B~ Ly(ty)
+Ri21 () + Roza(tyy ).
From (9), it follows that =, (tx4+1) = 21 (tg+1) for all & > 1.
From (8) and (9) and the existence and uniqueness of the

solutions of the ordinary differential equations, it follows
that (10) holds for all ¢ > ¢5. This completes the proof.

(16)

(17)

(18)

4. OBSERVER WHEN THE OUTPUT IS DISCRETE

Throughout this section, we use the notation from Sections
2 and 3. The main result of this section owes a great
deal to the pioneering paper by Karafyllis and Kravaris
(2009), because we use the dynamic extension introduced
in Karafyllis and Kravaris (2009) to obtain an observer in
the case where the measurements are discrete. However,
our result allows arbitrarily large convergence rates for our
reduced order observer, which is a valuable feature that
was beyond the scope of Karafyllis and Kravaris (2009).

We consider the case where the measurements are syn-
chronous. We consider a constant p > 0, the sequence
s; =1 for all ¢ € Z>(, and the system

B(t) = Ax(t) + f(r(t), u(t))
y(t) = Cua(s;) if t € [s5,5541)
r(t) = Cx(t)

and let y be the output. We introduce assumptions:

) =
) = (19)

Assumption A2. There is a constant f; > 0 such that

|f(m1au)_f(m2au)| Sf‘l"Tnl_TrLQl (20>
for all m; € RP,my € RP and u € RY. O

Assumption A83. There is g € N such that v = gu, where
v satisfies the requirements from Section 2. O

Condition Assumption A3 is not restrictive at all because
v and g can be arbitrarily large.

According to Assumption A2 and the fact that the change
of coordinates (3) is time-invariant, there are two constants
fi1 2> 0and f;2 > 0 such that

(21)

(22)

| fr(ma, u) — fi(ma,uw)| < fialmy —mo]
and

| fa(ma, u) — fa(ma, )| < fi2lmi —mo]
hold for all m; € RP, my € RP and u € RY.

4.1 Observer

We use this dynamic extension which is a candidate
observer:

Zl(t) = Fglw(t)-i-FQQZl(t)+f2(’LU(t),u(t))
if ¢t € [sgr, 3g(k+1))
Z(t) = Hzy(t) + Gu(t) + fa(w(t), u(t))
if t € [sgr, Sg(kt1))
21 (Sg(kJrl)) = Rizxy (S;(k—i-l)) + RQZQ(S;(k+1))
—R2Ly(3g(k+1)) - E_lLy(Sgk)
22(Sg(e1)) = Baz1(sy (1)) + Roza(s 4 41))
—RoLy(sg(k+1)) — EilLy(sgk)
w(t) = Fllw(t)+F1221(t)+f1(w(t),U(t))
if t € [sk,Sk+1)
w(sk) = y(sk)
for all integers k£ > 0, with 21 (0) = 22(0), whose solutions
are defined in the same recursive way as those of (9).

(23)

For a fixed constant v > 0 satisfying our requirements
form Section 2, we will use the constants

E=I|E"! (24)
fi3 = fro+ L f 1, (25)

and
B(v) = eIV (|Fy | + fr2)+ (26)

E (e”‘F”H”‘H'(IGI + fi3) + el (| | 4 fm)) ,
and the function
() =max{ 1, P2 (2uB(v) +1) max {| Fai|, fr.1}}- (27)

We fix a constant 1 > 0 such that if u € (0,7), then

py(p) < 1. (28)

Since we view v > 0 in (27) as being a fixed constant
that satisfies the requirements from Section 2, satisfying
the requirement p € (0,f1) is equivalent to choosing the
integer ¢g in Assumption A3 such that g = v/p > v/i. We
are ready to state and prove the following result:

Theorem 2: Let the system (19) satisfy Assumptions Al
to A3 and p € (0,%). Then the solutions of (4) and (23)
are defined over [0, +00) and satisfy

|xr(t) —Z1 (t)|

0y (1))
< e%(t—m) (|.Tr - Zl‘[*(N*FQV),m] (29)
+lw = rl=(ut20),m]
ift>m > 4v. O

Remark 3. The key feature of (29) is that its rate of conver-
gence is proportional to — In(uy(p)), and — lim,_,o+ In(s) =
+o0o, which gives arbitrarily fast convergence as p — 0%.
We can always let p = v by increasing p is necessary.
However, this choice will lead to less efficient observers
in terms of speed of convergence, because when pu < v
then —In(uy(u)) > —In(vvy(v)). Also, Theorem 2 provides
a 2n — p dimensional (and therefore a reduced order)
observer. |
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4.2 Proof of Theorem 2

Assumption A2 ensures that for the system (4) and (23),
the finite escape time phenomenon does not occur. Thus
the maximal solutions of (4) and (23) are defined over
[0,4+00). Now we decompose the proof in three parts.

First part of the proof: an expression for x,(tg+1).

To simplify the notation, let us define the sequence t; =
sg for all k € N. According to Assumption A3, ¢}, = kv for
all k € Z>¢. Hence, this sequence is similar to the sequence
t;. introduced in Section 2. We use the variable

&(t) = x(t) + Lr(t). (30)
Then (4) and our choice f3 = fo + Lf; give
£(t) = (For + LE)r(t) + Ha, () + f3(r(t),u(t)). (31)
We deduce that
Ly (t) = Fagay(t) + Faur(t) + fa(r(t), u(t))
£(t) = HEQR) + Gr(t) + fs(r(t), u(t))
z1(t) = Forw(t) + Fazez1 (1) + fa(w(t), u(t))
ifte [tk,tk+1)
22(t) = HZZ(t) + Gw(t) + f3(w(t)7 u(t)) (32)
ifte [tk,tk+1)
Zl(tk+1) = Rlzl(t;+1) + RQZQ(tI;_,’_l)
—RoLy(try1) — B~ Ly(ty)
Zg(tk_H) = Rlzl(t,;rl) + RQZQ(t]:+1)
—RoLy(tps1) — E7 Ly(ty), k> 0.

Then, for any k € Z>o, by integrating (32) over the interval
[tkstr+1), we obtain

€ r(the1) = oo (tk)

+ f“‘“ el =E=0F2 [Fyyp(0) + fo(r(0), u(0))] df

and e "7 ¢(tkg1) = E(tr)

+ [y et I [Gr(0)  fy(r(0), u(0))] A

and e~ FZ?zl(tkH) = z1(tx)

[t el =R (B + fo (w(e),u(6))] df

and e VH zz(t,;rl) = 2o(tx)

[t et = Gu(l) + fy(w(b),u(6))] dL.
Bearing in mind (32) and the fact that z;(t;) — 22(¢;) =0
for all j > 1, we deduce that
@y (thyr) — e VT E (k) + Lr(ty)
= ftif“ elte=OF2 By qp(0)de

— [ e mOH Guy(£)de
+ ftk“[ G —OH G et =022 By ] (w(£) —r(£)))de
e 0B gy (0(0) ()

b o(tut M fa(r(£), u(€))de

ty
(by subtracting the second equation of (33) from the first
equation of (33)) and

—VF22

(33)

6*VF22

(34)

e—vFgsz (tI:Jrl) _ e—uHZ2(tk—:+1)

= [ et 0P By (£)de

- ftk“ (=0 Gay(¢)de

+ [ et 0P g (w (L), u(£))de
[ 008 iy a0(6), u(£)) e

ty

for all £k > 1. As an immediate consequence, we have

Ex,(tgy1) — e*”HLr(tkH)

= —Lr(ty) +e VF2221( k+1) e Mz (tl:+1)
+ [ A, £) (w(e) = r(£))de (36)
+ [ et 0P £ (r(0), u(l)) — fo(w(0), u(l)))de
— J ORI f(r(0), u(€) = fa(w(€), u(f))]dl
with E as defined in (6) and
A(m, b) = em=OHG _ o(m=OFe2p (37)
by combining (34)-(35). Thus, since (19) gives
r(tes1) = (1)) = Y(Sg(+1)), (38)
we have
Ex,(tps1) = e "M Lr(tyr) — Lr(ty)
e 22 (t ) — e Pty )
+ Lo At ) (w(b) = (0))de
+ftt:+1 e(tkfz)FzzAz(é)dé
— [ 0T Ay ()l
e 0 (39)
= e " Ly(tps1) — Ly(tk)
e vEz zl(t,;ﬂ) —e M a(t,)
+ [ At O)(w(l) — r(£))de
R em0r A (e
— [ e mOH Ay (0)de, k> 1
where
Ai(€) = fi(r(0),u(f)) — fi(w(£),u()). (40)
Consequently, we have
Tp(tprr) = Rlzl(t;+1) + R2Z2(t1;+1)
—RoLy(trs1) — B~ Ly(ty)
HET [ A, ) (w(l) — r(0)de (41)
+E7 tk“ et =0F2 Ay (¢)de
—-E~ tk“ et =OH A5 (0)dY.
Since (23) gives
Rizi(t ) + Raza(ty, )
1 (42)
= 21(tk+1) + RoLy(tk1) + E7 Ly(ty),
we obtain
Tr(tpyr) = 21(tres1)
B A O — )
+E_1 tt:+1 e(tkfz)F”Ag([)cw
_E—l ftt;H e(tk_Z)HAg(f)df
for all £ > 1.
Second part of the proof: an upper bound for w(t) — r(t).
Let us introduce the variables
w(t) = w(t) —r(t) (44)
and
Tr(t) =z, (t) — 21(t) (45)
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) give
Fiofe(t) + fi(w(t), u(t))
u(t)) ift e [Sk, Sk+1)

Then simple calculations based on (4) and (23
w(t) = Frio(t) —
—fi(r(t),
@(Sk) =0
for all k € N. By integrating the system in (46) over [sy, t]
with ¢ € [sg, Sk+1), we obtain

W(t) = — [1 P (A (m) + Fia@,(m)] dm

(46)

47

if te [Sk, Sk+1). ( )
From this equality and (21), it follows that

(0] < (m)|dm "

+6#|F11||F12| fstk |j7(m)‘dm ift € [Slw 3k+1)

From the definition of the sequence s, we deduce that
@) < ey [, Lom)ldm (49)
+et Pl | Fy| [ (& (m)|dm
for all t > p.
Third part of the proof: an upper bound for T, (t).
Bearing in mind (43), we can use (4) and (23) to get
() = Fagp (1) — For@(t)+ Do (1) if t € [th, thi1)
Ep(thgr) = B~ [ Aty O)in(0)dl
=1 tet1 (ty,—£) Foo
S i o
th 3
for all integers k > 1. By integrating the system in (50)
over [ty,t] with ¢t € [tg,tr+1), we obtain
Fe(t) = ef20=tg (1)
+ ftk eP2 (=0 Fy 1 (0) + Ay (£)]dl

for all t € [tg,tg+1). As an immediate consequence of this
equality and of (22), we have

|Z,()] "‘F”‘\f (tr)]
+ [ elP2lCO [ By [Jib(0)] + fr ol (£)]1de
1Pl 3, (1)
+elP2 (|| + fr2) [ [d(0)|de, k> 1.

On the other hand, by using the second equality in (50)
to upper bound the |z, (tx)| in (52), we have

|2 (0] < e=2IE %A (-1, 0)l|(0)|de
B (i +e”<'H'+‘F22'>fT,3) JE laode (53)
+€|F22‘V(|F21|+fT2 ft |U) |df

for all k > 2 and t € [tg,tg+1) with fi 3 defined in (25)

and E defined in (24). It follows from our formula (37) for
A that

|2 (8)] <
1P B (711G + 12l By )

(50)

(51)

| /\

(52)

I /\

t ~
o Ja(o)de

+ [B(e1P gy +eu(|H\+|F22|>f a) (54)
() + fra)] (Ol
Consequently,
|z, (t)| < B(v ft o, [W(0)|dE (55)

with § defined in (26) for all ¢ > 2v.

Fourth part of the proof: stability analysis.
Grouping (49) and (55), we have
[0 (8)] < B() [y, (L |d€

()] < etPulfy ft*“t m)|dm (56)
+e Pl | Fyof [ &0 (m)|dm
for all ¢ > 2v, which we can combine to get
#(0] < BW) [, (e“‘Fn'fT et
e P\ B [, [ (m)ldm ) ae
for all ¢ > 4v. Consequently,
[Er O] < BW™ fra [, eyl
+5(V)€H|F11||F12|ft72u ”|jr|[f—m£]dé (58)
[B(t)] < el f o pl bl g
e Pl Fyg | pl# |-
for all t > 4v. It follows that
|jT<t)| < 2“”5(”)eu‘F11‘ (fT,1|w|[t72uf,u,t]
+|F12||xr‘[t—2u—,u,t]) (59)

lw(t)] < Neu‘Fll‘N(fTJ'w“t—u,t]
+F2 [T |-y

Let ¢(t) = |Z-(t)| + |@(t)|. Then the inequalities in (59)

imply that
<) < pet! ™) Qupw) + 1) [fiala
I Fi2] |20l fp—20—p,11]
for all ¢ > 4v. Consequently,
s(t)
< pe!'Fil (2uB(v) + 1) max {|Fa, fi 1} slj—2u—ps  (61)
= py()lslfp—2v—p.g if t > 4v

with ~ defined in (27). Then we can apply (Mazenc et al.,
2017, Lemma 1) to the function X (t) = ¢(t+m) to obtain

(60)

In(py (W) (4
o(t) < e mrm (g Lo (62)
if ¢t > m > 4v. It follows that
1Z-(t)] < (63)
In(uy () (4 oy - ~
e wr2 O (1 urony m] + (] (ut20).m))

if t > m > 4v. This allows us to conclude.

5. ILLUSTRATION

In this section, we illustrate Theorem 2. As in Dinh et al.
(2015), we use the pendulum model

iy (t) = @2(t)
La(t) = —sin(z1(t)), (64)
y(t) = z1(s;) if t € [s5,8541)
with z1(t) and x2(t) valued in R.
With the notation of the previous sections, we have
#(t) = (1)
ir(t) = fa(r(t)) (65)

y(t) = r(s;) if t € [s),541)
with fi(r) = 0 and fo(r) = —sin(r). We can take f; 1 =0
and fio = 1, and the coefficient matrices F11, = Fay =
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F5; = 0 and Fj5 = 1. We can choose L = —1 and any
constant v > (. This yields the values

H=-1,G=-1, E=1-¢",

v 66
Ri=+1r Ro=—:5, and f3 = fo. (66)
Assumptions Al to A3 are satisfied with any g € N,
01
A:[O O] and C =[1 0] (67)
Then Theorem 2 applies. It produces the observer
21 (t) = —sin(w(t), if t € [sgr, Sgr+1))
Z9(t) = —22(t) — w(t) — sin(w(t)
ift e [Sgk, Sg(k+1))
21(Sg(kt1) = 1o 21(5;(k+1)) - 1fuev %2 3;(k+1))
sy (Sgteen) + = y(sgr)  (68)

22(Sq(et1)) = ﬁzl(s_;(k+1)) — T %2 S;(k+1))
+%y(8g(k+1)) + =y (sgr)
w(t) = z1(t) if t € [sgr, Sq(ht1))
w(sgr) = Y(sgk)

with 21(0) = 22(0) = 0, where s; = iu for all integers
1 >0, and where = v/g. Then

fiz=fiz=1,

(
(
2
(

(69)
and

Bv) = 25 and ~(p) =1, (70)
so we can choose any constant u € (0,1) such that
v/p € N. For instance, if we choose v = 1, then Theorem
2 gives the convergence rate

In(
- u+u2) (71)

for the observer, and (71) converges to +oo as u — 07, or
equivalently, as g = 1/u — +o0o with g € N.

6. CONCLUSIONS

This work advanced control theory for reduced order ob-
servers, and included a method to achieve arbitrarily fast
convergence of the observation error to zero. We have
proposed two families of reduced order continuous-discrete
observers for systems with continuous or discrete measure-
ments. When continuous observations are available, the
reduced order observer has dimension 2(n — p) where n
(resp., p) is the dimension of the original system (resp.,
the output) and provides finite time convergence. When
only discrete measurements are available, the observer
has dimension 2n — p, and its convergence rate can be
made arbitrarily large. Many extensions of our results are
expected. They include the case where the sampling of the
output is asynchronous, systems with delay, time-varying
systems, and proofs of robustness of ISS type.
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