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Abstract—  Pedestrian  safety  on  the  road  is  a  priority  for 
transportation system managers and operators. While there are a 
number  of  treatments  and  technologies  to  effectively  improve 
pedestrian  safety,  identifying  the  location  where  these  are  most 
needed  remains  a  challenge.  Mid-block  locations,  where  safety 
countermeasures are often needed the most, are typically harder 
to monitor.  Current practice often requires manual observation 
of  candidate  locations  for  limited  time  periods,  leading  to  an 
identification  process  that  is  often  time  consuming,  lags  behind 
traffic pattern changes over time, and lacks scalability. As a result, 
target locations are often selected reactively, after serious traffic 
incidents reveal an underlying safety issue. We propose an 
approach  to  use  data  collected  by  existing  traffic  monitoring 
cameras to automatically identify pedestrian activities on the 
road.  We  propose  an  algorithm  to  detect  pedestrian  crossing 
events based on the detection of individuals on individual video 
frames using a deep neural network model. Resulting pedestrian 
locations and movement trajectories can be visualized on a 
background image, which is automatically extracted at the 
analyzed location from the video. We demonstrate and evaluate 
our approach with a real-world use case. The case study 
considered in this work uses cameras owned by the City of Austin, 
Texas to study pedestrian road use before and after the 
deployment of a pedestrian-hybrid beacon. We explore qualitative 
and quantitative metrics to describe pedestrian activity and 
corresponding  changes,  which  may  be  used  to  prioritize  the 
deployment of pedestrian safety solutions, or evaluate their 
performance. We compared the number of crossing events 
detected per hour with manually reviewed results from a selected 
day. The result shows 67% overall accuracy, although we observe 
significant variability across times-of-day. Despite observed 
limitations, our work illustrates how the value of existing traffic 
camera  networks  can  be  augmented  beyond  everyday  traffic 
monitoring,  and  used  to  collect  valuable  information  on  road 
usage by pedestrians. 

Keywords—big  data,  traffic  camera  video  analysis,  pedestrian 
safety, deep learning.   

I. INTRODUCTION 

Pedestrians on the road are the most important and yet the 
most vulnerable link within any transportation system. 
Pedestrian  safety  is  of  critical  importance  for  transportation 
system  managers  and  operators,  and  safety  measures  require 
frequent revisiting due to the evolving nature of traffic patterns.   
Over the past years, the total number of pedestrian fatalities has 
been on the rise, which motivates local transportation agencies 
to  implement  additional  proven  countermeasures  to  improve 
pedestrian safety. As approximately 75% of pedestrian fatalities 
occur at mid-block locations, much focus is placed on strategies 
to facilitate safer pedestrian crossings. However, a major 
challenge is to proactively identify mid-block locations where 
those safety improvements are needed the most, and to do so 
before fatal incidents take place.  

In this paper, we  propose a novel approach of identifying 
and quantifying pedestrian crossing events from existing 
roadside traffic camera videos. The number of crossing events 
is  expected  to  be  a  reflection  of  the  volume  of  pedestrians 
crossing at a particular mid-block location, which is an 
important  variable  when  identifying  the  need  for  specialized 
treatments,  such  as  pedestrian  hybrid  beacons.  Our  approach 
automatically analyzes the content of video data from existing 
traffic  cameras  using  a  semi-automated  processing  pipeline 
powered by the state-of-art computing hardware and algorithms.  

Our work is directly motivated by real-world needs within 
the Austin, Texas urban area. Over the past decade the City of 
Austin (CoA) has experienced fast population growth and has 
installed pedestrian-hybrid beacons (PHB) at over 75 locations 
to improve mid-block crossing safety. PHBs have been shown 
to reduce serious injury and fatal crashes by 15%, and pedestrian 



crashes by nearly 70% [1]. Each installation location is 
characterized by documented pedestrian volumes, crash history, 
and long distances between safe crossing opportunities, among 
other factors. When studying potential PHB locations, the CoA 
has  traditionally  relied  on  manual  observations  to  quantify 
pedestrian movements, such as the number of crossings over a 
given  time  period.  The  existing  process  requires  significant 
effort from CoA staff, and can only acquire limited information 
at selected locations and for short time periods. Manual methods 
lack the scalability needed to quantify the evolution of 
pedestrian behaviour over time, explore a larger set of candidate 
locations, or systematically evaluate the impacts of a treatment 
such as PHB.  

The work we present here utilizes automated approaches to 
effectively recognize, analyze, and store records of pedestrian 
activities  over  time  from  video  collected  by  existing  traffic 
monitoring cameras. The collection and analysis of video data 
at selected locations provides an opportunity to analyze 
pedestrian  movements  with  verifiable  account  of  road  user 
behavior over extended time periods, and reduces the need to 
rely on ad hoc decision making [2].  

We have previously developed a traffic camera video 
processing pipeline to automatically recognize vehicle 
trajectories using selected traffic cameras in the CoA  camera 
network  [12].  We  have  applied  our  framework  to  support 
vehicle flow analysis [12] and pedestrian detection [3]. Several 
technical challenges remain to accurately characterize 
pedestrian  crossing  location  and  quantify  the  frequency  of 
crossing events. Regular roadside cameras are installed to have 
wide and deep fields of view, including:  

• Pedestrian activities only occupy a small portion of the view, 
and at many locations are only present sporadically.  

• Pedestrians appear smaller in size than cars, and are more 
frequently subject to obstruction from other objects within 
the scene. 

•  There  are  also  cases  when  drivers  visible  through  open 
window vehicles can be falsely identified as pedestrians in 
the road.  

Building upon  our  prior  work,  we  have  improved  our 
pedestrian  detection  and  tracking  algorithm  to  address  these 
limitations. Our approach now defines an area of interest within 
the field of view for the specific targeted locations, the expected 
pedestrian movement direction and estimated pedestrian travel 
distance. We also propose additional visualizations to 
summarize our analyses and provide and intuitive representation 
of pedestrian  activities  over  time  to  decision  makers.  We 
implemented our improved algorithm to assess the effectiveness 
of a recent PHB installation in Austin. Specifically, we 
considered whether the PHB installation changed the number of 
identified crossings or the position of those crossings along the 
roadway. Additionally, we assessed the accuracy of the 
improved algorithm by comparing the algorithm-identified 
crossing counts to the number of crossings identified manually 
from selected video recordings.   

The rest of the paper is organized as following. In Section 
II, we review related work on traffic camera video analysis and 

pedestrian safety. Section III reviews our previously developed 
video data aggregation framework. In Section IV, we describe 
the algorithms and techniques used for crossing event detection 
and visualization. Section V details the result from our analysis 
of changes in pedestrian crossing behavior in response to a PHB 
installation.  We  conclude  and  discuss  our  ongoing  work  in 
Section VI.  

II. RELATED WORK  

A. Computational Analysis of Traffic Camera Video 

Due to their low maintenance and operational cost, video 
sensors, such as pan-tilt-zoom (PTZ) cameras, are commonly 
installed along freeways and arterial streets [4]. However, the 
use of video data from these cameras for system performance 
and safety assessment or strategic planning is not widespread. 
Transportation  Management  Centers  (TMCs)  primarily  use 
traffic video data from roadside cameras to identify incidents, 
prepare the response for emergency situations, manage traffic in 
special events, and  dispatch  technicians  for  maintenance  [5]. 
The video data is also used to manually conduct traffic studies, 
including  collecting  traffic counts  by  mode  of  transport  (e.g. 
auto, transit, pedestrians), turning movement vehicle counts for 
traffic signal timing applications, and conducting safety analysis 
by observing the behavior of traffic in weaving zones [6]. While 
traffic video data analysis software tools exist, they are mostly 
used to support real-time traffic operations, commonly focusing 
on  one  type  of  analysis,  and  often  deployed  in  dedicated, 
specialized hardware. Examples of video data use include safety 
analysis for intersections and corridors [7-9], identification of 
unusual  events  on  corridors,  such  as  wrong-way  driving  and 
stalled  vehicles  [10],  generation  of  traffic statistics  including 
counts and queue lengths, and analysis of vehicular emission by 
estimating  traffic  speeds  [11].  Such  applications  are  usually 
labor intensive, and impractical for large-scale implementation.  

B. Pedestrain Detection from Video 

The detection and tracking of main road users (e.g. 
pedestrians, cyclists, and vehicles) remains a hot topic in the 
field  of  computer  vision.    The  research  focus  is  often  on 
developing an automated process to identify object trajectories, 
thus avoiding time-consuming manual processing. Automated 
video data analysis is considerably complex at urban signalized 
intersections, characterized by a mix of traffic conditions  and 
the presence of various road user types. While significant work 
exists on the topic of vehicle tracking, fewer studies look into 
pedestrian  tracking.  The  latter  is  more  complex  than  vehicle 
tracking because of pedestrians’ non-rigidity, more varied 
appearance, and less organized  movements.  Pedestrians  have 
fewer  spatial  constraints  than  vehicles  and  may  change  their 
direction of movement frequently, while vehicles have to follow 
certain lanes with limited turning options [14].  Additionally, 
pedestrians  often  move  in  groups,  making  even  harder  the 
detection and tracking of individual movements [17] [4]. The 
need for methods and applications for pedestrian tracking and 
classification of road users has been highlighted and addressed 
in several articles [15-18]. 



III. BACKGROUND AND PREVIOUS WORK  

A. Video Collection and Processing Pipeline  

We have developed an automated video processing 
framework that separates the video analysis process into two 
distinct parts: object recognition and analysis of the identified 
objects [3]. We use convolutional neural networks to detect and 
track the motion of objects from each frame in the video stream, 
and then store and process information using Spark [12, 19]. By 
combining the best practice of object recognition through deep 
learning and big data processing for those two parts 
respectively, the framework can efficiently process large-scale 
traffic  video  data  automatically  and  meet  evolving  analytic 
needs over time.  

 

Fig. 1. Camera access and processing pipeline overview. 

To  implement  the  framework,  we  have  set  up  a  multi-
systems cross-domain video aggregation and analysis pipeline 
(Figure-1).  Raw videos are originated from IP cameras in the 
CoA private  network, which has limited accessibility.  To 
overcome the latter, the CoA set up a proxy server to forward 
selected video feeds from the IP cameras to a storage cluster 
hosted at the Texas Advanced Computing Center (TACC). The 
recorded video can be then be processed by a high-performance 
computing cluster at TACC. Processed data is saved in a storage 
server,  which  is  accessed  by  our  project  server  for  results 
dissemination purposes. The project server also hosts tools and 
scripts to schedule video recording and processing tasks. The 
proposed processing approach consists of two main steps: the 
video content recognition step identifies and labels all physical 
objects  from  original  input  video  files  using  a  deep-learning 
based  algorithm;  the  second  step  is  object  tracking,  which 
“follows” each recognized object across all frames in the input 
video.  

B. Video Content  Recongtion 

Our video content recognition process is based on Darknet, 
an open source library of image recognition [12, 13]. The core 
algorithm  utilizes  a  convolution-neural-network-based  object 
detection system, YOLOv2, to analyze each frame of an input 
video  [13].  For  each  frame,  the  algorithm  outputs  a  list  of 
objects  including  their  location  in  the  frame, class  label,  and 
confidence of recognition. We have limited recognition to seven 
class labels that are most relevant, including person, car, bus, 
truck, bicycle, motorcycle, and traffic light. To improve 

algorithmic  performance  and  maximize  utilization  of  multi-
node  computing  clusters,  we  have  also  adapted  the  YOLO 
implementation for parallel execution [12]. Our implementation 
enables parallel object recognition on multiple frames using p-
thread  within  individual  compute  nodes,  and  using  MPI  for 
inter-node communication. Specifically, one thread is used to 
pre-fetch n frames, while n extra worker threads are assigned to 
labeling. Since each worker thread is independent, near-ideal 
linear scaling can be achieved for longer videos [12]. For video 
recordings from different times/locations, multiple video files 
can be processed independently across multiple nodes 
concurrently.  A  non-maximum  suppression  (NMS)  algorithm 
with the locally maximal confidence measure is used to remove 
unnecessary/duplicated objects. In addition to content 
recognition,  the  framework outputs  a background  image  (i.e. 
non-moving  features)  from  each  video  recording.  For  more 
details about the original YOLO algorithm and our 
implementation, please refer to [12] and [13], respectively.  

IV. METHODOLOGIES 

Although our  previous  work  facilitates  video  aggregation 
and has been successfully applied to traffic flow analysis,  we 
observed some limitations when implementing the approach to 
pedestrian  location  detection  and  tracking  with  the  goal  of 
detecting mid-block crossing events. After reviewing the 
outcomes of our previous implementation, we identified several 
factors affect crossing event detection performance. We have 
developed  an  improved  tracking  algorithm  and  implemented 
features to further improve crossing event detection.  

A. Tracking Pedestraints 

 

 

 

 

 

 

 

 

Fig. 2. Pseudo code for tracking pedestrians. 

To  track  small  moving  objects,  such  as  pedestrians  in 
particular,  we  implemented  an  approach  based  on  predicted 
positions  of  objects  from  previous  frames  (Figure  2).  The 
algorithm  is  initialized  with  the  set  of  recognized  “person” 
objects in each frame. Each object record also includes 
information about the object location and frame number from 
the video. At the start of the video frame, for each recognized 
object,  we  initialize  a  trajectory  for  that  object.  Recognized 
objects in the subsequent frame are matched to the closest object 
(whose bounding box usually overlap with the current object) 
from the previous frame. Once a trajectory has more than two 
distinct positions, direction and velocity of the trajectory can be 
estimated based on positions of latest objects in that trajectory. 
For  subsequent  frames,  we compute  the  distance between all 

Pseudo code for Pedestrian Tracking 
Input: N = {nij | i: frame index, j: object index} as the set of recognized 
objects found in each frame 
Output: T= { tij | i: trajectory index,  j: frame index of object within this 
trajectory} as the set of objects stored by a list of trajectories 
1: Initialize T with each object found in the starting frame 
2: for each nij in N 
3:     for each tk in T 
4:           dists <= distance( nij.location, pred(tk, i ) ) 
5:     if min(dists) < threshold(frame diference)  
6:         add nij to targMin(min_dists) 
7:     else add nij  as a new trajectory 



newly identified objects with the predicted positions of existing 
trajectories from previous frame. We used a pre-defined 
threshold to avoid connecting an object  that  might be too far 
away from the closest trajectories [3]. However, the length of 
trajectories is  sensitive to this  pre-defined threshold, with 
smaller  values  leading  to  shorter  trajectories.  Although  the 
length  of  the  trajectories  does  not  affect  the  visualization  of 
pedestrians location, it has an impact on the detection of road 
crossing events. To address this limitation, we also implemented 
a threshold function (Figure 2, line 5). The threshold function 
will take consideration of elapsed frames between the last frame 
index  recorded  in  the  trajectory  and  the  frame  index  of  the 
considered object. If the two indices are further apart in time, 
the threshold is larger than if they are close. When the distance 
between an object and a trajectory is larger than the calculated 
threshold value, the algorithm generates a new trajectory. 
Otherwise, the object position is added to the trajectory whose 
predicted position is the closest. 

 We have implemented this algorithm using the Spark big 
data processing framework to read and process results files from 
multiple video recordings and export the detection and tracking 
of pedestrians as a structured file. A complete list of all tracked 
objects with corresponding detailed information is stored in a 
structured data file to derive further  information, such as 
direction of movement.  

B. Crossing Event Detection 

The original traffic camera video includes multiple 
pedestrian activities, such as walking down the street, waiting 
for the bus, and crossing the street. To further isolate mid-block 
crossing event, we have implemented filters for variables such 
as location, direction and track length.  

 

Fig. 3. Area of interest can be defined as a polygon and highlighted in red. 

Location filter The location filter can be used to select only 
activities within a user-defined polygon. Trajectories are filtered 
to present only those that correspond to pedestrians that crossed 
road.  The  user  can  define  a  convex  shape  through  a  list  of 
coordinates for each boundary point.  Figure-3 shows  an 
example of  a location filter. In  Figure-3, the area of interest, 
defined by the user is represented with a red polygon.  

Direction  filter  each  inferred  trajectory  is  classified  as 
horizontal or vertical, and the direction filters can be used to 

focus the analysis only on the relevant direction. For crossing 
event detection, we focus on horizontal trajectories, e.g. those 
that  mover  across  the  road.  This  filter  is  effective  to  avoid 
considering the trajectories of cyclists and motorcyclists in our 
analyses. Such road users are also recognized as “persons” by 
the video recognition algorithm, but since they typically move 
parallel to the road, they may be distinguished from pedestrians 
crossing the street using the direction filter. 

Distance filter As mentioned above, our tracking algorithm 
sometime generates short tracks. The short tracks are usually 
caused due to missed pedestrian detection over several frames 
due to a temporary obstruction of  the  line-of-view, or to low 
video quality due to environmental factors. The distance filter 
allows to focus the analysis on longer trajectories.  

C. Visualizing Crossing Event Locations 

To  help  traffic  engineers  understand  pedestrian  activities 
over time, we have implemented several visualization 
techniques to provide  a summary of pedestrian detection and 
tracking over time.   

1) Colored dot plot to show pedestrian locations.  
We use a colored dot plot view over the background image to 
create a visual summary of pedestrian detection over time. In 
this  visualization,  only  the  center  location  of  each  detected 
pedestrian is shown as a colored dot. The dot color can be used 
to further characterize the detection event. Figure 5 illustrates 
the visualization of pedestrian locations by time of day.  

 

2) Heatmap with focal statistic smoothing 
A heat map visualization may be used to highlights the local 

significance of a region relative to surrounding regions. In this 
effort we have adopted a focal statistic smoothing approach to 
generate  the  heatmap  presented  in  Figure  4.  The  selected 
smoothing  technique  recalculates  raw  input  data  using  the 
weighted neighborhood sum defined in a disc kernel matrix. The 
approach transforms the raw detection results, highlighting the 
statistical center of activities through erode (shrink low values) 
then dilate (expand high values) processing. Figure 4 illustrates 
such  transformation, contrasting  the  dot  plot  representing  the 
number of pedestrian detections per pixel (top) with the 
outcomes of the focal statistics smoothing (bottom). Locations 
with high expectance of pedestrians are highlighted in red.  



   

 

Fig. 4. Focal statics smoothing heatmap of pedestrian detections. On the top, 
the raw values of pedestrian detection events per pixel. On the bottom, morphed 
visualization to highlight local centers of activities. 

3) Calendar view of pedestrian detection over time. 
 To facilitate comparisons of pedestrian moving patterns by 

time  of  day  over  multiple  days,  we  propose  to  visualize  key 
metrics in calendar format. Graphs such as scatter plots, 
histograms, and  violin  plots can  be  generated  based  on  daily 
data, and  presented  in  a calendar-like grid  layout. This  view 
gives an intuitive summary of data over different time scales. 
Figure 9 presents an example of calendar visualization, which is 
be discussed further in next section.  

D. Pedestrian activity metrics   

We  have  computed  and  used  two  quantitative  metrics  to 
characterize pedestrian activity.  

Pedestrian detections by minute provides a representative 
estimate  of  pedestrian  counts  by  minute  by  filtering  the  raw 
detection results. For each frame, we count all objects classified 
by  the  deep  learning  algorithm  as  pedestrians  which  have 
bounding boxes centered in the roadway. Because we do not 
assemble  trajectories  for  this  analysis,  we  do  not  know  how 
many unique individuals are present in the roadway during each 
minute. Instead, we estimate the minute-level pedestrian count 
by selecting a single representative frame from each minute of 
video. The representative frame is the frame with the highest 
count of pedestrians. This allows us to determine the maximum 
number of pedestrians present in the roadway without 
accidentally  counting  some  individuals  multiple  times.  This 
metric is displayed in Figure 9. 

Hourly pedestrian crossing activity The hourly pedestrian 
crossing  activity  metric  results  from  aggregating  minute-by-
minute  pedestrian  crossing events by  hour,  producing  a  time 

series that illustrates how activity changes over the course of the 
day and between days. 

V. CASE STUDIES 

A. Data Overview  

TABLE I.  DATA COLLECTION SUMMARY (2019)   

 
Anderson Ln.  @ Burnet 

Rd. 
Lamar Blvd.  @  Rundberg 

Ln.  
Date 
Time 
range 

Sep. 19 – 21 
(Wed – Fri) 
Sep. 29 – 
Oct. 2     
(Sat – Tue)  

Feb 12 – 15 
(Tue – Fri) 
Feb 23 – 25 
(Sat – Mon)   

Feb. 14 - 
Mar. 2 

Mar.16 -21 

Average 
size per 

video file 

~ 300MB ~ 300MB ~315MB ~315MB 

Total size 
1300GB 1400GB 941GB 522GB 

Average 
durations 15 mins. 15mins. 15 mins. 15 mins. 

We  have  used  our  implementation  to  analyse  pedestrian 
street-crossing  patterns  at  the  intersection  of  Anderson  Lane 
and  Burnet  Road  (hereafter  Anderson  location)  in  Austin, 
Texas.  For  the  Anderson  location,  analyses  were  conducted 
before  and  after  the  activation  of  a  PHB  device  intended  to 
allow for safe pedestrian crossings in the area near an active 
bus  stop.  We  have  automated  video  captures  in  15  minutes 
interval  at  each  location  during  the  period  from  September 
2018 to May 2019. Since the camera angle and direction can be 
dynamically adjusted by staff at CoA for other purposes, video 
recording not of interests to this study were discarded. The time 
range and size of video recordings selected for computational 
analysis are summarized in Table-1.  

B. Pedestrain Activities during the testing period.  

The pedestrian activities for selected periods are 
summarized in Figure 9 (September 2018 before PHB 
activation) and Figure 6 (February 2019, after PHB activation). 
Figure  9  presents  a  time  series  of  the  maximum  pedestrian 
counts for each  one-minute slice  in all analyzed videos (blue 
dotted line). The corresponding 30-min rolling average is shown 
in red in those plots as well. These two visualizations illustrate 
the magnitude of pedestrian activities over different times of day 
and  across  multiple  days.  The  results suggest  a relatively 
consistent  level  of  pedestrian  activity,  with  an  average  of  2 
pedestrian detections per minute both before and after the PHB 
device activation.  



  

 

Fig. 5. Dot plot view to show locations of pedestrian activity detection before 
the PHB installation.  The activities are colored for four time periods of the 
day: Yellow: 7-10 am; Green: 10:00-13:00; Blue: 13:00~16:00; Red: 16:00 
~19:00  (top) Sep 19-21 2018 (Wed ~ Fri)  (bottom) Sep. 29 ~ Oct 2 2018 (Sat 
~ Tue) 

To visualize the location of pedestrian activities,  we 
plotted all pedestrian detection in Figure 5 and Figure 6.   In 
Figure 5, the analysis is divided due to slightly different views 
of  camera  adjustment.  Figure  5  shows  the activity  summary 
before the PHB activation. Figure 6 shows the activity 
summary after the PHB activation. The activities are colored 
for  four  time  periods  of  the  day:  Yellow:  7-10  am;  Green: 
10:00-13:00; Blue: 13:00~16:00; Red: 16:00  ~19:00.  The 
Yellow and Red groups correspond to peak traffic hours while 
the Blue and Green groups are for off-peak hours. In both cases, 
major pedestrian activities are centered around two bus stops 
on  both  sides  of  the street,  suggesting  that  this  is  the  major 
motivation for road crossing.   

The  trend  of  concentrated  crossing  locations  shown  in 
Figures 5 and 6 is further highlighted in the smoothed heatmap 
view (Figure  7). Deep blue color indicates high likelihood of 
pedestrian  crossing  while green  color  indicates  less  likely 
location  to  observe  pedestrian  crossing.  The  crossing  events 
seem more concentrated at the PHB location. 

C. Evaluation 

To evaluate the accuracy of the crossing event detection, we 
used  four  reviewers  to  analyze  38.5  hours  of  video  at  the 
Anderson location traffic camera. Each reviewer worked 
independently on a different day of video. Collectively, 
reviewers took 68 hours to complete the work, with an average 
processing  time  of  26  minutes  o  review  a  single  15-minute 
video. Three full days of video, with 7-8 hours of video per day, 
were reviewed: September 19 2019, September 29  

 

 

 

Fig. 6. Dot plot view to show locations of pedestrian activity detection after 
PHB installation. The activities are colored for four time periods of the day: 
Yellow: 7-10 am; Green: 10:00-13:00; Blue: 13:00~16:00; Red: 16:00 ~19:00  
(top) Feb 12-15 2019 (Tue ~ Fri)  (bottom) Feb 23 ~ Feb 25 2019 (Sat ~ Mon) 

2018, and February 13 2019. Two partial days of video were 
also reviewed: February 12 2019 and February 14 2019. 

 

 

Fig. 7. Smooth  heatmap  view  to  show  frequency  of  pedestrian  crossing 
location shifts before (top, Sep. 29~ Oct 2 2018) and after (bottom, Feb 23 ~ 
Feb 25) PHB activation. Deep blue color indicates high likelihood of pedestrian 



crossing while green color indicates less likely location to observe pedestrian 
crossing.  

Reviewers  classified  2,481  activities  across  five  different 
activity types (walking, standing, crossing, cycling and other). 
The  most  frequently  observed  activities  were  walking  and 
standing; street crossings accounted for approximately 20% of 
observed activities. A single individual may be counted across 
multiple activity types as their actions changed over the course 
of  the  video.  There  were  412  observations  of  one  or  more 
pedestrians crossing the street at a time. Using  these curation 
results, we also calculated that pedestrians cross Burnet Road, 
which is approximately 60 feet wide, at a median rate of 3.5 
feet/second.  This  is  consistent  with  the  literature,  and  may 
inform the computation of future site-specific metrics.  

To  assess  the  accuracy  of  the  automated  crossing  event 
prediction, we compared prediction results for the number of 
crossing events per hour on 02-13-2019 at Anderson location 
with human reviewed results (Figure 8). The average prediction 
accuracy is about 67%.  The comparison results show a wide 
margin of errors over different hours of the day, from less than 
5% to more than 50%. A major factor contributing towards this 
large variability of prediction is the fact that traffic conditions 
change  over  different  hours  but  our  model  are  derived  from 
aggregated results from all data.   

 

 

Fig. 8. Comparison of crossing event prediction with human reviewed results 
at Anderson location. 

VI. CONCLUSION 

In this paper, we present an approach that utilizes existing 
traffic monitoring cameras within an intelligent transportation 
system to understand pedestrian movement patterns and safety.  
The use case presented in this work illustrates the potential of 
implementing deep-learning methods to the study of pedestrian 
street-crossing  patterns.  We  also  propose  several  metrics  of 
pedestrian activity to support the systematic analysis of before 
and  after  scenarios  and  the  quantification  of  the  benefits  of 
pedestrian  safety  treatments.  While  preliminary,  our  results 
suggest that meaningful metrics may be derived automatically 
from data recorded through traffic monitoring cameras, which 
could enable agencies to conduct more thorough analyses on a 
larger number of locations.  

Artificial  intelligence  technologies  can  greatly  reduce  the 
effort involved in analyzing video data, and frameworks such as 
the one presented here can facilitate research traditionally based 

on  manual  video  data  analysis  and  promote  further  work  on 
video data applications and integration. A unique advantage of 
our framework is to convert video recordings into query-able 
information, which can accommodate multiple subsequent use 
cases  without  re-processing  [3].  We  have  exemplified  their 
potential to support useful analyses with minimal effort 
compared to manual processing. An additional benefit of this 
approach  is  that  processed  data  can  be  combined  with  other 
datasets to conduct more complex analyses. For example, video 
data may be combined with loop detector data and signal timing 
data to understand pedestrian compliance with traffic signals. 
Traffic data from Bluetooth or Wavetronix sensors may support 
a  more  comprehensive  assessment  of  pedestrian  behavior  by 
providing  contextual  information  including  prevalent  vehicle 
speeds and traffic volumes.  
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Fig. 9. Summary of Pedestrian detection per minute at Anderson Location during selected days in Sep. 2018.  (bottom) Summary of Pedestrian detection per minute 
at Anderson Location during selected days in Feb. 2019. In both top and bottom panels, the blue points represent the number of pedestrians detected within one 
minute of video and the red line represents a 30-minute rolling average of the count.
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