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Abstract— Pedestrian safety on the road is a priority for
transportation system managers and operators. While there are a
number of treatments and technologies to effectively improve
pedestrian safety, identifying the location where these are most
needed remains a challenge. Mid-block locations, where safety
countermeasures are often needed the most, are typically harder
to monitor. Current practice often requires manual observation
of candidate locations for limited time periods, leading to an
identification process that is often time consuming, lags behind
traffic pattern changes over time, and lacks scalability. As a result,
target locations are often selected reactively, after serious traffic
incidents reveal an underlying safety issue. We propose an
approach to use data collected by existing traffic monitoring
cameras to automatically identify pedestrian activities on the
road. We propose an algorithm to detect pedestrian crossing
events based on the detection of individuals on individual video
frames using a deep neural network model. Resulting pedestrian
locations and movement trajectories can be visualized on a
background image, which is automatically extracted at the
analyzed location from the video. We demonstrate and evaluate
our approach with a real-world use case. The case study
considered in this work uses cameras owned by the City of Austin,
Texas to study pedestrian road use before and after the
deployment of a pedestrian-hybrid beacon. We explore qualitative
and quantitative metrics to describe pedestrian activity and
corresponding changes, which may be used to prioritize the
deployment of pedestrian safety solutions, or evaluate their
performance. We compared the number of crossing events
detected per hour with manually reviewed results from a selected
day. The result shows 67% overall accuracy, although we observe
significant variability across times-of-day. Despite observed
limitations, our work illustrates how the value of existing traffic
camera networks can be augmented beyond everyday traffic
monitoring, and used to collect valuable information on road
usage by pedestrians.
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I. INTRODUCTION

Pedestrians on the road are the most important and yet the
most vulnerable link within any transportation system.
Pedestrian safety is of critical importance for transportation
system managers and operators, and safety measures require
frequent revisiting due to the evolving nature of traffic patterns.
Over the past years, the total number of pedestrian fatalities has
been on the rise, which motivates local transportation agencies
to implement additional proven countermeasures to improve
pedestrian safety. As approximately 75% of pedestrian fatalities
occur at mid-block locations, much focus is placed on strategies
to facilitate safer pedestrian crossings. However, a major
challenge is to proactively identify mid-block locations where
those safety improvements are needed the most, and to do so
before fatal incidents take place.

In this paper, we propose a novel approach of identifying
and quantifying pedestrian crossing events from existing
roadside traffic camera videos. The number of crossing events
is expected to be a reflection of the volume of pedestrians
crossing at a particular mid-block location, which is an
important variable when identifying the need for specialized
treatments, such as pedestrian hybrid beacons. Our approach
automatically analyzes the content of video data from existing
traffic cameras using a semi-automated processing pipeline
powered by the state-of-art computing hardware and algorithms.

Our work is directly motivated by real-world needs within
the Austin, Texas urban area. Over the past decade the City of
Austin (CoA) has experienced fast population growth and has
installed pedestrian-hybrid beacons (PHB) at over 75 locations
to improve mid-block crossing safety. PHBs have been shown
to reduce serious injury and fatal crashes by 15%, and pedestrian



crashes by nearly 70% [1]. Each installation location is
characterized by documented pedestrian volumes, crash history,
and long distances between safe crossing opportunities, among
other factors. When studying potential PHB locations, the CoA
has traditionally relied on manual observations to quantify
pedestrian movements, such as the number of crossings over a
given time period. The existing process requires significant
effort from CoA staff, and can only acquire limited information
at selected locations and for short time periods. Manual methods
lack the scalability needed to quantify the evolution of
pedestrian behaviour over time, explore a larger set of candidate
locations, or systematically evaluate the impacts of a treatment
such as PHB.

The work we present here utilizes automated approaches to
effectively recognize, analyze, and store records of pedestrian
activities over time from video collected by existing traffic
monitoring cameras. The collection and analysis of video data
at selected locations provides an opportunity to analyze
pedestrian movements with verifiable account of road user
behavior over extended time periods, and reduces the need to
rely on ad hoc decision making [2].

We have previously developed a traffic camera video
processing pipeline to automatically recognize vehicle
trajectories using selected traffic cameras in the CoA camera
network [12]. We have applied our framework to support
vehicle flow analysis [12] and pedestrian detection [3]. Several
technical challenges remain to accurately characterize
pedestrian crossing location and quantify the frequency of
crossing events. Regular roadside cameras are installed to have
wide and deep fields of view, including:

* Pedestrian activities only occupy a small portion of the view,
and at many locations are only present sporadically.

* Pedestrians appear smaller in size than cars, and are more
frequently subject to obstruction from other objects within
the scene.

* There are also cases when drivers visible through open
window vehicles can be falsely identified as pedestrians in
the road.

Building upon our prior work, we have improved our
pedestrian detection and tracking algorithm to address these
limitations. Our approach now defines an area of interest within
the field of view for the specific targeted locations, the expected
pedestrian movement direction and estimated pedestrian travel
distance. We also propose additional visualizations to
summarize our analyses and provide and intuitive representation
of pedestrian activities over time to decision makers. We
implemented our improved algorithm to assess the effectiveness
of a recent PHB installation in Austin. Specifically, we
considered whether the PHB installation changed the number of
identified crossings or the position of those crossings along the
roadway. Additionally, we assessed the accuracy of the
improved algorithm by comparing the algorithm-identified
crossing counts to the number of crossings identified manually
from selected video recordings.

The rest of the paper is organized as following. In Section
I, we review related work on traffic camera video analysis and

pedestrian safety. Section III reviews our previously developed
video data aggregation framework. In Section IV, we describe
the algorithms and techniques used for crossing event detection
and visualization. Section V details the result from our analysis
of changes in pedestrian crossing behavior in response to a PHB
installation. We conclude and discuss our ongoing work in
Section VI.

II. RELATED WORK

A. Computational Analysis of Traffic Camera Video

Due to their low maintenance and operational cost, video
sensors, such as pan-tilt-zoom (PTZ) cameras, are commonly
installed along freeways and arterial streets [4]. However, the
use of video data from these cameras for system performance
and safety assessment or strategic planning is not widespread.
Transportation Management Centers (TMCs) primarily use
traffic video data from roadside cameras to identify incidents,
prepare the response for emergency situations, manage traffic in
special events, and dispatch technicians for maintenance [5].
The video data is also used to manually conduct traffic studies,
including collecting traffic counts by mode of transport (e.g.
auto, transit, pedestrians), turning movement vehicle counts for
traffic signal timing applications, and conducting safety analysis
by observing the behavior of traffic in weaving zones [6]. While
traffic video data analysis software tools exist, they are mostly
used to support real-time traffic operations, commonly focusing
on one type of analysis, and often deployed in dedicated,
specialized hardware. Examples of video data use include safety
analysis for intersections and corridors [7-9], identification of
unusual events on corridors, such as wrong-way driving and
stalled vehicles [10], generation of traffic statistics including
counts and queue lengths, and analysis of vehicular emission by
estimating traffic speeds [11]. Such applications are usually
labor intensive, and impractical for large-scale implementation.

B. Pedestrain Detection from Video

The detection and tracking of main road users (e.g.
pedestrians, cyclists, and vehicles) remains a hot topic in the
field of computer vision. The research focus is often on
developing an automated process to identify object trajectories,
thus avoiding time-consuming manual processing. Automated
video data analysis is considerably complex at urban signalized
intersections, characterized by a mix of traffic conditions and
the presence of various road user types. While significant work
exists on the topic of vehicle tracking, fewer studies look into
pedestrian tracking. The latter is more complex than vehicle
tracking because of pedestrians’ non-rigidity, more varied
appearance, and less organized movements. Pedestrians have
fewer spatial constraints than vehicles and may change their
direction of movement frequently, while vehicles have to follow
certain lanes with limited turning options [14]. Additionally,
pedestrians often move in groups, making even harder the
detection and tracking of individual movements [17] [4]. The
need for methods and applications for pedestrian tracking and
classification of road users has been highlighted and addressed
in several articles [15-18].



III. BACKGROUND AND PREVIOUS WORK

A. Video Collection and Processing Pipeline

We have developed an automated video processing
framework that separates the video analysis process into two
distinct parts: object recognition and analysis of the identified
objects [3]. We use convolutional neural networks to detect and
track the motion of objects from each frame in the video stream,
and then store and process information using Spark [12, 19]. By
combining the best practice of object recognition through deep
learning and big data processing for those two parts
respectively, the framework can efficiently process large-scale
traffic video data automatically and meet evolving analytic
needs over time.
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Fig. 1. Camera access and processing pipeline overview.

To implement the framework, we have set up a multi-
systems cross-domain video aggregation and analysis pipeline
(Figure-1). Raw videos are originated from IP cameras in the
CoA private network, which has limited accessibility. To
overcome the latter, the CoA set up a proxy server to forward
selected video feeds from the IP cameras to a storage cluster
hosted at the Texas Advanced Computing Center (TACC). The
recorded video can be then be processed by a high-performance
computing cluster at TACC. Processed data is saved in a storage
server, which is accessed by our project server for results
dissemination purposes. The project server also hosts tools and
scripts to schedule video recording and processing tasks. The
proposed processing approach consists of two main steps: the
video content recognition step identifies and labels all physical
objects from original input video files using a deep-learning
based algorithm; the second step is object tracking, which
“follows” each recognized object across all frames in the input
video.

B. Video Content Recongtion

Our video content recognition process is based on Darknet,
an open source library of image recognition [12, 13]. The core
algorithm utilizes a convolution-neural-network-based object
detection system, YOLOvV2, to analyze each frame of an input
video [13]. For each frame, the algorithm outputs a list of
objects including their location in the frame, class label, and
confidence of recognition. We have limited recognition to seven
class labels that are most relevant, including person, car, bus,
truck, bicycle, motorcycle, and traffic light. To improve

algorithmic performance and maximize utilization of multi-
node computing clusters, we have also adapted the YOLO
implementation for parallel execution [12]. Our implementation
enables parallel object recognition on multiple frames using p-
thread within individual compute nodes, and using MPI for
inter-node communication. Specifically, one thread is used to
pre-fetch n frames, while n extra worker threads are assigned to
labeling. Since each worker thread is independent, near-ideal
linear scaling can be achieved for longer videos [12]. For video
recordings from different times/locations, multiple video files
can be processed independently across multiple nodes
concurrently. A non-maximum suppression (NMS) algorithm
with the locally maximal confidence measure is used to remove
unnecessary/duplicated objects. In addition to content
recognition, the framework outputs a background image (i.e.
non-moving features) from each video recording. For more
details about the original YOLO algorithm and our
implementation, please refer to [12] and [13], respectively.

IV. METHODOLOGIES

Although our previous work facilitates video aggregation
and has been successfully applied to traffic flow analysis, we
observed some limitations when implementing the approach to
pedestrian location detection and tracking with the goal of
detecting mid-block crossing events. After reviewing the
outcomes of our previous implementation, we identified several
factors affect crossing event detection performance. We have
developed an improved tracking algorithm and implemented
features to further improve crossing event detection.

A. Tracking Pedestraints

Pseudo code for Pedestrian Tracking
Input: N = {n; | i: frame index, j: object index} as the set of recognized
objects found in each frame
Output: T= { #; | i trajectory index, j: frame index of object within this
trajectory} as the set of objects stored by a list of trajectories
1: Initialize T with each object found in the starting frame
2: for each mj in N
3: foreach #in T
dists <= distance( n;.location, pred(#, i ) )

if min(dists) < threshold(frame diference)

add 7 to targMinmin_ dists)

4
S:
6:
7: else add n; as a new trajectory

Fig. 2. Pseudo code for tracking pedestrians.

To track small moving objects, such as pedestrians in
particular, we implemented an approach based on predicted
positions of objects from previous frames (Figure 2). The
algorithm is initialized with the set of recognized “person”
objects in each frame. Each object record also includes
information about the object location and frame number from
the video. At the start of the video frame, for each recognized
object, we initialize a trajectory for that object. Recognized
objects in the subsequent frame are matched to the closest object
(whose bounding box usually overlap with the current object)
from the previous frame. Once a trajectory has more than two
distinct positions, direction and velocity of the trajectory can be
estimated based on positions of latest objects in that trajectory.
For subsequent frames, we compute the distance between all



newly identified objects with the predicted positions of existing
trajectories from previous frame. We used a pre-defined
threshold to avoid connecting an object that might be too far
away from the closest trajectories [3]. However, the length of
trajectories is sensitive to this pre-defined threshold, with
smaller values leading to shorter trajectories. Although the
length of the trajectories does not affect the visualization of
pedestrians location, it has an impact on the detection of road
crossing events. To address this limitation, we also implemented
a threshold function (Figure 2, line 5). The threshold function
will take consideration of elapsed frames between the last frame
index recorded in the trajectory and the frame index of the
considered object. If the two indices are further apart in time,
the threshold is larger than if they are close. When the distance
between an object and a trajectory is larger than the calculated
threshold value, the algorithm generates a new trajectory.
Otherwise, the object position is added to the trajectory whose
predicted position is the closest.

We have implemented this algorithm using the Spark big
data processing framework to read and process results files from
multiple video recordings and export the detection and tracking
of pedestrians as a structured file. A complete list of all tracked
objects with corresponding detailed information is stored in a
structured data file to derive further information, such as
direction of movement.

B. Crossing Event Detection

The original traffic camera video includes multiple
pedestrian activities, such as walking down the street, waiting
for the bus, and crossing the street. To further isolate mid-block
crossing event, we have implemented filters for variables such
as location, direction and track length.
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Fig. 3. Area of interest can be defined as a polygon and highlighted in red.

Location filter The location filter can be used to select only
activities within a user-defined polygon. Trajectories are filtered
to present only those that correspond to pedestrians that crossed
road. The user can define a convex shape through a list of
coordinates for each boundary point. Figure-3 shows an
example of a location filter. In Figure-3, the area of interest,
defined by the user is represented with a red polygon.

Direction filter each inferred trajectory is classified as
horizontal or vertical, and the direction filters can be used to

focus the analysis only on the relevant direction. For crossing
event detection, we focus on horizontal trajectories, e.g. those
that mover across the road. This filter is effective to avoid
considering the trajectories of cyclists and motorcyclists in our
analyses. Such road users are also recognized as “persons” by
the video recognition algorithm, but since they typically move
parallel to the road, they may be distinguished from pedestrians
crossing the street using the direction filter.

Distance filter As mentioned above, our tracking algorithm
sometime generates short tracks. The short tracks are usually
caused due to missed pedestrian detection over several frames
due to a temporary obstruction of the line-of-view, or to low
video quality due to environmental factors. The distance filter
allows to focus the analysis on longer trajectories.

C. Visualizing Crossing Event Locations

To help traffic engineers understand pedestrian activities
over time, we have implemented several visualization
techniques to provide a summary of pedestrian detection and
tracking over time.

1) Colored dot plot to show pedestrian locations.

We use a colored dot plot view over the background image to
create a visual summary of pedestrian detection over time. In
this visualization, only the center location of each detected
pedestrian is shown as a colored dot. The dot color can be used
to further characterize the detection event. Figure 5 illustrates
the visualization of pedestrian locations by time of day.

2) Heatmap with focal statistic smoothing

A heat map visualization may be used to highlights the local
significance of a region relative to surrounding regions. In this
effort we have adopted a focal statistic smoothing approach to
generate the heatmap presented in Figure 4. The selected
smoothing technique recalculates raw input data using the
weighted neighborhood sum defined in a disc kernel matrix. The
approach transforms the raw detection results, highlighting the
statistical center of activities through erode (shrink low values)
then dilate (expand high values) processing. Figure 4 illustrates
such transformation, contrasting the dot plot representing the
number of pedestrian detections per pixel (top) with the
outcomes of the focal statistics smoothing (bottom). Locations
with high expectance of pedestrians are highlighted in red.



Fig. 4. Focal statics smoothing heatmap of pedestrian detections. On the top,
the raw values of pedestrian detection events per pixel. On the bottom, morphed
visualization to highlight local centers of activities.

3) Calendar view of pedestrian detection over time.

To facilitate comparisons of pedestrian moving patterns by
time of day over multiple days, we propose to visualize key
metrics in calendar format. Graphs such as scatter plots,
histograms, and violin plots can be generated based on daily
data, and presented in a calendar-like grid layout. This view
gives an intuitive summary of data over different time scales.
Figure 9 presents an example of calendar visualization, which is
be discussed further in next section.

D. Pedestrian activity metrics

We have computed and used two quantitative metrics to
characterize pedestrian activity.

Pedestrian detections by minute provides a representative
estimate of pedestrian counts by minute by filtering the raw
detection results. For each frame, we count all objects classified
by the deep learning algorithm as pedestrians which have
bounding boxes centered in the roadway. Because we do not
assemble trajectories for this analysis, we do not know how
many unique individuals are present in the roadway during each
minute. Instead, we estimate the minute-level pedestrian count
by selecting a single representative frame from each minute of
video. The representative frame is the frame with the highest
count of pedestrians. This allows us to determine the maximum
number of pedestrians present in the roadway without
accidentally counting some individuals multiple times. This
metric is displayed in Figure 9.

Hourly pedestrian crossing activity The hourly pedestrian
crossing activity metric results from aggregating minute-by-
minute pedestrian crossing events by hour, producing a time

series that illustrates how activity changes over the course of the
day and between days.

V. CASE STUDIES

A. Data Overview

TABLE 1. DATA COLLECTION SUMMARY (2019)
Anderson Ln. @ Burnet | Lamar Blvd. @ Rundberg
Rd. Ln.
Date
Time Sep. 19—-21 | Feb12—15 | Feb. 14 - Mar.16 -21
range (Wed — Fri) | (Tue—Fri) | Mar. 2
Sep. 29 — Feb23-25
Oct. 2 (Sat — Mon)
(Sat — Tue)
Average
size per | ~ 300MB ~ 300MB ~315MB ~315MB
video file
Total size
1300GB 1400GB 941GB 522GB
Average . . . .
durations 15 mins. 15mins. 15 mins. 15 mins.

We have used our implementation to analyse pedestrian
street-crossing patterns at the intersection of Anderson Lane
and Burnet Road (hereafter Anderson location) in Austin,
Texas. For the Anderson location, analyses were conducted
before and after the activation of a PHB device intended to
allow for safe pedestrian crossings in the area near an active
bus stop. We have automated video captures in 15 minutes
interval at each location during the period from September
2018 to May 2019. Since the camera angle and direction can be
dynamically adjusted by staff at CoA for other purposes, video
recording not of interests to this study were discarded. The time
range and size of video recordings selected for computational
analysis are summarized in Table-1.

B. Pedestrain Activities during the testing period.

The pedestrian activities for selected periods are
summarized in Figure 9 (September 2018 before PHB
activation) and Figure 6 (February 2019, after PHB activation).
Figure 9 presents a time series of the maximum pedestrian
counts for each one-minute slice in all analyzed videos (blue
dotted line). The corresponding 30-min rolling average is shown
in red in those plots as well. These two visualizations illustrate
the magnitude of pedestrian activities over different times of day
and across multiple days. The results suggest a relatively
consistent level of pedestrian activity, with an average of 2
pedestrian detections per minute both before and after the PHB
device activation.



Fig. 5. Dot plot view to show locations of pedestrian activity detection before
the PHB installation. The activities are colored for four time periods of the
day: Yellow: 7-10 am; Green: 10:00-13:00; Blue: 13:00~16:00; Red: 16:00
~19:00 (top) Sep 19-21 2018 (Wed ~ Fri) (bottom) Sep. 29 ~ Oct 2 2018 (Sat
~ Tue)

To visualize the location of pedestrian activities, we
plotted all pedestrian detection in Figure 5 and Figure 6. In
Figure 5, the analysis is divided due to slightly different views
of camera adjustment. Figure 5 shows the activity summary
before the PHB activation. Figure 6 shows the activity
summary after the PHB activation. The activities are colored
for four time periods of the day: Yellow: 7-10 am; Green:
10:00-13:00; Blue: 13:00~16:00; Red: 16:00 ~19:00. The
Yellow and Red groups correspond to peak traffic hours while
the Blue and Green groups are for off-peak hours. In both cases,
major pedestrian activities are centered around two bus stops
on both sides of the street, suggesting that this is the major
motivation for road crossing.

The trend of concentrated crossing locations shown in
Figures 5 and 6 is further highlighted in the smoothed heatmap
view (Figure 7). Deep blue color indicates high likelihood of
pedestrian crossing while green color indicates less likely
location to observe pedestrian crossing. The crossing events
seem more concentrated at the PHB location.

C. Evaluation

To evaluate the accuracy of the crossing event detection, we
used four reviewers to analyze 38.5 hours of video at the
Anderson location traffic camera. Each reviewer worked
independently on a different day of video. Collectively,
reviewers took 68 hours to complete the work, with an average
processing time of 26 minutes o review a single 15-minute
video. Three full days of video, with 7-8 hours of video per day,
were reviewed: September 19 2019, September 29

Fig. 6. Dot plot view to show locations of pedestrian activity detection after
PHB installation. The activities are colored for four time periods of the day:
Yellow: 7-10 am; Green: 10:00-13:00; Blue: 13:00~16:00; Red: 16:00 ~19:00
(top) Feb 12-15 2019 (Tue ~ Fri) (bottom) Feb 23 ~ Feb 25 2019 (Sat ~ Mon)

2018, and February 13 2019. Two partial days of video were
also reviewed: February 12 2019 and February 14 2019.

Fig. 7. Smooth heatmap view to show frequency of pedestrian crossing
location shifts before (top, Sep. 29~ Oct 2 2018) and after (bottom, Feb 23 ~
Feb 25) PHB activation. Deep blue color indicates high likelihood of pedestrian



crossing while green color indicates less likely location to observe pedestrian
crossing.

Reviewers classified 2,481 activities across five different
activity types (walking, standing, crossing, cycling and other).
The most frequently observed activities were walking and
standing; street crossings accounted for approximately 20% of
observed activities. A single individual may be counted across
multiple activity types as their actions changed over the course
of the video. There were 412 observations of one or more
pedestrians crossing the street at a time. Using these curation
results, we also calculated that pedestrians cross Burnet Road,
which is approximately 60 feet wide, at a median rate of 3.5
feet/second. This is consistent with the literature, and may
inform the computation of future site-specific metrics.

To assess the accuracy of the automated crossing event
prediction, we compared prediction results for the number of
crossing events per hour on 02-13-2019 at Anderson location
with human reviewed results (Figure 8). The average prediction
accuracy is about 67%. The comparison results show a wide
margin of errors over different hours of the day, from less than
5% to more than 50%. A major factor contributing towards this
large variability of prediction is the fact that traffic conditions
change over different hours but our model are derived from
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Fig. 8. Comparison of crossing event prediction with human reviewed results
at Anderson location.

VI. CONCLUSION

In this paper, we present an approach that utilizes existing
traffic monitoring cameras within an intelligent transportation
system to understand pedestrian movement patterns and safety.
The use case presented in this work illustrates the potential of
implementing deep-learning methods to the study of pedestrian
street-crossing patterns. We also propose several metrics of
pedestrian activity to support the systematic analysis of before
and after scenarios and the quantification of the benefits of
pedestrian safety treatments. While preliminary, our results
suggest that meaningful metrics may be derived automatically
from data recorded through traffic monitoring cameras, which
could enable agencies to conduct more thorough analyses on a
larger number of locations.

Artificial intelligence technologies can greatly reduce the
effort involved in analyzing video data, and frameworks such as
the one presented here can facilitate research traditionally based

on manual video data analysis and promote further work on
video data applications and integration. A unique advantage of
our framework is to convert video recordings into query-able
information, which can accommodate multiple subsequent use
cases without re-processing [3]. We have exemplified their
potential to support useful analyses with minimal effort
compared to manual processing. An additional benefit of this
approach is that processed data can be combined with other
datasets to conduct more complex analyses. For example, video
data may be combined with loop detector data and signal timing
data to understand pedestrian compliance with traffic signals.
Traffic data from Bluetooth or Wavetronix sensors may support
a more comprehensive assessment of pedestrian behavior by
providing contextual information including prevalent vehicle
speeds and traffic volumes.
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Fig. 9. Summary of Pedestrian detection per minute at Anderson Location during selected days in Sep. 2018. (bottom) Summary of Pedestrian detection per minute
at Anderson Location during selected days in Feb. 2019. In both top and bottom panels, the blue points represent the number of pedestrians detected within one
minute of video and the red line represents a 30-minute rolling average of the count.
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