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Finite-time observers are efficient in practice because they
provide the exact value of the state of a studied system
in finite time. Many types of finite-time observers are
available; see in particular the contributions by Ahmed
et al. (2019), Engel and Kreisselmeier (2002), Lebastard
et al. (2006), Lopez-Ramirez et al. (2018), Mazenc et al.
(2015), Menard et al. (2010), Raff et al. (2005), Sanchez-
Torres et al. (2012), and Sauvage et al. (2007). Some
of them use sliding mode, or homogeneous functions, or
delays, or dynamic extensions. The contribution by Raff
and Allgower (2008) is significantly different from the
others. It provides a continuous-discrete observer that
possesses a key advantage, namely, it does not incorporate
delays and therefore may be easier to implement than
observers that incorporate delays. However, it presents the
two limitations that it only applies to linear systems and
that although it has continuous-discrete type, it requires
values of a continuous output, which is problematic when
only discrete measurements are available.

Here, we revisit the main approach of Raff and Allgower
(2008). We consider a family of nonlinear continuous-
time systems and provide a twofold contribution. First, we
propose a reduced order version of the observer in Raff and
Allgower (2008) when the measurements are continuous.
The observer converges in finite time, after a positive
instant which can be selected by the user. The limitation
of this result is that it does not apply when the mea-
surements are only available at discrete instants. Second,
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1. INTRODUCTION for a narrower family of nonlinear systems (that satisfy
a Lipschitzness condition), we combine our first design
with the key approach of Karafyllis and Kravaris (2009)
(which is also used in Karafyllis and Jiang (2013)), to
handle the case (which is important in practice) where the
measurements are only available at discrete instants. The
price for considering discrete measurements is that this
second observer does not converge in finite time. However,
it is also of reduced order and is efficient in terms of speed
of convergence when the size of the sampling intervals is
small, insofar that its convergence speed is proportional
to the negative of the logarithm of the size of the largest
sampling interval, which improves on asymptotic observers
(e.g., from Besançon (2007)) that did not provide such
convergence rate guarantees. Our work also contrasts with
the observers from Tranninger et al. (2018) (which are not
of reduced order type) and Kang et al. (2019) (which do
not provide arbitrarily fast convergence).

We establish convergence for our second observer through
a proof which relies on a recent stability analysis technique
called the trajectory based approach that is developed in
particular in the papers Ahmed et al. (2018) and Mazenc
et al. (2017). We show the efficiency of our approach by
applying it to a pendulum model that was discussed in
Dinh et al. (2015) in the full order observer case.

The paper is organized as follows. The studied class of
systems is presented in Section 2. A first observer is
proposed in Section 3. A second observer is proposed in
Section 4. An illustrative example is given in Section 5.
Concluding remarks are drawn in Section 6.
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Notation. We use standard notation, which is simplified
when no confusion would arise, and where the dimensions
of our Euclidean spaces are arbitrary unless otherwise
noted. The standard Euclidean 2-norm, and the induced
matrix norm, are denoted by | · |, | · |S is the essential
supremum over any set S, | · |∞ is the usual L∞ sup
norm, N = {1, 2, . . .}, and Z≥0 = {0} ∪ N. For a piecewise
continuous locally bounded function φ : [0,+∞) → Rm,
we let φ(c−) be the left limit φ(c−) = limt→c− φ(t).

2. STUDIED SYSTEM

We consider the system

ẋ(t) = Ax(t) + f(r(t), u(t)) (1)

with x(t) valued in Rn, the input u(t) is locally bounded
and piecewise continuous and valued in Rq, and A ∈ Rn×n,
where f is a locally Lipschitz nonlinear function such that
f(0, 0) = 0 and

r(t) = Cx(t) (2)

with r(t) valued in Rp and C ∈ Rp×n, and p < n.

We will first consider the case where the output is con-
tinuous, i.e. y(t) = r(t), and next (in Section 4) the case
where it is discrete. Throughout the paper, we assume:

Assumption A1: The rank of C is full. The pair (A,C)
observable. �

For forty years, it has been well-known that, under As-
sumption A1, the system (1) can be transformed through
a linear change of coordinates of the type(

xr(t)
r(t)

)
= �x(t) (3)

with an invertible matrix � into a system of the form{
ṙ(t) = F11r(t) + F12xr(t) + f1(r(t), u(t))

ẋr(t) = F21r(t) + F22xr(t) + f2(r(t), u(t))
(4)

with F11 ∈ Rp×p, F12 ∈ Rp×(n−p), F21 ∈ R(n−p)×p and
F22 ∈ R(n−p)×(n−p), where the pair (F22, F12) is observ-
able; see pp.304-306 in Luenberger (1979). In Mazenc et al.
(2015), it is proved that in this case, there are a matrix
L ∈ R(n−p)×p and a constant ν > 0 (which can be taken to
be arbitrarily large) such that with the choice

H = F22 + LF12 ∈ R(n−p)×(n−p), (5)

the matrix
E = e−F22ν − e−Hν (6)

is invertible. We now introduce the sequence ti = iν for
all i ∈ Z≥0, the matrices

G = F21 − F22L+ LF11 − LF12L

= F21 + LF11 −HL ∈ R(n−p)×p,

R1 = E−1e−νF22 ∈ R(n−p)×(n−p) and

R2 = −E−1e−νH ∈ R(n−p)×(n−p)

(7)

and the Rn−p-valued function f3 = f2 + Lf1.

3. OBSERVER WHEN THE OUTPUT IS
CONTINUOUS

In this section, we consider the system (1) with a contin-
uous output y(t) = Cx(t). Then (4) gives{

ẏ(t) = F11y(t) + F12xr(t) + f1(y(t), u(t))
ẋr(t) = F21y(t) + F22xr(t) + f2(y(t), u(t)).

(8)

3.1 Observer

We consider the following dynamic extension:



ż1(t) = F21y(t) + F22z1(t) + f2(y(t), u(t))
if t ∈ [tk, tk+1)

ż2(t) = Hz2(t) +Gy(t) + f3(y(t), u(t))
if t ∈ [tk, tk+1)

z1(tk+1) = R1z1(t
−
k+1) +R2z2(t

−
k+1)

−R2Ly(tk+1)− E−1Ly(tk)
z2(tk+1) = R1z1(t

−
k+1) +R2z2(t

−
k+1)

−R2Ly(tk+1)− E−1Ly(tk)

(9)

for all integers k ≥ 0, with z1(0) = z2(0) = 0 (but our
results remain true if we fix any other initial states for
the zi’s at time 0). Here zi(t

−
k+1) denotes the final state

obtained by integrating the ith system of (9) on [tk, tk+1)
for i = 1, 2, and then the zi’s are reset at times tk+1 using
the last two equations of (9). This defines solutions zi on
[0,∞) in a recursive way. We state and prove:

Theorem 1: Let the system (1) with the output y(t) =
Cx(t) satisfy Assumption A1 and let it be forward com-
plete. Then the solutions of (8)-(9) are such that

z1(t) = xr(t) (10)

for all t ≥ 2ν. �

Remark 1. The main difference between the observer (9)
and the one proposed in Raff and Allgower (2008) is that
the dimension of the z-subsystem in (9) is 2(n−p), whereas
the dimension of the corresponding system in Raff and
Allgower (2008) is 2n. �

Remark 2. Since y(t) and z1(t) are known for all t ≥ t0,
Theorem 1 implies that x(t) is known for all t ≥ t2 because

x(t) = �−1

(
z1(t)
y(t)

)
(11)

for all t ≥ t2, by (3). �

3.2 Proof of Theorem 1

Since we assume that (1) is forward complete, all the
solutions of (8)-(9) are defined over [0,+∞). We use the
variable ξ(t) = xr(t) + Ly(t). Simple calculations give

ξ̇(t) = (F21 + LF11)y(t) + (F22 + LF12)xr(t)
+f3(y(t), u(t))

= (F21 + LF11)y(t) + (F22

+LF12)(ξ(t)− Ly(t)) + f3(y(t), u(t)).

(12)

Thus we get{
ẋr(t) = F21y(t) + F22xr(t) + f2(y(t), u(t))

ξ̇(t) = Hξ(t) +Gy(t) + f3(y(t), u(t)).
(13)

For k∈Z≥0, we integrate (9) and (13) on [tk,tk+1) to get

e−νF22xr(tk+1) = xr(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)F22 [F21y(�) + f2(y(�), u(�))] d�

and e−νHξ(tk+1) = ξ(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)H [Gy(�) + f3(y(�), u(�))] d�

and e−νF22z1(t
−
k+1) = z1(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)F22 [F21y(�) + f2(y(�), u(�))] d�

and e−νHz2(t
−
k+1) = z2(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)H [Gy(�) + f3(y(�), u(�))] d�.

(14)

The first two equalities of (14) and our choice (6) of E give

Exr(tk+1)− e−νHLy(tk+1) + Ly(tk)

=
∫ tk+1

tk

[
e(tk−�)F22F21 − e(tk−�)HG

]
y(�)d�

+
∫ tk+1

tk

[
e(tk−�)F22f2(y(�), u(�))

−e(tk−�)Hf3(y(�), u(�))
]
d�,

(15)

since ξ = xr + Ly. Since z1(tk) = z2(tk) for all k ≥ 1, we
deduce from the last two equations of (14) that

e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1)

=
∫ tk+1

tk

[
e(tk−�)F22F21 − e(tk−�)HG

]
y(�)d�

+
∫ tk+1

tk

[
e(tk−�)F22f2(y(�), u(�))

−e(tk−�)Hf3(y(�), u(�))
]
d�

(16)

for all k ≥ 1. Combining (15)-(16) gives

Exr(tk+1)− e−νHLy(tk+1) + Ly(tk)

= e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1).

(17)

Since E is invertible, we have

xr(tk+1) = E−1e−νHLy(tk+1)− E−1Ly(tk)
+R1z1(t

−
k+1) +R2z2(t

−
k+1).

(18)

From (9), it follows that xr(tk+1) = z1(tk+1) for all k ≥ 1.
From (8) and (9) and the existence and uniqueness of the
solutions of the ordinary differential equations, it follows
that (10) holds for all t ≥ t2. This completes the proof.

4. OBSERVER WHEN THE OUTPUT IS DISCRETE

Throughout this section, we use the notation from Sections
2 and 3. The main result of this section owes a great
deal to the pioneering paper by Karafyllis and Kravaris
(2009), because we use the dynamic extension introduced
in Karafyllis and Kravaris (2009) to obtain an observer in
the case where the measurements are discrete. However,
our result allows arbitrarily large convergence rates for our
reduced order observer, which is a valuable feature that
was beyond the scope of Karafyllis and Kravaris (2009).

We consider the case where the measurements are syn-
chronous. We consider a constant µ > 0, the sequence
si = iµ for all i ∈ Z≥0, and the system




ẋ(t) = Ax(t) + f(r(t), u(t))

y(t) = Cx(sj) if t ∈ [sj , sj+1)

r(t) = Cx(t)

(19)

and let y be the output. We introduce assumptions:

Assumption A2. There is a constant f† ≥ 0 such that

|f(m1, u)− f(m2, u)| ≤ f†|m1 −m2| (20)

for all m1 ∈ Rp,m2 ∈ Rp and u ∈ Rq. �

Assumption A3. There is g ∈ N such that ν = gµ, where
ν satisfies the requirements from Section 2. �

Condition Assumption A3 is not restrictive at all because
ν and g can be arbitrarily large.

According to Assumption A2 and the fact that the change
of coordinates (3) is time-invariant, there are two constants
f†,1 ≥ 0 and f†,2 ≥ 0 such that

|f1(m1, u)− f1(m2, u)| ≤ f†,1|m1 −m2| (21)

and
|f2(m1, u)− f2(m2, u)| ≤ f†,2|m1 −m2| (22)

hold for all m1 ∈ Rp,m2 ∈ Rp and u ∈ Rq.

4.1 Observer

We use this dynamic extension which is a candidate
observer:



ż1(t) = F21w(t)+F22z1(t)+f2(w(t), u(t))
if t ∈ [sgk, sg(k+1))

ż2(t) = Hz2(t) +Gw(t) + f3(w(t), u(t))
if t ∈ [sgk, sg(k+1))

z1(sg(k+1)) = R1z1(s
−
g(k+1)) +R2z2(s

−
g(k+1))

−R2Ly(sg(k+1))− E−1Ly(sgk)
z2(sg(k+1)) = R1z1(s

−
g(k+1)) +R2z2(s

−
g(k+1))

−R2Ly(sg(k+1))− E−1Ly(sgk)
ẇ(t) = F11w(t)+F12z1(t)+f1(w(t), u(t))

if t ∈ [sk, sk+1)
w(sk) = y(sk)

(23)

for all integers k ≥ 0, with z1(0) = z2(0), whose solutions
are defined in the same recursive way as those of (9).

For a fixed constant ν > 0 satisfying our requirements
form Section 2, we will use the constants

E = |E−1|, (24)

f†,3 = f†,2 + |L|f†,1, (25)

and

β(ν) = e|F22|ν(|F21|+ f†,2)+

E
(
eν|F22|+ν|H|(|G|+ f†,3) + e2ν|F22|(|F21|+ f†,2)

)
,
(26)

and the function

γ(µ)=max
{
1, eµ|F11|(2νβ(ν)+1)max {|F21|, f†,1}

}
. (27)

We fix a constant µ > 0 such that if µ ∈ (0, µ), then

µγ(µ) < 1. (28)

Since we view ν > 0 in (27) as being a fixed constant
that satisfies the requirements from Section 2, satisfying
the requirement µ ∈ (0, µ̄) is equivalent to choosing the
integer g in Assumption A3 such that g = ν/µ > ν/µ̄. We
are ready to state and prove the following result:

Theorem 2: Let the system (19) satisfy Assumptions A1
to A3 and µ ∈ (0, µ). Then the solutions of (4) and (23)
are defined over [0,+∞) and satisfy

|xr(t)− z1(t)|
≤ e

ln(µγ(µ))
µ+2ν (t−m)

(
|xr − z1|[−(µ+2ν),m]

+|w − r|[−(µ+2ν),m]

) (29)

if t ≥ m ≥ 4ν. �

Remark 3. The key feature of (29) is that its rate of conver-
gence is proportional to− ln(µγ(µ)), and− lims→0+ ln(s) =
+∞, which gives arbitrarily fast convergence as µ → 0+.
We can always let µ = ν by increasing µ is necessary.
However, this choice will lead to less efficient observers
in terms of speed of convergence, because when µ < ν
then − ln(µγ(µ)) > − ln(νγ(ν)). Also, Theorem 2 provides
a 2n − p dimensional (and therefore a reduced order)
observer. �
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The first two equalities of (14) and our choice (6) of E give

Exr(tk+1)− e−νHLy(tk+1) + Ly(tk)

=
∫ tk+1

tk

[
e(tk−�)F22F21 − e(tk−�)HG

]
y(�)d�

+
∫ tk+1

tk

[
e(tk−�)F22f2(y(�), u(�))

−e(tk−�)Hf3(y(�), u(�))
]
d�,

(15)

since ξ = xr + Ly. Since z1(tk) = z2(tk) for all k ≥ 1, we
deduce from the last two equations of (14) that

e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1)

=
∫ tk+1

tk

[
e(tk−�)F22F21 − e(tk−�)HG

]
y(�)d�

+
∫ tk+1

tk

[
e(tk−�)F22f2(y(�), u(�))

−e(tk−�)Hf3(y(�), u(�))
]
d�

(16)

for all k ≥ 1. Combining (15)-(16) gives

Exr(tk+1)− e−νHLy(tk+1) + Ly(tk)

= e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1).

(17)

Since E is invertible, we have

xr(tk+1) = E−1e−νHLy(tk+1)− E−1Ly(tk)
+R1z1(t

−
k+1) +R2z2(t

−
k+1).

(18)

From (9), it follows that xr(tk+1) = z1(tk+1) for all k ≥ 1.
From (8) and (9) and the existence and uniqueness of the
solutions of the ordinary differential equations, it follows
that (10) holds for all t ≥ t2. This completes the proof.

4. OBSERVER WHEN THE OUTPUT IS DISCRETE

Throughout this section, we use the notation from Sections
2 and 3. The main result of this section owes a great
deal to the pioneering paper by Karafyllis and Kravaris
(2009), because we use the dynamic extension introduced
in Karafyllis and Kravaris (2009) to obtain an observer in
the case where the measurements are discrete. However,
our result allows arbitrarily large convergence rates for our
reduced order observer, which is a valuable feature that
was beyond the scope of Karafyllis and Kravaris (2009).

We consider the case where the measurements are syn-
chronous. We consider a constant µ > 0, the sequence
si = iµ for all i ∈ Z≥0, and the system




ẋ(t) = Ax(t) + f(r(t), u(t))

y(t) = Cx(sj) if t ∈ [sj , sj+1)

r(t) = Cx(t)

(19)

and let y be the output. We introduce assumptions:

Assumption A2. There is a constant f† ≥ 0 such that

|f(m1, u)− f(m2, u)| ≤ f†|m1 −m2| (20)

for all m1 ∈ Rp,m2 ∈ Rp and u ∈ Rq. �

Assumption A3. There is g ∈ N such that ν = gµ, where
ν satisfies the requirements from Section 2. �

Condition Assumption A3 is not restrictive at all because
ν and g can be arbitrarily large.

According to Assumption A2 and the fact that the change
of coordinates (3) is time-invariant, there are two constants
f†,1 ≥ 0 and f†,2 ≥ 0 such that

|f1(m1, u)− f1(m2, u)| ≤ f†,1|m1 −m2| (21)

and
|f2(m1, u)− f2(m2, u)| ≤ f†,2|m1 −m2| (22)

hold for all m1 ∈ Rp,m2 ∈ Rp and u ∈ Rq.

4.1 Observer

We use this dynamic extension which is a candidate
observer:



ż1(t) = F21w(t)+F22z1(t)+f2(w(t), u(t))
if t ∈ [sgk, sg(k+1))

ż2(t) = Hz2(t) +Gw(t) + f3(w(t), u(t))
if t ∈ [sgk, sg(k+1))

z1(sg(k+1)) = R1z1(s
−
g(k+1)) +R2z2(s

−
g(k+1))

−R2Ly(sg(k+1))− E−1Ly(sgk)
z2(sg(k+1)) = R1z1(s

−
g(k+1)) +R2z2(s

−
g(k+1))

−R2Ly(sg(k+1))− E−1Ly(sgk)
ẇ(t) = F11w(t)+F12z1(t)+f1(w(t), u(t))

if t ∈ [sk, sk+1)
w(sk) = y(sk)

(23)

for all integers k ≥ 0, with z1(0) = z2(0), whose solutions
are defined in the same recursive way as those of (9).

For a fixed constant ν > 0 satisfying our requirements
form Section 2, we will use the constants

E = |E−1|, (24)

f†,3 = f†,2 + |L|f†,1, (25)

and

β(ν) = e|F22|ν(|F21|+ f†,2)+

E
(
eν|F22|+ν|H|(|G|+ f†,3) + e2ν|F22|(|F21|+ f†,2)

)
,
(26)

and the function

γ(µ)=max
{
1, eµ|F11|(2νβ(ν)+1)max {|F21|, f†,1}

}
. (27)

We fix a constant µ > 0 such that if µ ∈ (0, µ), then

µγ(µ) < 1. (28)

Since we view ν > 0 in (27) as being a fixed constant
that satisfies the requirements from Section 2, satisfying
the requirement µ ∈ (0, µ̄) is equivalent to choosing the
integer g in Assumption A3 such that g = ν/µ > ν/µ̄. We
are ready to state and prove the following result:

Theorem 2: Let the system (19) satisfy Assumptions A1
to A3 and µ ∈ (0, µ). Then the solutions of (4) and (23)
are defined over [0,+∞) and satisfy

|xr(t)− z1(t)|
≤ e

ln(µγ(µ))
µ+2ν (t−m)

(
|xr − z1|[−(µ+2ν),m]

+|w − r|[−(µ+2ν),m]

) (29)

if t ≥ m ≥ 4ν. �

Remark 3. The key feature of (29) is that its rate of conver-
gence is proportional to− ln(µγ(µ)), and− lims→0+ ln(s) =
+∞, which gives arbitrarily fast convergence as µ → 0+.
We can always let µ = ν by increasing µ is necessary.
However, this choice will lead to less efficient observers
in terms of speed of convergence, because when µ < ν
then − ln(µγ(µ)) > − ln(νγ(ν)). Also, Theorem 2 provides
a 2n − p dimensional (and therefore a reduced order)
observer. �
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4.2 Proof of Theorem 2

Assumption A2 ensures that for the system (4) and (23),
the finite escape time phenomenon does not occur. Thus
the maximal solutions of (4) and (23) are defined over
[0,+∞). Now we decompose the proof in three parts.

First part of the proof: an expression for xr(tk+1).

To simplify the notation, let us define the sequence tk =
sgk for all k ∈ N. According to Assumption A3, tk = kν for
all k ∈ Z≥0. Hence, this sequence is similar to the sequence
tk introduced in Section 2. We use the variable

ξ(t) = xr(t) + Lr(t). (30)

Then (4) and our choice f3 = f2 + Lf1 give

ξ̇(t) = (F21 + LF11)r(t) +Hxr(t) + f3(r(t), u(t)). (31)

We deduce that



ẋr(t) = F22xr(t) + F21r(t) + f2(r(t), u(t))

ξ̇(t) = Hξ(t) +Gr(t) + f3(r(t), u(t))

ż1(t) = F21w(t) + F22z1(t) + f2(w(t), u(t))

if t ∈ [tk, tk+1)

ż2(t) = Hz2(t) +Gw(t) + f3(w(t), u(t))

if t ∈ [tk, tk+1)

z1(tk+1) = R1z1(t
−
k+1) +R2z2(t

−
k+1)

−R2Ly(tk+1)− E−1Ly(tk)

z2(tk+1) = R1z1(t
−
k+1) +R2z2(t

−
k+1)

−R2Ly(tk+1)− E−1Ly(tk), k ≥ 0.

(32)

Then, for any k ∈ Z≥0, by integrating (32) over the interval
[tk, tk+1), we obtain

e−νF22xr(tk+1) = xr(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)F22 [F21r(
) + f2(r(
), u(
))] d


and e−νHξ(tk+1) = ξ(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)H [Gr(
) + f3(r(
), u(
))] d


and e−νF22z1(t
−
k+1) = z1(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)F22 [F21w(
) + f2(w(
), u(
))] d


and e−νHz2(t
−
k+1) = z2(tk)

+
∫ tk+1

tk
e(tk+1−�−ν)H [Gw(
) + f3(w(
), u(
))] d
.

(33)

Bearing in mind (32) and the fact that z1(tj)− z2(tj) = 0
for all j ≥ 1, we deduce that

e−νF22xr(tk+1)− e−νHξ(tk+1) + Lr(tk)

=
∫ tk+1

tk
e(tk−�)F22F21w(
)d


−
∫ tk+1

tk
e(tk−�)HGw(
)d


+
∫ tk+1

tk

[
e(tk−�)HG−e(tk−�)F22F21

]
(w(
)−r(
)))d


+
∫ tk+1

tk
e(tk−�)F22f2(r(
), u(
))d


−
∫ tk+1

tk
e(tk−�)Hf3(r(
), u(
))d


(34)

(by subtracting the second equation of (33) from the first
equation of (33)) and

e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1)

=
∫ tk+1

tk
e(tk−�)F22F21w(
)d


−
∫ tk+1

tk
e(tk−�)HGw(
)d


+
∫ tk+1

tk
e(tk−�)F22f2(w(
), u(
))d


−
∫ tk+1

tk
e(tk−�)Hf3(w(
), u(
))d


(35)

for all k ≥ 1. As an immediate consequence, we have

Exr(tk+1)− e−νHLr(tk+1)

= −Lr(tk) + e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1)

+
∫ tk+1

tk
Λ(tk, 
)(w(
)− r(
))d


+
∫ tk+1

tk
e(tk−�)F22 [f2(r(
), u(
))− f2(w(
), u(
))]d


−
∫ tk+1

tk
e(tk−�)H [f3(r(
), u(
))− f3(w(
), u(
))]d


(36)

with E as defined in (6) and

Λ(m, 
) = e(m−�)HG− e(m−�)F22F21, (37)

by combining (34)-(35). Thus, since (19) gives

r(tk+1) = r(sg(k+1)) = y(sg(k+1)), (38)

we have

Exr(tk+1) = e−νHLr(tk+1)− Lr(tk)

+e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1)

+
∫ tk+1

tk
Λ(tk, 
)(w(
)− r(
)))d


+
∫ tk+1

tk
e(tk−�)F22∆2(
)d


−
∫ tk+1

tk
e(tk−�)H∆3(
)d


= e−νHLy(tk+1)− Ly(tk)

+e−νF22z1(t
−
k+1)− e−νHz2(t

−
k+1)

+
∫ tk+1

tk
Λ(tk, 
)(w(
)− r(
))d


+
∫ tk+1

tk
e(tk−�)F22∆2(
)d


−
∫ tk+1

tk
e(tk−�)H∆3(
)d
, k ≥ 1

(39)

where

∆i(
) = fi(r(
), u(
))− fi(w(
), u(
)). (40)

Consequently, we have

xr(tk+1) = R1z1(t
−
k+1) +R2z2(t

−
k+1)

−R2Ly(tk+1)− E−1Ly(tk)

+E−1
∫ tk+1

tk
Λ(tk, 
)(w(
)− r(
))d


+E−1
∫ tk+1

tk
e(tk−�)F22∆2(
)d


−E−1
∫ tk+1

tk
e(tk−�)H∆3(
)d
.

(41)

Since (23) gives

R1z1(t
−
k+1) +R2z2(t

−
k+1)

= z1(tk+1) +R2Ly(tk+1) + E−1Ly(tk),
(42)

we obtain

xr(tk+1) = z1(tk+1)

+E−1
∫ tk+1

tk
Λ(tk, 
)(w(
)− r(
)))d


+E−1
∫ tk+1

tk
e(tk−�)F22∆2(
)d


−E−1
∫ tk+1

tk
e(tk−�)H∆3(
)d


(43)

for all k ≥ 1.

Second part of the proof: an upper bound for w(t)− r(t).

Let us introduce the variables

w̃(t) = w(t)− r(t) (44)

and
x̃r(t) = xr(t)− z1(t). (45)

Then simple calculations based on (4) and (23) give

˙̃w(t) = F11w̃(t)− F12x̃r(t) + f1(w(t), u(t))

−f1(r(t), u(t)) if t ∈ [sk, sk+1)

w̃(sk) = 0

(46)

for all k ∈ N. By integrating the system in (46) over [sk, t]
with t ∈ [sk, sk+1), we obtain

w̃(t) = −
∫ t

sk
eF11(t−m) [∆1(m) + F12x̃r(m)] dm

if t ∈ [sk, sk+1).
(47)

From this equality and (21), it follows that

|w̃(t)| ≤ eµ|F11|
∫ t

sk
f†,1|w̃(m)|dm

+eµ|F11||F12|
∫ t

sk
|x̃r(m)|dm if t ∈ [sk, sk+1)

(48)

From the definition of the sequence sk, we deduce that

|w̃(t)| ≤ eµ|F11|f†,1
∫ t

t−µ
|w̃(m)|dm

+eµ|F11||F12|
∫ t

t−µ
|x̃r(m)|dm

(49)

for all t ≥ µ.

Third part of the proof: an upper bound for x̃r(t).

Bearing in mind (43), we can use (4) and (23) to get

˙̃xr(t) = F22x̃r(t)−F21w̃(t)+∆2(t) if t ∈ [tk, tk+1)

x̃r(tk+1) = E−1
∫ tk+1

tk
Λ(tk, �)w̃(�)d�

+E−1
∫ tk+1

tk
e(tk−�)F22∆2(�)d�

−E−1
∫ tk+1

tk
e(tk−�)H∆3(�)d�

(50)

for all integers k ≥ 1. By integrating the system in (50)
over [tk, t] with t ∈ [tk, tk+1), we obtain

x̃r(t) = eF22(t−tk)x̃r(tk)

+
∫ t

tk
eF22(t−�)[−F21w̃(�) + ∆2(�)]d�

(51)

for all t ∈ [tk, tk+1). As an immediate consequence of this
equality and of (22), we have

|x̃r(t)| ≤ eν|F22||x̃r(tk)|
+
∫ t

tk
e|F22|(t−�)[|F21||w̃(�)|+ f†,2|w̃(�)|]d�

≤ eν|F22||x̃r(tk)|
+e|F22|ν(|F21|+ f†,2)

∫ t

tk
|w̃(�)|d�, k ≥ 1.

(52)

On the other hand, by using the second equality in (50)
to upper bound the |x̃r(tk)| in (52), we have

|x̃r(t)| ≤ eν|F22|E
∫ tk
tk−1

|Λ(tk−1, �)||w̃(�)|d�
+E

(
e2ν|F22|f†,2 + eν(|H|+|F22|)f†,3

) ∫ tk
tk−1

|w̃(�)|d�
+e|F22|ν(|F21|+ f†,2)

∫ t

tk
|w̃(�)|d�

(53)

for all k ≥ 2 and t ∈ [tk, tk+1) with f†,3 defined in (25)

and E defined in (24). It follows from our formula (37) for
Λ that

|x̃r(t)| ≤
eν|F22|E

(
eν|H||G|+ eν|F22||F21|

) ∫ tk
tk−1

|w̃(�)|d�

+
[
E
(
e2ν|F22|f†,2 + eν(|H|+|F22|)f†,3

)

+ e|F22|ν(|F21|+ f†,2)
] ∫ t

tk−1
|w̃(�)|d�

(54)

Consequently,

|x̃r(t)| ≤ β(ν)
∫ t

t−2ν
|w̃(�)|d� (55)

with β defined in (26) for all t ≥ 2ν.

Fourth part of the proof: stability analysis.

Grouping (49) and (55), we have

|x̃r(t)| ≤ β(ν)
∫ t

t−2ν
|w̃(�)|d�

|w̃(t)| ≤ eµ|F11|f†,1
∫ t

t−µ
|w̃(m)|dm

+eµ|F11||F12|
∫ t

t−µ
|x̃r(m)|dm

(56)

for all t ≥ 2ν, which we can combine to get

|x̃r(t)| ≤ β(ν)
∫ t

t−2ν

(
eµ|F11|f†,1

∫ �

�−µ
|w̃(m)|dm

+eµ|F11||F12|
∫ �

�−µ
|x̃r(m)|dm

)
d�

(57)

for all t ≥ 4ν. Consequently,

|x̃r(t)| ≤ β(ν)eµ|F11|f†,1
∫ t

t−2ν
µ|w̃|[�−µ,�]d�

+β(ν)eµ|F11||F12|
∫ t

t−2ν
µ|x̃r|[�−µ,�]d�

|w̃(t)| ≤ eµ|F11|f†,1µ|w̃|[t−µ,t]

+eµ|F11||F12|µ|x̃r|[t−µ,t]

(58)

for all t ≥ 4ν. It follows that

|x̃r(t)| ≤ 2µνβ(ν)eµ|F11|
(
f†,1|w̃|[t−2ν−µ,t]

+|F12||x̃r|[t−2ν−µ,t]

)
|w̃(t)| ≤ µeµ|F11|

(
f†,1|w̃|[t−µ,t]

+|F12||x̃r|[t−µ,t]

)
(59)

Let ς(t) = |x̃r(t)| + |w̃(t)|. Then the inequalities in (59)
imply that

ς(t) ≤ µeµ|F11| (2νβ(ν) + 1)
[
f†,1|w̃|[t−2ν−µ,t]

+|F12||x̃r|[t−2ν−µ,t]

] (60)

for all t ≥ 4ν. Consequently,

ς(t)

≤ µeµ|F11| (2νβ(ν) + 1)max {|F21|, f†,1} |ς|[t−2ν−µ,t]

= µγ(µ)|ς|[t−2ν−µ,t] if t ≥ 4ν

(61)

with γ defined in (27). Then we can apply (Mazenc et al.,
2017, Lemma 1) to the function X(t) = ς(t+m) to obtain

ς(t) ≤ e
ln(µγ(µ))

µ+2ν (t−m)|ς|[−(µ+2ν),m] (62)

if t ≥ m ≥ 4ν. It follows that

|x̃r(t)| ≤
e

ln(µγ(µ))
µ+2ν (t−m)

(
|x̃r|[−(µ+2ν),m] + |w̃|[−(µ+2ν),m]

) (63)

if t ≥ m ≥ 4ν. This allows us to conclude.

5. ILLUSTRATION

In this section, we illustrate Theorem 2. As in Dinh et al.
(2015), we use the pendulum model




ẋ1(t) = x2(t)

ẋ2(t) = − sin(x1(t)),

y(t) = x1(sj) if t ∈ [sj , sj+1)

(64)

with x1(t) and x2(t) valued in R.

With the notation of the previous sections, we have


ṙ(t) = xr(t)

ẋr(t) = f2(r(t))

y(t) = r(sj) if t ∈ [sj , sj+1)

(65)

with f1(r) = 0 and f2(r) = − sin(r). We can take f†,1 = 0
and f†,2 = 1, and the coefficient matrices F11 = F22 =
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Then simple calculations based on (4) and (23) give

˙̃w(t) = F11w̃(t)− F12x̃r(t) + f1(w(t), u(t))

−f1(r(t), u(t)) if t ∈ [sk, sk+1)

w̃(sk) = 0

(46)

for all k ∈ N. By integrating the system in (46) over [sk, t]
with t ∈ [sk, sk+1), we obtain

w̃(t) = −
∫ t

sk
eF11(t−m) [∆1(m) + F12x̃r(m)] dm

if t ∈ [sk, sk+1).
(47)

From this equality and (21), it follows that

|w̃(t)| ≤ eµ|F11|
∫ t

sk
f†,1|w̃(m)|dm

+eµ|F11||F12|
∫ t

sk
|x̃r(m)|dm if t ∈ [sk, sk+1)

(48)

From the definition of the sequence sk, we deduce that

|w̃(t)| ≤ eµ|F11|f†,1
∫ t

t−µ
|w̃(m)|dm

+eµ|F11||F12|
∫ t

t−µ
|x̃r(m)|dm

(49)

for all t ≥ µ.

Third part of the proof: an upper bound for x̃r(t).

Bearing in mind (43), we can use (4) and (23) to get

˙̃xr(t) = F22x̃r(t)−F21w̃(t)+∆2(t) if t ∈ [tk, tk+1)

x̃r(tk+1) = E−1
∫ tk+1

tk
Λ(tk, �)w̃(�)d�

+E−1
∫ tk+1

tk
e(tk−�)F22∆2(�)d�

−E−1
∫ tk+1

tk
e(tk−�)H∆3(�)d�

(50)

for all integers k ≥ 1. By integrating the system in (50)
over [tk, t] with t ∈ [tk, tk+1), we obtain

x̃r(t) = eF22(t−tk)x̃r(tk)

+
∫ t

tk
eF22(t−�)[−F21w̃(�) + ∆2(�)]d�

(51)

for all t ∈ [tk, tk+1). As an immediate consequence of this
equality and of (22), we have

|x̃r(t)| ≤ eν|F22||x̃r(tk)|
+
∫ t

tk
e|F22|(t−�)[|F21||w̃(�)|+ f†,2|w̃(�)|]d�

≤ eν|F22||x̃r(tk)|
+e|F22|ν(|F21|+ f†,2)

∫ t

tk
|w̃(�)|d�, k ≥ 1.

(52)

On the other hand, by using the second equality in (50)
to upper bound the |x̃r(tk)| in (52), we have

|x̃r(t)| ≤ eν|F22|E
∫ tk
tk−1

|Λ(tk−1, �)||w̃(�)|d�
+E

(
e2ν|F22|f†,2 + eν(|H|+|F22|)f†,3

) ∫ tk
tk−1

|w̃(�)|d�
+e|F22|ν(|F21|+ f†,2)

∫ t

tk
|w̃(�)|d�

(53)

for all k ≥ 2 and t ∈ [tk, tk+1) with f†,3 defined in (25)

and E defined in (24). It follows from our formula (37) for
Λ that

|x̃r(t)| ≤
eν|F22|E

(
eν|H||G|+ eν|F22||F21|

) ∫ tk
tk−1

|w̃(�)|d�

+
[
E
(
e2ν|F22|f†,2 + eν(|H|+|F22|)f†,3

)

+ e|F22|ν(|F21|+ f†,2)
] ∫ t

tk−1
|w̃(�)|d�

(54)

Consequently,

|x̃r(t)| ≤ β(ν)
∫ t

t−2ν
|w̃(�)|d� (55)

with β defined in (26) for all t ≥ 2ν.

Fourth part of the proof: stability analysis.

Grouping (49) and (55), we have

|x̃r(t)| ≤ β(ν)
∫ t

t−2ν
|w̃(�)|d�

|w̃(t)| ≤ eµ|F11|f†,1
∫ t

t−µ
|w̃(m)|dm

+eµ|F11||F12|
∫ t

t−µ
|x̃r(m)|dm

(56)

for all t ≥ 2ν, which we can combine to get

|x̃r(t)| ≤ β(ν)
∫ t

t−2ν

(
eµ|F11|f†,1

∫ �

�−µ
|w̃(m)|dm

+eµ|F11||F12|
∫ �

�−µ
|x̃r(m)|dm

)
d�

(57)

for all t ≥ 4ν. Consequently,

|x̃r(t)| ≤ β(ν)eµ|F11|f†,1
∫ t

t−2ν
µ|w̃|[�−µ,�]d�

+β(ν)eµ|F11||F12|
∫ t

t−2ν
µ|x̃r|[�−µ,�]d�

|w̃(t)| ≤ eµ|F11|f†,1µ|w̃|[t−µ,t]

+eµ|F11||F12|µ|x̃r|[t−µ,t]

(58)

for all t ≥ 4ν. It follows that

|x̃r(t)| ≤ 2µνβ(ν)eµ|F11|
(
f†,1|w̃|[t−2ν−µ,t]

+|F12||x̃r|[t−2ν−µ,t]

)
|w̃(t)| ≤ µeµ|F11|

(
f†,1|w̃|[t−µ,t]

+|F12||x̃r|[t−µ,t]

)
(59)

Let ς(t) = |x̃r(t)| + |w̃(t)|. Then the inequalities in (59)
imply that

ς(t) ≤ µeµ|F11| (2νβ(ν) + 1)
[
f†,1|w̃|[t−2ν−µ,t]

+|F12||x̃r|[t−2ν−µ,t]

] (60)

for all t ≥ 4ν. Consequently,

ς(t)

≤ µeµ|F11| (2νβ(ν) + 1)max {|F21|, f†,1} |ς|[t−2ν−µ,t]

= µγ(µ)|ς|[t−2ν−µ,t] if t ≥ 4ν

(61)

with γ defined in (27). Then we can apply (Mazenc et al.,
2017, Lemma 1) to the function X(t) = ς(t+m) to obtain

ς(t) ≤ e
ln(µγ(µ))

µ+2ν (t−m)|ς|[−(µ+2ν),m] (62)

if t ≥ m ≥ 4ν. It follows that

|x̃r(t)| ≤
e

ln(µγ(µ))
µ+2ν (t−m)

(
|x̃r|[−(µ+2ν),m] + |w̃|[−(µ+2ν),m]

) (63)

if t ≥ m ≥ 4ν. This allows us to conclude.

5. ILLUSTRATION

In this section, we illustrate Theorem 2. As in Dinh et al.
(2015), we use the pendulum model




ẋ1(t) = x2(t)

ẋ2(t) = − sin(x1(t)),

y(t) = x1(sj) if t ∈ [sj , sj+1)

(64)

with x1(t) and x2(t) valued in R.

With the notation of the previous sections, we have


ṙ(t) = xr(t)

ẋr(t) = f2(r(t))

y(t) = r(sj) if t ∈ [sj , sj+1)

(65)

with f1(r) = 0 and f2(r) = − sin(r). We can take f†,1 = 0
and f†,2 = 1, and the coefficient matrices F11 = F22 =
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F21 = 0 and F12 = 1. We can choose L = −1 and any
constant ν > 0. This yields the values

H = −1, G = −1, E = 1− eν ,

R1 = 1
1−eν , R2 = − eν

1−eν , and f3 = f2.
(66)

Assumptions A1 to A3 are satisfied with any g ∈ N,

A =

[
0 1
0 0

]
and C = [1 0]. (67)

Then Theorem 2 applies. It produces the observer


ż1(t) = − sin(w(t), if t ∈ [sgk, sg(k+1))

ż2(t) = −z2(t)− w(t)− sin(w(t)

if t ∈ [sgk, sg(k+1))

z1(sg(k+1)) = 1
1−eν z1(s

−
g(k+1))−

eν

1−eν z2(s
−
g(k+1))

+ eν

1−eν y(sg(k+1)) +
1

1−eν y(sgk)

z2(sg(k+1)) = 1
1−eν z1(s

−
g(k+1))−

eν

1−eν z2(s
−
g(k+1))

+ eν

1−eν y(sg(k+1)) +
1

1−eν y(sgk)

ẇ(t) = z1(t) if t ∈ [sgk, sg(k+1))

w(sgk) = y(sgk)

(68)

with z1(0) = z2(0) = 0, where si = iµ for all integers
i ≥ 0, and where µ = ν/g. Then

f†,3 = f†,2 = 1, (69)

and
β(ν) = 3eν

eν−1 and γ(µ) = 1, (70)

so we can choose any constant µ ∈ (0, 1) such that
ν/µ ∈ N. For instance, if we choose ν = 1, then Theorem
2 gives the convergence rate

− ln(µ)
µ+2 (71)

for the observer, and (71) converges to +∞ as µ → 0+, or
equivalently, as g = 1/µ → +∞ with g ∈ N.

6. CONCLUSIONS

This work advanced control theory for reduced order ob-
servers, and included a method to achieve arbitrarily fast
convergence of the observation error to zero. We have
proposed two families of reduced order continuous-discrete
observers for systems with continuous or discrete measure-
ments. When continuous observations are available, the
reduced order observer has dimension 2(n − p) where n
(resp., p) is the dimension of the original system (resp.,
the output) and provides finite time convergence. When
only discrete measurements are available, the observer
has dimension 2n − p, and its convergence rate can be
made arbitrarily large. Many extensions of our results are
expected. They include the case where the sampling of the
output is asynchronous, systems with delay, time-varying
systems, and proofs of robustness of ISS type.
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