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Abstract: We present a generalized form of Halanay’s inequality, having a time varying gain
multiplying the delayed term, and having a constant decay rate. Unlike the usual Halanay’s
conditions where the decay rate is required to be strictly larger than an upper bound on the
gain multiplying the delayed term, we provide less restrictive conditions that allow times when
the decay rate can be strictly less than the gain. We include an application to continuous time
systems with switched delay values. This illustrates the utility of our generalized Halanay’s
inequality conditions for proving asymptotic stability in significant cases that violate the
contraction condition that was needed to prove asymptotic stability in previous trajectory based
results, and which are also not amenable to previous Lyapunov function constructions.
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1. INTRODUCTION

We continue our development (which started in Ahmed
et al. (2018); Mazenc and Malisoff (2015); Mazenc et al.
(2017, 2018)) of contractivity and trajectory based ap-
proaches to proving asymptotic stability in cases that
may not lend themselves to standard Lyapunov functional
methods. See, e.g., Mazenc et al. (2017, 2018) for systems
with discontinuous delays, and applications to switched
systems where some subsystems satisfy asymptotic sta-
bility properties while other subsystems could be unsta-
ble. One setting where contractivity and trajectory-based
methods are useful is for systems whose vector field could
be discontinuous, which arise in numerous cases including
dynamics that are asymptotically stabilized by piecewise
constant feedbacks, and systems with switched delays. To
prove asymptotic stability for these systems, some valu-
able tools include Halanay’s approach (e.g., from Halanay
(1966)) and extensions of Razumikhin’s theorem (e.g.,
from Zhou and Egorov (2016)).

While many works have pursued Lyapunov function con-
struction methods for proving asymptotic stability (in-
cluding Malisoff and Mazenc (2009); Zhou (2019); Zhou
et al. (2020)), it can sometimes be easier to compute
constants p € (0,1) and T, > 0 such that every maximal
solution ¢ of a dynamics satisfies an inequality of the form
IC)] < psupep_r, 4 1¢(0)] for all t > T, in which case
p is called a contractivity constant and we say that the
dynamics satisfy a contractivity condition. One can often
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verify contractivity conditions by first finding a nonnega-
tive valued differentiable function V' such that all maximal
solutions of a dynamics satisfy a Halanay inequality of
the type V(¢(t)) < —cV(C(t)) + d(t)sup,_r<p<; V(C(£))
for some positive constants ¢ (called a decay rate) and T,
for some nonnegative valued function d(t) (called a gain),
and for all ¢ > 0. For a statement of the usual Halanay’s
inequality conditions, see (Fridman, 2014, Lemma 4.2),
(Selivanov and Fridman, 2015, Lemma 1), or (Selivanov
and Fridman, 2016, Lemma 1), which conclude that V
converges exponentially to 0 provided ¢ > sup, d(t). If ¢ <
sup, d(t), then the usual Halanay’s inequality conditions
do not allow us to prove exponential stability, and such
cases may not lend themselves to using previously reported
contractivity conditions to prove exponential stability.

Therefore, this paper provides a relaxed version of Ha-
lanay’s inequality. Our generalized Halanay’s conditions
allow the gain multiplying the delayed term to exceed the
decay rate on arbitrarily long intervals, provided the gain
is strictly less than the decay rate on other intervals whose
lengths are large enough to compensate for the instants
when the usual Halanay’s condition does not hold. We
illustrate our work in a class of dynamics with a piecewise
constant switching delay that switches between a small
and an arbitrarily large value. This illustrates the useful-
ness of our less restrictive versions of Halanay’s conditions.

We use standard notation, where the dimensions of our
Euclidean spaces are arbitrary unless otherwise noted, and
which is simplified when no confusion would arise from the
context. The standard Euclidean 2-norm, and the induced
matrix norm, are both denoted by |- |, | - |s denotes the
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supremum over any set S, and |- | is the usual sup norm.
We define = by Zi(s) = E(t + s) for all =, s < 0, and
t > 0 such that ¢t + s is in the domain of =. We set
Zso = {0,1,...} and N = Z3¢ \ {0}. Throughout this
work, we consider sequences ¢; € [0, 4+00) such that to =0
and there are two constants T' > 0 and T > 0 such that

I S t1'+1 — ti S T for all i € ZZO' (1)
For square matrices M7 and M5 of the same size, we use
M; < Ms to mean that Ms — M is a nonnegative definite
matrix, and [ is the identity matrix in the dimension under
consideration. For delay systems, our initial functions are
assumed to be continuous.

2. GENERALIZED HALANAY’S CONDITIONS

We provide our extension of Halanay’s inequality, whose
significance follows because the study of switched systems
with delays (and of observers for delay systems with sam-
pled output values) often leads to a generalized Halanay’s
inequality of the kind we study, as we illustrate below.

2.1 Assumptions

Let t; be a sequence of instants that satisfies the conditions
from Section 1 for some constant T > 0. Let

E = Uienlti, t; + T) (2)
where T" > 0 is a constant such that
T>2T. (3)

Then (1) and (3) ensure that the intervals [t;,t; + T)
defining the set E are disjoint. We use constants

¢>0, e€0,¢), andp >0 (4)
and the functions

(o0, ift¢E (e ift¢E
dor={ZHEE mo={5EE ©
Consider any continuous function v [-T,400) —

[0, +00) such that
o(t) < —cv(t) + [e(t) + o(®)][vlie-1. (6)
holds for all £ > 0, under the following assumption:
Assumption 1. Either
p<c (7)
or the inequality

| eer-1) | €| 215 2T®

cp[e +c]e —F—I <c (8)
is satisfied.
2.2 Main result

QOur main result is:

Theorem 1. Let v(t) be a nonnegative valued solution of
(6) under Assumption 1. Then we can construct positive
constants Cy and Cy such that

v(t) < 6'16762t|v|[—z,0] 9)
holds for all £ > 0.

Remark 1. Assumption 1 can be interpreted to mean that
regardless of how large ®» and T are, the function v
exponentially converges to zero if T is sufficiently large

and € is small enough. We can interpret the constant € as
the amount by which (6) differs from being a Lyapunov
decay condition of the type 0(t) < —cv(t) with decay rate
c¢>0at times t ¢ E.

2.8 Sketch of proof of Theorem 1

We only sketch the proof here; see Mazenc et al. (2020)
for complete proofs. We can assume that

o(t) = —cv(t) + [e(t) + e®)][vle-1 (10)
because if (10) is not satisfied, then we can apply a
comparison lemma to prove exponential convergence of
functions satisfying (6); see the appendix below. We can
assume that p > ¢, because the case p < c follows from the
usual version of Halanay’s inequality. Consider two cases.

First case: t ¢ E. In this case, (10) gives

o(t) = —cv(t) + €lv|—1,4- (11)

Second case: t € E and t > t1. Then, there is j € N such
that ¢ € [t;,t; +T) and

b(t) = —co(t) + P|v|p—7.4- (12)
Then, since t —T' < t;,
0(t) < —cv(t) + Plvl—m,t;) + Pl 1- (13)

Also, (12) gives 0(t) > —cv(t)+pv(t) > 0forallt € [t;,t;+
T) because @ > c. It follows that |v]y, 4 = v(t) for all
t € [tj,t; + T]. Then (13) gives

0(t) < (@ = Ju(t) + Plol-r4,- (14)

From (11), it follows that for all £ € [t;_1 + T,t;) and
s € [tj—1 +T,¢], we have
v(l) = ec(s_z)v(s) + Eff ec(m_€)|v\[m_T7m]dm. (15)
Let ¢ € [t — T,t;). Then, by (3), we have t > ¢; > t;_1 +
T>tj_1+2T,s0f € [tj—1+T,t;). On the other hand, (3)
implies that t =T+ T <t —-T < /{. Also, t =T +T > t; —
T+T>tj1+T. Thus, we canset s=t— 1T + T in (15)
to obtain
v(l) < eCT=Dy(t — T +T)

+€ftZ_T+T ectm=4) |v|[m_T7m]dm. (16)
It follows that for all E; [t —T,t;), we have
() < T Dot —T +1T)
+Efte—z+T ec(m_e)dm|v|[t_zj] (17)

IN

_ €
ec(2T T) + C:| |U|[t—z,€]'
Combining the last inequality in (17) with (14) gives
010) < @ - 90 +7 |0+ ulirg. (19

General case. We deduce from (18) and (11) that

o(t) < (@(t) —c)o(t) + Elv|p_1.4
holds with

(19)

=0 [ec®T-D 4 £] (20)
for all ¢ > ¢; because our assumption that @ > c gives
p< > € We can now use (19) to prove the exponential
convergence assertion of the theorem.

To this end, first note that
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t
m)dmdl < / p(m)dm
t—T

I

for all t > T, where the second inequality follows by letting
i be the largest index such that ¢; < t—T and by separately
considering the cases t;41 > t and ¢;41 < t and noting

T (21)
< 2Ty

that t;12 — t;41 > T. Hence, we can use (19) and then our
dynamics (10) for v to conclude that the time derivative
of
% [" " p(m)dmar
u(t) = ¢ Elopormin gy (o)
satisfies
) L " ["e(m)dmde _
at) <e + J.- z . [—cv(t) + Elv|p—1.9
al / m)dmu(t )1 (23)
2T
< (Z2- ) p(t) + ol
for all ¢ > T'. We then conclude from (21) that
. 2Tp _ o7
i) < (B3 ) uO) + 5P llirg (@)

for all ¢ > T. By Assumption 1, it follows from the
classical Halanay’s result (e.g (Frldman7 2014, Lemma
4.2)) that (24) imply that u(t) converges exponentially
to zero when t goes to 400, which readily implies the
exponential convergence of v.

3. SYSTEMS WITH SWITCHING DELAYS

Let t; be a sequence as defined in Section 1 and 7; and 7,
be nonnegative constants such that 7, > 75 and

T > 2(7 + 75). (25)
We study systems of the form
@(t) = Max(t) + Na(t — 7(t)) (26)

with x valued in R", M € R™™™ and N € R"*" being
constant matrices, and 7 being a time varying piecewise
continuous unknown delay satisfying

0<7(t) <7 if t¢ F and

0<7(t)<m if teFk
where E is defined by (2) for some constant T' € (0,7/2).
Such systems arise from linearizing a system with switch-
ing delays around the origin. We use two assumptions,

the second of which is a largeness condition on 7" and a
smallness condition on 7:

(27)

Assumption 2. There are a symmetric positive definite
matrix @ € R™*" and a constant ¢ > 0 such that

QM +N)+(M+N)'Q < —Q (28)
and
I1<Q (29)
are satisfied.
Assumption 3. Either
T q
INTQN| < L (30)

or the inequality

|NTQN| 9(27-1)/2 | QLTSZ 671”‘”5@”‘
LATINTON| _ ¢ (31)
T 16
with T 9
L _ 2ANTQN|(M]| +|N)) 52

q
is satisfied.

Our main result for (26) is:

Theorem 2. Let (26) satisfy Assumptions 2 and 3. Then its
origin is a globally exponentially stable equilibrium point
on R".

Proof: (Sketch.) For all ¢ > 0, we have

z(t) = (M + N)x(t) + Nz(t — 7(t)) — z(t)]. (33)
It follows that the time derivative of
Ulz) =2 Qu (34)
along all trajectories of (33) satisfies
U(t) < —qU(z(t) + {22(t) TQNA(z4) }
q 2 TArT (35)
< —§U($( )) + Q(Ar(xt)) N QNA:(z)

for all t > 0, where A, (z;) = z(t — 7(t))
we used the triangle inequality to get

2 \mmxmj

— z(t) and where

V@ N a(t - ()

ﬁ — (1))

(36)

2
< U ‘\f ON (x(t — =( (t))(
to bound the term in curly braces in (35). It follows that
. 8|INTQN
Ut) < —gU(m(t)) + SIN_QN] sup U(xz(l)) (37)
2 q le[t—r1,t]

where the last inequality is a consequence of (29). On the
other hand, the last inequality from (35) yields

t
/ z(s)ds
t—7(t)

for all ¢ > 0. Then we can use (29) and Jensen’s inequality
to obtain

Ut) < ~3U ()

2

0() < ~§Ula(t) + ZINTQN] (38)

2

2
+ §|NTQN| |z(m)|ds

t
[ 1IN sup
t—7(t)

me([s—7y,8
< —5U((1)
2 T 2
L 2EOINTONIAMIHIND® - prm)),

q meE[t—r,—7(t),t]

which we can combine with (37) to get

U(t) < —gU(:r(t)) + L72 [ sup | Uz(m)) (39
me(t—T—7s,t
with L defined in (32) when ¢ ¢ F, and
. 8 NTQN
0@ < ~Lo@e)+ WO cp Uew) @)
2 q l€[t—1,1]

for t € E. Assumption 3 ensures that Theorem 1 applies
to U(x) with the choices
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8|INTQN|
PR

%, €=1L72 and g = (41)
Hence, U(z(t)) converges exponentially to zero, which
readily yields the conclusion of the theorem.

4. CONCLUSION

We presented new stability results that complement
the Halanay’s and the trajectory based approaches. We
showed their usefulness in the context of switched systems
with delays, without imposing any bound on the larger of
the two delay values. A key feature of our work is that it
allows times when the gain multiplying the time varying
term exceeds the decay rate in Halanay’s inequality. In
future work, we will apply our methods to observer design
under scarce arbitrarily long sampling intervals in the
scarcity sense of Mazenc (2019); see Mazenc et al. (2020).
We also hope to find methods to maximize the convergence
rates in our theorems.

APPENDIX: COMPARISON LEMMA

We used the following lemma in our proof of Theorem 1:

Lemma A.1. Let v : [-T,400) — [0,+00) be a nonnega-
tive valued continuous solution of

a(t) < —cv(t) + AWl (A.1)
where T' > 0 and ¢ > 0 are constants, and where A is a
piecewise constant function such that there is A > 0 such

that A(t) > A for all t > 0. Let w be a nonnegative valued
solution of

w(t) = —cw(t) + A(t)|w|p—1, (A.2)
for all ¢ > 0 such that there is a tg > 0 such that
v(m) < w(m) for all m € [to — T, o). (A.3)

Then for all ¢ > tg, the inequality v(¢) < w(¢) holds.

Proof. Given a continuous function w : [tg — T,t] —
[0,400), the continuous solution of (A.2) is uniquely
defined on [ty — T, +0); see (Hale and Verduyn Lunel,
1993, Chapt. 2). Let v and w be such that (A.3) holds for
all t € [to— T, to]. We argue by contradiction. Suppose, for
obtaining a contradiction, that v(t) < w(t) does not hold
for all t > ¢y. Then continuity of v and w would provide a
t. > to such that

v(m) < w(m) for all m € [ty — T, t.) (A.4)
and v(t.) = w(t.). Moreover, (A.1) and (A.2) imply that
for all t € [to,tc), W(t) = w(t) — v(t) satisfies

w(t) 2 —cw(t) + AW)[Jw|p-7. = [vl-r,9]-  (A5)
Setting ¢(t) = e“w(t), we obtain the inequality ¢(¢) >
e“" A(t)[|w|p—1,4) — |v|j—1,4], which we can integrate over
[t,tc] with t € [t,t.) to obtain

§(1§c) —<(t) >

/t e A(m)[[wlpm—7,m) — [V]m—7,m]dm

for all t € [to,t.). Since v(t.) = w(t.), we get ¢(t.) = 0.
Hence,

s(t) =

- / e () || 7on] — 0] mg]

(A.6)

(A7)

holds for all ¢ € [tg,t.). Since continuity of v and (A.4)
imply that v(f) < |w|pm—7,m) for all £ € [m — T,m]
and therefore also |w|p—7m] — [V|m—7,m) > 0 for all
m € [to,t.), it now follows that
ct [te

§(t) < —A@ tft [|w|[m7T,m] - |’U|[m7T,m]]dm
for all ¢ € [to,t.). This gives

@(t) < ~A f [wln-rm) = [0]n-rmdm <0 (A.9)

for all t € [tg,t.). We conclude that w(t) — v(t) < 0 for all
t € [to,t.). This contradicts (A.4), so the lemma follows.

(A.8)

REFERENCES

Ahmed, S., Mazenc, F., and Ozbay, H. (2018). Dynamic
output feedback stabilization of switched linear systems
with delay via a trajectory based approach. Automatica,
93, 92-97.

Fridman, E. (2014). Introduction to Time-Delay Systems.
Birkhauser, Boston, MA.

Halanay, A. (1966). Differential Equations: Stability,
Oscillations, Time Lags. Academic Press, New York,
NY.

Hale, J. and Verduyn Lunel, S. (1993). Introduction to
Functional Differential Equations. Springer-Verlag, New
York, NY.

Malisoff, M. and Mazenc, F. (2009). Constructions of
Strict Lyapunov Functions. Springer, New York, NY.
Mazenc, F. (2019). Sampled-data observers: scarce ar-
bitrarily large sampling intervals. In Proceedings of
the 23rd International Conference on System Theory,

Control and Computing, 287-291. Sinaia, Romania.

Mazenc, F. and Malisoff, M. (2015). Trajectory based
approach for the stability analysis of nonlinear systems
with time delays. [EFEE Transactions on Automatic
Control, 60(6), 1716-1721.

Mazenc, F., Malisoff, M.,
Stability and observer design using new vari-
ants of Halanay’s inequality. In  Preparation,
http://www.math.lsu.edu/~malisoff/.

Mazenc, F., Malisoff, M., and Niculescu, S.I. (2017). Sta-
bility and control design for time-varying systems with
time-varying delays using a trajectory-based approach.
SIAM Journal on Control and Optimization, 55(1), 533—
556.

Mazenc, F., Malisoff, M., and Ozbay, H. (2018). Stability
and robustness analysis for switched systems with time-
varying delays. SIAM Journal on Control and Optimiza-
tion, 56(1), 158-182.

Selivanov, A. and Fridman, E. (2015). Distributed event-
triggered control of transport-reaction systems. IFAC
PapersOnLine, 48(11), 593-597.

Selivanov, A. and Fridman, E. (2016). Distributed event-
triggered control of diffusion semilinear PDEs. Auto-
matica, 68, 344-351.

Zhou, B. (2019). Construction of strict Lyapunov-
Krasovskii functionals for time-varying time-delay sys-
tems. Automatica, 107, 382-397.

Zhou, B. and Egorov, A. (2016). Time-varying Razu-
mikhin and Krasovskii stability theorems for time-
varying delay systems. Automatica, 71, 281-292.

Zhou, B., Tian, Y., and Lam, J. (2020). On construction
of Lyapunov functions for scalar linear time-varying
systems. Systems and Control Letters, 135(104591).

and Krstic, M. (2020).



