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It is well-known that the power-of-d choices routing algorithm maximizes throughput and is heavy-traffic 
optimal in load balancing systems with homogeneous servers. However, if the servers are heterogeneous, 
throughput optimality does not hold in general. We find necessary and sufficient conditions for 
throughput optimality of power-of-d choices when the servers are heterogeneous, and we prove that 
almost the same conditions are sufficient to show heavy-traffic optimality. Additionally, we generalize 
the sufficient condition for throughput optimality to a larger class of routing policies.
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1. Introduction

Load balancing systems are multi-server Stochastic Processing 
Networks (SPNs) with a single stream of job arrivals. A single dis-
patcher routes arrivals to one of the queues immediately after they 
enter the system and, after being routed, the jobs wait in the cor-
responding line until the assigned server can process them. The 
policy to route the jobs used by the dispatcher is called a routing 
algorithm. An essential goal when designing routing algorithms is 
to balance the workload of the servers such that the delay is min-
imized, and the stability region of the SPN is maximal. When a 
routing algorithm achieves maximal stability region, it is said to 
be throughput optimal. For a formal definition of throughput opti-
mality in the case of a load balancing system, we refer the reader 
to Definition 2.

The most basic algorithm is random routing, under which new 
arrivals are routed to a queue selected uniformly at random. Ad-
vantages of this routing algorithm are that the dispatcher does not 
require any information about the servers’ speed or queue length. 
However, it has been proved that it is not delay optimal and, if the 
servers are heterogeneous, the stability region is not maximal [15].

A popular routing algorithm is Join the Shortest Queue (JSQ), 
under which the new arrivals are routed to the server with the 
least number of jobs in line (including the one being served, if 
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any). It has been proved that JSQ is optimal among policies that do 
not know job durations, under several optimality criteria. For ex-
ample, [18,19] prove that JSQ maximizes the number of customers 
that complete service by a given time t . In [19], Poisson arrivals 
and exponential job sizes are assumed, whereas [18] relaxes these 
assumptions. In [3], it is shown that JSQ minimizes the total time 
needed to finish processing all the jobs that arrive by a fixed time 
t . All these consider a continuous time model in a general set-
ting, i.e., without taking any asymptotic regime. In [5] it is proved 
that JSQ minimizes the delay in the heavy-traffic regime, i.e., when 
the arrival rate approaches the maximum capacity of the system. 
This characteristic of a policy is known as heavy-traffic optimality. 
More recently, [4] showed that JSQ is both throughput and heavy-
traffic optimal in the context of a load balancing system operating 
in discrete time. In this case, instead of proving that the delay is 
minimized, the authors prove that the total number of jobs in the 
system is minimized. Even though JSQ is optimal under multiple 
criteria, a drawback is that it requires knowledge of all the queue 
lengths at any point of time.

Comparing JSQ to random routing suggests a trade-off between 
the expected delay and the amount of information required by the 
routing algorithms. A policy that can be considered to be in be-
tween them is the power-of-d choices algorithm, where d is an 
integer between 1 and the total number of servers n. Under this al-
gorithm, d servers are sampled uniformly at random and the new 
arrivals are routed to the server with the shortest queue among 
these. If d = 1, then power-of-d is the same as random routing, 
and if d = n, it is the same as JSQ. In the case of load balanc-
ing systems with identical servers, it has been proved that even if 
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d = 2, power-of-d choices is throughput and heavy-traffic optimal 
[9]. It has also been shown that power-of-d choices yields sub-
stantial improvement in the tail probabilities of the queue lengths 
in the mean-field regime (i.e., when the number of servers in-
creases to infinity) [12,13]. Also, for small values of d, the amount 
of information required by the dispatcher to route new arrivals is 
significantly smaller than under JSQ.

A disadvantage of power-of-d choices is that throughput and 
delay optimality have been proved only when the servers are 
identical. If the service rates are different, there are known coun-
terexamples for throughput optimality [15]. In other words, if the 
servers are different, power-of-d may reduce the stability region 
of the load balancing system. If the dispatcher knows the ser-
vice rates, throughput and delay optimality of a modified version 
of power-of-d choices have been proved in [2,16]. In this adap-
tation, the probability of sampling each server is proportional to 
its mean service rate. However, we are interested in studying the 
cases when service rates may be unknown to the dispatcher.

The primary contribution of this paper is the computation of 
necessary and sufficient conditions for throughput optimality of 
power-of-d choices, that only depend on the mean service rate 
vector. Specifically, we characterize a polytope where the service 
rate vectors should lie. In particular, if the servers are identical 
our conditions are satisfied. Our result formalizes the idea that, 
in order to have throughput optimality, all the queues need to be 
sampled frequently enough. Then, given that power-of-d selects d
queues uniformly at random, our result implies that the service 
rates of different servers should be close to each other; but not 
necessarily equal.

In [6] the authors address a similar question. They study stabil-
ity of a general load balancing system, and they obtain sufficient 
conditions for throughput optimality. However, they approach the 
problem from a different perspective, and they provide conditions 
that depend on the queue length processes. In this paper, we pro-
vide conditions that only depend on the service rates and the 
sampling scheme. Hence, our conditions are easier to check.

The second contribution of this paper is the computation of the 
joint distribution of the scaled queue lengths in heavy-traffic. We 
show that, if the heterogeneous service rates lie in the interior 
of the polytope proposed for throughput optimality, the load bal-
ancing system operating under power-of-d choices has the same 
limiting distribution as a load balancing system operating under 
JSQ. Therefore, our results imply that power-of-d choices is heavy-
traffic optimal.

Heavy-traffic means that we analyze the system when it is 
loaded to its maximum capacity. In the limit, many systems behave 
as if their dimension was smaller, phenomenon known as State 
Space Collapse (SSC). For the heterogeneous load balancing system 
operating under power-of-d choices we prove that, in the limit, the 
n-dimensional queueing system behaves as a one-dimensional sys-
tem, i.e., a single server queue. Then, we use this result to find 
the joint distribution of queue lengths. We develop our analysis in 
discrete time (i.e., in a time slotted fashion), so we use the no-
tion of SSC developed in [4]. Then, we find the joint distribution 
of the queue lengths using the Moment Generating Function (MGF) 
method introduced in [8]. Heavy-traffic analysis of the load balanc-
ing system operating under power-of-d choices has been done in 
the literature, but only under the assumption of identical and inde-
pendent servers [9]. To the best of our knowledge, we are the first 
ones to obtain the heavy-traffic behavior of this queueing system 
with heterogeneous servers, and without modifying the probability 
of sampling each server.

The third contribution of this paper is a sufficient condition 
for throughput optimality under a larger class of routing policies. 
Specifically, we consider the following generalization of power-of-d
choices. In power-of-d choices, only sets of size d are sampled, and 
617
all of them are observed with the same probability. In the last part 
of this paper, we consider a routing policy that selects any subset 
of servers with certain probability, and routes the arrivals to the 
server with the shortest queue in the set. Then, we prove sufficient 
conditions on the sampling probabilities for throughput optimality.

The organization of the rest of this paper is as follows. In Sec-
tion 2 we formally introduce a model for the load balancing system 
and we define the power-of-d choices algorithm; in Section 3 we 
prove necessary and sufficient conditions for throughput optimal-
ity of power-of-d choices; in Section 4 we perform heavy-traffic 
analysis; in Section 5 we present the generalization; and in Sec-
tion 6 we present details of the proofs of the previous sections.

1.1. Notation

Before establishing the details of our model we introduce our 
notation. We use R and Z to denote the set of real and integer 
numbers, respectively. We add a subscript + to indicate nonneg-
ativity, and a number in the superscript to denote vector spaces. 
For any number n ∈ Z+ , we use [n] � {

i ∈ Z+ : 1 ≤ i ≤ n
}
and for 

d ∈ Z+ with n ≥ d we use 
(n
d

)
to denote the binomial coefficient. 

We use bold letters to denote vectors and the same letter but not 
bold and with a subscript i to denote its ith element. Given a vec-
tor x ∈Rn , the notation x(i) refers to the ith smallest element of x. 
Given two vectors x, y ∈ Rn , we use 〈x, y〉 to denote dot product 
and ‖x‖ to the Euclidean norm. Given a set C ⊂ Rn , Int (C) denotes 
its interior.

If X is a random variable, then E [X] is its expected value 
and Var [X] its variance. For an event A, the notation 1{A} is 
the indicator function of A. Additionally, we use the notation 
Eq [ · ]�E [ · |q(k) = q] for the conditional expectation on the vec-
tor of queue lengths in time slot k.

For any function V : Zn+ → R+ let

�V (q) �
[
V
(
q(k + 1)

)− V
(
q(k)

)]
1{q(k)=q}.

Thus, �V (q) is a random variable that measures the amount of 
change in the value of V in one step, starting from q. We refer to 
�V (q) as the drift of V (q).

2. Model

We model the load balancing system in discrete time, i.e., in a 
time slotted fashion, and we use k ∈ Z+ to index time. Consider 
a system with n servers, each of them with an infinite buffer. Let 
q(k) be the vector of queue lengths at the beginning of time slot 
k, i.e., for each i ∈ [n], qi(k) is the number of jobs in queue i when 
the kth time slot starts including the job in service, if any. There is 
a single stream of arrivals to the system, and a dispatcher routes 
all the arrivals of each time slot to one of the queues, according 
to some routing policy. Let {a(k) : k ∈ Z+} be a sequence of i.i.d. 
random variables such that a(k) is the total number of arrivals in 
time slot k. The vector a(k) represents the number of jobs that ar-
rive to each of the queues in time slot k after routing. Then, if the 
dispatcher routes the arrivals to queue i∗ , we have ai∗ (k) = a(k)
and ai(k) = 0 for all i �= i∗ . We assume that the routing time is 
negligible and that the routing decision depends only on the cur-
rent vector of queue lengths q(k). Let s(k) be the potential service 
vector in time slot k, i.e., for each i ∈ [n], si(k) is the number of 
jobs that can be processed in queue i in time slot k if there are 
enough jobs in line. Let {s(k) : k ∈ Z+} be a sequence of i.i.d. ran-
dom vectors, which is independent of the arrival and the queue 
length processes. The difference between the potential and actual 
service is called unused service, and we use u(k) to denote the 
vector of unused service in time slot k. Observe that u(k) is a func-
tion of q(k), a(k) and s(k).
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We assume that the arrivals and routing occur before service in 
each time slot. Then, the following equation describes the dynam-
ics of the queues. For each i ∈ [n] and each k ∈ Z+ ,

qi(k + 1) = qi(k) + ai(k) − si(k) + ui(k). (1)

From (1), observe that 
{
q(k) : k ∈Z+

}
is a Discrete Time Markov 

chain (DTMC). Also, for every i ∈ [n],
qi(k + 1)ui(k) = 0 (2)

because the unused service in queue i is nonzero only if the po-
tential service to that queue is larger than the number of jobs 
available to be served (queue length and arrivals). Therefore, if the 
unused service is nonzero, the queue is empty at the beginning of 
the next time slot.

We assume that the arrival and the potential service to each 
queue have finite second moment. Let λ � E [a(1)], μ � E [s(1)]
and μ� �

∑n
i=1 μi . Without loss of generality, we assume the vec-

tor μ is ordered from minimum to maximum, i.e., μi = μ(i) for 
all i ∈ [n]. Let σ 2

a � Var [a(1)] be the variance of the arrival pro-
cess and �s the covariance matrix of s(1). For each i ∈ [n], define 
σ 2
si � (�s)i,i . It is well known that the capacity region of the load 

balancing system is

C � {x ∈R+ : x ≤ μ�} , (3)

i.e., for each λ ∈ Int (C), there exists a routing algorithm such that 
{q(k) : k ∈ Z+} is positive recurrent, and if λ /∈ C , then {q(k) : k ∈
Z+} is not positive recurrent for any routing algorithm. A proof of 
this statement is presented in [4].

In this paper we work with the power-of-d choices routing al-
gorithm, also known as JSQ(d). We define it below.

Definition 1. Fix d ∈ [n]. In each time slot, the power-of-d choices 
algorithm selects d queues uniformly at random, and then routes 
the arrivals to the shortest of these. Ties are broken at random. 
Formally, if queues i1, . . . , id are selected uniformly at random, 
then the arrivals in time slot k are routed to the i∗th queue, where
i∗ ∈ argmini∈{i1,...,id} {qi(k)}.

Observe that the power-of-d choices algorithm does not require 
any information about arrival or service rates. It just requires ob-
serving the number of jobs at d of the queues in each time slot.

3. Throughput optimality of power-of-d choices

In this section we state and prove the main theorem of this 
paper. Before presenting the result we formally define throughput 
optimality.

Definition 2. A routing algorithm A is throughput optimal if the 
queue length process 

{
q(k) : k ∈ Z+

}
of the load balancing system 

operating under A is positive recurrent for all λ ∈ Int (C), where C
is defined in (3).

Now we present the main theorem of this paper.

Theorem 1. For any d ∈ [n − 1], define

M(d) �
{
y ∈ Rn+ :

∑ j
i=1 y(i)

y�

≥
( j
d

)
(n
d

) ∀d ≤ j ≤ n − 1

}
, (4)

where y� �
∑n

i=1 yi . Then, the power-of-d choices algorithm is through-
put optimal for the load balancing system described in Section 2 if and 
only if μ ∈M(d) .
618
Remark 1. Observe that we can equivalently define M(d) for all 
d ∈ [n] as follows

M(d) �
{
y ∈Rn+ :

∑ j
i=1 y(i)

y�

≥
( j
d

)
(n
d

) ∀ j ∈ [n]
}

,

where we use the convention 
( j
d

)= 0 if j < d. Here we only added 
redundant constraints to M(d) , so we use the definition in (4) to 
avoid confusion.

Remark 2. An interpretation of Theorem 1 is the following. In or-
der for power-of-d choices algorithm to be throughput optimal, 
faster servers should be sampled sufficiently often. If this does 
not happen, it leads to the counter example in [15]. Equation 
(4) characterizes the amount of imbalance between service rates 
that power-of-d choices can tolerate. Note that, when the number 
of servers is fixed, as d increases, power-of-d choices can toler-
ate more imbalance because the right hand side of (4) becomes 
smaller. If d = 1, which corresponds to random routing, the set 
M(d) is exactly the set of vectors where all the service rates are 
equal. In the other extreme case, when d = n, all the inequalities 
in (4) are redundant, and M(d) is the set of all nonnegative vec-
tors. This fact is consistent with the throughput optimality of JSQ 
for any vector of service rates.

Remark 3. For i ∈ [n], define νi �
( i−1
d−1

)
(n
d

) , and let ν be a vector with 

elements νi . An equivalent characterization of M(d) is the set of 
all nonnegative vectors μ such that μ

μ�
is majorized by ν . Ma-

jorization captures the notion of imbalance, and several equivalent 
characterizations can be found in [10]. This notion has been used 
in the study of balls and bins models in [1], and to prove opti-
mality of routing and servicing algorithms in [11]. This notion also 
shows that for fixed d and n, the vector μ = ν is on the boundary 
of M(d) .

Remark 4. Theorem 1 establishes that if μ /∈ M(d) , then the 
power-of-d choices is not throughput optimal. In other words, 
if μ /∈ M(d) there are some values of λ ∈ Int (C) for which {
q(k) : k ∈ Z+

}
is not positive recurrent. In fact, if μ /∈ M(d) , the 

queue length process is positive recurrent only if λ ∈ Int
(
C
)
, 

where

C �

⎧⎨
⎩x ∈R+ : x ≤

(n
d

)
( j
d

) j∑
i=1

μi ∀d − 1 ≤ j ≤ n − 1

⎫⎬
⎭ .

Observe that C � C if μ /∈ M(d) , and C = C if μ ∈ M(d) . We omit 
the proof of this remark, since it easily follows from the proof of 
Theorem 1.

In the proof of Theorem 1 we use the Foster-Lyapunov theorem 
[17, Theorem 3.3.7] and a certificate that a DTMC is not positive 
recurrent [17, Theorem 3.3.10].

Proof of Theorem 1. Let ε � μ� − λ, and observe that λ ∈ Int (C)

if and only if ε ∈ (0, μ�). We first prove that if μ ∈M(d) , then the 
power-of-d choices algorithm is throughput optimal. To do that, we 
use the Foster-Lyapunov theorem with Lyapunov function V (q) =
‖q‖2. We have

Eq [�V (q(k))] = Eq

[
‖q(k + 1)‖2 − ‖q(k)‖2

]
(a)= Eq

[
‖q(k) + a(k) − s(k)‖2 − ‖u(k)‖2 − ‖q(k)‖2

]
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(b)≤ Eq

[
‖a(k) − s(k)‖2

]
+ 2Eq [〈q,a(k) − s(k)〉] , (5)

where (a) holds after few algebraic steps, using (1) and (2); and 
(b) holds because ‖u(k)‖2 ≥ 0 and after expanding the first term. 
We analyze each of the terms in (5) separately. For the first term, 
we have

E
[
‖a(k) − s(k)‖2

]
≤ E

[
‖a(k)‖2

]
+E

[
‖s(k)‖2

]
(a)= E

[
a(k)2

]
+

n∑
i=1

E
[
si(k)

2
]

(b)= λ2 + σ 2
a +

n∑
i=1

(
μ2

i + σ 2
si

)
,

where (a) holds because all the arrivals in one time slot are routed 
to the same queue; and (b) holds by definition of variance. Define 
K1 � λ2 + σ 2

a +∑n
i=1

(
μ2

i + σ 2
si

)
, and observe K1 is a finite con-

stant. Then,

Eq

[
‖a(k) − s(k)‖2

]
≤ K1. (6)

Observe that the computation of the bound (6) does not use 
any properties of the routing algorithm. In other words, the bound 
(6) is valid for the load balancing system under any routing algo-
rithm.

To compute the second term of (5), we first compute
Eq [〈q,a(k)〉]. Recall that under power-of-d choices, d queues are 
chosen uniformly at random, and then the arrivals are sent to the 
shortest among them. Then, we have

Eq [〈q,a(k)〉] =λ

n−d+1∑
i=1

q(i)

(n−i
d−1

)
(n
d

) (7)

because there are 
(n−i
d−1

)
ways to sample d queues, and make sure 

that q(i) is the shortest; and there are 
(n
d

)
ways to sample d queues 

uniformly at random. If there are ties on the queue lengths, power-
of-d breaks them at random. Hence, the result in (7) remains valid.

Let φ(i) be the index of the ith shortest queue given q(k) =
q. Then, since the potential service is independent of the queue 
lengths, the second term of (5) is

Eq [〈q,a(k) − s(k)〉] = Eq [〈q,a(k)〉] − 〈q,μ〉

=
n−d+1∑
i=1

q(i)

(
λ
(n−i
d−1

)
(n
d

) − μφ(i)

)
−

n∑
i=n−d+2

q(i)μφ(i). (8)

Define

αi �

⎧⎪⎨
⎪⎩

λ
(n−i
d−1

)
(n
d

) − μφ(i) , if 1 ≤ i ≤ n − d + 1

−μφ(i) , if n − d + 1 < i ≤ n.

(9)

Claim 2. The parameters αi defined in (9) satisfy

1. αn ≤ −μ1 .

2.
n∑

i=1

αi = −ε .

3. For any j ∈ Z+ satisfying 2 ≤ j ≤ n − 1, we have 
n∑

i= j

αi ≤ −K2 , 

where K2 �min

{
μ1,

ε
(nd)

}
.

We prove Claim 2 in Section 6.1. Now we compute an upper 
bound for (8). We obtain
619
Eq [〈q,a(k) − s(k)〉] =
n∑

i=1

αiq(i)

= q(1)

n∑
i=1

αi +
n∑
j=2

⎛
⎝ n∑

i= j

αi

⎞
⎠(q( j) − q( j−1)

)

(a)≤ − εq(1) − K2

n∑
j=2

(
q( j) − q( j−1)

)
(b)= q(1) (K2 − ε) − K2q(n)

(c)≤ −K2q(n), (10)

where (a) holds by properties 2 and 3 in Claim 2; (b) holds after 
solving the telescopic sum and rearranging terms; and (c) holds 
because K2 ≤ ε

(nd)
by definition, and 

(n
d

) ≥ 1. Using (6) and (10) in 
(5) we obtain

Eq [�V (q(k))] ≤ K1 − 2K2q(n).

This inequality is sufficient to prove the conditions of the 
Foster-Lyapunov theorem. Therefore, if μ ∈ M(d) then the power-
of-d choices algorithm is throughput optimal.

Now we prove that if μ /∈ M(d) , then the power-of-d choices 
algorithm is not throughput optimal. In other words, we prove that 
if μ /∈M(d) , there exists λ ∈ Int (C) such that 

{
q(k) : k ∈Z+

}
is not 

positive recurrent.
First observe that if μ /∈ M(d) , there exists j ∈ Z+ such that 

d ≤ j ≤ n − 1 and 
∑ j

i=1 μi

μ�
<

( j
d)

(nd)
. Let j∗ be the smallest j satisfying 

this condition, and δ j∗ > 0 satisfy

∑ j∗
i=1 μi

μ�

+ δ j∗ =
( j∗
d

)
(n
d

) . (11)

Using the Lyapunov function V j∗ (q) =∑ j∗
i=1 qi , we obtain

Eq
[
�V j∗(q(k))

]=
j∗∑

i=1

Eq [ai(k) − si(k) + ui(k)]

(a)≥
j∗∑

i=1

Eq [ai(k)]−
j∗∑

i=1

μi

(b)≥
j∗∑

i=1

Eq

[
aφ̃(i)(k)

]
−

j∗∑
i=1

μi
(c)= μ�δ j∗ − ε

( j∗
d

)
(n
d

) ,

where (a) holds because E [si(k)] = μi and E [ui(k)] ≥ 0 for all 
i ∈ [n]; (b) holds by letting φ̃(i) be the index of the ith longest ele-
ment of q, and because under power-of-d choices, the arrivals are 
routed to the shortest queue among the d selected; and (c) holds 
computing Eq

[
aφ̃(i)(k)

]
similarly to (7), and reorganizing terms.

If ε > 0 satisfies ε ≤ μ� min

{
1, δ j∗

( j∗
d )

(nd)

}
, then we have

Eq
[
V j∗ (q(k + 1)) − V j∗ (q(k))

]≥ 0 for all q ∈ Rn+ . Additionally, we 
need to prove that Eq

[
�V j∗ (q(k))

]
is bounded. We have

Eq
[
�V j∗(q(k))

] (a)≤
j∗∑

i=1

Eq [ai(k)]
(b)≤

n∑
i=1

Eq [ai(k)]
(c)= λ,

where (a) holds because ui(k) ≤ si(k) with probability 1, by defi-
nition of unused service; (b) holds because the number of arrivals 
to each queue is nonnegative; and (c) holds by definition of the 
routing algorithm and λ. This proves the theorem.
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4. Heavy-traffic analysis

In this section we perform heavy-traffic analysis of a heteroge-
neous load balancing system operating under
power-of-d choices. Specifically, we prove that in the heavy-
traffic limit, the load balancing system operating under power-of-d
choices behaves as a single server queue and we find the limit-
ing joint distribution of the vector of queue lengths scaled by the 
heavy-traffic parameter.

Heavy traffic means that we load the system close to its max-
imum capacity. To take the limit we parametrize the system as 
follows. Fix a sequence of service rate vectors {s(k) : k ∈ Z+} and 
take ε ∈ (0,μ�). The arrival process to the system parametrized 
by ε is an i.i.d. sequence {a(ε)(k) : k ∈ Z+} that satisfies λ(ε) �
E 
[
a(ε)(1)

] = μ� − ε . Then, the heavy-traffic limit is obtained by 
taking ε ↓ 0. We add a superscript (ε) to the queue length, arrival 
and unused service variables when we refer to the load balancing 
system parametrized by ε .

In the next proposition we show SSC to a one-dimensional 
subspace. In other words, we show that, in the limit, the n-
dimensional load balancing system operating under power-of-d
choices behaves as a single server queue. Before showing the re-
sult we introduce the following notation. For any vector x ∈ Rn , 
define

x‖ = 1
(∑n

i=1 xi
n

)
, x⊥ � x− x‖. (12)

Then, x‖ is the projection of x on the line {z ∈ Rn : zi = z j ∀i, j ∈
[n]} and x⊥ is the error of approximating x by x‖ . Now we present 
the result.

Proposition 3. Given a sequence {s(k) : k ∈ Z+} of i.i.d. random vec-
tors, and ε ∈ (0, μ�), consider a load balancing system operating under 
power-of-d choices,
parametrized by ε as described above. Suppose d ≥ 2, and that the num-
ber of arrivals and the potential service in each time slot are bounded. Let 
μ ∈ Int

(
M(d)

)
and let q(ε) be a steady-state vector such that {q(ε)(k) :

k ∈ Z+} converges in distribution to q(ε) as k → ∞. Let δ > 0 be such 
that for all j ∈Z+ satisfying d ≤ j ≤ n − 1 we have∑ j

i=1 μi

μ�

− δ ≥
( j
d

)
(n
d

) . (13)

If ε < δμ� , then E 
[
‖q(ε)

⊥ ‖m
]

≤ Mm for each m = 1, 2, . . ., where Mm

is a finite constant (independent of ε).

Proposition 3 says that the error of approximating q(ε) by q(ε)
‖

is negligible in heavy traffic because, as ε gets smaller, the arrival 
rate to the system increases and, therefore, the vector of queue 
lengths q(ε) becomes larger. Then, the projection q(ε)

‖ also becomes 
larger. However, the error of approximating q(ε) by q(ε)

‖ , denoted 
as q(ε)

⊥ , has bounded moments. Then, as ε goes to zero it becomes 
negligible.

Observe that the vector q(ε) is well defined, because μ ∈
Int
(
M(d)

)⊂ M(d) . Then, from Theorem 1, for all ε > 0 the DTMC {
q(ε)(k) : k ∈Z+

}
is positive recurrent.

In the proof of Proposition 3 we use a result first presented in 
[4, Lemma 1], which is a corollary of a result proved in [7].

Proof of Proposition 3. For ease of exposition, we omit the depen-
dence on ε of the variables. Define V (q) � ‖q‖2, V‖(q) � ‖q‖‖2, 
W⊥(q) � ‖q⊥‖. We use the Lyapunov function W⊥(q). We start 
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with a fact first used in [4]. Observe that ‖q⊥‖ =√‖q⊥‖2 by def-
inition of square root, and f (x) = √

x is a concave function. Then, 
by definition of concavity and the Pythagoras theorem,

�W⊥(q) ≤ 1

2
∥∥q⊥

∥∥ (�V (q) − �V‖(q)
)
. (14)

We need to show two conditions. In the first condition we 
show that Eq [�W⊥(q(k))] is negative if q lies outside a bounded 
set, and in the second condition we show that Eq [�W⊥(q(k))] is 
bounded.

To prove the first one, we find an upper bound to Eq [�V (q)]
and a lower bound to Eq

[
�V‖(q)

]
. We start with Eq [�V (q)]. 

From the proof of Theorem 1, we know (6) is satisfied. We ana-
lyze the last term differently here. Defining φ(i) as in the proof of 
Theorem 1, we have

Eq [〈q,a(k) − s(k)〉] (a)= −ε

(∑n
i=1 qi
n

)
+

n∑
i=1

q(i)βi,

where (a) holds reorganizing terms, and defining

βi �

⎧⎪⎪⎨
⎪⎪⎩
(n−i
d−1

)
(n
d

) λ + ε

n
− μφ(i) , if 1 ≤ i ≤ n − d + 1

ε

n
− μφ(i) , if n − d + 1 < i ≤ n.

(15)

Claim 4. The parameters βi defined in (15) satisfy

1. βn ≤ −μ(1) + ε
n .

2.
n∑

i=1

βi = 0.

3. For any j ∈ Z+ satisfying 2 ≤ j ≤ n − 1 we have 
n∑

i= j

βi ≤
−δμ� + ε .

We prove Claim 4 in Section 6.2. Observe that if d = 1, the sec-
ond property is not satisfied. Using Claim 4 we obtain

n∑
i=1

q(i)βi = q(1)

n∑
i=1

βi +
n∑
j=2

⎛
⎝ n∑

i= j

βi

⎞
⎠(q( j) − q( j−1)

)
≤ (−δμ� + ε)

(
q(n) − q(1)

)
. (16)

Observe that, by definition of q⊥ , we have

∥∥q⊥
∥∥2 =

n∑
i=1

(
qi −

∑n
j=1 q j

n

)
(a)≤ n

(
q(n) − q(1)

)
,

where (a) holds because qi ≤ q(n) for all i ∈ [n] and 1
n

∑n
j=1 q j ≥

q(1) by definition of q(1) and q(n) . Using this result in (16) we ob-
tain that
n∑

i=1

q(i)βi ≤
(−δμ� + ε√

n

)∥∥q⊥
∥∥≤

(−δμ� + ε0√
n

)∥∥q⊥
∥∥ ,

for any ε0 ∈ (0, δμ�). Therefore,

Eq [�V (q(k))]

≤K1 − 2ε

(∑n
i=1 qi
n

)
+ 2

(−δμ� + ε0√
n

)∥∥q⊥
∥∥ .

(17)

To lower bound Eq
[
�V‖(q)

]
we only use properties of the 

norm and the unused service. We obtain
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Eq
[
�V‖(q(k))

]≥ −2ε

(∑n
i=1 qi
n

)
− K3, (18)

where K3 � 2nS2max, and Smax is a finite constant such that si(1) ≤
Smax for all i ∈ [n] with probability 1. Using (17) and (18) in (14)
we obtain

Eq [�W⊥(q(k))] ≤ K1 + K3

2
∥∥q⊥

∥∥ +
(−δμ� + ε0√

n

)
,

which proves the first condition of [4, Lemma 1]. The second con-
dition is trivially satisfied because the arrival and service random 
variables are bounded.

Using SSC, we can completely determine the behavior of the 
vector of queue lengths in heavy traffic. In the next proposition we 
provide this result.

Theorem 5. Consider a set of load balancing systems operating un-
der power-of-d as described in Proposition 3. Let σ (ε)

a be the standard 
deviation of a(ε)(1) and assume σa = limε↓0 σ

(ε)
a . Then, εq(ε) =⇒

ϒ1 as ε ↓ 0, where ϒ is an exponential random variable with mean 
1

2n

(
σ 2
a + 1T�s1

)
, and =⇒ denotes convergence in distribution.

Remark 5. In Proposition 3 and Theorem 5 we assume that the 
set M(d) has nonempty interior. This can be proved by observing 
that, for d ≥ 2, a vector of homogeneous service rates μ = c1 (with 
c > 0) satisfies all the inequalities in (4), and none of them is tight. 
Then, such μ = c1 ∈ Int

(
M(d)

)
. On the other hand, when d = 1, 

the set M(d) only contains the homogeneous service rate vectors, 
which has an empty interior. Then, our heavy-traffic results are not 
applicable. This is consistent with the fact that random routing is 
not heavy-traffic optimal.

Proof of Theorem 5. We use the MGF method [8], which is a two-
step procedure to compute the joint distribution of the scaled 
vector of queue lengths in heavy traffic, in queueing systems that 
experience one-dimensional SSC. In fact, our theorem is a corol-
lary of [8, Theorem 2]. We only verify that three conditions are 
satisfied.

We first verify that the routing algorithm is throughput optimal, 
which holds from Theorem 1 because we assume μ ∈ M(d) . The 
second condition is SSC to a one-dimensional subspace, which is 
satisfied by Proposition 3. The last condition is existence of the 
MGF of ε

∑n
i=1 qi , which we formalize in Claim 6 and prove in 

Section 6.3.

Claim 6. For the load balancing system described in Theorem 5, there 
exists 
 > 0 such that E 

[
eθε

∑n
i=1 q

(ε)
i

]
is finite for all θ ∈ [−
, 
].

5. Generalization to other routing policies

In this section we generalize the sufficient conditions in Theo-
rem 1 to a larger class of routing policies. Instead of using power-
of-d choices, suppose the router randomly selects an arbitrary 
subset of servers, and then the arrivals are routed to the server 
with the shortest queue among these. Let π : 2[n] → [0, 1] be the 
probability mass function that governs the set of servers that are 
randomly selected in each time slot. We call Rπ the routing algo-
rithm described above.

Theorem 7. Given π : 2[n] → [0, 1], consider a load balancing system as 
described in Section 2, operating under Rπ . For each subset S ⊆ [n], let 
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π(S) be the probability of sampling the servers in the set S . Let P ([n])
be the set of permutations of the elements of the set [n], and for each 
τ ∈P([n]) define

Mτ �
{
y ∈Rn+ :

∑ j
i=1 y(i)

y�

≤
j∑

i=1

∑
S∈Sτ

i

π(S) ∀ j ∈ [n − 1]
}

,

where Sτ
i � {S ⊆ [n] : τ (n − i + 1) ∈ S,

τ (�) /∈ S ∀� < n − i + 1} .

Rπ is throughput optimal if μ ∈Mτ for all τ ∈P ([n]).

The proof is similar to the proof of Theorem 1, and we present 
a sketch in Section 6.4 for completeness.

6. Details of the proofs in Sections 3, 4 and 5

6.1. Proof of Claim 2

Proof of Claim 2. We prove each of the three properties. We ob-
tain:

1. If i = n we have αn = −μφ(n) ≤ −μ1, because μ1 = mini∈[n] μi .
2. The total sum of αi ’s satisfies

n∑
i=1

αi = λ(n
d

) n−d+1∑
i=1

(
n − i

d − 1

)
− μ�

(a)= λ − μ� = −ε,

where (a) holds because 
∑n−d+1

i=1

(n−i
d−1

)= (n
d

)
.

3. If 2 ≤ j ≤ n − d + 1 we have that the tail sums are
n∑

i= j

αi
(a)= λ

(n+1− j
d

)
(n
d

) −
n∑

i= j

μφ(i)

(b)≤
n+1− j∑
i=1

μi −
(n+1− j

d

)
(n
d

) ε −
n∑

i= j

μφ(i)
(c)≤ − ε(n

d

) ,
where (a) holds because 

∑n−d+1
i= j

(n−i
d−1

)= (n+1− j
d

)
; (b) holds by 

definition of ε and because μ ∈ M(d); and (c) holds because (n+1− j
d

)≥ 1, and because 
∑n+1− j

i=1 μi is the sum of the n + j −1
smallest elements of μ. If n − d + 1 < j ≤ n − 1 we have
n∑

i= j

αi = −
n∑

i= j

μφ(i) ≤ −μ1.

6.2. Proof of Claim 4

Proof of Claim 4. Properties 1 and 2 follow immediately from the 
fact that βi = αi + ε

n . To prove the third property we divide in 
cases. If j ≤ n − d + 1 we have

n∑
i= j

βi =
n−d+1∑
i= j

(n−i
d−1

)
(n
d

) λ +
n∑

i= j

(ε

n
− μφ(i)

)

≤
(n+1− j

d

)
(n
d

) μ� + ε −
n− j+1∑
i=1

μi
(a)≤ ε − δμ�,

where (a) holds by (13) and reorganizing terms.
If j > n − d + 1 we have

n∑
βi =

n∑(ε

n
− μφ(i)

)

i= j i= j
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≤ n − j + 1

n
ε −

n− j+1∑
i=1

μi
(a)≤ ε − δμ�,

where (a) holds by (13) and because n− j+1
n ≤ 1.

6.3. Existence of MGF

Proof of Claim 6. The proof is similar to the proof of existence of 
MGF under JSQ routing, which was done in [8]. We write a sketch 
of the proof here for completeness. First observe that if θ ≤ 0, the 
proof holds trivially. Now, assume θ > 0. Observe that f (x) = ex is 
a convex function. Then, by Jensen’s inequality, we have

e
θ
n ε
∑n

i=1 qi ≤ 1

n

n∑
i=1

eθεqi .

Then, it suffices to show that E 
[∑n

i=1 e
θεqi

]
< ∞ for θ ∈ [−
, 
], 

for all i ∈ [n]. We use the Foster-Lyapunov theorem [17, Theo-
rem 3.3.7] with function VMGF (q) = ∑n

i=1 e
θεqi . For each i ∈ [n]

we have(
eθεqi(k+1) − 1

)(
e−θεui(k) − 1

)
= 0,

which holds by (2). Then, reorganizing terms and summing over 
i ∈ [n] we have

Eq [�VMGF (q(k))]

=
n∑

i=1

(
1−E

[
e−θεui(k)

])

+
n∑

i=1

eθεq(i)

(
Eq

[
eθε

(
aφ(i)(k)−sφ(i)(k)

)]
− 1

)
,

(19)

where φ(i) is defined as in the proof of Theorem 1. Since u(k) ≥
0 and θ > 0, the first term is upper bounded by n. Now, for a 
bounded random variable X , define MX (θ) � E 

[
eθεX

]
. Then, for 

each i ∈ [n] we have

Eq

[
eθε

(
aφ(i)(k)−sφ(i)(k)

)]
− 1

= Maφ(i)−sφ(i) (θ) − 1
(a)= θM ′

aφ(i)−sφ(i)
(ξi),

where (a) holds by Taylor expansion, for a number ξi between 0
and θ . Observe that the MGF is continuously differentiable at θ = 0
[14, p.78] and

M ′
aφ(i)−sφ(i)

(0) =Eq
[
aφ(i)(k) − sφ(i)(k)

]= αi,

where αi was defined in (9). For each i ∈ [n], let 
̃i > 0 be such 
that for all θ between 0 and 
̃i we have

M ′
aφ(i)−sφ(i)

(ξi) ≤ 1

2
αi .

Let 
̃ = mini∈[n] 
̃i . Then, for all θ satisfying θε < 
̃

n∑
i=1

eθεq(i)

(
Eq

[
eθε

(
aφ(i)(k)−sφ(i)(k)

)]
− 1

)
≤

n∑
i=1

eθεq(i)αi .

The rest of the proof is equivalent to the last steps of the proof 
of throughput optimality, so we omit it for brevity. The proof con-
cludes by letting 
 = n
̃.

6.4. Proof of Theorem 7

Proof of Theorem 7. The proof is very similar to Theorem 1. In 
fact, the only difference is the computation of Eq [〈q,a(k)〉]. Since 
the sampling scheme in power-of-d choices is symmetric, in The-
orem 1 we obtain the simple expression presented in (7). In this 
case, we obtain

Eq [〈q,a(k)〉] =
n∑

i=1

q(i)λ

( ∑
S⊆[n]:

φ(i)∈argmin�∈S q�

π(S)

)
.

We omit the rest of the proof for brevity.
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