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Abstract
The Adaptive MaxWeight policy achieves optimal throughput for switches with
nonzero reconfiguration delay and has been shown to have good delay performance
in simulation. In this paper, we analyze the queue length behavior of a switch with
nonzero reconfiguration delay operating under the Adaptive MaxWeight. We first
show that the Adaptive MaxWeight policy exhibits a weak state space collapse behav-
ior in steady state, which can be viewed as an inheritance of a similar property of
the MaxWeight policy in a switch with zero reconfiguration delay. The weak state
space collapse result is then utilized to obtain an asymptotically tight bound on an
expression involving the steady-state queue length and the probability of reconfigu-
ration for the Adaptive MaxWeight policy in the heavy traffic regime. We then derive
the relation between the expected schedule duration and the steady-state queue length
through Lyapunov drift analysis and characterize bounds for the expected steady-state
queue length. While the resulting queue length bounds are not asymptotically tight,
they suggest an approximate queue length scaling behavior, which approaches the
optimal scaling with respect to the traffic load and the reconfiguration delay when the
hysteresis function of the Adaptive MaxWeight policy approaches a linear function.
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1 Introduction

Modern data centers aggregate huge amount of computing and storage resource to
support high demand applications such as cloud computing, large-scale web applica-
tions, and big data analytics. With the ever increasing number of resources and the
communication demand between these resources, the interconnecting networks face
stringent performance challenges. Optical switches emerge as a promising candidate
to address this challenge since they can support higher data bandwidth relatively easier
than traditional electronic switches, and also have lower power consumption.However,
optical switches pose another challenge different from traditional electronic switches
that makes it difficult to directly substitute electronic switches: optical switches typi-
cally exhibit a delay following each schedule reconfiguration, during which no packet
transmission can occur [6,9]. This delay is referred as the reconfiguration delay, and
it makes the switch scheduling problem more difficult. For example, it is known that
with the reconfiguration delay, the well-known MaxWeight policy [16,17] is not even
throughput optimal.

For the scheduling of switches with reconfiguration delay, many works in the liter-
ature consider the problem in a “quasi-static” sense: decomposing the traffic demand
into a sequence of efficient schedules (in the sense of minimizing service time and
number of schedule reconfigurations) for a predetermined time horizon, for example,
[10,12,13,18]. The performance of such solutions is usually limited by the duration
of the time horizon and may require some prior knowledge of the traffic arrival rate
to achieve good performance. In contrast, [4,5,20] consider the dynamic scheduling
problem for switcheswith reconfiguration delay. TheAdaptiveMaxWeight policy [20]
(or a similar variant, Switching Curve-Based policy [4]) makes a schedule decision at
every time slot, as opposed to scheduling over a time horizon. The key idea of Adap-
tive MaxWeight is to reconfigure the schedule only when the current schedule is not
good enough, which will be described with more detail in Sect. 3. The idea has also
been generalized in [19] to introduce a large class of scheduling policies for switches
with reconfiguration delay. These policies have been shown to guarantee throughput
optimality under mild assumptions on arrival traffic, which means that the policies can
ensure finite expected queue lengths whenever there exists any policy that provides
such guarantee.

In this work, we focus on the delay analysis of the Adaptive MaxWeight policy.
Beyond throughput optimality, it is desirable to further consider the delay behavior
(or equivalently, queue length behavior) in order to better evaluate the performance.
However, similar to the MaxWeight policy in switches without reconfiguration delay,
an exact expression for the steady-state queue length behavior remains an open prob-
lem. Therefore, one usually approaches the delay performance analysis by studying
the queue length scaling with respect to either the number of queues in the system
or the traffic load. In this paper, we consider the queue length scaling with the traffic
load for switches with reconfiguration delay (operated under Adaptive MaxWeight)
in the heavy traffic regime. In particular, the arrival rates considered in this paper
approach the boundary of the capacity region, with a limiting arrival traffic where all
input ports and all output ports are saturated. The contributions of this paper include
the following:
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(i) We prove that in the considered heavy traffic regime, the steady-state queue
length under Adaptive MaxWeight exhibits a behavior similar to the state space
collapse (SSC) as introduced in [15], which is referred as weak state space
collapse (WSSC) here.

(ii) We derive an upper bound on the expected sum of queue lengths in the heavy
traffic regime. The derivation utilizes a drift analysis technique introduced in [7],
and the Lyapunov function proposed in [15]. Combined with the WSSC result,
the analysis provides an asymptotically tight bound on an expression involv-
ing the steady-state queue length and the probability of reconfiguration for the
Adaptive MaxWeight policy in the heavy traffic regime.

(iii) We derive the relation between the expected schedule duration with the expected
steady-state queue length and combine this relation with the aforementioned
asymptotically tight bound to derive bounds on the steady-state queue length.
While the resulting bounds are not asymptotically tight, they suggest an approxi-
mate scaling behavior of the steady-state queue length in the heavy traffic regime.

(iv) We derive a universal lower bound on the expected sum of the queue lengths
for switches with reconfiguration under any scheduling policy. While the well-
known lower bound for switches without reconfiguration delay trivially applies,
it does not provide an insight on how reconfiguration delay limits the perfor-
mance of the scheduling policies. The lower bound derived in this work refines
the previous one and identifies the effect of the reconfiguration delay. Compar-
ing with this lower bound, we show that Adaptive MaxWeight approaches the
optimal scaling with respect to the traffic load and to the reconfiguration delay.

The rest of the paper is organized as follows: The switch with reconfiguration delay
model and the notion of throughput optimality is introduced in Sect. 2. In Sect. 3, we
briefly introduce the Adaptive MaxWeight policy and some of its properties. We then
present our main result regarding heavy traffic queue length behavior in Sect. 4. We
first establish the WSSC property of the Adaptive MaxWeight policy. With the WSSC
result,we then establish a queue length upper bound for the steady-state queue length in
the heavy traffic regime, which is dependent on the expected schedule duration. Using
the schedule weight as a Lyapunov function, we further derive the relation between the
expected schedule duration and the expected steady-state queue length through drift
analysis, and then derive the scaling of steady-state queue length in heavy traffic. In
Sect. 5, we derive some benchmark performance for AdaptiveMaxWeight to compare
with, including a universal queue length lower bound for any scheduling policy as
well as a queue length upper bound of a benchmark policy known as the Fixed Frame
MaxWeight. Section 6 presents some simulation results for AdaptiveMaxWeight, in
an effort to characterize the scaling of the expected queue length with respect to some
system parameters, and in comparison with the scaling derived in this paper. Finally,
we conclude with a summary and some future directions in Sect. 7.
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2 Systemmodel

2.1 Switchmodel and arrival traffic

The model considered in this paper is an n × n input-queued switch, which has n
input ports and n output ports. Each input port maintains n separate queues (either
physically or virtually), each storing packets destined to one output port. We denote
the queue storing packets at input i and destined for output j with the pair (i, j). This
model is also known as the input-queued switch.

The system considered is assumed to be time-slotted, with the time indexed as
t ∈ IIN+ = {0, 1, 2, . . .}. Each slot duration is the transmission time of a single
packet, which is assumed to be a fixed value. Let ai j (t) be the number of packets
arriving at queue (i, j) at time t . Let qi j (t) be the number of packets in the queue
(i, j) at the beginning of the time slot t . Write a(t) = [ai j (t)],q(t) = [qi j (t)], where
a(t),q(t) ∈ IINn×n+ .

We assume the arrival processes ai j (t) to be independent from each other, where
i, j ∈ {1, 2, . . . , N }, i �= j . For each queue (i, j), the arrival process ai j (t) is assumed
to be i.i.d. across time slots, withmean IE[ai j (t)] = λi j and varianceVar(ai j (t)) = σ 2

i j .
We also assume that ai j (t) has a finite support, i.e., ∃ amax < ∞ such that ai j (t) ≤
amax.

2.2 Schedules and reconfiguration delay

Let s(t) ∈ {0, 1}N×N denote the schedule at time slot t , which indicates the queues
that are being scheduled by the switch. We set si j (t) = 1 if queue (i, j) is scheduled
at time t , and si j (t) = 0 otherwise.

The feasible schedules for the network are determined by the network topology and
physical constraints on simultaneous data transmissions. We let S ⊂ IRn×n denote the
set of all feasible schedules, i.e., s(t) ∈ S for all t . We assume at any t each input
port can only transmit to at most one output port, and each output port can only
receive from at most one input port, i.e.,

∑
i si j (t) ≤ 1,

∑
j si j (t) ≤ 1. This schedule

constraint determines the set of feasible schedules S. Among the feasible schedules,
for schedules that satisfy

∑
i si j (t) = 1,

∑
j si j (t) = 1 for all i, j , we referred to

these schedules as maximal schedules.
Upon reconfiguring a schedule, the network incurs a reconfiguration delay, during

which no packet can be transmitted.Wemake this notion formal through the following
two definitions:

Definition 1 Let {t Sk }∞k=0 denote the time instances when the schedule is reconfigured.
The schedule between two schedule reconfiguration time instances remains the same,
i.e.,

s(τ ) = s(t Sk ), ∀τ ∈ [t Sk , t Sk+1 − 1].

Definition 2 Let �r be the reconfiguration delay associated with reconfiguring the
schedule of the network. During the period of schedule reconfiguration, i.e., ∀t ∈
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∪∞
k=0[t Sk , t Sk + �r ], the switch does not serve any of its queues. We assume the recon-

figuration delay to be an integer multiple of a time slot.

Let r(t) denote the time remaining in the reconfiguration delay, with r(t) = 0
indicating that the switch is not in reconfiguration at time t . Therefore, if t ∈ [t Sk , t Sk +
�r ] for some k ∈ IIN+, we have r(t) = �r − (t − t Sk ); and r(t) = 0 for all other t .

With the above definitions, we may then write the queue dynamics for any queue
(i, j) as

qi j (t + 1) =
[
qi j (t) + ai j (t) − si j (t)1{r(t)=0}

]+

= qi j (t) + ai j (t) − si j (t)1{r(t)=0} + ui j (t), (1)

where 1E is the indicator function of the event E , and [x]+ = max{x, 0}. Note that
ui j (t) ∈ {0, 1} is the unused service of queue (i, j) when the queue is empty, which
is defined as

ui j (t) :=
{
1, if qi j (t) + ai j (t) − si j (t)1{r(t)=0} = − 1,
0, otherwise.

A useful property of the unused service is that ui j (t) = 1 only when qi j (t + 1) = 0,
or in other words, ui j (t)qi j (t + 1) = 0.

The schedule at each time slot s(t) is determined by a scheduling policy. In this
paper, we consider scheduling policies that determine the schedule at time t based
on the queue length q(t) and the previous schedule s(t − 1). Under this type of
policy, the process {X(t)}∞t=0 with X(t) = (q(t), s(t), r(t)) ∈ IINn×n+ × {0, 1}n×n ×
{0, 1, . . . , �r } � X that describes the switch model is then a discrete time Markov
chain.

2.3 Stability and capacity region

A queue (i, j) is strongly stable if its queue length qi j (t) satisfies

lim sup
t→∞

1

t

t∑

τ=1

E[qi j (τ )] < ∞,

and we say the system of queues is stable if queue (i, j) is strongly stable for all
i, j ∈ {1, 2, . . . , N }. A scheduling policy is said to stabilize the system if the system
is stable under that scheduling policy for a given traffic rate matrix. With this notion
of stability, we define the capacity region C of the network as the set of all traffic rate
matrices such that there exists a scheduling policy which stabilizes the system.

The capacity region is given by the convex hull of the feasible schedules S [17],
that is,

C =
{∑

s∈S
αss :

∑

s∈S
αs < 1, αs ≥ 0, ∀s ∈ S

}
.
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We also define an outer boundary of C where all input ports and output ports are
saturated, as

F =
{
λ ∈ IRn×n :

∑

i

λi j = 1,
∑

j

λi j = 1,∀i, j ∈ {1, 2, . . . , n}
}
.

For any traffic rate matrix λ ∈ C, we say that λ is admissible, and define the load
of the traffic as ρ(λ) = max{r : λ ∈ rC, 0 < r < 1}. We say that a scheduling policy
is throughput optimal if it stabilizes the system for any traffic rate matrix λ ∈ C.

3 Adaptive MaxWeight policy

It is known that for switches without reconfiguration delay, the MaxWeight policy is
throughput optimal [16] and has optimal delay scaling in the heavy traffic regime [14,
15]. However, with the presence of reconfiguration delay, the MaxWeight policy is
not even throughput optimal since it does not account for the overhead of frequent
schedule reconfiguration [3].

The Adaptive MaxWeight scheduling policy is presented in Algorithm 1. The main
idea behind Adaptive MaxWeight is to reconfigure the schedule when the current
schedule is not “good” enough.Using the scheduleweight as themeasure of a schedule,
Adaptive MaxWeight computes the schedule weight difference between the current
schedule and the MaxWeight schedule, W ∗ (which is the “best” schedule under this
measure) and compares this weight difference to a threshold which is a function of the
maximumweight, g(W ∗).When the scheduleweight difference exceeds the threshold,
we reconfigure the schedule to theMaxWeight schedule, otherwisewe keep the current
schedule.

The selection of the threshold determines the performance of the policy. In [20], it
has been shown that if g(x) = (1− γ )x1−δ , then Adaptive MaxWeight is throughput
optimal. This result has been generalized in [19] to any strictly increasing and sublinear
function g(x), where a sublinear function g(x) is defined as any function that satisfies
lim
x→∞

g(x)
x = 0. The strictly increasing and sublinear function g(x) is referred to as

the hysteresis function, and the throughput optimality result is stated as the following
fact.

Fact 1 Given any reconfiguration delay �r > 0, and given any sublinear and strictly
increasing hysteresis function g, the Markov chain X(t) is positive recurrent for
any admissible traffic rate matrix under Adaptive MaxWeight. Therefore, Adaptive
MaxWeight is throughput optimal.

While the throughput optimality is a desirable property, it may be considered as
only a first-order performance metric, in the sense that it only guarantees bounded
expected queue length (and thus bounded expected delay), but the queue length could
still be very large. One more step forward is to characterize its expected queue length,
which is the main theme in the rest of this paper.
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Algorithm 1 Adaptive MaxWeight Scheduling Policy
Require: Sublinear and strictly increasing function g(·)
for each t = 0, 1, . . . do

s∗(t) ← argmax
s∈S

∑

i j
qi j (t)si j

W∗(t) ← max
s∈S

∑

i j
qi j (t)si j

W (t) ← ∑

i j
qi j (t)si j (t − 1)

�W (t) ← W∗(t) − W (t)
if �W (t) > g(W∗(t)) then

s(t) ← s∗(t)
else

s(t) ← s(t − 1)
end if

end for

4 Heavy traffic analysis of Adaptive MaxWeight

Studying queue length or delay performance for a queueing system such as a switch
in general is challenging. Therefore, analyses of such systems are mostly considered
within certain asymptotic regimes. In this paper, we focus on the heavy traffic regime
and make use of a drift technique developed in [7]. The outline of the heavy traffic
analysis for the Adaptive MaxWeight is sketched as follows: In Sect. 4.1, we first
introduce and establish a weak state space collapse property for AdaptiveMaxWeight.
The weak state space collapse property states that the queue length matrix is “almost”
concentrated in a coneK (to be defined later) in the heavy traffic regime.The coneK has
the geometric property that for any queue length matrix in the cone K, all maximal
schedules have the same weight for this queue length matrix, and this geometric
property plays a key role in the following analysis toward a queue length upper bound.
In Sect. 4.2, we then apply the drift analysis to Adaptive MaxWeight, which utilizes
a Lyapunov function proposed in [15] and was developed to utilize the geometric
property of the cone K. The result of the drift analysis is a steady-state queue length
upper bound that is dependent on the expected schedule duration. Lastly, in Sect. 4.3,
we characterize the relation between the expected schedule duration and the queue
length and use this relation to derive asymptotic bounds on the expected queue length
at reconfiguration times.

In this paper, we are interested in the queue length behavior of switches with
reconfiguration delay in the heavy traffic regime. In particular, we consider a sequence
of switch systems indexedby ε,where each switch systemhas i.i.d. arrival traffica(ε)(t)
with mean and variance given by

IE[a(ε)(t)] = λ(ε) = ν(1 − ε), Var[a(ε)(t)] = (
σ (ε)

)2
,

where ν ∈ F and
(
σ (ε)

)2 → σ 2 as ε → 0. The traffic load of each switch is ρ = 1−ε.
Recall that F is the set of critically loaded rate matrix with all ports saturated. The
sequence of switches considered here have arrival rate matrices that approach ν as we
take ε → 0.
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4.1 Weak state space collapse

It was shown in [15] that for a switch with no reconfiguration delay, the MaxWeight
scheduling exhibits a multi-dimensional state space collapse. To be specific, let e(i)

denote the matrix with the i th row being all ones and zeros everywhere else, and ẽ( j)

denote the matrix with the j th column being all ones and zeros everywhere else. As
ε → 0, the steady-state queue length q̄(ε) “concentrates” in the cone spanned by the
matrices {e(i)}ni=1 ∪ {ẽ( j)}nj=1, i.e.,

K =
{
x ∈ IRn×n : x =

∑

i

wie(i) +
∑

j

w̃ j ẽ( j), where wi , w̃ j ∈ IR+ for all i, j
}
,

in the sense that the projection of q̄(ε) ontoK is the dominant component in q̄(ε). More
specifically, for any x ∈ IRn×n , define the projection of x on to K as

x‖ = argmin
y∈K

‖x − y‖,

where ‖·‖ denotes the l2-norm, and define x⊥ = x − x‖. In the heavy traffic limit

(ε → 0), all moments of q̄(ε)
⊥ are bounded by a constant, and hence this is a negligible

component in q̄(ε) since it can be shown that ‖q̄(ε)‖ isΩ(1/ε). This is referred as state
space collapse (SSC) in [15].

The cone K has the property that for any given queue length matrix q ∈ K, all
maximal schedules have the same weight

∑
i j qi j si j [15]. In other words, the SSC

property implies that the weights of all maximal schedules are equalized.
In this paper, we consider a weaker notion of the SSC property for switches with

reconfiguration delay operated under the Adaptive MaxWeight policy.

Definition 3 (Weak state space collapse) Given a sequence of switch systems
X(ε)(t) = (q(ε)(t), s(ε)(t), r (ε)(t)), parametrized by 0 < ε < 1, suppose each switch
system is positive recurrent and converges in distribution to a steady-state random
vector X̄(ε) = (q̄(ε), s̄(ε), r̄ (ε)). We say that the sequence of switch systems exhibit a
weak state space collapse if

lim
ε→0

IE
[‖q̄(ε)

⊥ ‖]

IE
[‖q̄(ε)‖] = 0.

In contrast to the SSC in [15], where the moments of ‖q̄⊥‖ are bounded by finite
constants, the weak state space collapse (WSSC) only requires the ratio ‖q̄⊥‖/‖q̄‖
converging to 0 as ε → 0. This could be considered as a multiplicative type of SSC,
which has the similar flavor to the multiplicative state space collapse in the diffusion
approximation literature [2,8]. It is worth noting that a recent work [21] also considers
the multiplicative type of SSC in the context of bandwidth sharing using a different
approach, and the growth rate of the moment bound with respect to ε could also be
identified.
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In the rest of this section, we use Lemma 1 to derive the WSSC for switches with
reconfiguration delay operated under the Adaptive MaxWeight policy. Lemma 1 is a
T -step version of [1, Theorem 1] where T could be any fixed integer. The proof of this
lemma can be completed by simply replacing the transition probability by a T -step
transition probability in [1, Theorem 1], hence we omit the proof here.

Lemma 1 Consider an irreducible and aperiodic Markov Chain {X(t)}t≥0 over a
countable state space X , and suppose Z : X → IR+ is a nonnegative Lyapunov
function. For any fixed integer T > 0, we define the T -step drift�TZ(X) of Z at state
X as

�TZ(X) = [Z(X(t + T )) − Z(X(t))]1{X(t)=X}.

Suppose that, for some T > 0, the T -step drift satisfies the following conditions C.1
and C.2:

C.1 There exists an η > 0, and a κ < ∞ such that for any t = 1, 2, . . . and for all
X ∈ X with Z(X) ≥ κ ,

IE[�TZ(X)|X(t) = X ] ≤ −η.

C.2 There exists a D < ∞ such that, for all X ∈ X ,

Pr
{
|�TZ(X)| ≤ D

}
= 1.

If the Markov chain {X(t)}t≥0 converges in distribution to a random variable X̄ , then

IE[Z(X̄)] ≤ κ + 2D2

η
.

With Lemma 1, we are now able to show the following proposition, which is essen-
tial to establish the WSSC result for the Adaptive MaxWeight policy.

Proposition 1 Consider a set of switch systems with a fixed reconfiguration delay
�r > 0, parametrized by 0 < ε < 1, all operated under the Adaptive MaxWeight
policy with hysteresis function g(·), where g(·) is sublinear and strictly increasing.
Each system has arrival process a(ε)(t) as described in Sect. 2. The mean arrival rate

vector λ(ε) = (1 − ε)ν for some fixed ν ∈ F is such that νmin
�= min

i j
νi j > 0. Let

the variance
(
σ (ε)

)2
of the arrival process satisfy that ‖σ (ε)‖2 ≤ σ̃ 2 for some σ̃ 2 not

dependent on ε.
Let X(ε)(t) ∈ X denote the process that determines each system, which is positive

recurrent and hence converges to a steady-state random vector in distribution, denoted
as X̄(ε) = (q̄(ε), s̄(ε), r̄ (ε)). Then, for any fixed θ with 0 < θ < 1/2, and for each system
with 0 < ε ≤ νmin/4‖ν‖, the steady-state queue length satisfies

IE
[
‖q̄(ε)

⊥ ‖ − θ‖q̄(ε)
‖ ‖

]
≤ Mθ , (2)
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where Mθ is a function of θ, σ̃ , amax, νmin and n, but is independent of ε.

The proof of Proposition 1 is given in Appendix A. Comparing Proposition 1
with [15, Proposition 2], we may see that we no longer have the guarantee that all
moments of ‖q̄(ε)

⊥ ‖ are bounded here. However, we can still show that IE[‖q̄(ε)
⊥ ‖]

is negligible compared to IE[‖q̄(ε)‖] as ε → 0, hence we consider this as a weak
version of SSC. In particular, notice that the constant Mθ is independent of ε, and
that IE[‖q̄(ε)‖] → ∞ as ε → 0. Then, since IE[‖q̄(ε)

⊥ ‖] ≤ θ IE[‖q̄(ε)
‖ ‖] + Mθ ≤

θ IE[‖q̄(ε)‖]+Mθ for any ε > 0, we have lim
ε→0

IE
[
‖q̄(ε)

⊥ ‖
]

IE
[
‖q̄(ε)‖

] ≤ θ for any θ > 0. Therefore,

we may conclude that

lim
ε→0

IE
[‖q̄(ε)

⊥ ‖]

IE
[‖q̄(ε)‖] = 0. (3)

4.2 Drift analysis

With the WSSC result from the previous subsection, we now utilize Lyapunov drift
analysis similar to [15] to derive an asymptotically tight bound on an expression involv-
ing the steady-state queue length IE[∑i j q̄i j ] and the probability of reconfiguration

Pr{r̄ (ε) > 0}, as shown in Theorem 1.

Theorem 1 Consider a set of switch systemswith a fixed reconfiguration delay�r > 0,
parametrized by 0 < ε < 1, all operated under the Adaptive MaxWeight policy with
hysteresis function g(·), where g(·) is a sublinear and strictly increasing function.
Each system has arrival process a(ε)(t) as described in Sect. 2. The mean arrival

rate vector λ(ε) = (1 − ε)ν for some fixed ν ∈ F is such that νmin
�= min

i j
νi j > 0,

and the variance of the arrival process is denoted as
(
σ (ε)

)2
. Then, for each system

with 0 < ε ≤ νmin/4‖ν‖, and any fixed number θ satisfying 0 < θ < 1
2 , the steady-

state distribution X̄(ε) = (q̄(ε), s̄(ε), r̄ (ε)) of the Markov chain X(ε) = (q(ε), s(ε), r (ε))

satisfies

(
ε − Pr{r̄ (ε) > 0}

)(
IE
[∑

i j

q̄(ε)
i j

])
≤ 1 − 1

2n

1 − 2n3θ
‖σ (ε)‖2 + B1(θ, ε, n) (4)

and

(
ε − Pr{r̄ (ε) > 0}

)(
IE
[∑

i j

q̄(ε)
i j

])
≥ 1 − 1

2n

1 + 3n3θ
‖σ (ε)‖2 + B2(θ, ε, n), (5)
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where lim
ε↓0 B1(θ, ε, n) = 0 and lim

ε↓0 B2(θ, ε, n) = 0. Since we may take θ arbitrarily

close to 0, then in the heavy traffic limit as ε ↓ 0, if
(
σ (ε)

)2 → σ̃ 2, we have

lim
ε↓0

(
ε − Pr{r̄ (ε) > 0}

)(
IE
[∑

i j

q̄(ε)
i j

])
=

(
1 − 1

2n

)
‖σ̃‖2. (6)

The asymptotically tight bounds in Theorem 1 take a form similar to the expected
queue length bound of the MaxWeight policy in switches without reconfiguration
delay [15, Theorem 1], except that the probability of reconfiguration Pr{r̄ (ε) > 0} is
deducted from ε here.

To gain a clearer insight into the impact of the reconfiguration delay on the expected

queue length, we take a further look at the upper bound (4). Let β1 = 1− 1
2n

1−2n3θ
‖σ (ε)‖2+

B1(θ, ε, n). We may rearrange the terms in (4) and obtain

IE
[∑

i j

q̄(ε)
i j

]
≤ β1

ε
+ β1

ε

Pr{r̄ (ε) > 0}
ε − Pr{r̄ (ε) > 0} . (7)

Comparing with the expected queue length upper bound of the MaxWeight policy
in switches without reconfiguration delay [15, Theorem 1], we note that the first term
in (7) has the same scaling with respect to ε in the heavy traffic limit. Therefore,
the second term can be viewed as the overhead incurred by the reconfiguration delay
and is determined by the probability of reconfiguration Pr{r̄ (ε) > 0}. We continue
the analysis of the probability of reconfiguration Pr{r̄ (ε) > 0} through the expected
schedule duration in the next subsection.

We now proceed with the proof of Theorem 1.

Proof of Theorem 1 For simplicity of notation, we drop the superscript (ε) in the fol-
lowing proof. We also use IEX̄[ · ] to denote the expectation given that X(t) follows
the steady-state distribution X̄.

In the proof of Theorem 1, we consider a drift analysis technique from [15], which
devises a Lyapunov function that is catered to the geometric properties of the coneK.
Consider the following Lyapunov function from [15]:

V (X) =
∑

i

(∑

j

qi j
)2 +

∑

j

(∑

i

qi j
)2 − 1

n

(∑

i j

qi j
)2

.

It may be shown using Lemma 1 that for steady-state X̄, the expectation IE[V (X̄)]
is finite. We thus have zero drift for V (X̄) at steady state:

IEX̄

[
V (X(t + 1)) − V (X(t))

]
= IEX̄

[
V (X(t + 1))

]
− IEX̄

[
V (X(t))

]
= 0.
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We now evaluate the above drift terms with the queue length dynamics (1) and
rewrite the expression as

T1 + T2 + T3 + T4 = 0, (8)

where

T1 = IEX̄

[

2
∑

i

(∑

j

qi j (t)
)(∑

j

(
ai j (t) − si j (t)1{r(t)=0}

))

+ 2
∑

j

(∑

i

qi j (t)
)(∑

i

(
ai j (t) − si j (t)1{r(t)=0}

))

− 2

n

(∑

i j

qi j (t)
)(∑

i j

(
ai j (t) − si j (t)1{r(t)=0}

))
]

,

T2 = IEX̄

[∑

i

(∑

j

(
ai j (t) − si j (t)1{r(t)=0}

))2

+
∑

j

(∑

i

(
ai j (t) − si j (t)1{r(t)=0}

))2

− 1

n

(∑

i j

(
ai j (t) − si j (t)1{r(t)=0}

))2
]

,

T3 = IEX̄

[

−
∑

i

(∑

j

ui j (t)
)2 −

∑

j

(∑

i

ui j (t)
)2 + 1

n

(∑

i j

ui j (t)
)2

]

,

T4 = IEX̄

[

2
∑

i

(∑

j

qi j (t + 1)
)(∑

j

ui j (t)
)

+ 2
∑

j

(∑

i

qi j (t + 1)
)(∑

i

ui j (t)
)

− 2

n

(∑

i j

qi j (t + 1)
)(∑

i j

ui j (t)
)]

.

The choice of the Lyapunov function V (·) is to make the T4 term zero when the
queue length matrix q is in the cone K (see [15] for more detailed discussion). This
allows us to combine with the WSSC result to obtain a tight bound.

We now simplify each term in the following: For the term T1, since the sched-
ule generated by the Adaptive MaxWeight policy is a maximal schedule,1 we have∑

i si j (t) = ∑
j si j (t) = 1, and

∑
i j si j (t) = n. On the other hand, since the

packet arrival a(t) is independent of the queue length q(t), we may then apply
IE[∑i ai j (t)] = IE[∑i ai j (t)] = 1 − ε and IE[∑i j ai j (t)] = n(1 − ε) from the

1 From the definition of the MaxWeight schedule, we know that for any maximal schedule s′ that is not a
maximal schedule, there always exists a maximal and MaxWeight schedule s∗ which covers all the queues
served by s′, hence we can assume that theMaxWeight policy always generates a maximal schedule without
loss of generality. It then follows that the Adaptive MaxWeight always generates a maximal schedule since
its schedule is generated by the MaxWeight policy, either at the current or a previous time slot.
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assumption of the packet arrival process, and simplify T1 as

T1 = IEX̄

[
2
(∑

i j

qi j (t)
)(

(1 − ε) − 1{r(t)=0}
)]

= −2εIEX̄

[∑

i j

qi j (t)
]

+ 2IEX̄

[∑

i j

qi j (t)1{r(t)>0}
]

= −2εIEX̄

[∑

i j

qi j (t)
]

+ 2IEX̄

[∑

i j

qi j (t) −
∑

i j

qi j (t)1{r(t)=0}
]

= −2εIEX̄

[∑

i j

qi j (t)
]

+ 2IEX̄

[∑

i j

qi j (t)
](

Pr X̄{r(t) > 0} + Pr X̄{r(t) = 0}
)

− 2IEX̄

[∑

i j

qi j (t)
∣
∣
∣r(t) = 0

]
Pr X̄{r(t) = 0}

= −2
(
ε − Pr X̄{r(t) > 0}

)
IEX̄

[∑

i j

qi j (t)
]

+ 2
(
IEX̄

[∑

i j

qi j (t)
]

− IEX̄

[∑

i j

qi j (t)
∣
∣
∣r(t) = 0

])
Pr X̄{r(t) = 0}. (9)

For the term T2, we again use the fact that s(t) is a maximal schedule, and from the

assumption of the packet arrival process, we can derive IE
[∑

i (
∑

j ai j (t) − 1)2
]

=
IE
[∑

j (
∑

i ai j (t) − 1)2
]

= ‖σ‖2 + nε2 and IE
[
(
∑

i j ai j (t) − n)2
]

= ‖σ‖2 + n2ε2,

and thus

T2 = IEX̄

[(∑

i

(∑

j

ai j (t) − 1
)2 +

∑

j

(∑

i

ai j (t) − 1
)2 − 1

n

(∑

i j

ai j (t) − n
)2
)

+
(∑

i

(
2
∑

j

ai j (t) − 1
) +

∑

j

(
2
∑

i

ai j (t) − 1
) − 1

n

(
2n

∑

i j

ai j (t) − n2
))

× 1{r(t)>0}
]

= IEX̄

[(
2(‖σ‖2 + nε2) − 1

n
(‖σ‖2 + n2ε2)

)
+

(
2n(1 − ε) − n

)
1{r(t)>0}

]

=
(
(2 − 1

n
)‖σ‖2 + nε2

)
+ n(1 − 2ε)Pr X̄{r(t) > 0}. (10)

For the term T3, since ui j (t) ≤ si j (t), we have
∑

i ui j ≤ 1,
∑

j ui j ≤ 1 and∑
i j ui j ≤ n. Therefore,

T3 ≤ IEX̄

[
1

n

(∑

i j

ui j (t)
)2

]

≤ IEX̄

[∑

i j

ui j (t)

]
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and

T3 ≥ −IEX̄

[∑

i

(∑

j

ui j (t)
)2

]

− IEX̄

[∑

j

(∑

i

ui j (t)
)2

]

≥ −IEX̄

[∑

i

(∑

j

ui j (t)
)]

− IEX̄

[∑

j

(∑

i

ui j (t)
)]

= −2IEX̄

[∑

i j

ui j (t)

]

.

The above bounds involve the expected sum of unused services between schedule
reconfiguration time instances IEX̄[∑i j ui j (t)]. One way to determine this value is to
set the drift of

∑
i j q̄i j to zero: Sincewehave IEX̄[∑i j qi j (t+1)] = IEX̄[∑i j qi j (t+1)]

at steady state, we have

IEX̄

[∑

i j

qi j (t + 1)
]

− IEX̄

[∑

i j

qi j (t)
]

= IEX̄

[∑

i j

(
ai j (t) − si j (t)1{r(t)=0} + ui j (t)

)]

= n(1 − ε) − n Pr X̄{r(t) = 0}) + IEX̄

[∑

i j

ui j (t)
]

= n(1 − ε) − n(1 − Pr X̄{r(t) > 0}) + IEX̄

[∑

i j

ui j (t)
]

= 0

which implies

IEX̄

[∑

i j

ui j (t)
]

= n
(
ε − Pr X̄{r(t) > 0}

)
. (11)

Hence, we have

−2n
(
ε − Pr X̄{r(t) > 0}

)
≤ T3 ≤ n

(
ε − Pr X̄{r(t) > 0}

)
. (12)

For the term T4, we first follow the same line in [15] to simplify the expression.
Rewrite each term and use q(t + 1) = q‖ + q⊥ to obtain

T4 = 2IEX̄

[∑

i j

ui j (t)
(∑

j ′
qi j ′(t + 1) +

∑

i ′
qi ′ j (t + 1) − 1

n

∑

i ′ j ′
qi ′ j ′(t + 1)

)]

= 2IEX̄

[∑

i j

ui j (t)
(∑

j ′
q‖i j ′(t + 1) +

∑

i ′
q‖i ′ j (t + 1) − 1

n

∑

i ′ j ′
q‖i ′ j ′(t + 1)

)

+
∑

i j

ui j (t)
(∑

j ′
q⊥i j ′(t + 1) +

∑

i ′
q⊥i ′ j (t + 1) − 1

n

∑

i ′ j ′
q⊥i ′ j ′(t + 1)

)]

.
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Since ui j (t)qi j (t + 1) = 0, when ui j (t) = 0, we have qi j (t + 1) = 0 and thus
q‖i j (t + 1) = −q⊥i j (t + 1). Also, since q‖ is in the coneK by definition, we may use
a property of the cone K [15, Lemma 1] to obtain

q‖i j (t + 1) = 1

n

∑

j ′
q‖i j ′(t + 1) + 1

n

∑

i ′
q‖i ′ j (t + 1) + 1

n2
∑

i ′ j ′
q‖i ′ j ′(t + 1)

= −q⊥i j (t + 1)

and further simplify T4 as

T4 = 2IEX̄

[∑

i j

ui j (t)
(

− nq⊥i j (t + 1) +
∑

j ′
q⊥i j ′(t + 1) +

∑

i ′
q⊥i ′ j (t + 1)

− 1

n

∑

i ′ j ′
q⊥i ′ j ′(t + 1)

)]

fromwhich we can note that T4 is zero when the residual component q⊥ is zero (which
means that the queue length matrix q ∈ K). It then remains to express T4 in terms of
q⊥ in order to apply the WSSC result.

We now simplify each term as an inner product using e(i), ẽ( j), or 1, the all-ones
matrix. In particular, with the following simplification:

∑

i j

ui j (t)q⊥i j (t + 1), =
〈
u(t),q⊥(t + 1)

〉
,

∑

i j

ui j (t)
∑

j ′
q⊥i j ′(t + 1) =

∑

i

(∑

j

ui j (t)
∑

j ′
q⊥i j ′(t + 1)

)

=
∑

i

〈
u(t), e(i)

〉〈
q⊥(t + 1), e(i)

〉
,

∑

i j

ui j (t)
∑

i ′
q⊥i ′ j (t + 1) =

∑

j

(∑

i

ui j (t)
∑

i ′
q⊥i ′ j (t + 1)

)

=
∑

j

〈
u(t), ẽ( j)

〉〈
q⊥(t + 1), ẽ( j)

〉
,

∑

i j

ui j (t)
∑

i ′ j ′
q⊥i ′ j ′(t + 1) =

〈
u(t), 1

〉〈
q⊥(t + 1), 1

〉
,
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we simplify T4 as

T4 = 2IEX̄

[〈
u(t),−nq⊥(t + 1) +

∑

i

〈q⊥(t + 1), e(i)〉e(i)

+
∑

j

〈q⊥(t + 1), ẽ( j)〉ẽ( j) − 1

n
〈q⊥(t + 1), 1〉1

〉]

.

We now derive bounds for the simplified T4 term. From the definition of the cone
K, we can derive 〈q⊥, e(i)〉 ≤ 0 for all i , 〈q⊥, ẽ( j)〉 ≤ 0 for all j , and 〈q⊥, 1〉 ≤ 0.
We then obtain

T4 ≤ 2IEX̄

[〈
u(t),−nq⊥(t + 1) − 1

n
〈q⊥(t + 1), 1〉1

〉]

≤ 2IEX̄

[∥
∥u(t)

∥
∥
∥
∥ − nq⊥(t + 1) − 1

n
〈q⊥(t + 1), 1〉1∥∥

]
,

where the last inequality follows from the Cauchy–Schwartz inequality. Note that the
second term can further be bounded as

∥
∥ − nq⊥(t + 1) − 1

n
〈q⊥(t + 1), 1〉1∥∥ (a)≤ n‖q⊥(t + 1)‖ + 1

n
|〈q⊥(t + 1), 1〉|‖1‖

(b)≤ n‖q⊥(t + 1)‖ + ‖1‖‖1‖
n

‖q⊥(t + 1)‖
= 2n‖q⊥(t + 1)‖,

where (a) follows from the triangle inequality, and (b) follows from the Cauchy–
Schwartz inequality. We then obtain

T4 ≤ 4nIEX̄

[
‖u(t)‖‖q⊥(t + 1)‖

]
.

Similarly, we can derive a lower bound for T4:

T4 ≥ 2IEX̄

[〈
u(t),−nq⊥(t + 1) +

∑

i

〈q⊥(t + 1), e(i)〉e(i)

+
∑

j

〈q⊥(t + 1), ẽ( j)〉ẽ( j)
〉]

≥ −2IEX̄

[
∥
∥u(t)

∥
∥
∥
∥ − nq⊥(t + 1) +

∑

i

〈q⊥(t + 1), e(i)〉e(i)

+
∑

j

〈q⊥(t + 1), ẽ( j)〉ẽ( j)
∥
∥
]
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≥ −2IEX̄

[
∥
∥u(t)

∥
∥
(∥
∥ − nq⊥(t + 1)

∥
∥ + ∥

∥
∑

i

〈q⊥(t + 1), e(i)〉e(i)
∥
∥

+ ∥
∥
∑

j

〈q⊥(t + 1), ẽ( j)〉ẽ( j)
∥
∥
)]

.

Since 〈e(i), e(i)〉 = n and 〈e(i), e(i ′)〉 = 0 for i �= i ′, we have
∥
∥
∑

i

〈q⊥(t + 1), e(i)〉e(i)
∥
∥

=
〈∑

i

〈q⊥(t + 1), e(i)〉e(i),
∑

i

〈q⊥(t + 1), e(i)〉e(i)
〉 1
2

=
(∑

i

n〈q⊥(t + 1), e(i)〉2
) 1

2

=
(∑

i

n
(∑

j

q⊥i j (t + 1)
)2) 1

2

≤
(∑

i

n2
(∑

j

q2⊥i j (t + 1)
)) 1

2

= n‖q⊥(t + 1)‖.

Similarly, we can derive
∥
∥
∑

j

〈q⊥(t + 1), ẽ( j)〉ẽ( j)
∥
∥ ≤ n‖q⊥(t + 1)‖

and thus

T4 ≥ −6nIEX̄

[
‖u(t)‖‖q⊥(t + 1)‖

]
.

We now bound the common term IEX̄

[
‖u(t)‖‖q⊥(t + 1)‖

]
in the upper and

lower bounds. Since each component of u(t) is either 0 or 1, we have ‖u(t)‖ =√∑
i j ui j (t) ≤ ∑

i j ui j (t). Also, with the boundedness of the packet arrival, we have

‖q(t + 1)‖ ≤ ‖q(t)‖ + namax, which implies ‖q⊥(t + 1)‖ ≤ ‖q⊥(t)‖ + namax.
Therefore,

IEX̄

[
‖u(t)‖‖q⊥(t + 1)‖

]
≤ IEX̄

[(∑

i j

ui j (t)
)(

‖q⊥(t)‖ + namax

)]

= IEX̄

[(∑

i j

ui j (t)
)
‖q⊥(t)‖

]
+ IEX̄

[∑

i j

ui j (t)
]
namax.
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Since
∑

i j ui j (t) ≤ n, we may write
∑

i j ui j (t) ≤ n1{∑i j ui j (t)>0} and thus

IEX̄

[(∑

i j

ui j (t)
)
‖q⊥(t)‖

]

≤ nIEX̄

[
1{∑i j ui j (t)>0}‖q⊥(t)‖

]

= n
(
IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖1{∑i j ui j (t)=0}

])

= n
(
IEX̄

[
‖q⊥(t)‖

]
IEX̄

[
1{∑i j ui j (t)>0}

]
+ IEX̄

[
‖q⊥(t)‖

]
IEX̄

[
1{∑i j ui j (t)=0}

]

− IEX̄

[
‖q⊥(t)‖1{∑i j ui j (t)=0}

])
.

Since 1{∑i j ui j (t)>0} ≤ ∑
i j ui j (t), and IEX̄

[
‖q⊥(t)‖1{∑i j ui j (t)=0}

]
=

IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j ui j (t) = 0
]
PrX̄

{∑
i j ui j (t) = 0

}
, we further obtain

IEX̄

[(∑

i j

ui j (t)
)
‖q⊥(t)‖

]

≤ nIEX̄

[
‖q⊥(t)‖

]
IEX̄

[∑

i j

ui j (t)
]

+ n
(
IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j

ui j (t) = 0
])

PrX̄

{∑

i j

ui j (t) = 0
}

⇒ IEX̄

[
‖u(t)‖‖q⊥(t + 1)‖

]

≤ n2
(
ε − Pr X̄{r(t) > 0}

)(
IEX̄

[
‖q⊥(t)‖

]
+ amax

)

+ n
(
IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j

ui j (t) = 0
])

,

where (11) is applied.
We then have

T4 ≤ 4n3
(
ε − Pr X̄{r(t) > 0}

)(
IEX̄

[
‖q⊥(t)‖

]
+ amax

)

+ 4n2
(
IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j

ui j (t) = 0
])

(13)

and

T4 ≥ −6n3
(
ε − Pr X̄{r(t) > 0}

)(
IEX̄

[
‖q⊥(t)‖

]
+ amax

)

− 6n2
(
IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j

ui j (t) = 0
])

. (14)
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Applying (9), (10), (12), and (13) into (8), we obtain the following upper bound:

0 ≤ −2
(
ε − Pr X̄{r(t) > 0}

)
IEX̄

[∑

i j

qi j (t)
]

+
(

2 − 1

n

)

‖σ‖2 + nε2

+ n(1 − 2ε)Pr X̄{r(t) > 0} + n
(
ε − Pr X̄{r(t) > 0}

)

+ 2
(
IEX̄

[∑

i j

qi j (t)
]

− IEX̄

[∑

i j

qi j (t)
∣
∣
∣r(t) = 0

])
Pr X̄{r(t) = 0}

+ 4n3
(
ε − Pr X̄{r(t) > 0}

)(
IEX̄

[
‖q⊥(t)‖

]
+ amax

)

+ 2n2
(
IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j

ui j (t) = 0
])

⇒
(
ε − Pr X̄{r(t) > 0}

)(
IEX̄

[∑

i j

qi j (t)
]

− 2n3IEX̄

[
‖q⊥(t)‖

])

≤ (1 − 1

2n
)‖σ‖2 +

∣
∣
∣IEX̄

[∑

i j

qi j (t)
]

− IEX̄

[∑

i j

qi j (t)
∣
∣
∣r(t) = 0

]∣
∣
∣ + nε(1 + ε)

2

+ 2n3
(
ε − Pr X̄{r(t) > 0}

)
amax

+ 2n2
∣
∣
∣IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j

ui j (t) = 0
]∣
∣
∣, (15)

and similarly applying (9), (10), (12), and (14) into (8), we obtain a lower bound

(
ε − Pr X̄{r(t) > 0}

)(
IEX̄

[∑

i j

qi j (t)
]

+ 3n3IEX̄

[
‖q⊥(t)‖

])

≥
(

1 − 1

2n

)

‖σ‖2 −
∣
∣
∣IEX̄

[∑

i j

qi j (t)
]

− IEX̄

[∑

i j

qi j (t)
∣
∣
∣r(t) = 0

]∣
∣
∣ − nε(1 + ε)

− 3n3
(
ε − Pr X̄{r(t) > 0}

)
amax

− 3n2
∣
∣
∣IEX̄

[
‖q⊥(t)‖

]
− IEX̄

[
‖q⊥(t)‖

∣
∣
∣
∑

i j

ui j (t) = 0
]∣
∣
∣. (16)

Note that with the ergodicity of the Markov chain X(t), IEX̄[∑i j qi j (t)] and
IEX̄[∑i j qi j (t)|r(t) = 0] equal the time average of sum of queue lengths, and that sum
under r(t) = 0, respectively. From (11) and the nonnegativity of the unused service,
we can derive PrX̄{r(t) > 0} ≤ ε, and thus the probability of r(t) = 0 approaches 1
as ε → 0. This means that the time average under r(t) = 0 only excludes a dimin-
ishing number of time instances. Then, since the change in the sum of queue lengths
|∑i j qi j (t + 1) − ∑

i j qi j (t)| < n2amax is bounded, we have that the difference
IEX̄[∑i j qi j (t)] − IEX̄[∑i j qi j (t)|r(t) = 0] → 0 as ε → 0.

Similarly, since the probability of
∑

i j ui j (t) = 0 approaches 1 as ε → 0, the time
average under

∑
i j ui j (t) = 0 only excludes a diminishing number of time instances.
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Then, since the change in ‖q⊥(t)‖ is bounded, i.e., ∣∣‖q⊥(t+1)‖−‖q⊥(t)‖∣∣ < namax,
we have that IEX̄[‖q⊥(t)‖] − IEX̄[‖q⊥(t)‖|∑i j ui j (t) = 0] → 0 as ε → 0.

Note that the drift analysis up to this point only uses the fact that each schedule is a
maximal schedule and that the switch systems are positive recurrent under the schedul-
ing policy. We now apply the WSSC result of Adaptive MaxWeight. From Proposi-
tion 1, we can derive IEX̄[‖q⊥(t)‖] ≤ θ IEX̄[‖q(t)‖] + Mθ ≤ θ IEX̄[∑i j qi j (t)] + Mθ

for any θ satisfying 0 < θ < 1/2. Together with (15), we have

(
ε − Pr{r̄ > 0}

)(
1 − 2n3θ

)(
IE
[∑

i j

q̄i j
])

≤
(
1 − 1

2n

)
‖σ‖2 + B ′

1(θ, ε, n),

where B ′
1(θ, ε, n) =

∣
∣
∣IEX̄[∑i j qi j (t)] − IEX̄[∑i j qi j (t)|r(t) = 0]

∣
∣
∣ + nε(1+ε)

2 +
2n2

∣
∣
∣IEX̄[‖q⊥(t)‖] − IEX̄[‖q⊥(t)‖|∑i j ui j (t) = 0]

∣
∣
∣ + 2n3ε(Mθ + amax). Since Mθ

is a fixed constant according to Proposition 1, and the first and the third terms of
B ′
1(θ, ε, n) approach 0 as ε ↓ 0, we then have that lim

ε→0
B ′
1(θ, ε, n) = 0. Dividing both

sides by (1−2n3θ) and defining B1(θ, ε, n) = B ′
1(θ, ε, n)/(1−2n3θ) then gives (4).

Similarly, for the lower bound, we have

(
ε − Pr{r̄ > 0}

)(
1 + 3n3θ

)(
IE
[∑

i j

q̄i j
])

≥
(
1 − 1

2n

)
‖σ‖2 + B ′

2(θ, ε, n),

where B ′
2(θ, ε, n) = −

∣
∣
∣IEX̄[∑i j qi j (t)] − IEX̄[∑i j qi j (t)|r(t) = 0]

∣
∣
∣ − nε(1 +

ε) − 2n2
∣
∣
∣IEX̄[‖q⊥(t)‖] − IEX̄[‖q⊥(t)‖|∑i j ui j (t) = 0]

∣
∣
∣ − 3n3ε(Mθ + amax), and

lim
ε→0

B ′
2(θ, ε, n) = 0. Dividing both sides by (1 + 3n3θ) and defining B2(θ, ε, n) =

B ′
2(θ, ε, n)/(1 + 3n3θ) then gives (5). ��

4.3 Expected schedule duration

In the previous subsection, we derived a bound on steady-state queue lengths. Note
that this bound depends on the probability of reconfiguration Pr{r̄ (ε) > 0}. In this
subsection, we derive the mean schedule duration in order to evaluate this probability.

Recall that in the previous subsection, we set the drift of
∑

i j q̄
(ε)
i j to zero to obtain

(11), which is an expression of the total unused service. Here, we consider the drift of
another Lyapunov function to obtain a different expression for the total unused service
and combine the two expressions to derive the expected schedule duration.

We start by defining the schedule reconfiguration times as follows: Given the
Markov chain X(ε)(t) = (q(ε)(t), s(ε)(t), r (ε)(t)) representing the state of a switch
with reconfiguration delay, the schedule reconfiguration times {tk}∞k=0 are defined as
t0 = 0 and tk = min{t : t > tk−1, and s(ε)(t) �= s(ε)(t − 1)} for k > 0.

Now consider X(ε)(t) sampled at the schedule reconfiguration times {tk} and
denoted as X(ε)

k = X(ε)(tk). Note that {tk} are stopping times with respect to X(ε)(t),
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hence, by the strong Markov property, X(ε)
k is also a Markov chain. Furthermore, the

positive recurrence of X(ε)(t) implies the positive recurrence of X(ε)
k . We then denote

the steady-state distribution of X(ε)
k as X̂(ε) = (q̂(ε), ŝ(ε), r̂ (ε)).

With the schedule reconfiguration times {tk}, we now define the schedule duration
T S(X(ε)

k ) = tk+1 − tk as the number of time slots to the next schedule recon-

figuration starting from state X(ε)
k . We let T S(X̂(ε)) denote the schedule duration

when Xk
(ε) follows the steady-state distribution X̂(ε), and thus IE[T S(X̂(ε))] is the

expected steady-state schedule duration. Since each schedule reconfiguration is fol-
lowed by a reconfiguration delay of �r time slots, the probability of reconfiguration
is then determined by the expected steady-state schedule duration as Pr{r̄ (ε) > 0} =
�r/IE[T S(X̂(ε))].

The following theorem establishes a relation between the schedule duration and the
queue length.

Theorem 2 Consider a switch system with a fixed reconfiguration delay �r > 0, and
the arrival process a(t) as described in Sect. 2 with the mean arrival rate vector
given by λ = (1 − ε)ν for some ν ∈ F . Suppose the switch system is operated
under the Adaptive MaxWeight policy with hysteresis function g(·), where g(·) is a
sublinear and strictly increasing function. Define theMaxWeight functionW ∗(X(ε)) =
maxS∈S〈q(ε),S〉 for each state X(ε) = (q(ε), s(ε), r (ε)) ∈ X , and denote Ŵ∗(ε) =
W ∗(X̂(ε)). Then the following relation holds:

IE
[
T S(X̂(ε))

]
=

IE
[
g(Ŵ∗(ε)

) + δW

]

(n − α(ε))(1 − ε)
, (17)

where δW satisfies 0 ≤ δW < n(amax + 1), and α(ε) = 〈
ν, IEX̂(ε)[s(ε)(tk)]

〉
.

Proof For simplicity of the notation, we drop the superscript (ε) in the following proof.
First, we define the Lyapunov function W on the state X = (q, s, r):

W (X) =
〈
q, s

〉
=

∑

i j

qi j si j ,

which is simply the schedule weight function. Note that W (X) ≤ ∑
i j qi j , hence the

steady-state mean of W (X) is finite. We may then set the drift of W (X) between two
schedule reconfiguration times to be zero. With an abuse of notation, we let IEX̂[·]
denote the expectation given that Xk = X(tk) is distributed as X̂.

IEX̂

[

W (X(tk+1)) − W (X(tk))

]

= IEX̂

[∑

i j

qi j (tk+1)si j (tk+1) −
∑

i j

qi j (tk)si j (tk)

]
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= IEX̂

[∑

i j

qi j (tk+1)
(
si j (tk+1) − si j (tk)

)
+

∑

i j

(
qi j (tk+1) − qi j (tk)

)
si j (tk)

]

= 0. (18)

Note that the first term in (18) is theweight difference between the schedules s(tk+1)

and s(tk). From the definition of Adaptive MaxWeight, the weight difference exceeds
the threshold g(W ∗(tk+1)) at time tk+1 and is less than the threshold at time tk+1 − 1.
Since at most amax packets can arrive at a queue and at most 1 packet can leave a queue
in one time slot, the maximum change of the weight difference in a time slot cannot

exceed n(amax + 1). We may then write the first term as
∑

i j qi j (tk+1)
(
si j (tk+1) −

si j (tk)
)

= g(W ∗(tk+1)) + δW , where 0 ≤ δW < n(amax + 1).

For the second term in (18), we have

IEX̂

[∑

i j

(
qi j (tk+1) − qi j (tk)

)
si j (tk)

]

= IEX̂

[ tk+1−1∑

t=tk

∑

i j

(
qi j (t + 1) − qi j (t)

)
si j (tk)

]

= IEX̂

[ tk+1−1∑

t=tk

∑

i j

(
ai j (t) − si j (t)1{r(t)=0} + ui j (t)

)
si j (tk)

]

= IEX̂

[ tk+1−1∑

t=tk

(∑

i j

λi j si j (tk) − n1{r(t)=0} +
∑

i j

ui j (t)
)]

,

where the last equality is given by the fact that the schedule remains s(tk) for any
time slot between tk and tk+1, therefore

∑
i j si j (t)si j (tk) = n and

∑
i j ui j (t)si j (tk) =∑

i j ui j (t)si j (t) = ∑
i j ui j (t) for any time slot t ∈ [tk, tk+1).

Since the arrival processes are independent from the scheduling decisions, we have
IEX̂

[∑
i j λi j si j (tk)

] = (1 − ε)
〈
ν, IEX̂[s(tk)]

〉
. Now define

α = 〈
ν, IEX̂[s(tk)]

〉
, (19)

and we may then write (18) as

IEX̂

[

g(W ∗(tk+1)) + δW + (tk+1 − tk)α(1 − ε) − n(tk+1 − tk − �r )

+
tk+1−1∑

t=tk

∑

i j

ui j (t)

]

= 0.
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We then rearrange the terms to obtain

IEX̂

[ tk+1−1∑

t=tk

∑

i j

ui j (t)

]

=
(
n − α(1 − ε)

)
IEX̂

[
tk+1 − tk

]

− n�r − IEX̂

[
g(W ∗(tk+1)) + δW

]
. (20)

On the other hand, we may set the drift of
∑

i j
qi j to zero and obtain

IEX̂

[ tk+1−1∑

t=tk

∑

i j

ui j (t)

]

= n
(
εIEX̂

[
tk+1 − tk

]
− �r

)
. (21)

Combining (20) and (21), we then have

IEX̂

[
tk+1 − tk

]
=

IEX̂

[
g(W ∗(tk+1)) + δW

]

(n − α)(1 − ε)
(22)

and since X(tk+1) also follows the steady-state distribution when X(tk) does, we have

IE
[
T S(X̂)

]
=

IE
[
g(Ŵ∗) + δW

]

(n − α)(1 − ε)
. (23)

��
Theorem 2 immediately implies the following lower bound on expected queue

length when the hysteresis function g(·) is a concave function:
Corollary 1 Given the switch system as described in Theorem 2, and in addition to
being sublinear and strictly increasing, suppose the hysteresis function g(·) is also
concave. Then then the expected maximum weight IE

[
Ŵ∗(ε)

]
satisfies

IE
[
Ŵ∗(ε)

]
≥ g−1

(
(n − α(ε))(1 − ε)�r

ε
− IE

[
δW

])

, (24)

where α(ε) = 〈
ν, IEX̂(ε) [s(ε)(tk)]

〉
and 0 ≤ δW < n(amax + 1).

Proof For simplicity of the notation, we drop the superscript (ε) in the following proof.
By the nonnegativity of the unused service ui j (t), we derive the following lower bound
from (21):

εIE
[
T S(X̂)

]
− �r = 1

n
IEX̂

[ tk+1−1∑

t=tk

∑

i j

ui j (t)

]

≥ 0
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⇒ IE
[
T S(X̂)

]
≥ �r

ε
,

and using Theorem 2, we then have

IE
[
g(Ŵ∗) + δW

]
= (n − α)(1 − ε)IE

[
T S(X̂)

]
≥ (n − α)(1 − ε)�r

ε
, (25)

where α = 〈
ν, IEX̂[s(tk)]

〉
. Since g(·) is strictly increasing and concave, its inverse

function g−1(·) is convex. Then by Jensen’s inequality we have

IE
[
Ŵ∗] = IE

[
g−1(g(Ŵ∗)

)] ≥ g−1
(
IE
[
g(Ŵ∗)

])

≥ g−1
(

(n − α)(1 − ε)�r

ε
− IE

[
δW

])

. (26)

��
In the rest of this section, we utilize Theorems 1 and 2 to derive bounds on the

expected sum of queue lengths for switches with reconfiguration operating under the
Adaptive MaxWeight policy, as shown in the following theorem.

Theorem 3 Consider a set of switch systemswith a fixed reconfiguration delay�r > 0,
parametrized by 0 < ε < 1, where the arrival process of each system follows the
same assumptions as in Theorem 1. In addition, the limiting arrival rate matrix ν ∈ F
is assumed to satisfy ‖ν‖2 < n. Each switch system is operated under the Adap-
tive MaxWeight policy with sublinear hysteresis function g(·), where g(·) is strictly
increasing and also concave. Let Ŵ∗(ε) = W ∗(X̂(ε)) be the maximum weight of the
steady-state X̂(ε). Then in the heavy traffic limit we have

lim
ε↓0 εIE

[
g(Ŵ∗(ε)

)
]

= (n − ‖ν‖2)�r . (27)

For the queue length sum
∑

i j q̂
(ε)
i j , we have the following bounds:

lim sup
ε↓0

εIE
[
g
(∑

i j

q̂(ε)
i j

)]
≤ n(n − ‖ν‖2)�r (28)

and, for any θ such that 0 < θ < 1/2,

IE
[∑

i j

q̂(ε)
i j

]
≥ n

1 + n(n − 1)θ
g−1

( (n − α(ε))(1 − ε)�r

ε

)
− n(n − 1)

1 + n(n − 1)θ
Mθ ,

(29)

where Mθ is as defined in Proposition 1, which is a function of θ, σ̃ , amax, νmin and
n, but is independent of ε.
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We first note that (29) determines the scaling of the queue length sum with respect

to ε ↓ 0 as Ω
(
ng−1

(
(n−‖ν‖2)�r

ε

))
. Recall the queue length upper bound (7) derived

from Theorem 1, which includes a term independent of the reconfiguration delay

with scaling O
(
1
ε

)
, and the second term depending on the reconfiguration delay. The

scaling result from (29) then suggests that the scaling of the second term of (7) is

Ω
(
ng−1

(
(n−‖ν‖2)�r

ε

))
, since the first term is negligible compared to the scaling.

On the other hand,while unfortunately (28) does not provide an asymptotically tight

upper bound, it suggests an approximate scaling of O
(
g−1

(
n(n−‖ν‖2)�r

ε

))
, which

becomes more accurate when g is closer to a linear function. Despite the lack of actual
scaling behavior, we consider this scaling behavior as a conjecture and compare this
scaling to the simulation results in Sect. 6.

Note that the hysteresis function g getting closer to a linear function is also the
regime of interest when pursuing an optimal queue length bound, since g−1(n(n −
‖ν‖2)�r/ε) provides a better scaling with respect to the traffic load when g is closer
to a linear function. In other words, if we consider g(x) = (1 − γ )x1−δ as in [20]
and take δ → 0, we not only get a tighter asymptotic bounds but also a better delay
scaling. The only caveat here is that selecting g as exactly a linear function does not
fit the analysis in this paper. In fact, it is even unclear whether throughput optimality
could be guaranteed if g is linear.

The approximate queue length upper bound not only depends on ε and the recon-
figuration delay �r , but also depends on the limiting arrival rate matrix ν ∈ F .
It is not hard to show that 1 ≤ ‖ν‖2 < n. When the arrival rate is uniform, i.e.,
νi j = 1/n,∀i, j , we have that ‖ν‖2 = 1, and the expected queue length has the worst
scaling O

(
g−1(n2/ε)

)
. This result makes sense as the uniform arrival rate means that

the switch system has to reconfigure between several different schedules in order to
cover arrivals in every queue. On the other extreme, ‖ν‖2 attains maximum when ν

is close to a permutation matrix. Hence, if the arrival rate is highly nonuniform such
that ‖ν‖2 is close to n, then the switch is more likely to stay on a few dominating
schedules and the reconfiguration does not need to occur as often, and the expected
queue length has better scaling as O

(
g−1(n/ε)

)
.

We now proceed with the proof of Theorem 3.

Proof We first start with the derivation for (27). Note the lower bound (25) derived in
Corollary 1, which we rewrite as follows:

εIE
[
g(Ŵ∗(ε)

)
]

≥ (n − α(ε))(1 − ε)�r − εIE
[
δW

]
,

where α(ε) = 〈
ν, IEX̂(ε)[s(ε)(tk)]

〉
. Note that by setting the expected drift of s(ε)

i j (tk) at
steady state to be zero for each i, j ∈ {1, 2, . . . , n}, we can show that for each i, j ,
IEX̂(ε)[s(ε)

i j (tk)] ≥ (1 − ε)νi j , which then implies lim
ε↓0 IEX̂(ε)[s(tk)] = ν. We thus have
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lim
ε↓0 α(ε) = 〈ν, ν〉 = ‖ν‖2 and the following asymptotic lower bound:

lim inf
ε↓0 εIE

[
g(Ŵ∗(ε)

)
]

≥ (n − ‖ν‖2)(1 − ε)�r . (30)

We now combine the results from Theorems 1 and 2 to derive an upper bound for

IE
[
g(Ŵ∗(ε)

)
]
. Recalling the relation between the probability of reconfiguration and

the expected steady-state schedule duration, and using Theorem 2, we have

Pr{r̄ (ε) > 0} = �r

IE[T S(X̂(ε))] = (n − α(ε))(1 − ε)�r

IE[g(Ŵ∗(ε)
) + δW ] . (31)

We can then apply (31) into (4) from Theorem 1. For the simplicity of notation, we

denote ĝ = IE
[
g(Ŵ ∗) + δW

]
, q̄s = IEX̄

[∑
i j q̄i j

]
, β = (1− 1

2n )‖σ̃‖2/(1− 2n3θ) +
B1(θ, ε, n) and obtain

(
ε − (n − α(ε))(1 − ε)�r

ĝ

)
q̄s ≤ β

⇒
(
εĝ − (n − α(ε))(1 − ε)�r

)
q̄s ≤ βĝ

⇒
(
ε − β

q̄s

)
ĝ ≤ (n − α(ε))(1 − ε)�r .

We thus have

ĝ ≤ (n − α(ε))(1 − ε)�r
q̄s

εq̄s − β
= (n − α(ε))(1 − ε)�r

ε

(
1 + β

εq̄s − β

)
.

Note that
∑

i j qi j ≥ W∗ for any state X. We can then use Corollary 1 to obtain
∑

i j q̂i j ∼ Ω
(
g−1(1/ε)

)
, and thus q̄s ∼ Ω

(
g−1(1/ε)

)
when ε ↓ 0. Therefore, we

have β
εq̄s−β

→ 0 as ε ↓ 0, which then implies

lim sup
ε↓0

εĝ = lim sup
ε↓0

(n − α(ε))�r = (n − ‖ν‖2)�r . (32)

Since δW < n(amax + 1), we then have

lim sup
ε↓0

εIE
[
g(Ŵ∗(ε)

)
]

= (n − ‖ν‖2)�r . (33)

Combining (30) and (33), we obtain

lim
ε↓0 εIE

[
g(Ŵ∗(ε)

)
]

= (n − ‖ν‖2)�r . (34)
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From (34), we can then derive (28) and (29) using relations between the total queue
length and the maximum weight, which we establish in the following paragraphs.

Note that the sumof queue length can be seen as the inner product between the queue
length matrix q and an all-one matrix 1, namely

∑
i j qi j = 〈q, 1〉. Also, the all-one

matrix 1 can be written as the sum of n disjoint (maximal) schedules. In particular, we
can find a set of n − 1 schedules {s(1), s(2), . . . , s(n−1)} such that s∗ +∑n−1

k=1 s
(k) = 1.

By the definition of the MaxWeight schedule, we have that 〈q, s〉 ≤ 〈q, s∗〉 = W ∗
for any schedule s, hence we can obtain

∑

i j

qi j =
〈
q, s∗ +

n−1∑

k=1

s(k)
〉
≤ nW ∗.

Combining this with (34), we then obtain (28) as

lim sup
ε↓0

εIE
[
g
(∑

i j

q̂(ε)
i j

)]
≤ lim

ε↓0 εIE
[
g(nŴ∗(ε)

)
]

≤ lim
ε↓0 nεIE

[
g(Ŵ∗(ε)

)
]

= n(n − ‖ν‖2)�r ,

where we use the fact that g(nx) ≤ ng(x) for sufficiently large x from the sublinearity
of g(·).

Now, for (29), we apply another relation between the total queue length and the
maximum weight, which utilize the property of cone K. We can write the maximum
weight as W ∗ = 〈q, s∗〉 = 〈q⊥ + q‖, s∗〉 for the MaxWeight schedule s∗ and W =
〈q, s〉 = 〈q⊥+q‖, s〉 for any other schedule s. Note that q‖ is in coneK, which implies
〈q‖, s∗〉 = 〈q‖, s〉 for any schedule s. We then have

W = W ∗ − 〈q⊥, s∗ − s〉. (35)

Since all the elements in a schedule s are either 0 or 1, we have 〈q⊥, s∗ − s〉 ≤∑
i j |q⊥i j | ≤ n‖q‖. On the other hand, recall that we can find a set of n− 1 schedules

{s(1), s(2), . . . , s(n−1)} such that s∗ + ∑n−1
k=1 s

(k) = 1 and write the sum of the queue
lengths as

∑
i j qi j = 〈q, s∗ +∑n−1

k=1 s
(k)〉. For each of these n − 1 schedules, we have

W = W ∗ − 〈q⊥, s∗ − s〉 ≥ W ∗ − n‖q‖. We can then lower bound
∑

i j qi j as

∑

i j

qi j =
〈
q, s∗ +

n−1∑

k=1

s(k)
〉
≥ nW ∗ − n(n − 1)‖q⊥‖. (36)

We now combine (34) and (36) to derive (29). Recall from Proposition 1, we have
that IE[‖q̄(ε)

⊥ ‖] ≤ θ IE[‖q̄(ε)‖] + Mθ for any θ ∈ (0, 1
2 ). We then use (36) and take

expectation on the steady-state distribution X̂(ε) to obtain
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IE
[∑

i j

q̂(ε)
i j

]
≥ nIE

[
Ŵ∗(ε)

]
− n(n − 1)IE

[
‖q̂(ε)

⊥ ‖
]

≥ nIE
[
Ŵ∗(ε)

]
− n(n − 1)θ IE

[∑

i j

q̂(ε)
i j

]
− n(n − 1)Mθ

⇒ IE
[∑

i j

q̂(ε)
i j

]
≥ n

1 + n(n − 1)θ
IE
[
Ŵ∗(ε)

]
− n(n − 1)

1 + n(n − 1)θ
Mθ

≥ n

1 + n(n − 1)θ
g−1

( (n − α(ε))(1 − ε)�r

ε

)
− n(n − 1)

1 + n(n − 1)θ
Mθ .

��

5 Benchmark queue length behavior under reconfiguration delay

In this section, we derive some benchmark queue length behavior of switches with
reconfiguration delay for the Adaptive MaxWeight policy to compare with. We start
with a queue length lower bound for switch systems with reconfiguration delay, which
determines a limit on the performance for any scheduling policy. In a later subsection,
we then derive a queue length upper bound for a benchmark policy known as the
Fixed Frame MaxWeight (FFMW) [11] policy. Although it is shown that the FFMW
policy may achieve the optimal queue length scaling in the heavy traffic regime, this
optimality would require perfect knowledge of the traffic load, which restricts its
feasibility in practice.

5.1 Queue length lower boundwith reconfiguration delay

The first proposition extends the analysis from [15, Proposition 1], which gives a
universal lower bound on the expected queue length for switch systems without recon-
figuration delay. The proof of the proposition couples the queue length process q(t)
to that of a queueing system with less restricted schedule constraint and is given in
Appendix B.

Proposition 2 Consider a switch system with the arrival process a(t), which has mean
λ = (1 − ε)ν for some ν ∈ F and variance σ 2. Let q(t) denote the queue lengths
process of the switch system. Suppose the switch system is stable under its scheduling
policy, where the queue lengths process q(t) converges in distribution to a steady-state
random vector q̄. The expected sum of queue lengths is lower bounded by

IE

[∑

i j

q̄i j

]

≥ ‖σ‖2
2(ε − p)

− n(1 − ε)(ε − 2p)

2(ε − p)
, (37)

where p = IE[1{r(t)>0}] is the probability that the switch system is in reconfiguration
under the given scheduling policy.
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Note that the lower bound in Proposition 2 coincides with the lower bound in [15]
when p = 0, and monotonically increases as p increases. This result is not surprising
since the probability of reconfiguration p represents the portion of overhead caused by
reconfiguration delay and should degrade the performancewhen p increases.However,
the minimum of the lower bound occurring at p = 0 contradicts the intuition that not
switching the schedule also hurts the performance. In fact, for p = 0, the switch is
always stuck at one schedule and any queues that are not served by the schedule would
increase without bound. In other words, the lower bound in Proposition 2 does not
capture the effect of infrequent schedule reconfiguration.

To capture the effect of infrequent schedule reconfiguration, the following proposi-
tion lower bounds the expected queue lengths by examining the unserved queues when
the switch is fixed at one schedule between two reconfiguration times. The proof of
Proposition 3 is given in Appendix C.

Proposition 3 Given a switch system with the arrival process a(t), which has mean
λ = (1−ε)ν for some ν ∈ F and variance σ 2. For any scheduling policy under which
the switch system is stable, and the system stateX(t) = (

q(t), s(t), r(t)
)
converges in

distribution to a steady-state random vector X̄ = (
q̄, s̄, r̄

)
, the average sum of queue

lengths is lower bounded by

IE

[∑

i j

q̄i j

]

≥ �r

2p
(1 − ε)(n − ᾱ), (38)

where ᾱ = maxS∈S
〈
ν,S

〉
, and p = IE[1{r(t)>0}] is the probability that the switch

system is in reconfiguration under the given scheduling policy.

With the two propositions above, we may then derive an optimal lower bound for
a given switch system. In particular, for each reconfiguration probability p, the lower
bound is given by the maximum of Eqs. (37) and (38). Due to the monotonicity with p
of Eqs. (37) and (38), the reconfiguration probability p that minimizes the joint lower
bound can be easily solved by equating Eqs. (37) and (38).

In this paper, we are particularly interested in the queue length scaling in the heavy
traffic regime, where ε approaches 0. The following corollary provides a queue length
lower bound in the heavy traffic regime.

Corollary 2 Consider a sequence of switch systems with a fixed reconfiguration delay
�r > 0, parametrized by 0 < ε < 1. For each switch system, let p(ε) be the reconfig-
uration probability that minimizes the joint lower bounds of Eqs. (37) and (38). Then
in the heavy traffic regime, the reconfiguration probability satisfies

lim
ε↓0

p(ε)

ε
= �r (n − ᾱ)

‖σ‖2 + �r (n − ᾱ)
, (39)

where ᾱ = maxS∈S
〈
ν,S

〉
.
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Therefore, we have the following queue length lower bound in the heavy traffic
limit:

lim inf
ε↓0 εIE

[∑

i j

q̄i j

]

≥ ‖σ‖2 + �r (n − ᾱ)

2
. (40)

Proof Since Eq. (37) is monotonically increasing in p and Eq. (38) is monotonically
decreasing in p, the minimizer p(ε) can be solved by equating (37) and (38):

p(ε)2 +
( ‖σ‖2
2n(1 − ε)

− ε

2
+ �r (n − ᾱ)

2n

)

p(ε) − ε�r (n − ᾱ)

2n
= 0.

Since p(ε) ≥ 0, the only feasible solution for p(ε) is given by

p(ε) =
√
C2 + x − C

2
= C

2

(√

1 + x

C2 − 1

)

,

where C = ‖σ‖2
2n(1−ε)

− ε
2 + �r (n−ᾱ)

2n and x = 2ε�r
n−ᾱ
n . Note that when x

C2 << 1, we

have p(ε) ≈ x
4C . Also, since

x
C2 → 0 as ε ↓ 0, we thus obtain

lim
ε↓0

p(ε)

ε
= lim

ε↓0
x

4C
= �r (n − ᾱ)

‖σ‖2 + �r (n − ᾱ)
.

��
Corollary 2 generalizes the lower bound from [15, Proposition 1] and characterizes

the effect of the reconfiguration delay �r on the delay performance. Note that ᾱ in
Corollary 2 is different from α defined in Eq. (19), and by definition α ≤ ᾱ ≤ n for
any ν ∈ F . Compare the queue length bound of Adaptive MaxWeight in Eq. (28)
with Corollary 2, and we may see that when the hysteresis function g(·) approaches a
linear function, the queue length behavior of Adaptive MaxWeight approximates the
optimal scaling with respect to ε as well as the reconfiguration delay �r in the heavy
traffic limit ε → 0.

5.2 Queue length behavior of fixed frameMaxWeight

In this subsection, we analyze the queue length behavior of the Fixed Frame Max-
Weight (FFMW) as a benchmark policy and compare it with that of the Adaptive
MaxWeight policy.

The FFMW policy is a simple extension of the MaxWeight policy, which sets a
fixed parameter T , and periodically reconfigures to the MaxWeight schedule every T
time slots. It is shown in [11] that given the traffic load ρ = 1−ε, the switch system is
stabilized by the FFMW policy with any period T > �r

ε
. Note that the FFMW policy

123



Queueing Systems

requires knowledge of the traffic load, which limits the applicability of the policy in
practice.

The following proposition extends the heavy traffic queue length analysis of the
MaxWeight policy in [15] and gives an upper bound on the expected sum of queue
lengths for switches with reconfiguration delay.

Proposition 4 Consider a switch system with a fixed reconfiguration delay �r > 0,
and the arrival process a(t) as described in Sect. 2. Suppose the mean arrival rate

vector is given by λ = (1− ε)ν, where ν ∈ F is such that νmin
�= min

i j
νi j > 0, and for

some ε > 0. The variance of a(t) is σ 2. For any ε that satisfies ε < νmin
4n , suppose that

the switch system is operated under the Fixed Frame MaxWeight policy with schedule
duration T > �r

ε
. Then the expected queue length satisfies

IE

[∑

i j

q̄i j

]

≤
(

1 − 1

2n

)
T

εT − �r
‖σ‖2 + T

(n(1 + ε)

2
+ n2(amax + 2M)

)
,

(41)

where M = 4n(amax+1)+4(‖λ‖2+‖σ‖2+n)+16
√
2n2a2max

νmin
+ 2n(2

√
2amax + 1).

We may then further minimize the upper bound over T and derive the minimizing

schedule duration as T ∗ = �r
ε

(

1 +
√

(1− 1
2n )‖σ‖2

�r M ′

)

and the corresponding heavy

traffic queue length upper bound is given by

lim sup
ε↓0

εIE

[∑

i j

q̄i j

]

≤
(√

(1 − 1

2n
)‖σ‖2 +

√
�r M ′

)2

, (42)

where M ′ = n
2 + n2(amax + 2M).

From Proposition 4, we can see that given the traffic load information, the FFMW
policymay achieve the optimal scalingwith respect to ε and�r in the heavy traffic limit
ε → 0.Note that since Eq. (41) is not necessarily a tight bound, the derivedminimizing
schedule duration T ∗ may not be the true minimizer of the expected queue length.
However, it does guarantee the optimal scaling andmay be a good estimate for the true
minimizer. From the expression of T ∗, we can see that the minimizer is close to the
boundary of stability T = �r

ε
; this also implies that the optimal delay scaling of the

FFMW policy is rather intolerant to estimation error of the traffic load. Moreover, this
issue becomes more prominent for large �r , since it decreases the distance between
T ∗ and the boundary of stability.

In the next section, we compare the average queue length performance between the
Adaptive MaxWeight policy and the FFMW policy. We show that with the hysteresis
function g(·) that is close to a linear function, the Adaptive MaxWeight policy has a
comparable performance to the FFMW policy and does not require any knowledge of
traffic load.

123



Queueing Systems

Fig. 1 Mean total queue length versus traffic load ρ under uniform traffic. Number of ports is n = 16, and
reconfiguration delay �r = 20

Fig. 2 Mean total queue length versus traffic load ρ under uniform traffic. Number of ports is n = 16, and
reconfiguration delay �r = 20

6 Simulations

In this section, we show simulation results for switches with reconfiguration delay
operated under the Adaptive MaxWeight policy, with hysteresis function g(x) =
(1−γ )x1−δ . We first compare the simulation result with the Fixed FrameMaxWeight
policy, and then determine the scaling of the average queue length with respect to
different system parameters and compare with the queue length scaling derived in
Sect. 4.

We now briefly describe the simulation setup. The arrival processes are assumed to
be Poisson processes, all with the same arrival rate, which is also known as uniform
traffic.More specifically, thematrix ν ∈ F satisfies νi j = 1

n ,∀i, j ∈ {1, . . . , n}. Under
uniform traffic, we have ‖ν‖2 = 1, and thus α = n − 1 in Eq. (33). For the parameter
of the hysteresis function g, since we are only interested in the scaling, we fix γ = 0.1,
and consider δ ∈ {0.01, 0.05, 0.1, 0.2} for average queue length comparison.
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Fig. 3 Mean total queue length versus traffic load near the capacity region. Number of ports is n = 16, and
reconfiguration delay �r = 20

Figure 1 shows the average queue length under various traffic loads ρ ∈ [0.1, 1].
FromFig. 1, we can see that the average queue length is smaller with smaller δ, in other
words, the delay performance improves when the hysteresis function g(x) approaches
a linear function. The result implies that while the analysis in this work focuses on the
heavy traffic regime, the conclusion that δ close to zero gives better delay performance
also applies for lower traffic loads.

In Fig. 2, we keep Adaptive MaxWeight with δ = 0.01, which has the best perfor-
mance among the set of considered δ values, and compare the average queue length to
the FFMWpolicy with various schedule durations T ∈ {50, 100, 200, 500, 1000}. We
first note that for each schedule duration T , the average queue length grows quickly
when ρ approaches 1 − �r

T .
We now focus on simulations in the heavy traffic regime. In Fig. 3, we plot the

average total queue length of Adaptive MaxWeight for various ε ∈ [0.005, 0.03] (cor-
responding to ρ ∈ [0.97, 0.995]), and take log scale for both axes. For the FFMW
policy, we consider the optimal queue length performance over schedule durations.
In other words, for each ε, we consider the FFMW policy with different schedule
durations and take the one that minimizes the average queue length for comparison.
We see that Adaptive MaxWeight with δ = 0.01 closely follows the optimal perfor-
mance of the FFMW policy. We then use linear regression to determine the scaling
(i.e., the exponent) of the average queue length with respect to ε in the heavy traf-
fic regime. With the scaling result from (33), the scaling with respect to ε is close
to g−1(1/ε), hence the theoretical exponent should be −1/(1 − δ), which would be
{− 1.010,− 1.053,− 1.111,− 1.250} for δ = {0.01, 0.05, 0.1, 0.2}, respectively.

Figures 4 and 5 show the queue length scaling behavior under varying reconfigura-
tion delays�r and varying number of ports n, while the traffic load is fixed at ρ = 0.96
(or ε = 0.04). For the reconfiguration delay, the scaling is g−1(�r ), hence the
theoretical exponents are {1.010, 1.053, 1.111, 1.250} for δ ∈ {0.01, 0.05, 0.1, 0.2},
respectively. We may see from Fig. 4 that the exponents obtained from the simulation
result are close to our derived scaling. On the other hand, the scaling with respect to
n is g−1(n2), hence the theoretical exponents should be {2.020, 2.105, 2.222, 2.500}.
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Fig. 4 Mean total queue length versus reconfiguration delay �r . Number of ports is n = 16, and traffic
load is ρ = 0.96

Fig. 5 Mean total queue length versus number of ports n. Reconfiguration delay is �r = 20, and traffic
load is ρ = 0.96

We can see that the exponents derived from the simulation result are slightly larger
than our derived scaling.

7 Conclusions

We consider the heavy traffic queue length behavior in input-queued switches with
reconfiguration delay, operating under the Adaptive MaxWeight policy. It is shown
that the Adaptive MaxWeight exhibits weak state space collapse behavior, which
could be considered as an inheritance from the MaxWeight policy in the regime of
zero reconfiguration delay. Utilizing the Lyapunov drift technique introduced in [15],
we obtain a queue length upper bound in heavy traffic, which depends on the expected
schedule duration. We then discover a relation between the expected schedule dura-
tion and the expected queue length, which then implies asymptotically tight bounds
for the expected schedule duration in heavy traffic limit, thus determining its scal-
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ing. The scaling of the expected schedule duration then implies the dependence of
the queue length scaling on the selection of the hysteresis function g, and this this
scaling improves as g becomes closer to linear. Simulation results are also presented
to illustrate the queue length scaling with respect to several system parameters (for
example traffic load, number of ports, reconfiguration delay) and for comparison to
the derived queue length scaling in heavy traffic.

The results obtained in this paper apply to traffic patterns in which all input and
output ports are saturated. It would be interesting to consider the queue length behavior
of Adaptive MaxWeight under incompletely saturated traffic, for example, the traffic
conditions considered in [14]. The weak state space collapse result might be similar
due to the inheritance from the MaxWeight policy, but the characterization for the
expected schedule duration remains unclear at this point.

Acknowledgements Thismaterial is based uponwork supported by the National Science Foundation under
Grants CNS-1329819 and CCF-1850439.

Appendices

A Proof of Proposition 1

Proof For ease of notation, we drop the superscript (ε) in the following derivation.
For each state X = (q, s, r), we define the Lyapunov function Z(X) = max{‖q⊥‖ −
θ‖q‖‖, 0}. We then apply Lemma 1 with the Lyapunov function Z to obtain the result.
Note that the selection of the Lyapunov function is such that Z is a nonnegative
function. Since ‖q⊥‖ − θ‖q‖‖ ≤ Z(X) for any state X = (q, s, r), the statement of
Proposition 1 follows from a bound on IE[Z(X̄)].

We first verify Condition C.2 for Z(X). Since |max{a, 0} − max{b, 0}| ≤ |a − b|
for any a, b ∈ IR, we have

|�TZ(X)| ≤
∣
∣
∣
(
‖q⊥(t + T )‖ − θ‖q‖(t + T )‖

)
−

(
‖q⊥(t)‖ − θ‖q‖(t)‖

)∣
∣
∣

≤
∣
∣
∣‖q⊥(t + T )‖ − ‖q⊥(t)‖

∣
∣
∣ + θ

∣
∣
∣‖q‖(t + T )‖ − ‖q‖(t)‖

∣
∣
∣

≤ ‖q⊥(t + T ) − q⊥(t)‖ + θ‖q‖(t + T ) − q‖(t)‖
≤ (1 + θ) ‖q(t + T ) − q(t)‖
≤ (1 + θ)namaxT � D. (43)

Here, we use the fact that q⊥ is a projection onto K◦ = {x ∈ IRn2 : 〈x, y〉 ≤ 0,∀y ∈
K}, the polar cone of K. Since the projection onto a cone is nonexpansive, we have
‖x⊥ − y⊥‖ ≤ ‖x − y‖ and ‖x‖ − y‖‖ ≤ ‖x − y‖, ∀x, y.

To verify condition C.1, we need to bound the expected T -step drift for Z(X). For
ease of notation, we denote IE[ · |X(t) = X] as IEX[ · ].

Since (43) provides an upper bound on the magnitude of the T -step drift, we know
that if X(t) satisfies Z(X) > D, then Z(X(t + T )) is positive, and we may drop the
max{·, 0} expression in the definition of Z(X) in this case. In other words, for all X
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such that Z(X) > D, we may write the expected T -step drift as

IEX

[
�TZ(X)

]
= IEX

[(
‖q⊥(t + T )‖ − ‖q⊥(t)‖

)
− θ

(
‖q‖(t + T )‖ − ‖q‖(t)‖

)]
.

(44)

Therefore, we need only to consider the T -step expected drift of ‖q⊥‖ and ‖q‖‖.
We first consider the drift of ‖q⊥‖. The derivation follows along the lines of [15],

where the relation in [15, Lemma 4] is used: Let V (X) = ||q||2, V‖(X) = ||q‖||2, and
�V , �V‖ denote the one-step drift of V , V‖, respectively. Then

‖q⊥(t + 1)‖ − ‖q⊥(t)‖ ≤ 1

2‖q⊥(t)‖
(
�V (X(t)) − �V‖(X(t))

)
. (45)

The inequality could be derived as follows:

‖q⊥(t + 1)‖ − ‖q⊥(t)‖ =
√

‖q⊥(t + 1)‖2 −
√

‖q⊥(t)‖2 ≤ ‖q⊥(t + 1)‖2 − ‖q⊥(t)‖2
2‖q⊥(t)‖ ,

where the inequality follows from the concavity of the square root function: Since
f (x) = √

x, x > 0 is concave, we have f (y)− f (x) ≤ (y− x) f ′(x) = y−x
2
√
x
. Setting

x = ‖q⊥(t)‖2 and y = ‖q⊥(t+1)‖2 gives the inequality. Then, with the orthogonality
between q⊥ and q‖, we have ‖q⊥‖2 = ‖q‖2 − ‖q‖‖2, and (45) follows by applying
the relation for q⊥(t + 1) and q⊥(t) and then rearranging the terms.

With (45), we have the following inequality for the T -step drift of ‖q⊥(t)‖:

IEX

[
‖q⊥(t + T )‖ − ‖q⊥(t)‖

]
= IEX

[ t+T−1∑

τ=t

(‖q⊥(τ + 1)‖ − ‖q⊥(τ )‖)
]

≤ IEX

[ t+T−1∑

τ=t

�V (X(τ )) − �V‖(X(τ ))

2‖q⊥(τ )‖
]

= IEX

[ t+T−1∑

τ=t

IE
[�V (X(τ )) − �V‖(X(τ ))

2‖q⊥(τ )‖
∣
∣
∣X(τ )

]]

.

(46)

We now derive bounds for �V and �V‖:

IE
[
�V (X(τ ))

∣
∣
∣X(τ )

]

= IE
[
‖q(τ + 1)‖2 − ‖q(τ )‖2

∣
∣
∣X(τ )

]

= IE
[
‖q(τ ) + a(τ ) − s(τ )1{r(τ )=0}‖2 + ‖u(τ )‖2

+ 2
〈
q(τ + 1) − u(τ ),u(τ )

〉
− ‖q(τ )‖2

∣
∣
∣X(τ )

]
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≤ IE
[
‖q(τ ) + a(τ ) − s(τ )1{r(τ )=0}‖2 − ‖q(τ )‖2

∣
∣
∣X(τ )

]

=
∑

i, j

IE
[
a2i j (τ ) + si j (τ )1{r(τ )=0} − 2ai j (τ )si j (τ )1{r(τ )=0}

∣
∣
∣X(τ )

]

+ IE
[
2
〈
q(τ ),λ − s(τ )1{r(τ )=0}

〉∣
∣
∣X(τ )

]

(a)≤
∑

i j

(λ2i j + σ 2
i j ) + n + 2

〈
q(τ ), (1 − ε)ν − s(τ )

〉
+ 2

〈
q(τ ), s(τ )

〉
1{r(τ )>0}

= ‖λ‖2 + ‖σ‖2 + n − 2ε
〈
q(τ ), ν

〉
+ 2

〈
q(τ ), ν − s(τ )

〉
+ 2

〈
q(τ ), s(τ )

〉
1{r(τ )>0},

where (a) follows from IE[a2i j ] = λ2i j + σ 2
i j , ai j (t)si j (t) ≥ 0 for all i, j , and

∑
i j si j (t) = 1 for all t .
Suppose g is the sublinear hysteresis function for AdaptiveMaxWeight, then by the

sublinearity, there exists a constant Kθ such that g(x) < θ
α
x for any x > Kθ , where

α = 8‖ν‖
νmin

. Hence, by the definition of Adaptive MaxWeight, we have, for any X(τ )

such that 〈q(τ ), s∗(τ )〉 > Kθ ,

〈
q(τ ), ν − s(τ )

〉
=

〈
q(τ ), ν − s∗(τ )

〉
+

〈
q(τ ), s∗(τ ) − s(τ )

〉

≤
〈
q(τ ), ν − s∗(τ )

〉
+ g

(〈
q(τ ), s∗(τ )

〉)

≤
〈
q(τ ), ν − s∗(τ )

〉
+ θ

α

〈
q(τ ), s∗(τ )

〉

=
(
1 − θ

α

)〈
q(τ ), ν − s∗(τ )

〉
+ θ

α

〈
q(τ ), ν

〉
.

From [15, Claim 2], we have
〈
q(τ ), ν − s∗(τ )

〉
≤ −νmin‖q⊥(τ )‖. Therefore,

IE
[
�V (X(τ ))

∣
∣
∣X(τ )

]
≤ ‖λ‖2 + ‖σ‖2 + n − 2ε

〈
q(τ ), ν

〉
− 2

(
1 − θ

α

)
νmin‖q⊥(τ )‖

+ 2
θ

α

〈
q(τ ), ν

〉
+ 2

〈
q(τ ), s(τ )

〉
1{r(τ )>0}. (47)

For �V‖, we have

IE
[
�V‖(X(τ ))

∣
∣
∣X(τ )

]
= IE

[
‖q‖(τ + 1)‖2 − ‖q‖(τ )‖2

∣
∣
∣X(τ )

]

= IE
[〈
q‖(τ + 1) + q‖(τ ),q‖(τ + 1) − q‖(τ )

〉∣
∣
∣X(τ )

]

= IE
[
‖q‖(τ + 1) − q‖(τ )‖2 + 2

〈
q‖(τ ),q‖(τ + 1) − q‖(τ )

〉∣
∣
∣X(τ )

]

≥ 2IE
[〈
q‖(τ ),q‖(τ + 1) − q‖(τ )

〉∣
∣
∣X(τ )

]

= 2IE
[〈
q‖(τ ),q(τ + 1) − q(τ )

〉
−

〈
q‖(τ ),q⊥(τ + 1) − q⊥(τ )

〉∣
∣
∣X(τ )

]
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(b)≥ 2IE
[〈
q‖(τ ), a(τ ) − s(τ )1{r(τ )=0} + u(τ )

〉∣
∣
∣X(τ )

]

≥ 2
〈
q‖(τ ),λ

〉
− 2

〈
q‖(τ ), s(τ )1{r(τ )=0}

〉

= −2ε
〈
q‖(τ ), ν

〉
+ 2

〈
q‖(τ ), ν − s(τ )

〉
+ 2

〈
q‖(τ ), s(τ )

〉
1{r(τ )>0}

= −2ε
〈
q‖(τ ), ν

〉
+ 2

〈
q‖(τ ), s(τ )

〉
1{r(τ )>0}. (48)

For (b), we use the following properties of the projection onto cone K: For q ∈ IRn2 ,
〈q‖,q⊥〉 = 0, andq⊥ ∈ K◦. Therefore 〈q‖(t),q⊥(t)〉 = 0, and 〈q‖(t),q⊥(t+1)〉 ≤ 0.

Applying (47) and (48) in (46), we obtain

IEX

[
‖q⊥(t + T )‖ − ‖q⊥(t)‖

]

≤ IEX

[ t+T−1∑

τ=t

(‖λ‖2 + ‖σ‖2 + n

2‖q⊥(τ )‖ − ε
〈 q⊥(τ )

‖q⊥(τ )‖ , ν
〉
− (

1 − θ

α

)
νmin + θ

〈
q(τ ), ν

〉

α‖q⊥(τ )‖

+
〈 q⊥(τ )

‖q⊥(τ )‖ , s(τ )
〉
1{r(τ )>0}

)]

≤ IEX

[

T

( ‖λ‖2 + ‖σ‖2 + n

min
τ∈[t,t+T ] 2‖q⊥(τ )‖ + ε‖ν‖ − (

1 − θ
)
νmin + 1 + θ

α
‖ν‖

)

+ √
n
t+T−1∑

τ=t

1{r(τ )>0}
]

,

(49)

where we have used the fact that ‖q⊥‖ ≥ θ‖q‖‖ implies θ‖q‖ ≤ θ(‖q‖‖ + ‖q⊥‖) ≤
(1 + θ)‖q⊥‖, and ‖s(τ )‖ ≤ √

n for any schedule s(τ ) ∈ S.
On the other hand, the drift of ‖q‖‖ can be obtained following (48):

IEX

[
‖q‖(t + T )‖ − ‖q‖(t)‖

]
= IEX

[ t+T−1∑

τ=t

IE
[
‖q‖(τ + 1)‖ − ‖q‖(τ )‖

∣
∣
∣X(τ )

]]

≥ IEX

[ t+T−1∑

τ=t

IE
[‖q‖(τ + 1)‖2 − ‖q‖(τ )‖2

‖q‖(τ + 1)‖ + ‖q‖(τ )‖
∣
∣
∣X(τ )

]]

≥ IEX

[ t+T−1∑

τ=t

IE
[ −2ε

〈
q‖(τ ), ν

〉

‖q‖(τ + 1)‖ + ‖q‖(τ )‖
∣
∣
∣X(τ )

]]

≥ IEX

[ t+T−1∑

τ=t

−2ε
〈
q‖(τ ), ν

〉

‖q‖(τ )‖
]

≥ −2T ε‖ν‖, (50)

where the last inequality follows from the Cauchy–Schwartz inequality.
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Now, applying (49) and (50) in (44), we obtain

IEX

[
�TZ(X)

]
≤ IEX

[

T

( ‖λ‖2 + ‖σ‖2 + n

min
τ∈[t,t+T ] 2‖q⊥(τ )‖ + (1 + 2θ)ε‖ν‖ − (

1 − θ
)
νmin + 1 + θ

α
‖ν‖

)

+ √
n
t+T−1∑

τ=t

1{r(τ )>0}
]

. (51)

From [19, Lemma 1], we know that for any fixed T > 0, if W ∗(t) >

g−1
(
nT (amax + 1)

)
+ nT , then at most one reconfiguration could occur within

[t, t + T ], which gives
∑t+T−1

τ=t 1r(τ )>0 ≤ �r .

Select T = 8
√
n�r

νmin
, then set D = 3

2namaxT = 12n3/2amax�r
νmin

. Then, ∀X such that

Z(X) > κ =
{
D, namaxT + 4(‖λ‖2+‖σ‖2+n)

νmin
, nKθ , ng−1

(
nT (amax + 1)

)
+ n2T

}
,

and ∀ε such that 0 < ε ≤ νmin
16‖ν‖ , we have IEX

[
�TZ(X)

]
≤ − (1−θ)νmin

4 ≤ − νmin
8 .

Hence, by Lemma 1, we have ∀ε such that 0 < ε ≤ νmin
16‖ν‖ ,

IE
[‖q̄⊥‖ − θ‖q̄‖‖

] ≤ IE
[
Z(X̄)

] ≤ κ + 16D2

νmin
.

Letting Mθ = κ + 16D2

νmin
, we then have the result. ��

B Proof of Proposition 2

Proof We will derive the lower bound by bounding the expected queue length sum at
each input port, in particular, IE

[∑
j q̄i j (t)

]
for each input port i .

The queue length dynamics of the coupled queue φi (t) are given by

φi (t + 1) = [
φi (t) + bi (t) − 1{r(t)=0}

]+

= φi (t) + bi (t) − 1{r(t)=0} + vi (t),

where vi (t) is the unused service and satisfies φi (t + 1)vi (t) = 0.
Wemay show by induction that IE

[∑
j q̄i j (t)

] ≥ IE
[
φ̄i (t)

]
. It then remains to lower

bound IE
[
φ̄i (t)

]
. We consider the expected drift of

(
φ̄i (t)

)2 as follows:

IE
[(

φ̄i (t + 1)
)2 − (

φ̄i (t)
)2]

= IE
[(

φ̄i (t) + bi (t) − 1{r(t)=0}
)2 − (

vi (t)
)2 − (

φ̄i (t)
)2]

= IE
[
2φ̄i (t)

(
bi (t) − 1{r(t)=0}

) + (
bi (t) − 1{r(t)=0}

)2 − (
vi (t)

)2]

= IE
[
2φ̄i (t)

(
(1 − ε) − (1 − 1{r(t)>0})

) + (
bi (t) − (1 − ε) + (1{r(t)>0} − ε)

)2 − vi (t)
]

= −2εIE
[
φ̄i (t)

] + 2IE
[
φ̄i (t)

]
IE
[
1{r(t)>0}

] + Var(bi (t)) + IE
[
(1{r(t)>0} − ε)2

] − IE
[
vi (t)

]
,
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where the last equality follows from the independence between the queue length
process φi (t) and the schedule reconfiguration decision. We have

2(ε − p)IE
[
φ̄i (t)

] =
∑

j

σ 2
i j + p − 2pε + ε2 − IE

[
vi (t)

]
.

Considering the drift of φ̄i (t), we can derive IE
[
vi (t)

]
as follows:

IE
[
φ̄t (t + 1) − φ̄i (t)

] = (1 − ε) − (1 − IE
[
1{r(t)>0}

]
) + IE

[
vi (t)

] = 0

⇒ IE
[
vi (t)

] = ε − IE
[
1{r(t)>0}

] = ε − p.

We thus have

IE
[
φ̄i (t)

] =

∑

j

σ 2
i j

2(ε − p)
− (1 − ε)(ε − 2p)

2(ε − p)
.

Using IE
[∑

j q̄i j (t)
] ≥ IE

[
φ̄i (t)

]
, and summing over each input port, we obtain

IE

[∑

i j

q̄i j (t)

]

≥ IE

[∑

i

φ̄i (t)

]

≥

∑

i j

σ 2
i j

2(ε − p)
− (1 − ε)(ε − 2p)

2(ε − p)
.

��

C Proof of Proposition 3

Proof Let tk, k = 1, . . ., denote the kth schedule reconfiguration time. By the assump-
tion that the system state X(t) = (

q(t), s(t), r(t)
)
converges in distribution to a

steady-state random vector X̄ = (
q̄, s̄, r̄

)
, we may consider a renewal-reward process

associated with X(t) where tk are the arrival epochs, while the reward function is the
sum of queue lengths given by R(t) = ∑

i j qi j (t).
From renewal-reward theory, we have

IE

[∑

i j

qi j (t)

]

= lim
T→∞

1

T
IE

[ T∑

t=0

qi j (t)

]

=
IE

[ tk+1−1∑

t=tk

∑

i j

qi j (t)

]

IE[tk+1 − tk] .
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For any (i, j) such that Si j (tk) = 0, we have qi j (t) = qi j (tk) + ∑t−1
τ=tk ai j (τ ) ≥

∑t−1
τ=tk ai j (τ ), while for any (i, j) such that Si j (tk) = 1, we have qi j (t) ≥ 0.

IE

[ tk+1−1∑

t=tk

∑

i j

qi j (t)

]

= IE

[ tk+1−1∑

t=tk

IE
[∑

i j

qi j (t)
∣
∣
∣q(tk)

]]

≥ IE

[ tk+1−1∑

t=tk

∑

(i, j):Si j (tk)=0

λi j (t − tk)

]

≥ IE

[ tk+1−1∑

t=tk

(
t − tk

)(
n(1 − ε) − max

S
〈S,Λ〉

)]

= IE

[
(tk+1 − tk)2

2

]

(n − ᾱ)(1 − ε).

We then have a lower bound on the expected queue length sum as follows:

IE

[∑

i j

qi j (t)

]

= IE[(tk+1 − tk)2]
2IE[tk+1 − tk] (n − ᾱ)(1 − ε)

≥ IE[tk+1 − tk]
2

(n − ᾱ)(1 − ε)

= �r

2p
(n − ᾱ)(1 − ε).

��

D Proof of Proposition 4

Proof Given the period T , we consider the Markov chainX(t) being sampled at times
tk = kT , k = 0, 1, . . .. Since the Fixed FrameMaxWeight policy stabilizes the system
if T > �r

ε
, we know that X(t) converges to a steady-state distribution, and so does

X(tk). Let X̄ = (q̄, s̄, r̄) and X̂ = (q̂, ŝ, r̂) denote the steady-state distribution of X(t)
and X(tk), respectively. By the assumption on the maximum arrival, we immediately
have that IE[∑i j q̄i j ] ≤ IE[∑i j q̂i j ] + n2amaxT . It then remains to bound IE[∑i j q̂i j ]
following the similar procedures in [15]:

1. Derive an upper bound on IE[‖q⊥(tk)‖2].
2. Derive the queue length upper bound which depends on IE[‖q⊥(tk)‖2].
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Consider the Lyapunov function Z(X) = ‖q⊥‖. By the assumption on the maxi-
mum arrival, we have

|�Z(X)| =
∣
∣
∣‖q⊥(tk+1)‖ − ‖q(tk)‖

∣
∣
∣ ≤ ‖q⊥(tk+1) − q(tk)‖ =

√∑

i j

|qi j (tk+1 − qi j (tk)|2

≤ namaxT . (52)

For the expected drift at steady state, we have

IE
[
‖q⊥(tk+1)‖ − ‖q(tk)‖

]
≤ IE

[ tk+1−1∑

τ=tk

IE
[�V (X(τ )) − �V‖(X(τ ))

2‖q⊥‖
∣
∣
∣X(τ )

]]

,

where �V (X) and �V‖(X) are the drift of Lyapunov functions V (X) = ‖q‖2 and
V‖(X) = ‖q‖‖2, respectively. Now, for each τ ∈ [tk, tk+1 − 1], we have

IE
[
�V (X(τ ))

∣
∣
∣X(τ )

]
≤ ‖λ‖2 + ‖σ‖2 + n − 2ε〈q(τ ), ν〉 + 2〈q(τ ), ν − S∗(τ )〉

+ 2〈q(τ ),S∗(τ ) − S(τ )〉 + 2〈q(τ ), s(τ )〉1{r(τ )>0}
≤ ‖λ‖2 + ‖σ‖2 + n − 2ε〈q(τ ), ν〉 − 2νmin‖q⊥(τ )‖

+ 2n(amax + 1)τ + 2〈q(τ ), s(τ )〉1{r(τ )>0}

and

IE
[
�V‖(X(τ ))

∣
∣
∣X(τ )

]
≥ −2ε〈q‖(τ ), ν〉 + 2〈q‖(τ ), s(τ )〉.

We then have the expected drift of Z(X) at steady state given by

IE
[
‖q⊥(tk+1)‖ − ‖q(tk)‖

]

≤ IE

[ tk+1−1∑

τ=tk

(‖λ‖2 + ‖σ‖2 + n

2‖q(τ )‖ − ε

〈
q⊥(τ )

‖q⊥(τ )‖ , ν

〉

− νmin + n(amax + 1)τ

‖q(τ )‖
)

+ 2

〈
q⊥(τ )

‖q⊥(τ )‖ , s(τ )

〉

1{r(τ )>0}
)]

≤ T
(‖λ‖2 + ‖σ‖2 + n + n(amax + 1)T

2(‖q(tk)‖ − nT )
+ ε‖˚‖ − νmin

)
+ √

n�r

≤ T
(‖λ‖2 + ‖σ‖2 + n + n(amax + 1)T

2(‖q(tk)‖ − nT )
− νmin

4

)
,

where the last inequality follows from ε ≤ νmin
4‖ν‖ and T > �r

ε
≥ 4‖ν‖�r

νmin
≥ 4

√
n�r

νmin
.
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Let κ = 2(‖λ‖2+‖σ‖2+n)
νmin

+ nT (
2(amax+1)

νmin
+ 1) . We have that ‖q(tk)‖ > κ implies

IE
[
‖q⊥(tk+1)‖ − ‖q(tk)‖

]
≤ −νmin

4
T ,

then using [15, Lemma 3] with D = namaxT and η = νminT
4 , we have

IE
[
‖q⊥(tk)‖2

]
≤ 4κ2 + 32D2

(
1 + D

η

)2 ≤
(
2κ + 4

√
2D(1 + D

η
)
)2

≤ T 2
(4namax + 4(‖λ‖2 + ‖σ‖2 + 2n) + 16

√
2n2a2max

νmin
+ 2n + 4

√
2namax

)2
.

Letting M = 4namax+4(‖λ‖2+‖σ‖2+2n)+16
√
2n2a2max

νmin
+ 2n + 4

√
2namax, we have

IE
[
‖q⊥(tk)‖2

]
≤ T 2M2.

Consider the Lyapunov function W (X) = ∑
i

(∑
j qi j

)2 + ∑
i

(∑
i qi j

)2 −
1
n

(∑
i j qi j

)2
, and set the corresponding Lyapunov drift at steady state to zero,

IE
[
W (X(tk+1)) − W (X(tk))

]
= 0. We then have T1 = T2 + T3 + T4, where

T1 = 2IE
[∑

i

(∑

j

qi j (tk)
)(∑

j

tk+1−1∑

τ=tk

(si j (τ )1r(τ )=0 − ai j (τ ))
)

+
∑

j

(∑

i

qi j (tk)
)(∑

i

tk+1−1∑

τ=tk

(si j (τ )1r(τ )=0 − ai j (τ ))
)

− 1

n

(∑

i j

qi j (tk)
)(∑

i j

tk+1−1∑

τ=tk

(si j (τ )1r(τ )=0 − ai j (τ ))
)]

= 2(εT − �r )IE
[∑

i j

qi j (tk)
]
,

T2 = IE
[∑

i

(∑

j

tk+1−1∑

τ=tk

(ai j (τ ) − si j (τ )1{r(τ )=0})
)2

+
∑

j

(∑

i

tk+1−1∑

τ=tk

(ai j (τ ) − si j (τ )1{r(τ )=0})
)2

− 1

n

(∑

i j

tk+1−1∑

τ=tk

(ai j (τ ) − si j (τ )1{r(τ )=0})
)2]

=
(
2 − 1

n

)
T

∑

i j

σ 2
i j + n(εT − �r )

2,

T3 = IE
[

−
∑

i

(∑

j

tk+1−1∑

τ=tk

ui j (τ )
)2 −

∑

j

(∑

i

tk+1−1∑

τ=tk

ui j (τ )
)2 + 1

n

(∑

i j

tk+1−1∑

τ=tk

ui j (τ )
)2]
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≤ nT (εT − �r ),

T4 = 2IE
[∑

i

(∑

j

qi j (tk+1)
)(∑

j

tk+1−1∑

τ=tk

ui j (τ )
)

+
∑

j

(∑

i

qi j (tk+1)
)(∑

i

tk+1−1∑

τ=tk

ui j (τ )
)

− 1

n

(∑

i j

qi j (tk+1)
)(∑

i j

tk+1−1∑

τ=tk

ui j (τ )
)]

≤ 2namaxT IE
[∑

i j

tk+1−1∑

τ=tk

ui j (τ )
]

+ 4n
tk+1−1∑

τ=tk

IE
[∑

i j

ui j (τ )
]√

IE[‖q⊥(tk + τ)‖2]

≤ 2n2(εT − �r )T (amax + 2M).

Hence, we have the upper bound

IE
[∑

i j

q̄i j
]

≤
(
1 − 1

2n

) T

εT − �r
‖σ‖2 + n((1 + ε)T − �r )

2
+ n2T (amax + 2M)

≤
(

1 − 1

2n

)
T

εT − �r
‖σ̃‖2 + T

(n(1 + ε)

2
+ n2(amax + 2M)

)
.

��
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