
 1 

An AI-assisted Method for Dementia Detection Using Images from the 
Clock Drawing Test 

 

Samad Aminia, Lifu Zhanga, Boran Haoa, Aman Guptaa, Mengting Songa, Cody Karjadic, 
Honghuang Linb, Vijaya B. Kolachalamab,d,e, Rhoda Auf,c, Ioannis Ch. Paschalidisa,d,g 

aDepartment of Electrical & Computer Engineering, Division of Systems Engineering, and Department of Biomedical 
Engineering, Boston University 

bDepartment of Medicine, Boston University School of Medicine 
cFramingham Heart Study, Boston University 

dFaculty of Computing & Data Sciences, Boston University 

eDepartment of Computer Science, Boston University 

fDepartments of Anatomy & Neurobiology, Neurology, and Epidemiology, Boston University School of Medicine and School of 
Public Health 

gCorresponding author: Ioannis Ch. Paschalidis, yannisp@bu.edu, 8 St.  Mary’s St Boston, MA 02215 

 

Abstract 

Background: Widespread dementia detection could increase clinical trial candidates and enable appropriate 

interventions. Since the Clock Drawing Test (CDT) can be potentially used for diagnosing dementia-related 

disorders, it can be leveraged to develop a computer-aided screening tool. 

Objective: To evaluate if a machine learning model that uses images from the CDT can predict mild cognitive 

impairment or dementia. 

Methods: Images of an analog clock drawn by 3,263 cognitively intact and 160 impaired subjects were collected 

during in-person dementia evaluations by the Framingham Heart Study. We processed the CDT images, 

participant’s age and education level using a deep learning algorithm to predict dementia status. 

Results: When only the CDT images were used, the deep learning model predicted dementia status with an area 

under the receiver operating characteristic curve (AUC) of 81.3%േ 4.3%. A composite logistic regression model 

using age, level of education, and the predictions from the CDT-only model, yielded an average AUC and average 

F1 score of 91.9%േ 1.1% and 94.6%േ 0.4%, respectively. 

Conclusion: Our modeling framework establishes a proof-of-principle that deep learning can be applied on images 

derived from the CDT to predict dementia status. When fully validated, this approach can offer a cost-effective and 

easily deployable mechanism for detecting cognitive impairment. 

Keywords: Artificial Intelligence, Clock Test, Dementia, Deep Learning, Alzheimer’s Disease. 
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1. Introduction 

In the United States, (i) the cost associated with Alzheimer’s Disease (AD)  and  Related  Dementias (ADRD) 

has been estimated to be $305 billion in 2020, expected to rise to as much as $1.1 trillion by 2050,  and (ii) 

more than 5 million individuals are living with AD, with AD deaths increasing by 146% between   2000 and 

2018 [1]. Worldwide, it is estimated that more than 50 million are living with dementia [2]. 

The standard approach to evaluating the severity of cognitive decline of a participant includes Neuro-

Psychological (NP) exams, which have traditionally been conducted via in-person interviews to measure 

memory, thinking, language, and motor function. However, this approach can be expensive, time-consuming, 

and limited in availability to subjects with lower income and/or belonging to a racial or other underrepresented 

minority. With the ongoing COVID-19 pandemic, access to medical facilities for non-life-threatening conditions 

has been curtailed and medical care has shifted to virtual, online visits. A similar virtual approach is highly 

desirable for dementia screening. In addition to broader and more equitable access to care, virtual approaches 

can lead to accurate diagnosis and increase the pool of candidates for ADRD clinical trials, possibly accelerating 

the search for effective treatments. 

We leveraged recent advances in machine learning and nonverbal screening tools such as the Clock Drawing 

Test (CDT) to determine dementia status.  In the CDT test, subjects are asked to draw the face of an analog clock 

showing ten minutes past eleven. CDT is considered robust against cultural biases and language and provides 

insight into the mechanisms underlying cognitive dysfunction, including comprehension memory, numerical 

knowledge, and visuoperceptual skills [3,4]. Given the sensitivity of CDT in cognitive screening, numerous 

attempts have been made to exploit the full potential of CDT in identifying dementia. For instance, the sensitivity 

of the CDT was investigated in [5] to monitor and distinguish the evolution of cognitive decline in different 

cognitive domains. In [6], the authors found CDT useful in cognitive impairment screening using the fact that the 

CDT score correlates with the severity of global cognitive impairment, as assessed by the Mini-Mental State 

Examination (MMSE) score and the Hasegawa dementia scale. A low CDT score was also associated with 

progression to dementia, with the association being independent of the MMSE score [7,8] .  

Options such as digital Clock Drawing Test (dCDT) technology, where the drawing is traced by a digital pen, 

enable the examination of a detailed neurocognitive behavior as it unfolds in real-time; a capability that cannot 
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be obtained using a traditional pen and paper [9,10]. By using a dCDT, a machine learning approach based on 

non-interpretable boosted decision trees was able to outperform scoring systems used by clinicians [11], reaching 

an Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 93% using the entire battery of 

features provided by dCDT. The AUC drops to 83% for simpler, interpretable models. Moreover, a classification 

task to classify mild cognitive impairment subtypes and AD using 350 dCTD features has achieved accuracy 

ranging from 83% to 91% [12]. Others have leveraged medical imaging, which is expensive and requires an in-

person visit to an imaging facility. Recently, deep learning algorithms have been successfully applied to AD 

detection, particularly using neuroimaging data [13]. Deep learning was applied to predict progression to AD 

based on hippocampal Magnetic Resonance Imaging (MRI) and other baseline clinical features [14], achieving 

an AUC of 86%. Also, deep learning frameworks that can process both imaging and non-imaging data revealed 

high AD classification accuracy across multiple dataset [15]. The authors in [16] have achieved high levels of 

accuracy (75% to 99%) in AD classification using a single MRI  and a deep neural network. Furthermore, a deep 

learning classifier was adopted in [17] to identify the different stages of mild cognitive impairment based on MRI 

and Positron Emission Tomography (PET) [18,19], with accuracies ranging from 57% to 91%. It is important to 

note that some of these papers reported external validation results, thus underscoring the model’s generalizability. 

In general, and as we elaborate on later, accuracy may not be the most appropriate metric for assessing 

performance when AD/ADRD datasets are imbalanced and when only a small fraction of subjects have 

dementia. 

The above studies rely on a large collection of features available through NP tests, dCDT, blood biomarkers 

(e.g., apolipoprotein genes), or medical imaging, thus requiring expensive resources and in-person visits. These 

technologies, even the digital pen, make the cost prohibitive for low-resourced health care environments and 

perpetuate persistent health disparities in global testing. Consequently, in the context of using features  from 

these tests for AI-assisted detection, they also embed inherent biases, further exacerbating the widening gap 

across global populations in health care knowledge and practice. The proposed approach uses digital images 

derived from CDT, the age, and education level of the participant, thus utilizing easily collectable information 

for dementia assessment. To that end, our method processes CDT images through a deep Convolutional Neural 

Network (CNN) [20,21] classifier and combines the output scores with age and education level in an ensemble, 

logistic regression-based classifier. 

 

2. Materials and Methods 

2.1. Clinical setting and data sources 

The data have been collected by the Framingham Heart Study (FHS), the longest ongoing longitudinal study of chronic 
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disease [22]. Since 2011, the FHS has adopted digital pen technology to capture pen and paper NP tests, including the 

CDT. In the FHS dataset, two different clock images are collected: (i) one where the subjects are told to draw an 

analog clock showing ten minutes past eleven (command clock), and (ii) one where they are asked to copy the image 

of such a clock shown to them (copy clock). Additional information available includes self-reported gender, age, race, 

and education level, and the presence of Apolipoprotein E (ApoE) genes. All subjects were evaluated by trained 

examiners. For those subjects identified as showing symptoms  of cognitive impairment or decline and flagged for 

diagnostic review, dementia diagnosis was reached by consensus of at least one neurologist and one 

neuropsychologist; the dementia surveillance, flagging, and diagnostic procedures have been previously outlined in 

[4,23] The dementia diagnosis referenced in this study  occurred either before the CDT or within 180 days after the 

CDT. The entire dataset for all participants was anonymized prior to analysis. All participants have provided 

written informed consent and study protocols and consent forms were approved by the Boston University 

Medical Campus Institutional Review Board. 

 

2.2. Data preparation 
 

The original dataset contains information about 3,423 participants. The dataset attributes consist of participant 

demographic data, education level, ApoE gene information, command and copy clock drawings,  as well as 

the dementia diagnosis. The clock drawings are stored in ‘.csk’ format as they are recorded using the digital 

pen [24]. Therefore, a pre-processing pipeline was created to convert the ‘.csk’ files into the clock  images of 

size (128, 128, 3), which are three-channel images with 128 × 128 pixels. To normalize the data, the value of 

each pixel was divided by 255 to rescale pixel values into the [0, 1] range. We performed data augmentation on 

the original images by randomly applying ±10 degrees rotation, ±15 percent zoom, ±10 percent width and 

height shift, and ±10 percent shear. Data augmentation enables us to develop a deep learning model that is 

robust against image distortions. By disproportionally augmenting the non-dominant  class of images, we also 

mitigate class imbalance – 95.3% of participants have no cognitive impairment – enabling training of the 

deep learning model in a balanced fashion without under-sampling the dominant class. 

 

2.3. Statistical analysis 
 

The composition of the dataset along with basic statistics is reported in Table 1. The 2nd column provides 

information on participants who were labeled as normal and the 3rd column corresponds to participants 

diagnosed as cognitively impaired (Cognitive Impairment, No Dementia – CIND), or with clinical dementia 
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(mild, moderate, severe). We included self-reported gender, education level, age statistics (mean ± standard 

deviation for each cohort), race, dementia diagnosis severity, and the type of ApoE (E2/E3/E4) genes for both 

copies of the gene. In the 4th column we report the p-value for each variable associated with the null 

hypothesis that the two cohorts have the same distribution of the variable. Hence, a low p-value implies that 

the distribution of the feature is different in each cohort, leading us to reject the null hypothesis. For age, we 

employed the Kolmogorov-Smirnov (K-S) test [25] whereas we used the Chi-square test for the categorical 

features [26]. It can be seen that age and education show significant difference among the two cohorts, leading us to 

use age, education and CDT images in the proposed ensemble model. An additional advantage of using only 

CDT images, age, and education is that these features are easily obtained remotely without the need to visit a 

clinic. 

 

2.4. Model development 

We formulated the dementia detection system as a classification task in which the model seeks to make a binary 

decision on the dementia status, i.e., if the diagnosis score is greater than zero, then we adjudicate the person to have 

cognitive impairment and be normal otherwise. Since there was limited data for subjects with either CIND or dementia, 

a single class was used to represent both CIND and dementia in our model. 

Given that CNN models, which include many hidden layers and millions of parameters, require a large number of 

images to be trained, we adopted a transfer learning approach starting from a pre-trained CNN on the ImageNet dataset. 

Transfer learning is widely used in medical image analysis and natural language processing applications [27,28]. As the 

backbone network of our proposed method, we selected the lightweight MobileNet V2, which can be trained fast and is 

very suitable for embedded devices [29,30]. We fine-tuned the MobileNet V2 model using the CDT images in the 

training set. To that end, we detached the fully-connected layer and attached a global average pooling operation to 

convert the feature map into a smaller size by taking the average value from the spatial dimension of the feature map. 

Global average pooling avoids overfitting and provides a more robust model against spatial translations [31]. A softmax 

layer was attached to the deep learning model to predict the probability distribution of each class. A block diagram of 

the modified CNN can be found in Figure 1. In the training procedure, all the layers of the MobileNet V2 trained on the 

ImageNet [32] were frozen, except the softmax layer. Since the MobileNet V2 is based on a three-channel CNN, we 

used command CDT images of size (128, 128, 3) to train the modified deep learning model, adjusting the input size of 

MobileNet V2 as needed. The participants tend to make more mistakes in the command clock drawing task compared 

to the copying task (cf. Section 4), hence, the command clock images can reveal more types of image defects associated 

with cognitive impairments. 

Once the training process of the deep learning model was completed, the scores corresponding to test command and 



 6 

copy images were generated by feeding them into the model. Finally, image scores, the age, and the education level of 

every participant were used to train a logistic regression model to make predictions; a schematic of the approach is 

shown in Figure 2. The entire model was implemented using the Python deep-learning Keras library with a Tensorflow 

backend. 

 

2.5. Validation and performance metrics 
 
The hyperparameters of the model were selected on a validation set using random search. Learning rate, 

number of epochs, batch size, and regularization parameter of regression λ were set to 3. 10ିସ, 400, 32, and 

1, respectively. A binary cross-entropy loss was selected for training the CNN model. After augmenting the 

CIND/dementia class 20 times more than normal images (400 and 20 images generated from data 

augmentation, respectively), the CNN model was trained in a balanced fashion where a subset of the data 

without augmentation was held out for the testing process. Data were randomly split into 5 folds using 

stratified k-fold cross validation. Specifically, a model was trained on the 4 folds and tested on the 5th – test 

– fold. The process was repeated five times, each time with a different fold retained for testing, and the average 

and         standard deviation (std) of all performance metrics on the test set over these five runs was obtained. 

Performance metrics included the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC), the 

weighted F1 score, sensitivity, and specificity [33]. The ROC plots the True Positive Rate (TPR, given by the ratio of 

true positive cases over true positives and false negatives, a.k.a. recall or sensitivity) against the False Positive Rate 

(FPR, given by the ratio of false positives over false positives and true negatives, which is equal to 1 minus the 

specificity). The F1 score is the harmonic mean of precision and recall. Precision (or positive predictive value) is defined 

as the ratio of true positives over true and false positives. The F1 score is calculated by 

F1 ൌ 2
precisionൈ recall
precision൅ recall

, 

and the closer it is to 1 the stronger the classification model. In this work, we reported the weighted F1 score, 

which is computed by weighting the F1-score of each class by the number of participants in that class. 

 

3. Results 

We trained and validated the proposed classifier, using 5-fold cross-validation to estimate out-of-sample 

performance. The results are summarized in Table 2. We report ROC AUC, weighted F1 score (W-F1), 

sensitivity, specificity, and accuracy (Acc), the latter mainly for comparison purposes with results reported 

in the literature and surveyed in Section 1. We note however, that accuracy in binary classification with a highly 

imbalanced dataset is not an appropriate metric, since predicting all subjects as being normal would  lead to 
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a high accuracy. AUC does not depend on the decision threshold (the constant compared to the likelihood to 

make the classification decision) but the rest of the metrics do; we report the maximum W-F1 and maximum Acc 

over the decision threshold. We also select the threshold that maximizes the geometric mean of sensitivity and 

specificity and report the corresponding values in the last two columns of Table 2.  The optimal threshold is 

not necessarily the same for these three maximization procedures. 

In the first row of Table 2, we report the performance of the classifier that uses just the command CDT (Cmnd 

CDT) image of a subject. The second row reports the performance of our proposed ensemble model obtained by 

using logistic regression with features the deep learning scores of command and copy CDT images, the education 

level, and the subject’s age. The third row, corresponds to the full model, also obtained by logistic regression, 

which uses command and copy CDT images, age, education, gender, ApoE, and race. The fourth row corresponds 

to a model, obtained by logistic regression, using all these features, except ApoE. The fifth column reports the 

performance of a logistic regression model using only age and the command CDT image. The sixth row reports 

the performance of a logistic regression model based solely on age. The last three rows report the performance 

of the models while considering only the subjects with age 60 and older. In all these models, education, gender, 

ApoE, and race features, were encoded using one-hot encoding, i.e., creating a binary variable for each category. 

Figure 3 plots the ROC curves for the two models with high average AUC (full and ensemble), and, for 

comparison purposes, the corresponding curve for the age-based model. 

Since age in the dataset has a large range, [28, 100], and dementia is likely to be concentrated on those 

with older age, we performed an experiment excluding subjects less than 60 years old. Figure 4 reports the 

coefficients of the features used by the logistic regression ensemble model with subjects 60 years and older. 

The coefficients are comparable as the scores of the CDT images and age were normalized by subtracting 

the mean and dividing by the standard deviation. It can be seen that age and the command CDT image are 

contributing more to the decision than the copy CDT image. Although the education features have a negligible 

impact on the AUC of the model, the predictive importance of the education labels reveals that the higher 

the education level, the less likely a dementia diagnosis is. Moreover, based on Table 1, only 54% of 

subjects in the CIND/dementia class received a post-secondary education compared to 81% in the normal 

class. On the other hand, post-secondary education might have been less typical for the older generation. 

 

4. Discussion 

The proposed ensemble model can be employed to offer virtual cognitive impairment screening using only 

CDT images drawn on pen and paper, education, and the age of the subject. The out-of-sample AUC and weighted 

F1 scores we report indicate strong predictive power. 
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An important aspect of the method we used for training the deep learning models was transfer learning. 

We started from a deep learning image classifier previously trained on a large number of generic images, 

which, apparently, has the ability to identify useful features of presented images. Thus, with limited training using 

our CDT images, the deep learning model adapted quickly to score CDT images and produced scores representing the 

likelihood of the subject being cognitively impaired. Just using command CDT images yields                             a classifier of 

moderate strength (cf. first row of Table 2, AUC of 81.3%, on average). Combining command and copy CDT 

images with age and education using logistic regression yields a model with an AUC of 91.9%, on average, and 

a weighted F1 score of 94.6%, on average. 

The ensemble model performs slightly better than the full model in terms of specificity (cf. Table 2). 

Furthermore, the full model is not amenable to online screening as ApoE genotyping requires laboratory 

testing (typically, a blood sample). From Figure 3, it can also be seen that the ROC curves of the full model 

and the ensemble model essentially coincide for low values of the FPR (below 15%), that is, within the range 

one may want to operate. Interestingly, adding to the ensemble model gender, education, and race (i.e., full 

model without ApoE), leads to the same performance, confirming the low discriminatory power of these 

additional features, which was also suggested by their p-values listed in Table 1. 

Table 2 also indicates that a model based just on age performs relatively well; average AUC of 89.3% 

vs. 91.9% for the ensemble model, yielding a difference of 2.6%. This is consistent with related findings in 

[15] where a model based on age, gender, and MMSE had an average F1-score 1.4% lower on their internal 

validation dataset than the fusion model which also used a brain MRI. The ensemble model also outperforms 

the age model by 4.9% while removing subjects younger than 60 years of age. It is useful to compare the 

average TPR (sensitivity) of the ensemble model, the full model, and the age model for low values of the 

average FPR (high specificity). This comparison is shown in Table 3. For instance, at 10% FPR, the TPR of 

the ensemble model is 13.6% higher compared to the age model. Putting this difference in context, suppose we 

were interested in screening for a nationwide clinical trial all 5 million or so individuals in the U.S. estimated 

to be suffering from Alzheimer’s [1]. Setting FPR to 10%, about 3.66 million would qualify with the ensemble 

model vs. 2.98 million with the age model, missing a non-trivial number of about 680,000 subjects with the 

latter. A similar perspective is gained by considering how many individuals one should screen to assemble  

a clinical trial with about 1600 subjects (similar in size to the EMERGE aducanumab trial by Biogen [34]). 

Using an FPR of 5%, and assuming the CIND and dementia incidence rate is 4.7% as in our dataset, it 

follows that one needs to screen 78,439 people with the age model compared to 64,110 with the ensemble 

model, namely, 14,329 less. Clearly, these differences imply significant differences in cost. 

In the present study, the clock drawing images were collected from the FHS using a digital pen. The size 

of the images used for training was reduced to 128×128 pixels. Furthermore, the data augmentation described in 
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Section 2.2 empowers the deep learning features to become robust to various forms of image distortion that 

could be introduced by drawing the images using pen and paper and capturing them using a cell phone. 

A limitation of the study is that we do not have access to actual cell phone-captured images, which would 

provide the ultimate test for the proposed screening approach. An additional limitation is that the FHS does 

not conduct a comprehensive dementia review on participants who are relatively younger or who may not exhibit 

severe signs of dementia; thus, it is possible that some subjects classified as cognitive normal are in the early 

CIND stages. In other words, FHS prioritizes full dementia assessment on higher-risk participants.  As a result, 

our dataset likely contained a relatively higher number of participants with normal cognition. 

In conclusion, our deep learning approach based on transfer learning allowed us to classify individuals 

with dementia based on CDT images. These frameworks can be explored further to assist dementia screening 

in limited resource settings. Future work entails testing the robustness of our modeling approach across 

various cohorts comprising individuals from multiple races and ethnicity as well as on CDT images captured 

via various devices. 

 

Code Availability 

We have made our code publicly available in https://github.com/noc-lab/CDT. Our long-term goal is to make 

such tools available online. 
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Figure 1: Schematic diagram of the CNN model with the MobileNet network. 
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Figure 2:  Online screening for cognitive impairment. 
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Figure 3: ROC curves for three models: the proposed ensemble model, the full model, and the model based only 
on age. We plot the average TPR and FPR over the five folds. 
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Figure 4: Logistic regression coefficients (mean, median, and 95% confidence intervals), indicating the relative 
predictive importance of the features in the Ensemble model with subjects 60 years and older. The features edu0, 
edu1, edu2, edu3 indicate the education level of the subjects, corresponding to attending high school, graduating from 
high school, attending college, and graduating from college, respectively. 
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Table 1: Summary of the variables in the FHS dataset. Diagnosis scores 0, 0.5, 1–1.5, 2–2.5, and 3 are defined as normal 
cognition, CIND, mild dementia, moderate dementia, and severe dementia, respectively. Education labels 0, 1, 2, and 3 
correspond to attending high school, graduating from high school, attending college, and graduating from college, 
respectively. Note that 52 education labels are missing among the normal group. 

 
Variable Assessment p-value 

 Normal 
(n=3263) 

CIND/Dementia 
(n=160) 

 

Diagnosis 
  0 
  0.5 
  1-1.5 
  2-2.5 
  3 

 
3263 (100%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 

 
0 (0%) 
96 (60%) 
38 (23.7%) 
24 (15%) 
2 (1.2%) 

- 

Age 61.8 ± 13.2 82.1 ± 7.3 
<0.0001 

Gender 
  Female 
  Male 

 
1773 (54.3%) 
1490 (45.7%) 

 
86 (53.75%) 
74 (46.25%) 

0.95 

Education 
  0 
  1 
  2 
  3 

 
45 (1.4%) 
574 (17.9%) 
761 (23.7%) 
1831 (57.0%) 

 
12 (7.5%) 
61 (38.1%) 
42 (26.2%) 
45 (28.1%) 

<0.0001 

AopE 
  22 
  23 
  24 
  33 
  34 
  44 

 
19 (0.6%) 
399 (12.2%) 
63 (1.9%) 
2011 (61.6%) 
593 (18.2%) 
45 (1.4%) 

 
1 (0.6%) 
19 (11.9%) 
6 (3.8%) 
87 (54.4%) 
40 (25%) 
4 (2.5%) 

0.12 

Race 
  Asian 
  Black 
  Hispanic 
  White 
  other 

 
86 (2.6%) 
87 (2.7%) 
80 (2.5%) 
2957 (90.6%) 
53 (1.6%) 

 
1 (0.6%) 
1 (0.6%) 
2 (1.2%) 
156 (97.5%) 
0 (0%) 

0.24 
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Table 2: Results on the test set (mean ± std over the five runs). Acc stands for accuracy. 

 

Methods AUC % W-F1 % Acc % Sensitivity % Specificity % 

Cmnd CDT 81.3 ± 5.8 94.3 ± 0.4 95.5 ± 0.3 73.8 ± 6.7 77.4 ± 5.8 

Ensemble 91.9 ± 1.1 94.6 ± 0.4 95.7 ± 0.3 86.9 ± 1.2 84.5 ± 4.0 

Full  91.8 ± 1.1 94.8 ± 0.3 95.7 ± 0.3 86.9 ± 2.3 83.8 ± 3.8 

Full\ApoE 91.9 ± 1.2 94.7 ± 0.4 95.7 ± 0.3 85.6 ± 2.5 85.7 ± 1.9 

Age, Cmnd CDT 91.9 ± 1.2 94.6 ± 0.7 95.8 ± 0.4 89.4 ± 1.5 82.9 ± 3.6 

Age  89.3 ± 1.2 94.0 ± 0.5 95.4 ± 0.1 85.0 ± 5.4 77.9 ± 4.5 

Cmnd CDT (age ൒ 𝟔𝟎) 77.7 ± 6.5 90.6 ± 0.7 92.6 ± 0.4 71.3 ± 8.9 73.6 ± 4.1 

Ensemble (age ൒ 𝟔𝟎) 86.6 ± 2.0 91.3 ± 0.6 92.7 ± 0.2 85.0 ± 3.6 76.1 ± 3.2 

Age (age ൒ 𝟔𝟎) 81.7 ± 2.0 90.1 ± 0.7 92.4 ± 0.2 67.5 ± 10.2 78.5 ± 8.7 
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Table 3: Average True Positive Rate (TPR, or sensitivity) for average False Positive Rates (FPR) at 5%, 

10%, and 20%. 

Methods  % TPR AT 5% FPR % TPR AT 10% FPR % TPR AT 20% FPR 

Ensemble  53.1 73.1 91.2 

Full  53.1 73.8 90.6 

Age  43.4 59.5 81.9 

 


