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Abstract—  As  the  need  to  provide  access  to  spoken  word 
audio  collections  in  libraries,  archives,  and  museums  (LAM) 
increases,  so does the need  to process  them  efficiently  and 
consistently. Traditionally, audio processing involves listening to 
the  audio files,  conducting  manual  transcription,  and  applying 
controlled subject terms to describe them. This workflow takes 
significant time with each recording. In this study, we investigate 
if  and  how machine learning (ML)  can facilitate  processing  of 
audio collections in a manner that corresponds with LAM best 
practices.  We use the StoryCorps collection of oral histories "Las 
Historias,"  and  fixed  subjects  (metadata)  that  are  manually 
assigned  to  describe  each  of  them.  Our  methodology  has  two 
main  phases.  First,  audio  files  are  automatically  transcribed 
using two automatic speech recognition (ASR) methods. Next, we 
build different supervised ML models for label prediction using 
the  transcription  data  and  the  existing  metadata.  Throughout 
these phases the results are analyzed quantitatively and 
qualitatively.  The  workflow  is implemented  within the  flexible 
web  framework  IDOLS  to  lower  technical  barriers  for  LAM 
professionals. By allowing users to submit ML jobs to 
supercomputers,  reproduce  workflows,  change  configurations, 
and  view  and  provide  feedback  transparently,  this  workflow 
allows  users  to  be  in  sync  with  LAM  professional  values.  The 
study has several outcomes including a comparison of the quality 
between different transcription methods and the impact of that 
quality on label prediction accuracy. The study also unveiled the 
limitations of using manually assigned metadata to build models, 
to which we suggest alternate strategies for building successful 
training data. 

Keywords— Audio, Machine Learning, shared infrastructure, 
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I. INTRODUCTION  

Audio  recordings  are  critical  to  scientific  and  cultural 
inquiries,  and  providing  prompt  and  accurate  access  is  an 
imperative for cultural and academic institutions. From 
performances and oral histories in literary and historical study 
to scientific sound recordings, the use of audio recordings is 
increasing exponentially in scope and scale in libraries, 
archives, and museums (LAM). Meanwhile, LAM 
professionals are often under-equipped to manage the 
demands of describing massive audio collections using 
manual methods [1].  

 

Machine Learning (ML) applications to assist LAM 
collections  management  has  resulted  in  both  admirers  and 
skeptics.  As  Ordelman  et.  al. [2]  and  others  argue  [3-6], 
deploying automation in annotation and collections processing 
could support LAM professionals charged with preserving and 
providing access to these materials. For example, ML tools can 
be used to generate metadata with which users can easily search 
for items within a collection and that LAM professionals might 
otherwise have to assign manually [4,5]. While these solutions 
might improve and accelerate processing, there is a steep road 
ahead towards researching, developing, and maintaining such 
methods. As LAM professionals work towards adopting 
automation, it is critical to question the role and functionality 
of ML in relation to the unique requirements, best practices, and 
professional training in this context. To this end, Jakeway et. al 
point out that ML “is typically associated with flashy, 
innovative, transformative, and futuristic problem-solving" 
whose operationalization and implementation could be a barrier 
to entry  for  LAM professionals  who  undertake  such  projects 
[6].  If  LAM  concepts,  best  practices,  and  values  are  to  be 
integrated  in  ML  methods  for  collection  descriptions,  LAM 
professionals must be invested in research and development in 
ML systems.  

Our project, AI4AV: Building and Testing Machine 
Learning  Methods  for  Metadata  Generation  in  Audiovisual 
Collections (https://hipstas.org/ai4av/), is concerned with 
creating tools  and  workflows  that  are transparent, feasible to 
use and to share, and that adhere to LAM best practices. Our 
project, focusing on spoken words audio collections, 
contributes  to  ongoing  work  around  the  imbrication  of  ML 
systems with LAM practices by exploring methods and 
workflows to support LAM professionals working with digital 
audio collections. For this, we formed an interdisciplinary team 
of computer scientists, information scientists, and humanists to 
identify  the  roles,  technologies,  and  practices  that  each  can 
contribute throughout the design, implementation, evaluation, 
and maintenance of a ML project in the LAM context.  

At  the  beginning  of  our  study  we  defined  the  research 
questions:  What are the steps involved in spoken-word audio 
processing using ML? Can and should we replicate 
automatically what LAM professionals do manually to describe 
audio collections? Is metadata produced by LAM professionals The work presented here has been funded by University of Texas at Austin 

and National Science Foundation. 
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using  traditional  methods  adequate  to  train  ML  models  for 
classification and description? Is there and if so, What is the 
impact of the transcription quality in the accuracy of predicted 
labels? What infrastructure, computational functions, and 
interfaces  are  needed  within  a  web  framework  for  LAM 
professionals to engage with ML tools? Can such a framework 
be easily configured for different steps and audio collections?  

To answer these questions, we designed a methodology 
that involves automating speech-to-text transcription of audio 
files  and  predicting  labels  that  describe  their  contents  for 
purposes of making them indexable and searchable. Using a 
proof of concept collection and a prototype web framework, 
we explored an explainable workflow that combines ML and 
traditional metadata. The prototype, called IDOLS-AI4AV, is 
built  on  supercomputing  resources  at  the  Texas  Advanced 
Computing  Center  at  the  University  of  Texas  at  Austin. 
Working with  815  audio files  from the StoryCorps Las 
Historias collection as a proof of concept audio collection, the 
workflow leverages existing NSF supported, shared national 
cyberinfrastructure resources and the framework IDOLS [7-8] 
as well as open source speech-to-text deep learning tools and 
ML applications to transcribe audio and to predict labels from 
the transcripts [9-11].  

In this paper we explain the goals of the AI4AV study, 
review current trends for automated transcription and 
description  of  collections,  explain  our  methods  and  results, 
and discuss how the findings contribute to traditional 
descriptive practices in relation to ML applications in LAM.  

II. BACKGROUND  

Working with Historias collection proved to be a 
compelling  and  challenging  case  study.    Founded  in  2003, 
StoryCorps deploys trained facilitators to record and archive 
short  oral  histories  from  people  around  the  United  States. 
Some of the story-collecting initiatives are organized around 
specific constituency groups and particular events. 
StoryCorps’  Historias  project  captures  the  “diverse  stories 
and life experiences” of the Latino community in the United 
States. The Historias collection documentation states that Las 
Historias will “ensure that the voices of Latina/Latino people 
will be preserved and remembered for generations to come” 
[12]. The collection of 815 audio files, each of up to one hour 
of duration, were made available by the partnership between 
StoryCorps and the Nettie Lee Benson Latin American 
Collection at the University of Texas at Austin.  

To understand the collection's technical provenance our 
team spoke with StoryCorps staff members to learn how oral 
histories in the Historias collection are created and processed 
[13]. StoryCorps archivists train facilitators to conduct, 
record,  and  catalogue  the  interviews.  Facilitators  are  self-
selected for their interpersonal skills and their desire to tell and 
learn personal stories rather than their archival background. As 
a result, the facilitators are a diverse body ranging in age and 
experience.  Full-time  facilitators are  trained  more  regularly, 
while per diem facilitators might only work with StoryCorps 
sporadically. StoryCorps facilitators introduce participants to 

the  process  and  permissions  associated  with  recording  oral 
histories and catalogue the interviews in the StoryCorps 
database during and right after they conduct them. During the 
recording  session,  these  facilitators  take  hand-written  notes 
about  the  interview’s  content,  noting  important  moments  or 
shifts, and identifying subjects discussed in the beginning, the 
middle, and end of each interview. StoryCorps does not 
transcribe the interviews. Thus, the metadata (descriptions and 
subjects) created at the time of the recording session becomes 
the metadata that users will later need to find materials in the 
database.  

Because we planned to use the collection's existing 
metadata to build the ML models, we were especially interested 
in the process by which subjects and keywords are assigned to 
describe  each  interview. Fixed  subjects  are  selected from  the 
American Folklife Center’s Ethnographic Thesaurus [58]. The 
terms are updated regularly, and the facilitators can use between 
five and fifteen terms per recording. On the other hand, general 
keywords can be entered by facilitators when they do not find 
fixed  subjects  that  adequately  describe  interview  content.  In 
both cases, the emphasis is in describing the general themes of 
the interviews.  

StoryCorps archivists oversee the resultant metadata after 
it  is  entered  into  the  database.  Due  to  the  intervention  of 
different facilitators and their uneven training and experience, 
fixed subjects may mean different things to different 
facilitators, rendering their inconsistent application across 
interviews. StoryCorps archivists are aware of the 
shortcomings  of  the  process  and  are  constantly  reviewing 
technologies and methods. And yet, similar shortcomings are 
common  across  LAM  institutions  due  to  changes  in  staff 
members  and  technologies.  Metadata  generated  for  the  815 
interviews was provided to our team for use in this study.  

III. RELATED WORK  

Over the last years, the LAM community has been 
addressing research and development of AI methods for digital 
libraries and archives materials processing [14-16]. 
Transcribing speech to text using AI methods can enhance and 
accelerate access and research to large collections, and many 
projects are focused on obtaining good transcriptions 
automatically [17-18].  Because the main goal of our study is to 
predict subjects that describe the content of spoken-word audio, 
our interest is in exploring whether the quality of the 
transcription affects label prediction accuracy.  

Like ours, other ML projects take advantage of the trove of 
metadata  produced  through  manual  cataloguing.  Annif  is  an 
open source microservice to automatically assign subject 
headings to textual materials [19].  An interesting feature of this 
project  is  its  interface  that  allows  easy  submission  of  texts, 
selection of ML methods, results evaluation, and feedback to 
the model.  To train its models, Annif uses manually assigned 
subject headings, and terms from controlled vocabularies. This 
very complete and thoughtful project considers human 
cataloguing the gold standard for comparing results. While in 
our  project  we  also  use  human-selected  fixed  subjects  as 
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training data, we suggest that depending on how the subjects 
are assigned they may introduce inconsistencies or biases to 
the models. For example, at the University of Utah Libraries, 
an  image  indexing  feasibility  study  using  off-the-shelf  AI 
software and  human-made  metadata  for training,  found  that 
digital library metadata may need to be re-designed for ML 
applications [20]. 

The  Collections  as  Data  project  encompasses  resources 
and proof of concepts focused on using computational 
methods to process digital data collected in cultural 
institutions in consideration with the values that characterize 
their practices and services [21]. In alignment with the 
project's Santa Barbara principles, our prototype ML 
framework aims to lower the barriers to computational use of 
digital collections, addresses analysis of both data and 
metadata, and can be shared by staff members and by many 
institutions [22]. A unique contribution of our study is that the 
statistical  exploration  of  human-made  metadata  for  use  as 
training data,  allowed us  to better understand traditional 
metadata  practices  in  LAM  and  make  suggestions  towards 
improving them for purposes of building ML models. 

Automated speech recognition (ASR) is an active 
research field with a long history. The basic goal of ASR is to 
map audio input into an acoustic model representation which 
is joined to a language model for generating written transcripts 
as  outputs.    A  common  approach  assumes  a  probabilistic 
model between the acoustic representation and the language 
representation so that the decoded string has the maximum a 
posteriori (MAP) probability [23, 24]. To this end, a number 
of  models  have  been  proposed  over  the  years  including: 
hidden  Markov  chain  model  [25],  template-based  approach 
[26], stochastic modeling [27], and vector quantization (VQ) 
[28].  There  are  numerous  advances  in  speech  recognition 
using neural networks [29-31]. Examples include feed-
forward neural network acoustic models [32,33], 
convolutional networks [34,35], and recurrent neural networks 
[36-39]. The DeepSpeech tool, used in this study, is an end-
to-end pipeline for ASR that combines deep neural networks 
with convolutional layers [9,10].  

Text classification remains a problem in assigning 
predefined classes (labels) to an unlabeled text document [40]. 
The general solution includes representing the text in a vector 
space or a graph model with selected features such as word 
grams, topics, taxonomies, or metadata [41-43]. Once the text 
is  well  represented,  supervised  machine  learning  methods 
such  as  support  vector  machine,  Naïve  Bayes, and  decision 
trees  are  used  to  build  classification  models  [44-47].  With 
increased data availability, deep neural networks applications 
such as BERT, ALBERT, and GPT have been found 
successful for text classification [11, 49, 50]. For text 
classification methods to infer labels for an input document, 
the labels must be from a finite set of predefined categories 
from  which  enough  documents  are  available  to  train  the 
classification  model.  In  our  study,  we  use  fixed  subjects 
applied by humans as categorical labels for each 
transcript/audio file. As a result, our ML model will classify 

the individual interviews based on how the fixed subjects were 
assigned in the first place. 

IV.METHODOLOGY 

With the goal of generating labels to describe audio files 
automatically, this study explored  different state-of-the-art 
ASR  and  text  classification  methods.    In  the  process  we 
assessed  if  the  quality  of  the  transcriptions  influences  label 
prediction results and evaluated the use of manually assigned 
metadata as training data. For purposes of this study we focused 
on fixed subject metadata.  

 

Fig. 1 Methodology workflow overview. 

Fig.  1  shows an  overview  of  the  methodology.  First,  we 
converted the audio interviews to texts. For this, we used two 
different ASR tools for automatic speech-to-text transcription, 
and compared the results against human-made transcriptions as 
ground  truth.  Following,  we  conducted  statistical analyses of 
the fixed subjects applied to the interviews by the facilitators. 
The results of the analyses informed the design of the 
experiments to predict labels. Once the models are built, it can 
infer labels for new audio input. As we refined the methodology 
into  audio  processing  workflow  steps,  we  were  designing 
configurable web interfaces to facilitate conducting the tasks in 
shareable, flexible, and transparent ways.  

Throughout the study we also carried out qualitative 
review of the results to verify the outputs in relation to what 
users would read and search for. We also conducted exercises 
to  learn how fixed subjects are manually  applied  and  to 
understand  how  this  practice  influences  the  predicted  labels 
results. Indeed, the qualitative observations suggested ways to 
improve label implementation as training data.  

A. Speech to Text Conversion  

815 audio files from the Historias collection were 
transcribed to text using DeepSpeech (DS) version 0.8.2 
(https://github.com/mozilla/DeepSpeech) and 311 where 
transcribed using Google’s Speech-to-Text (GST) service 
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(https://cloud.google.com/speech-to-text).  We  also  obtained 
81 human transcriptions (HT) through the University of Texas 
Libraries  Captioning  and  Transcription  Services  [51].  The 
difference between the number of transcriptions obtained for 
each method is due to budgetary constraints.  

DS is an open-source automatic speech recognition tool 
that  uses  a  pre-trained  English  model  to  transcribe  spoken 
audio [9,10, 52] . While some interviews in Historias include 
words in Spanish, we only used the freely available pre-trained 
English model implemented with Tensorflow [53]. According 
to  its  release  documentation, the  pre-trained  acoustic  model 
was trained on American English reporting 5.97%-word error 
rate  (WER)_on  the  LibriSpeech  test  corpus  [54].  Due  to 
limitations of its training data, the model has biases towards 
high quality recordings with minimum noises, and to speech 
from US male accents.   

We also experimented with GST cloud commercial 
service [55]. The standard model usage is about 2.4 cents per 
minute. This rate is in addition to other computing costs such 
as cloud storage and virtual machine resources if applicable. 
This model is more complete than DS.  It supports 125 
languages  and  has  domain  specific  models  to  choose  from. 
The  service  also  has  optimization  for audio  recordings  with 
low  sampling  rates,  and  post  processing  steps  to  convert 
numbers, addresses, and times.  

While  the  Historias  collection  has  words  and  names  in 
Spanish, to simplify the  analyses we only used English 
language  trained  ASR  models. We  here  note  that there is a 
difference  between  transcribing  texts  in  different  languages 
and transcribing mixed language texts, the latter being a more 
complex problem to solve.  

The  quality  of  the  transcriptions  derived  from  DS  and 
GST was evaluated qualitatively by members of the team who 
listened to a sample of audio files and read the corresponding 
transcriptions. The quantitative analysis was conducted 
against  the  HT  using  word  error  rate  (WER).  WER  is  the 
percentage  of  mismatched  words between  a  transcribed  text 
and the ground truth text.  Results are reported in Section V.  

B. Text Classification - Models for Label Prediction 

We  investigated  how  to  utilize  ML  methods  to  predict 
labels  based  on  the  interviews’  transcriptions  and  the  fixed 
subjects assigned by the facilitators as metadata. Because each 
interview is associated with a variable number (5 to 17) of very 
diverse  fixed  subjects  (Figure  2),  to  build  the  model  we 
decided to limit the number and use the top-20 (Figure 3).   

To predict multiple labels from a transcript, we explored 
two supervised learning approaches, top-N and multi-Label. 
In the top-N approach, all fixed subjects associated with one 
interview  are  first  ranked  based  on  their  overall  frequency 
across all the interviews, and only the top-n are selected for 
training the model. Consequently, the resultant ML model will 
only predict n labels. For example, when n is one, one label 
from each interview is selected and the model will predict just 
one label per interview. In the multi-label approach, there is 

no ranking nor preselection of fixed subjects. Instead, the ML 
model is built to infer a vector of likelihood; this is how likely 
a  label  is  associated  with  an  interview.  Combining  different 
approaches and ML tools we developed and evaluated the three 
models detailed below.  

The first model, hereafter referred to  as RF, utilizes 
Random Forest learning methods. In this model, each transcript 
is represented as word frequency vectors based on the bag-of-
words  model.  From  the  transcripts  and  the  selected  fixed 
subjects, the RF model is trained to infer if a given label belongs 
to the top-n fixed subjects or not. The results presented here are 
from cases where n is 3.  

The  second  model, hereafter  referred  to  as  DL-TopN, is 
built to make similar inferences for top-n labels using a deep 
learning (DL) long-short-term memory neural network within 
the  BERT  library.  We  used  the  word2vec  from  BERT  to 
convert each transcript to a vector representation. Similarly, to 
the RF model, we focused on cases where n is 3.   

The third model, hereafter referred to as DL-multi, is built 
to infer how likely an input transcription can be associated with 
each of the selected 20 fixed subjects. Multiple fixed subjects 
assigned to an interview are represented in a twenty- 
dimensional  vector,  each  vector  corresponding  to  one  fixed 
subject. In the training data, this vector is binary, such that the 
value of each dimension is either 1, indicating that the subject 
is assigned, or 0 indicating otherwise. From this vector, top-n 
labels  are  dynamically  computed  and  are  not  restricted  to  a 
preselected value. For the testing data, the model computes a 
similar  20-dimensional  vector  in  which,  the  value  of  each 
dimension indicates the likelihood of the association between a 
predicted label and the transcript. To build this multi-
classification model we used the BERT library. In all cases, the 
results were evaluated based on accuracy, which is the 
percentage  of  predicted  labels  from  the  original  set  of  fixed 
subjects per interview.  

C. Selecting Subsets of Fixed Subjects 

 

Fig. 2 Histogram of number of fixed subjects over number of occurrences in 
the collection. 

Building a balanced model to predict labels per interview 
implies that the training data is representative of the content of 
all  the  interviews.  Towards  that  end,  conducting  statistical 
analyses to learn the characteristics and fitness of the data that 
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will  be  used  to  train  the  model  is  a  requisite  in  all  ML 
applications. Such analyses evaluate data completeness, 
balance,  and  coverage,  to  anticipate  possible  biases  in  the 
results [56]. 

Fig. 2 shows an analysis of frequency of usage of all fixed 
subjects appearing in the Historias collection. The facilitators 
used  a  total  of  418  unique  fixed  subjects  to  describe  the 
Historias collection. Despite the limit of 15 subjects suggested 
by  StoryCorps,  each  interview  is  associated  with  5  to  ~25 
fixed  subjects,  and  there  are  significant  variations  in  their 
occurrence.  For example,  313  out  of  418  fixed  subjects are 
used in less than 20 interviews, and only 26 are used more than 
200 times. 

 

Fig. 3 Distribution of the top 20 fixed subjects across number of interviews.  

To build  a  classification  model  for label  prediction,  we 
needed to select a subset of fixed subjects with enough number 
of  occurrences  in  the  collection.    Fig.  3  above  shows  the 
number of times that each fixed subject was used to describe 
the  interviews.  After  observing  their  frequency  distribution 
across the entire collection, we decided to focus on the top 20 
most frequent as training data.   

 

Fig. 4. Percentage of interviews with top-20 selected subjects. 

We  also  needed  to  decide  how  many  labels  we  could 
predict with confidence. For this we assessed coverage, 

understood as the percentage in which any of the top 20 fixed 
subjects appear per interview. Fig. 4 shows that each interview 
was assigned at least one fixed subject from the top 20. More 
than three top-20 fixed subjects were assigned to less than 90% 
of the interviews, and more than five to 78% of the interviews. 
The results suggested that we could predict at least 3 labels with 
confidence from this ranked list of 20. 

D. Web Interface for Interactive Access 

IDOLS (idols.tacc.utexas.edu) is a web-based API 
platform  developed  with  support  from  the  National  Science 
Foundation [7,8]. In  this  project  we  use  it as  the  gateway to 
Machine  Learning  and  Natural  Language  Processing  tools 
installed in High Performance Computing (HPC) resources at 
the Texas Advanced Computing Center. IDOLS bridges 
applications - in this case for purposes of audio transcription 
and keyword prediction - with remote compute resources. Its 
goal  is  to  provide  a  low  barrier  to  increase  HPC  adoption 
through interactive interfaces. The IDOLS framework enables 
creating and customizing web applications from a configuration 
file. The web application is self-contained and can be deployed 
without alleviated system privilege. Therefore, ad-hoc analysis 
routines can be described and preserved in a format that can be 
shared  and  re-used.  The  application  can  also  be  preserved 
through  the  configuration  file  for  reproducibility.  Utilizing 
IDOLS, we have developed an on-demand web application that 
can  run  on  remote  computing  clusters.  In  this  study,  the 
application was configured for the specific needs of the AI4AV 
project.  The  different  interfaces  allow  accessing  raw  audio 
files, running speech transcription processes, saving and editing 
the code to configure the workflow and its interface, obtaining 
predicted labels, and providing feedback to the model. These 
capabilities were designed to add transparency and 
reproducibility to the professional process values within LAM. 

V.  RESULTS 

A.  Speech to Text: Quality Comparisons  

To evaluate the quality of the ASR methods we compared 
the transcriptions generated by HT to the outputs of DS, and 
GST,  both  quantitatively  and  qualitatively.  Qualitatively,  by 
reading the texts, the team concluded that the HT are the most 
comprehensible, as both in the DS and in the GST outputs many 
transcribed words are gibberish without meaning. The human 
transcriber added punctuation marks and annotated the different 
speakers in the interviews.  Instead, the ASR models generate 
text outputs without punctuation or distinctions between 
speakers. And yet, while both the DS and GST transcripts are 
hard for readers to follow, the latter are more understandable 
than the former. We were interested in learning if and 
comprehensible texts influence label prediction accuracy.  

To quantify the quality of the ASR results we used the HT 
as ground truth and compared those to DS and GST outputs. 
The  common  evaluation  metric,  word  error  rate  (WER),  was 
calculated for each comparison [59,60]. The WER first aligns 
transcribed sentences together and then computes the number 
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of  changes  required  to  transform  one  sequence  to  the  other 
sequence. The word error rate is defined as:  

WER= !"#$%& () *(*+, %-.*/ &%0".&%-

*(*+, ,%!12* () *2% &%)%&%!3% /%0"%!3%
 

For this quality assessment we used 27 sets that included 
the  three  types  of  transcriptions.  Given  that  the  number  of 
transcriptions per method is different, the number 27 is related 
to the availability of the same audio transcribed with the three 
methods.  Before  comparison  each  transcript  was  processed 
including  stop  words  removal,  punctuation  marks  removal, 
stemming, and lemmatization [57]. Following, each transcript 
was converted to a list of tokens whose numbers ranged from 
1207 to 3037.  

Fig.  5  shows the WER results plotted  in  relation to  the 
number of tokens found in the HT. The average WER for DS 
and GST are 0.67 and 0.47 respectively. Note that the WER 
curves from both methods are consistent and seem 
independent of the length of the transcribed file. The 
consistent lower error rate for the GST model implies that it is 
better than the DS one. While GST has a lower error rate than 
DS, both results point to significant challenges in ASR. 

 

Fig.  5  WER  for  DS  vs  HT  (red)  and  GST  vs  HT  (blue)  comparisons  for 
transcripts of different length. 

Figure 6 below shows the comparisons between three sets 
of transcription results: DS vs. HT (red), GST vs. HT (blue) 
and GST vs. DS (gray).  The average WER between GST and 
DS is 0.49 which is better than the WER between DS and HT. 
This  suggests  some commonality  between  the  DS  and  GST 
models.  Between  the  two  ASR  methods,  GST  gives  better 
results than DS. However, neither are close to the quality of 
the  HT  outputs.  These  results  coincide  with  our  qualitative 
assessment.  

 

Fig 6  WER results comparisons between DS, GST, and HT.  

 

C.  Text to Label Results  

We mentioned that we were interested in exploring the use 
of ASR outputs to predict descriptive labels and to assess the 
implications  of  the  transcriptions’  quality  on  the  predicted 
labels’ accuracy.  To explore this question, we conducted three 
experiments. 

The first experiment compared how well the three models 
described  in  section  B,  can  predict  the  top-3  labels  using 
transcripts  generated  by  DS.  Table  I  shows  the  results. Each 
model was trained using 80% randomly selected DS transcripts, 
and  tested  over  the  remaining  20%.  For  each  transcript,  the 
average  accuracy  was  computed  as  the  percentage  of  correct 
labels over all predicted labels. Results are shown in Table 1. 
The DL-TopN model yields the best results, and the accuracy 
of the RF model is a close second. The DL-multi model has the 
lowest accuracy score, which is 7% worse than the DL-TopN 
model. The results of this experiment indicate the viability of 
label  prediction  even  with  low  quality  transcriptions.  The 
comparisons do not show a significant advantage between the 
two DL-based models over the RF model, a result that may be 
impacted by two factors: the quality of the transcriptions, and 
the amount of data available for training and testing. 

Table I Average accuracy of top-3 label predictions for the three models 
using transcripts generated DS. 

DS 
transcripts 

RF 
Model 

DL-
TopN 

DL-
multi 

Average 
Accuracy 

0.70 0.71 0.66 

Once it was established that we could predict labels based 
on the least intelligible ASR output, in the second experiment 
we  further  investigated the  relation  between  the  transcription 
quality and the label prediction accuracy. For this we created 
three  test  sets  based  on  their  transcription  method.  As  we 
mentioned, due to budget restrictions, the number of transcripts 
tested for each method was different, i.e. 815, 311 and 81 for 
DS, GST, and HT respectively.  

Table  II.  Average  accuracy  of  the  top-3  label  prediction  using  different 
transcription methods and classification models. 

Average accuracy DS GST HT 

Number of transcripts 815 311 81 

DL-TopN 0.71 0.67 0.66 

DL-Multi 0.66 0.96 0.85 

Table II shows the average accuracy results for the top-3 
labels  using  DL-TopN  and  DL-Multi  model,  which  rendered 
the  best results in  the  first experiment,  over  the  three  sets of 
transcripts. The HT has the least number of transcripts 
available. For the DL-TopN model, the average accuracy over 
the top-3 labels is similar between the three sets of transcripts. 
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This implies that this model is less sensitive to the quality of 
the  transcripts.  Further  investigation  showed  that  the  model 
usually discovers the dominate labels but it lacks specificity. 
The  DL-Multi  model  achieved  better  results  testing  on  the 
higher quality transcripts GST and HT. These results indicate 
that  the  DL-Multi  model  is  more  sensitive  to  the  quality  of 
transcripts and in addition to the general trend, it can pick up 
fine differences among classes/labels. It was a surprise to see 
that  the  model  built  with  GST  transcripts  outperforms  HT. 
However, one possible reason could be that the lack of a larger 
set  of  HT  data  makes  the  model  less  reliable.    The  results 
incited us to further test the DL-Multi model using 
combinations of training and testing data.  

The results of this experiment were computed for 
different training/testing transcription sets.  HT GST and DS 
are results from using HT, GST and DS respectively for both 
training  and testing.   HT*  denotates results  from  the  model 
trained with HT and tested against DS.  GST* denotates results 
from  the  model  trained  with  GST  and  tested  on  DS.  Label 
prediction  accuracy  degradation  is  observed  with  the  DL-
Multi  model  when  predicting  more  than  three  labels.  Fig.7 
above shows how the average top-n labels accuracy decreases 
as  the  number  n  increases.  The  best  results  are  found  for 
models  trained  and  tested  on  GST  with  96%  accuracy  for 
prediction of the top-3 labels, and for up to top-12 labels with 
acceptable accuracy (0.80). In comparison, the model trained 
and  tested  on  HT  has  an  accuracy  of  0.85,  and  the  model 
trained  and  tested  on  DS  has  0.66  accuracy.  When  testing 
transcripts  from  DS  (DS,  HT*  and  GST*), all three  models 
show  lower  accuracy  values  and  are  similar  to  each  other 
around  0.66.    These  results  suggest  that  the  best  model  for 
label prediction is DL-Multi which renders the best tradeoff 
between accuracy and transcription method quality.   

 

Fig. 7 Average accuracy comparisons for DL-Multi model with different sets 
of transcripts. 

We also reviewed the results qualitatively. For a sample 
of interviews, we read the labels generated with the DL-Multi 
model  tested  on  each  transcript  method.  We  noted  that  the 
labels  predicted  using  DS  transcripts  are  exactly  the  same 
across all the interviews. This observation confirmed that the 
quality  of  the transcription is  relevant  to distinguish  unique 

and diverse classes/labels. In turn, this agrees with the 
quantitative  results.  Otherwise  the  models  converge  to  the 
dominant trends in the collection and thus produce same labels 
for all transcriptions. And yet, while text-to-label prediction is 
improved with high quality ASR transcriptions such as GST, 
predicting labels from low quality transcriptions such as those 
generated through  DS  should  not  be  dismissed.  Especially if 
considering  that  DS  is  open  source  application  that  can  be 
further improved. Specially for LAM, if well trained, it can be 
used to process large amounts of data at lower costs.  

VI. EXPERT ASSESSMENT AND WEB INTERFACE   

A. Expert Assessment of Metadata as Training Data 

The  involvement  of  LAM  professionals  to  design,  steer, 
and evaluate the development and results of ML projects is key 
to produce outcomes in line with best practices and values in 
the space. The quantitative results of this study indicate that it 
is possible to predict labels from existing metadata with good 
to reasonable accuracy. However, the predicted labels will be 
as good as the metadata selected by LAM professionals. Thus, 
we  sought  to  understand  the  adequacy  of  manual  metadata 
generated by LAM to train ML models.  

Learning  about the  mechanics  of  how  fixed  subjects  are 
applied in the Historias project (Section II), was the first step 
towards  exploring  this  question.  In  addition,  the  distribution 
and  coverage  of  fixed  subjects  (Figures  3  and  4),  provided 
quantitative  insights  on  the  metadata  practices.  We  learned 
which labels were used the most as well as the consistency of 
their application across the interviews.   

When  our  team  reviewed  the  top  20  fixed  subjects  that 
would be used to train the ML model (Figure 3), we discussed 
if  they  represented  the  diversity  of content  of  the  interviews. 
Considering their purpose of describing general themes across 
all the interviews, many seemed overlapping or redundant. For 
example,  a  cluster  of  fixed  subjects:  students,  teachers,  and 
schools, could be consolidated into one encompassing subject 
such  as  education  or  schooling,  and  the  same  could  be  said 
about community organizations and community history.  

To better understand fixed subjects’ selection, their 
granularity,  and  their  consistency,  we  devised  two  simple 
exercises.  In  the  first  one,  we  aimed  to  identify  if  expert 
curation could render a more diverse short list of fixed subjects 
for training than the one obtained by ranking. Four members of 
our team set out to consolidate a list of top 50 fixed subjects 
into 20 by classifying related terms into broader ones. We later 
met as a group to agree on a final list. When we compared the 
agreed upon list to the ranked list, we noticed that even though 
half of the fixed subjects coincided, the agreed upon curated list 
provided an arc of more distinct and precise subjects.  

In the second exercise we wanted to understand 
consistency  in  applying  fixed  subjects.  For  this,  three  team 
members  with  cataloguing  experience  listened  to  the  same 
audio and selected up to 10 terms from the Library of Congress 
Subject Headings to describe them. Comparing the three sets 
we  noticed  that  each  team  member  had  a  slightly  different 
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criteria for assigning subjects to the same interview. The three 
team members’ choices coincided only in one subject, pairs of 
two in four subjects, and pairs of two in five different subjects 
that  could  be  considered  close  in  meaning.  In  addition,  the 
three  noted  that  given the range  of  topics  discussed in  each 
interview, they had difficulty between describing the audio in 
general or in parts.  

While these simple exercises should be extended to more 
participants and analyses of more interviews, they are useful 
to explain some quantitative results. Even when selecting from 
controlled vocabularies to describe the same content, 
catalogers may not coincide in their criteria. That explains the 
short  coverage  of  the  majority  of  the  fixed  subjects  and 
consequently the limitations to predict more and diverse labels 
with  higher  confidence.  Similar  to  the  transcription  quality, 
the diversity and the consistency of the metadata to train the 
models are important for predicting good labels.  

These observations suggest that using LAM metadata to 
train ML models requires  a careful design. Specifically, 
strategies for assigning metadata should work toward 
representing the contents of the collection in a more consistent 
and complete fashion. Based on this study, some suggestions 
are  to  further  curate  the  list  of  controlled  vocabularies  and 
provide more structured directions on how to use the 
hierarchical relations between top scheme and narrower terms. 
The protocol mentioned by  the StoryCorps  archivists of 
applying metadata at the beginning, middle, and end of each 
interview may render good results if combined with a 
consistent approach to selecting curated terms. Indeed,  more 
experimenting  and  testing  is  needed  in  order  to  contribute 
optimal directions for applying metadata that can be used for 
training ML models.   

B. Interface  Design  for  Lowering  Barriers  and  to  Increase 
Transparency 

To lower the technical barriers for LAM to adopt ML we 
implemented the workflow in IDOLS. The sequence of 
screens  in  Fig.  8  below,  illustrate  how  we  operationalized 
share-ability,  reproducibility,  and  transparency  as  interfaces 
for the different steps. 

In the workflow manager users can select the tasks that 
they  want to  run  or  run them all  at  once.  Enabling  granular 
task  management  allows  verifying  the  results  of  each  step.  
The first step presents users with the possibility of selecting 
files to process and grouping them as needed. At this step, and 
at any other time in the workflow, users can listen to selected 
audio files, which is important for comparing with the 
corresponding transcripts, and for evaluating how the 
predicted labels represent the audio content qualitatively. For 
transparency  and  flexibility,  the  next  task  allows  users  to 
select executables in the resources in which computations are 
run, and to configure the IDOLS interfaces script. The latter is 
useful for creating and improving the forms/interfaces and the 
directions and explanations about each task. In the following 
steps,  users  can  run,  verify,  and  compare  the  transcription 
results for more than one method (the image shows result from 

DS),  as  well  as  those  from  the  label  prediction  models.  To 
facilitate the evaluation of label prediction task, the interface 
shows the results of all the methods per interview and per label 
including their accuracy assessment values and the fixed 
subjects  assigned  by  the  facilitators  for  comparison.  Lastly, 
users can provide feedback to the process by submitting a form 
which can be configured in step 2.   

 

 

 

 

 

Fig.  8.  Sequence  of  interfaces  showing  key  steps  of  the  ML  workflow  in 
IDOLS.  (Note:  some  of  the  screen  captures  are  cropped  to  fit  and  partially 
shown here.)  
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The  current  interfaces are  based  on  the  workflow  steps 
and on the feedback provided by the team. The configuration 
file can be downloaded and shared for reproducibility. 

VII. CONCLUSIONS 

We explored different SRA and ML methods to predict 
descriptive labels based on transcriptions of speech audio and 
on subject metadata assigned during archival description. Our 
work focused on evaluating the accuracy of the labels based 
on  the  quality  of  the  automatic  transcriptions  and  of  the 
metadata that was used to build the computational models. A 
prototype workflow was implemented as a series of interfaces 
to allow flexible, transparent, and reproducible management 
of the processing steps. We will continue refining and testing 
the prototype both from a usability perspective as well as in 
relation to scalability.  

Our interdisciplinary team approached the study with an 
eye on LAM needs, requirements, and best practices. Because 
the  Historias collection and its provenance are both complex 
and rich, the use case provided the opportunity for addressing 
real  world  problems,  and  challenged  the  team  to  combine 
quantitative and qualitative approaches iteratively. By 
comparing different ASR methods and using HT as a standard, 
we  learned  that it  is  feasible to  use  automatic  transcripts  to 
generate labels. However, the label’s accuracy will depend on 
the  quality  of  the  underlying  transcriptions,  which  can  be 
further  improved  with  more  experimentation.  Likewise,  the 
quality  and  coverage of the training metadata is key to 
achieving good content representation.  Using metadata that 
was not intended to build ML models may not be optimal, but 
the  lessons  learned  can  illuminate  future  design  of  training 
datasets for label prediction.  

This  study  opens  new  possibilities  for LAM that are in 
sync with professional practices and values. It demonstrates a 
methodological path for describing the contents of large audio 
collections that can significantly improve their prompt 
discoverability.  Coupled  with  a  configurable  and  flexible 
framework,  it  can  promote  cross  institutional  collaboration 
and sharing of resources.  

The  study  reveals  the  advantages  of  interdisciplinary 
work. Quantitative methods  can  help LAM professionals 
evaluate their metadata practices, and qualitative observations 
assess the understandability and of the usability of the 
predicted  labels.  Indeed, a  curatorial  perspective is  required 
for ML methods to achieve their higher potential for 
processing large audio collections.  
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