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Abstract— As the need to provide access to spoken word
audio collections in libraries, archives, and museums (LAM)
increases, so does the need to process them efficiently and
consistently. Traditionally, audio processing involves listening to
the audio files, conducting manual transcription, and applying
controlled subject terms to describe them. This workflow takes
significant time with each recording. In this study, we investigate
if and how machine learning (ML) can facilitate processing of
audio collections in a manner that corresponds with LAM best
practices. We use the StoryCorps collection of oral histories '"Las
Historias," and fixed subjects (metadata) that are manually
assigned to describe each of them. Our methodology has two
main phases. First, audio files are automatically transcribed
using two automatic speech recognition (ASR) methods. Next, we
build different supervised ML models for label prediction using
the transcription data and the existing metadata. Throughout
these phases the results are analyzed quantitatively and
qualitatively. The workflow is implemented within the flexible
web framework IDOLS to lower technical barriers for LAM
professionals. By allowing users to submit ML jobs to
supercomputers, reproduce workflows, change configurations,
and view and provide feedback transparently, this workflow
allows users to be in sync with LAM professional values. The
study has several outcomes including a comparison of the quality
between different transcription methods and the impact of that
quality on label prediction accuracy. The study also unveiled the
limitations of using manually assigned metadata to build models,
to which we suggest alternate strategies for building successful
training data.

Keywords— Audio, Machine Learning, shared infrastructure,
metadata, libraries, archives, museums, audio transcriptions

1. INTRODUCTION

Audio recordings are critical to scientific and cultural
inquiries, and providing prompt and accurate access is an
imperative for cultural and academic institutions. From
performances and oral histories in literary and historical study
to scientific sound recordings, the use of audio recordings is
increasing exponentially in scope and scale in libraries,
archives, and museums (LAM). Meanwhile, LAM
professionals are often under-equipped to manage the
demands of describing massive audio collections using
manual methods [1].
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Machine Learning (ML) applications to assist LAM
collections management has resulted in both admirers and
skeptics. As Ordelman et. al. [2] and others argue [3-6],
deploying automation in annotation and collections processing
could support LAM professionals charged with preserving and
providing access to these materials. For example, ML tools can
be used to generate metadata with which users can easily search
for items within a collection and that LAM professionals might
otherwise have to assign manually [4,5]. While these solutions
might improve and accelerate processing, there is a steep road
ahead towards researching, developing, and maintaining such
methods. As LAM professionals work towards adopting
automation, it is critical to question the role and functionality
of ML in relation to the unique requirements, best practices, and
professional training in this context. To this end, Jakeway et. al
point out that ML “is typically associated with flashy,
innovative, transformative, and futuristic problem-solving"
whose operationalization and implementation could be a barrier
to entry for LAM professionals who undertake such projects
[6]. If LAM concepts, best practices, and values are to be
integrated in ML methods for collection descriptions, LAM
professionals must be invested in research and development in
ML systems.

Our project, AI4AV: Building and Testing Machine
Learning Methods for Metadata Generation in Audiovisual
Collections (https://hipstas.org/ai4av/), is concerned with
creating tools and workflows that are transparent, feasible to
use and to share, and that adhere to LAM best practices. Our
project, focusing on spoken words audio collections,
contributes to ongoing work around the imbrication of ML
systems with LAM practices by exploring methods and
workflows to support LAM professionals working with digital
audio collections. For this, we formed an interdisciplinary team
of computer scientists, information scientists, and humanists to
identify the roles, technologies, and practices that each can
contribute throughout the design, implementation, evaluation,
and maintenance of a ML project in the LAM context.

At the beginning of our study we defined the research
questions: What are the steps involved in spoken-word audio
processing using ML? Can and should we replicate
automatically what LAM professionals do manually to describe
audio collections? Is metadata produced by LAM professionals
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using traditional methods adequate to train ML models for
classification and description? Is there and if so, What is the
impact of the transcription quality in the accuracy of predicted
labels? What infrastructure, computational functions, and
interfaces are needed within a web framework for LAM
professionals to engage with ML tools? Can such a framework
be easily configured for different steps and audio collections?

To answer these questions, we designed a methodology
that involves automating speech-to-text transcription of audio
files and predicting labels that describe their contents for
purposes of making them indexable and searchable. Using a
proof of concept collection and a prototype web framework,
we explored an explainable workflow that combines ML and
traditional metadata. The prototype, called IDOLS-AI4AV, is
built on supercomputing resources at the Texas Advanced
Computing Center at the University of Texas at Austin.
Working with 815 audio files from the StoryCorps Las
Historias collection as a proof of concept audio collection, the
workflow leverages existing NSF supported, shared national
cyberinfrastructure resources and the framework IDOLS [7-8]
as well as open source speech-to-text deep learning tools and
ML applications to transcribe audio and to predict labels from
the transcripts [9-11].

In this paper we explain the goals of the AI4AV study,
review current trends for automated transcription and
description of collections, explain our methods and results,
and discuss how the findings contribute to traditional
descriptive practices in relation to ML applications in LAM.

II. BACKGROUND

Working with Historias collection proved to be a
compelling and challenging case study. Founded in 2003,
StoryCorps deploys trained facilitators to record and archive
short oral histories from people around the United States.
Some of the story-collecting initiatives are organized around
specific constituency groups and particular events.
StoryCorps’ Historias project captures the “diverse stories
and life experiences” of the Latino community in the United
States. The Historias collection documentation states that Las
Historias will “ensure that the voices of Latina/Latino people
will be preserved and remembered for generations to come”
[12]. The collection of 815 audio files, each of up to one hour
of duration, were made available by the partnership between
StoryCorps and the Nettie Lee Benson Latin American
Collection at the University of Texas at Austin.

To understand the collection's technical provenance our
team spoke with StoryCorps staff members to learn how oral
histories in the Historias collection are created and processed
[13]. StoryCorps archivists train facilitators to conduct,
record, and catalogue the interviews. Facilitators are self-
selected for their interpersonal skills and their desire to tell and
learn personal stories rather than their archival background. As
a result, the facilitators are a diverse body ranging in age and
experience. Full-time facilitators are trained more regularly,
while per diem facilitators might only work with StoryCorps
sporadically. StoryCorps facilitators introduce participants to
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the process and permissions associated with recording oral
histories and catalogue the interviews in the StoryCorps
database during and right after they conduct them. During the
recording session, these facilitators take hand-written notes
about the interview’s content, noting important moments or
shifts, and identifying subjects discussed in the beginning, the
middle, and end of each interview. StoryCorps does not
transcribe the interviews. Thus, the metadata (descriptions and
subjects) created at the time of the recording session becomes
the metadata that users will later need to find materials in the
database.

Because we planned to use the collection's existing
metadata to build the ML models, we were especially interested
in the process by which subjects and keywords are assigned to
describe each interview. Fixed subjects are selected from the
American Folklife Center’s Ethnographic Thesaurus [58]. The
terms are updated regularly, and the facilitators can use between
five and fifteen terms per recording. On the other hand, general
keywords can be entered by facilitators when they do not find
fixed subjects that adequately describe interview content. In
both cases, the emphasis is in describing the general themes of
the interviews.

StoryCorps archivists oversee the resultant metadata after
it is entered into the database. Due to the intervention of
different facilitators and their uneven training and experience,
fixed subjects may mean different things to different
facilitators, rendering their inconsistent application across
interviews. StoryCorps archivists are aware of the
shortcomings of the process and are constantly reviewing
technologies and methods. And yet, similar shortcomings are
common across LAM institutions due to changes in staff
members and technologies. Metadata generated for the 815
interviews was provided to our team for use in this study.

III. RELATED WORK

Over the last years, the LAM community has been
addressing research and development of Al methods for digital
libraries and archives materials processing [14-16].
Transcribing speech to text using Al methods can enhance and
accelerate access and research to large collections, and many
projects are focused on obtaining good transcriptions
automatically [17-18]. Because the main goal of our study is to
predict subjects that describe the content of spoken-word audio,
our interest is in exploring whether the quality of the
transcription affects label prediction accuracy.

Like ours, other ML projects take advantage of the trove of
metadata produced through manual cataloguing. Annif is an
open source microservice to automatically assign subject
headings to textual materials [19]. An interesting feature of this
project is its interface that allows easy submission of texts,
selection of ML methods, results evaluation, and feedback to
the model. To train its models, Annif uses manually assigned
subject headings, and terms from controlled vocabularies. This
very complete and thoughtful project considers human
cataloguing the gold standard for comparing results. While in
our project we also use human-selected fixed subjects as
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training data, we suggest that depending on how the subjects
are assigned they may introduce inconsistencies or biases to
the models. For example, at the University of Utah Libraries,
an image indexing feasibility study using off-the-shelf Al
software and human-made metadata for training, found that
digital library metadata may need to be re-designed for ML
applications [20].

The Collections as Data project encompasses resources
and proof of concepts focused on using computational
methods to process digital data collected in cultural
institutions in consideration with the values that characterize
their practices and services [21]. In alignment with the
project's Santa Barbara principles, our prototype ML
framework aims to lower the barriers to computational use of
digital collections, addresses analysis of both data and
metadata, and can be shared by staff members and by many
institutions [22]. A unique contribution of our study is that the
statistical exploration of human-made metadata for use as
training data, allowed us to better understand traditional
metadata practices in LAM and make suggestions towards
improving them for purposes of building ML models.

Automated speech recognition (ASR) is an active
research field with a long history. The basic goal of ASR is to
map audio input into an acoustic model representation which
is joined to a language model for generating written transcripts
as outputs. A common approach assumes a probabilistic
model between the acoustic representation and the language
representation so that the decoded string has the maximum a
posteriori (MAP) probability [23, 24]. To this end, a number
of models have been proposed over the years including:
hidden Markov chain model [25], template-based approach
[26], stochastic modeling [27], and vector quantization (VQ)
[28]. There are numerous advances in speech recognition
using neural networks [29-31]. Examples include feed-
forward neural network acoustic models [32,33],
convolutional networks [34,35], and recurrent neural networks
[36-39]. The DeepSpeech tool, used in this study, is an end-
to-end pipeline for ASR that combines deep neural networks
with convolutional layers [9,10].

Text classification remains a problem in assigning
predefined classes (labels) to an unlabeled text document [40].
The general solution includes representing the text in a vector
space or a graph model with selected features such as word
grams, topics, taxonomies, or metadata [41-43]. Once the text
is well represented, supervised machine learning methods
such as support vector machine, Naive Bayes, and decision
trees are used to build classification models [44-47]. With
increased data availability, deep neural networks applications
such as BERT, ALBERT, and GPT have been found
successful for text classification [11, 49, 50]. For text
classification methods to infer labels for an input document,
the labels must be from a finite set of predefined categories
from which enough documents are available to train the
classification model. In our study, we use fixed subjects
applied by humans as categorical labels for each
transcript/audio file. As a result, our ML model will classify
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the individual interviews based on how the fixed subjects were
assigned in the first place.

IV.METHODOLOGY

With the goal of generating labels to describe audio files
automatically, this study explored different state-of-the-art
ASR and text classification methods. In the process we
assessed if the quality of the transcriptions influences label
prediction results and evaluated the use of manually assigned
metadata as training data. For purposes of this study we focused
on fixed subject metadata.

Training on computing cluster

Fixed Subjects Audio Data
ot Spedch T
Classification Transcirpt - . ASR .
X

Labels

I

User reviews

Inference through web interface
Fig. 1 Methodology workflow overview.

Fig. 1 shows an overview of the methodology. First, we
converted the audio interviews to texts. For this, we used two
different ASR tools for automatic speech-to-text transcription,
and compared the results against human-made transcriptions as
ground truth. Following, we conducted statistical analyses of
the fixed subjects applied to the interviews by the facilitators.
The results of the analyses informed the design of the
experiments to predict labels. Once the models are built, it can
infer labels for new audio input. As we refined the methodology
into audio processing workflow steps, we were designing
configurable web interfaces to facilitate conducting the tasks in
shareable, flexible, and transparent ways.

Throughout the study we also carried out qualitative
review of the results to verify the outputs in relation to what
users would read and search for. We also conducted exercises
to learn how fixed subjects are manually applied and to
understand how this practice influences the predicted labels
results. Indeed, the qualitative observations suggested ways to
improve label implementation as training data.

A. Speech to Text Conversion

815 audio files from the Historias collection were
transcribed to text using DeepSpeech (DS) version 0.8.2
(https://github.com/mozilla/DeepSpeech) and 311 where
transcribed using Google’s Speech-to-Text (GST) service

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 27,2021 at 07:03:30 UTC from IEEE Xplore. Restrictions apply.



(https://cloud.google.com/speech-to-text). We also obtained
81 human transcriptions (HT) through the University of Texas
Libraries Captioning and Transcription Services [51]. The
difference between the number of transcriptions obtained for
each method is due to budgetary constraints.

DS is an open-source automatic speech recognition tool
that uses a pre-trained English model to transcribe spoken
audio [9,10, 52] . While some interviews in Historias include
words in Spanish, we only used the freely available pre-trained
English model implemented with Tensorflow [53]. According
to its release documentation, the pre-trained acoustic model
was trained on American English reporting 5.97%-word error
rate (WER) on the LibriSpeech test corpus [54]. Due to
limitations of its training data, the model has biases towards
high quality recordings with minimum noises, and to speech
from US male accents.

We also experimented with GST cloud commercial
service [55]. The standard model usage is about 2.4 cents per
minute. This rate is in addition to other computing costs such
as cloud storage and virtual machine resources if applicable.
This model is more complete than DS. It supports 125
languages and has domain specific models to choose from.
The service also has optimization for audio recordings with
low sampling rates, and post processing steps to convert
numbers, addresses, and times.

While the Historias collection has words and names in
Spanish, to simplify the analyses we only used English
language trained ASR models. We here note that there is a
difference between transcribing texts in different languages
and transcribing mixed language texts, the latter being a more
complex problem to solve.

The quality of the transcriptions derived from DS and
GST was evaluated qualitatively by members of the team who
listened to a sample of audio files and read the corresponding
transcriptions. The quantitative analysis was conducted
against the HT using word error rate (WER). WER is the
percentage of mismatched words between a transcribed text
and the ground truth text. Results are reported in Section V.

B. Text Classification - Models for Label Prediction

We investigated how to utilize ML methods to predict
labels based on the interviews’ transcriptions and the fixed
subjects assigned by the facilitators as metadata. Because each
interview is associated with a variable number (5 to 17) of very
diverse fixed subjects (Figure 2), to build the model we
decided to limit the number and use the top-20 (Figure 3).

To predict multiple labels from a transcript, we explored
two supervised learning approaches, top-N and multi-Label.
In the top-N approach, all fixed subjects associated with one
interview are first ranked based on their overall frequency
across all the interviews, and only the top-n are selected for
training the model. Consequently, the resultant ML model will
only predict n labels. For example, when n is one, one label
from each interview is selected and the model will predict just
one label per interview. In the multi-label approach, there is
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no ranking nor preselection of fixed subjects. Instead, the ML
model is built to infer a vector of likelihood; this is how likely

a label is associated with an interview. Combining different
approaches and ML tools we developed and evaluated the three
models detailed below.

The first model, hereafter referred to as RF, utilizes
Random Forest learning methods. In this model, each transcript
is represented as word frequency vectors based on the bag-of-
words model. From the transcripts and the selected fixed
subjects, the RF model is trained to infer if a given label belongs
to the top-n fixed subjects or not. The results presented here are
from cases where n is 3.

The second model, hereafter referred to as DL-TopN, is
built to make similar inferences for top-n labels using a deep
learning (DL) long-short-term memory neural network within
the BERT library. We used the word2vec from BERT to
convert each transcript to a vector representation. Similarly, to
the RF model, we focused on cases where n is 3.

The third model, hereafter referred to as DL-multi, is built
to infer how likely an input transcription can be associated with
each of the selected 20 fixed subjects. Multiple fixed subjects
assigned to an interview are represented in a twenty-
dimensional vector, each vector corresponding to one fixed
subject. In the training data, this vector is binary, such that the
value of each dimension is either 1, indicating that the subject
is assigned, or 0 indicating otherwise. From this vector, top-n
labels are dynamically computed and are not restricted to a
preselected value. For the testing data, the model computes a
similar 20-dimensional vector in which, the value of each
dimension indicates the likelihood of the association between a
predicted label and the transcript. To build this multi-
classification model we used the BERT library. In all cases, the
results were evaluated based on accuracy, which is the
percentage of predicted labels from the original set of fixed
subjects per interview.

C. Selecting Subsets of Fixed Subjects
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Fig. 2 Histogram of number of fixed subjects over number of occurrences in
the collection.

Building a balanced model to predict labels per interview
implies that the training data is representative of the content of
all the interviews. Towards that end, conducting statistical
analyses to learn the characteristics and fitness of the data that
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will be used to train the model is a requisite in all ML
applications. Such analyses evaluate data completeness,
balance, and coverage, to anticipate possible biases in the
results [56].

Fig. 2 shows an analysis of frequency of usage of all fixed
subjects appearing in the Historias collection. The facilitators
used a total of 418 unique fixed subjects to describe the
Historias collection. Despite the limit of 15 subjects suggested
by StoryCorps, each interview is associated with 5 to ~25
fixed subjects, and there are significant variations in their
occurrence. For example, 313 out of 418 fixed subjects are
used in less than 20 interviews, and only 26 are used more than

200 times. ) )
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Fig. 3 Distribution of the top 20 fixed subjects across number of interviews.

To build a classification model for label prediction, we
needed to select a subset of fixed subjects with enough number
of occurrences in the collection. Fig. 3 above shows the
number of times that each fixed subject was used to describe
the interviews. After observing their frequency distribution
across the entire collection, we decided to focus on the top 20
most frequent as training data.
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Fig. 4. Percentage of interviews with top-20 selected subjects.

We also needed to decide how many labels we could
predict with confidence. For this we assessed coverage,
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understood as the percentage in which any of the top 20 fixed
subjects appear per interview. Fig. 4 shows that each interview
was assigned at least one fixed subject from the top 20. More
than three top-20 fixed subjects were assigned to less than 90%
of the interviews, and more than five to 78% of the interviews.
The results suggested that we could predict at least 3 labels with
confidence from this ranked list of 20.

D. Web Interface for Interactive Access

IDOLS (idols.tacc.utexas.edu) is a web-based API
platform developed with support from the National Science
Foundation [7,8]. In this project we use itas the gateway to
Machine Learning and Natural Language Processing tools
installed in High Performance Computing (HPC) resources at
the Texas Advanced Computing Center. IDOLS bridges
applications - in this case for purposes of audio transcription
and keyword prediction - with remote compute resources. Its
goal is to provide a low barrier to increase HPC adoption
through interactive interfaces. The IDOLS framework enables
creating and customizing web applications from a configuration
file. The web application is self-contained and can be deployed
without alleviated system privilege. Therefore, ad-hoc analysis
routines can be described and preserved in a format that can be
shared and re-used. The application can also be preserved
through the configuration file for reproducibility. Utilizing
IDOLS, we have developed an on-demand web application that
can run on remote computing clusters. In this study, the
application was configured for the specific needs of the AI4AV
project. The different interfaces allow accessing raw audio
files, running speech transcription processes, saving and editing
the code to configure the workflow and its interface, obtaining
predicted labels, and providing feedback to the model. These
capabilities were designed to add transparency and
reproducibility to the professional process values within LAM.

V. RESULTS
A. Speech to Text: Quality Comparisons

To evaluate the quality of the ASR methods we compared
the transcriptions generated by HT to the outputs of DS, and
GST, both quantitatively and qualitatively. Qualitatively, by
reading the texts, the team concluded that the HT are the most
comprehensible, as both in the DS and in the GST outputs many
transcribed words are gibberish without meaning. The human
transcriber added punctuation marks and annotated the different
speakers in the interviews. Instead, the ASR models generate
text outputs without punctuation or distinctions between
speakers. And yet, while both the DS and GST transcripts are
hard for readers to follow, the latter are more understandable
than the former. We were interested in learning if and
comprehensible texts influence label prediction accuracy.

To quantify the quality of the ASR results we used the HT
as ground truth and compared those to DS and GST outputs.
The common evaluation metric, word error rate (WER), was
calculated for each comparison [59,60]. The WER first aligns
transcribed sentences together and then computes the number
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sequence. The word error rate is defined as:
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For this quality assessment we used 27 sets that included
the three types of transcriptions. Given that the number of
transcriptions per method is different, the number 27 is related
to the availability of the same audio transcribed with the three
methods. Before comparison each transcript was processed
including stop words removal, punctuation marks removal,
stemming, and lemmatization [57]. Following, each transcript
was converted to a list of tokens whose numbers ranged from
1207 to 3037.

Fig. 5 shows the WER results plotted in relation to the
number of tokens found in the HT. The average WER for DS
and GST are 0.67 and 0.47 respectively. Note that the WER
curves from both methods are consistent and seem
independent of the length of the transcribed file. The
consistent lower error rate for the GST model implies that it is
better than the DS one. While GST has a lower error rate than
DS, both results point to significant challenges in ASR.
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Fig. 5 WER for DS vs HT (red) and GST vs HT (blue) comparisons for
transcripts of different length.

Figure 6 below shows the comparisons between three sets
of transcription results: DS vs. HT (red), GST vs. HT (blue)
and GST vs. DS (gray). The average WER between GST and
DS is 0.49 which is better than the WER between DS and HT.
This suggests some commonality between the DS and GST
models. Between the two ASR methods, GST gives better
results than DS. However, neither are close to the quality of
the HT outputs. These results coincide with our qualitative

assessment.
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Fig 6 WER results comparisons between DS, GST, and HT.
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We mentioned that we were interested in exploring the use

&%0".5%f ASR outputs to predict descriptive labels and to assess the
&%) %E%3%mplicati6As*' 8t the transcriptions’ quality on the predicted

labels’ accuracy. To explore this question, we conducted three
experiments.

The first experiment compared how well the three models
described in section B, can predict the top-3 labels using
transcripts generated by DS. Table I shows the results. Each
model was trained using 80% randomly selected DS transcripts,
and tested over the remaining 20%. For each transcript, the
average accuracy was computed as the percentage of correct
labels over all predicted labels. Results are shown in Table 1.
The DL-TopN model yields the best results, and the accuracy
of the RF model is a close second. The DL-multi model has the
lowest accuracy score, which is 7% worse than the DL-TopN
model. The results of this experiment indicate the viability of
label prediction even with low quality transcriptions. The
comparisons do not show a significant advantage between the
two DL-based models over the RF model, a result that may be
impacted by two factors: the quality of the transcriptions, and
the amount of data available for training and testing.

Table I Average accuracy of top-3 label predictions for the three models
using transcripts generated DS.

DS RF DL- DL-
transcripts Model TopN multi

Average 0.70 0.71 0.66
Accuracy

Once it was established that we could predict labels based
on the least intelligible ASR output, in the second experiment
we further investigated the relation between the transcription
quality and the label prediction accuracy. For this we created
three test sets based on their transcription method. As we
mentioned, due to budget restrictions, the number of transcripts
tested for each method was different, i.e. 815, 311 and 81 for
DS, GST, and HT respectively.

Table II. Average accuracy of the top-3 label prediction using different
transcription methods and classification models.

Average accuracy DS GST HT
Number of transcripts 815 311 81

DL-TopN 0.71 0.67 0.66
DL-Multi 0.66 0.96 0.85

Table IT shows the average accuracy results for the top-3
labels using DL-TopN and DL-Multi model, which rendered
the best results in the first experiment, over the three sets of
transcripts. The HT has the least number of transcripts
available. For the DL-TopN model, the average accuracy over
the top-3 labels is similar between the three sets of transcripts.
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This implies that this model is less sensitive to the quality of
the transcripts. Further investigation showed that the model
usually discovers the dominate labels but it lacks specificity.
The DL-Multi model achieved better results testing on the
higher quality transcripts GST and HT. These results indicate

and diverse classes/labels. In turn, this agrees with the
quantitative results. Otherwise the models converge to the
dominant trends in the collection and thus produce same labels
for all transcriptions. And yet, while text-to-label prediction is
improved with high quality ASR transcriptions such as GST,

that the DL-Multi model is more sensitive to the quality of predicting labels from low quality transcriptions such as those

transcripts and in addition to the general trend, it can pick up
fine differences among classes/labels. It was a surprise to see
that the model built with GST transcripts outperforms HT.
However, one possible reason could be that the lack of a larger
set of HT data makes the model less reliable. The results
incited us to further test the DL-Multi model using
combinations of training and testing data.

The results of this experiment were computed for
different training/testing transcription sets. HT GST and DS
are results from using HT, GST and DS respectively for both
training and testing. HT* denotates results from the model
trained with HT and tested against DS. GST* denotates results
from the model trained with GST and tested on DS. Label
prediction accuracy degradation is observed with the DL-
Multi model when predicting more than three labels. Fig.7
above shows how the average top-n labels accuracy decreases
as the number n increases. The best results are found for
models trained and tested on GST with 96% accuracy for
prediction of the top-3 labels, and for up to top-12 labels with
acceptable accuracy (0.80). In comparison, the model trained
and tested on HT has an accuracy of 0.85, and the model
trained and tested on DS has 0.66 accuracy. When testing
transcripts from DS (DS, HT* and GST%*), all three models
show lower accuracy values and are similar to each other
around 0.66. These results suggest that the best model for
label prediction is DL-Multi which renders the best tradeoff
between accuracy and transcription method quality.

0.4
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Mvaraga Accuracy
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Top-N labels

Fig. 7 Average accuracy comparisons for DL-Multi model with different sets
of transcripts.

We also reviewed the results qualitatively. For a sample
of interviews, we read the labels generated with the DL-Multi
model tested on each transcript method. We noted that the
labels predicted using DS transcripts are exactly the same
across all the interviews. This observation confirmed that the
quality of the transcription is relevant to distinguish unique
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generated through DS should not be dismissed. Especially if
considering that DS is open source application that can be
further improved. Specially for LAM, if well trained, it can be
used to process large amounts of data at lower costs.

VI. EXPERT ASSESSMENT AND WEB INTERFACE
A. Expert Assessment of Metadata as Training Data

The involvement of LAM professionals to design, steer,
and evaluate the development and results of ML projects is key
to produce outcomes in line with best practices and values in
the space. The quantitative results of this study indicate that it
is possible to predict labels from existing metadata with good
to reasonable accuracy. However, the predicted labels will be
as good as the metadata selected by LAM professionals. Thus,
we sought to understand the adequacy of manual metadata
generated by LAM to train ML models.

Learning about the mechanics of how fixed subjects are
applied in the Historias project (Section II), was the first step
towards exploring this question. In addition, the distribution
and coverage of fixed subjects (Figures 3 and 4), provided
quantitative insights on the metadata practices. We learned
which labels were used the most as well as the consistency of
their application across the interviews.

When our team reviewed the top 20 fixed subjects that
would be used to train the ML model (Figure 3), we discussed
if they represented the diversity of content of the interviews.
Considering their purpose of describing general themes across
all the interviews, many seemed overlapping or redundant. For
example, a cluster of fixed subjects: students, teachers, and
schools, could be consolidated into one encompassing subject
such as education or schooling, and the same could be said
about community organizations and community history.

To better understand fixed subjects’ selection, their
granularity, and their consistency, we devised two simple
exercises. In the first one, we aimed to identify if expert
curation could render a more diverse short list of fixed subjects
for training than the one obtained by ranking. Four members of
our team set out to consolidate a list of top 50 fixed subjects
into 20 by classifying related terms into broader ones. We later
met as a group to agree on a final list. When we compared the
agreed upon list to the ranked list, we noticed that even though
half of the fixed subjects coincided, the agreed upon curated list
provided an arc of more distinct and precise subjects.

In the second exercise we wanted to understand
consistency in applying fixed subjects. For this, three team
members with cataloguing experience listened to the same
audio and selected up to 10 terms from the Library of Congress
Subject Headings to describe them. Comparing the three sets
we noticed that each team member had a slightly different
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criteria for assigning subjects to the same interview. The three
team members’ choices coincided only in one subject, pairs of
two in four subjects, and pairs of two in five different subjects
that could be considered close in meaning. In addition, the
three noted that given the range of topics discussed in each
interview, they had difficulty between describing the audio in
general or in parts.

While these simple exercises should be extended to more
participants and analyses of more interviews, they are useful
to explain some quantitative results. Even when selecting from
controlled vocabularies to describe the same content,
catalogers may not coincide in their criteria. That explains the
short coverage of the majority of the fixed subjects and
consequently the limitations to predict more and diverse labels
with higher confidence. Similar to the transcription quality,
the diversity and the consistency of the metadata to train the
models are important for predicting good labels.

These observations suggest that using LAM metadata to
train ML models requires a careful design. Specifically,
strategies for assigning metadata should work toward
representing the contents of the collection in a more consistent
and complete fashion. Based on this study, some suggestions
are to further curate the list of controlled vocabularies and
provide more structured directions on how to use the
hierarchical relations between top scheme and narrower terms.
The protocol mentioned by the StoryCorps archivists of
applying metadata at the beginning, middle, and end of each
interview may render good results if combined with a
consistent approach to selecting curated terms. Indeed, more
experimenting and testing is needed in order to contribute
optimal directions for applying metadata that can be used for
training ML models.

B. Interface Design for Lowering Barriers and to Increase
Transparency

To lower the technical barriers for LAM to adopt ML we
implemented the workflow in IDOLS. The sequence of
screens in Fig. 8 below, illustrate how we operationalized
share-ability, reproducibility, and transparency as interfaces
for the different steps.

In the workflow manager users can select the tasks that
they wantto run or runthem all at once. Enabling granular
task management allows verifying the results of each step.
The first step presents users with the possibility of selecting
files to process and grouping them as needed. At this step, and
at any other time in the workflow, users can listen to selected
audio files, which is important for comparing with the
corresponding transcripts, and for evaluating how the
predicted labels represent the audio content qualitatively. For
transparency and flexibility, the next task allows users to
select executables in the resources in which computations are
run, and to configure the IDOLS interfaces script. The latter is
useful for creating and improving the forms/interfaces and the
directions and explanations about each task. In the following
steps, users can run, verify, and compare the transcription
results for more than one method (the image shows result from
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DS), as well as those from the label prediction models. To
facilitate the evaluation of label prediction task, the interface
shows the results of all the methods per interview and per label
including their accuracy assessment values and the fixed
subjects assigned by the facilitators for comparison. Lastly,
users can provide feedback to the process by submitting a form
which can be configured in step 2.

Workflow Management
Define Task Predecessor
Task 1 [None
Collpse Sep 1
T T —— |
Colapse Stop 2
Task 3[None

Collapse Step 3

Task 4 None

Step 1: Show Audio

Step 2: Run Speech Recognition Script

name to the name of the audio file you would i to recognize

= 0 hen

A PYTHONPATH="

I MBY008558 Icols xt
I MBY008603 Idot
B MBY005615.
B MBY005645
B MBY005648.
B MBY005659 i

an

Goto paront deectry ] Expand cosen arctoy
Hadoop Fie System 2o =

Top

1o Jrow

Show Contents
[stow

[oowrond

Fixed predictions: | Fixed
Subjects score Subjects score
abel label label

redictions: | Fixed
original_label_fs original_label_g &

community worthies,craft, skills, and

American fts and Awards | 0.6
Gitizens,LULAC, MALDF,memories of
former times, mentor, Mexican
Am gal Defense
al

WorkdayLife 058 Workday Life €

exps scholarship,social
beliefs and practices,sterotypes

Showing 110 1 of 1 entries

Previous | 1 | Next

submit form

Fig. 8. Sequence of interfaces showing key steps of the ML workflow in
IDOLS. (Note: some of the screen captures are cropped to fit and partially
shown here.)
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The current interfaces are based on the workflow steps
and on the feedback provided by the team. The configuration
file can be downloaded and shared for reproducibility.

VII. CONCLUSIONS

We explored different SRA and ML methods to predict
descriptive labels based on transcriptions of speech audio and
on subject metadata assigned during archival description. Our
work focused on evaluating the accuracy of the labels based
on the quality of the automatic transcriptions and of the
metadata that was used to build the computational models. A
prototype workflow was implemented as a series of interfaces
to allow flexible, transparent, and reproducible management
of the processing steps. We will continue refining and testing
the prototype both from a usability perspective as well as in
relation to scalability.

Our interdisciplinary team approached the study with an
eye on LAM needs, requirements, and best practices. Because
the Historias collection and its provenance are both complex
and rich, the use case provided the opportunity for addressing
real world problems, and challenged the team to combine
quantitative and qualitative approaches iteratively. By
comparing different ASR methods and using HT as a standard,
we learned that it is feasible to use automatic transcripts to
generate labels. However, the label’s accuracy will depend on
the quality of the underlying transcriptions, which can be
further improved with more experimentation. Likewise, the
quality and coverage of the training metadata is key to
achieving good content representation. Using metadata that
was not intended to build ML models may not be optimal, but
the lessons learned can illuminate future design of training
datasets for label prediction.

This study opens new possibilities for LAM that are in
sync with professional practices and values. It demonstrates a
methodological path for describing the contents of large audio
collections that can significantly improve their prompt
discoverability. Coupled with a configurable and flexible
framework, it can promote cross institutional collaboration
and sharing of resources.

The study reveals the advantages of interdisciplinary
work. Quantitative methods can help LAM professionals
evaluate their metadata practices, and qualitative observations
assess the understandability and of the usability of the
predicted labels. Indeed, a curatorial perspective is required
for ML methods to achieve their higher potential for
processing large audio collections.
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