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Abstract

Background: Widespread dementia detection could increase clinical trial candidates and enable appropriate
interventions. Since the Clock Drawing Test (CDT) can be potentially used for diagnosing dementia-related
disorders, it can be leveraged to develop a computer-aided screening tool.

Objective: To evaluate if a machine learning model that uses images from the CDT can predict mild cognitive
impairment or dementia.

Methods: Images of an analog clock drawn by 3,263 cognitively intact and 160 impaired subjects were collected
during in-person dementia evaluations by the Framingham Heart Study. We processed the CDT images,
participant’s age and education level using a deep learning algorithm to predict dementia status.

Results: When only the CDT images were used, the deep learning model predicted dementia status with anarea
under the receiver operating characteristic curve (AUC) of 81.3% =+ 4.3%. A composite logistic regression model
using age, level of education, and the predictions from the CDT-only model, yielded an average AUC and average
F1 score 0f91.9% + 1.1% and 94.6% + 0.4%, respectively.

Conclusion: Our modeling framework establishes a proof-of-principle that deep learning can be applied on images
derived from the CDT to predict dementia status. When fully validated, this approach can offer a cost-effective and
easily deployable mechanism for detecting cognitive impairment.
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1. Introduction

In the United States, (7) the cost associated with Alzheimer’s Disease (AD) and Related Dementias (ADRD)
has been estimated to be $305 billion in 2020, expected to rise to as much as $1.1 trillion by 2050, and (if)
more than 5 million individuals are living with AD, with AD deaths increasing by 146% between 2000 and
2018 [1]. Worldwide, it is estimated that more than 50 million are living with dementia [2].

The standard approach to evaluating the severity of cognitive decline of a participant includes Neuro-
Psychological (NP) exams, which have traditionally been conducted via in-person interviews to measure
memory, thinking, language, and motor function. However, this approach can be expensive, time-consuming,
and limited in availability to subjects with lower income and/or belonging to a racial or other underrepresented
minority. With the ongoing COVID-19 pandemic, access to medical facilities for non-life-threatening conditions
has been curtailed and medical care has shifted to virtual, online visits. A similar virtual approach is highly
desirable for dementia screening. In addition to broader and more equitable access to care, virtual approaches
can lead to accurate diagnosis and increase the pool of candidates for ADRD clinical trials, possibly accelerating
the search for effective treatments.

We leveraged recent advances in machine learning and nonverbal screening tools such as the Clock Drawing
Test (CDT) to determine dementia status. In the CDT test, subjects are asked to draw the face of an analog clock
showing ten minutes past eleven. CDT is considered robust against cultural biases and language and provides
insight into the mechanisms underlying cognitive dysfunction, including comprehension memory, numerical
knowledge, and visuoperceptual skills [3,4]. Given the sensitivity of CDT in cognitive screening, numerous
attempts have been made to exploit the full potential of CDT in identifying dementia. For instance, the sensitivity
of the CDT was investigated in [5] to monitor and distinguish the evolution of cognitive decline in different
cognitive domains. In [6], the authors found CDT useful in cognitive impairment screening using the fact that the
CDT score correlates with the severity of global cognitive impairment, as assessed by the Mini-Mental State
Examination (MMSE) score and the Hasegawa dementia scale. A low CDT score was also associated with

progression to dementia, with the association being independent of the MMSE score [7,8].

Options such as digital Clock Drawing Test (dCDT) technology, where the drawing is traced by a digital pen,

enable the examination of a detailed neurocognitive behavior as it unfolds in real-time; a capability that cannot
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be obtained using a traditional pen and paper [9,10]. By using a dCDT, a machine learning approach based on
non-interpretable boosted decision trees was able to outperform scoring systems used by clinicians [11], reaching
an Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 93% using the entire battery of
features provided by dCDT. The AUC drops to 83% for simpler, interpretable models. Moreover, a classification
task to classify mild cognitive impairment subtypes and AD using 350 dCTD features has achieved accuracy
ranging from 83% to 91% [12]. Others have leveraged medical imaging, which is expensive and requires an in-
person visit to an imaging facility. Recently, deep learning algorithms have been successfully applied to AD
detection, particularly using neuroimaging data [13]. Deep learning was applied to predict progression to AD
based on hippocampal Magnetic Resonance Imaging (MRI) and other baseline clinical features [14], achieving
an AUC of 86%. Also, deep learning frameworks that can process both imaging and non-imaging data revealed
high AD classification accuracy across multiple dataset [15]. The authors in [16] have achieved high levels of
accuracy (75% to 99%) in AD classification using a single MRI and a deep neural network. Furthermore, a deep
learning classifier was adopted in [17] to identify the different stages of mild cognitive impairment based on MRI
and Positron Emission Tomography (PET) [18,19], with accuracies ranging from 57% to 91%. It is important to
note that some of these papers reported external validation results, thus underscoring the model’s generalizability.
In general, and as we elaborate on later, accuracy may not be the most appropriate metric for assessing
performance when AD/ADRD datasets are imbalanced and when only a small fraction of subjects have
dementia.

The above studies rely on a large collection of features available through NP tests, dCDT, blood biomarkers
€.g., apolipoprotein genes), or medical imaging, thus requiring expensive resources and in-person visits. These
technologies, even the digital pen, make the cost prohibitive for low-resourced health care environments and
perpetuate persistent health disparities in global testing. Consequently, in the context of using features from
these tests for Al-assisted detection, they also embed inherent biases, further exacerbating the widening gap
across global populations in health care knowledge and practice. The proposed approach uses digital images
derived from CDT, the age, and education level of the participant, thus utilizing easily collectable information
for dementia assessment. To that end, our method processes CDT images through a deep Convolutional Neural
Network (CNN) [20,21] classifier and combines the output scores with age and education level in an ensemble,

logistic regression-based classifier.

2.Materials and Methods
2.1. Clinical setting and data sources

The data have been collected by the Framingham Heart Study (FHS), the longest ongoing longitudinal study of chronic



disease [22]. Since 2011, the FHS has adopted digital pen technology to capture pen and paper NP tests, including the
CDT. In the FHS dataset, two different clock images are collected: (i) one where the subjects are told to draw an
analog clock showing ten minutes past eleven (command clock), and (ii) one where they are asked to copy the image
of such a clock shown to them (copy clock). Additional information available includes self-reported gender, age, race,
and education level, and the presence of Apolipoprotein E (ApoE) genes. All subjects were evaluated by trained
examiners. For those subjects identified as showing symptoms of cognitive impairment or decline and flagged for
diagnostic review, dementia diagnosis was reached by consensus of at least one neurologist and one
neuropsychologist; the dementia surveillance, flagging, and diagnostic procedures have been previously outlined in
[4,23] The dementia diagnosis referenced in this study occurred either before the CDT or within 180 days after the
CDT. The entire dataset for all participants was anonymized prior to analysis. All participants have provided
written informed consent and study protocols and consent forms were approved by the Boston University

Medical Campus Institutional Review Board.

2.2. Data preparation

The original dataset contains information about 3,423 participants. The dataset attributes consist of participant
demographic data, education level, ApoE gene information, command and copy clock drawings, as well as
the dementia diagnosis. The clock drawings are stored in ‘.csk’ format as they are recorded using the digital
pen [24]. Therefore, a pre-processing pipeline was created to convert the “.csk’ files into the clock images of
size (128, 128, 3), which are three-channel images with 128 x 128 pixels. To normalize the data, the value of
each pixel was divided by 255 to rescale pixel values into the [0, 1] range. We performed data augmentation on
the original images by randomly applying +10 degrees rotation, +15 percent zoom, 10 percent width and
height shift, and 10 percent shear. Data augmentation enables us to develop a deep learning model that is
robust against image distortions. By disproportionally augmenting the non-dominant class of images, we also
mitigate class imbalance — 95.3% of participants have no cognitive impairment — enabling training of the

deep learning model in a balanced fashion without under-sampling the dominant class.

2.3. Statistical analysis

The composition of the dataset along with basic statistics is reported in Table 1. The 2nd column provides
information on participants who were labeled as normal and the 3rd column corresponds to participants

diagnosed as cognitively impaired (Cognitive Impairment, No Dementia — CIND), or with clinical dementia



(mild, moderate, severe). We included self-reported gender, education level, age statistics (mean + standard
deviation for each cohort), race, dementia diagnosis severity, and the type of ApoE (E2/E3/E4) genes for both
copies of the gene. In the 4th column we report the p-value for each variable associated with the null
hypothesis that the two cohorts have the same distribution of the variable. Hence, a low p-value implies that
the distribution of the feature is different in each cohort, leading us to reject the null hypothesis. For age, we
employed the Kolmogorov-Smirnov (K-S) test [25] whereas we used the Chi-square test for the categorical
features [26]. It can be seen that age and education show significant difference among the two cohorts, leading us to
use age, education and CDT images in the proposed ensemble model. An additional advantage of using only
CDT images, age, and education is that these features are easily obtained remotely without the need to visit a

clinic.

2.4. Model development

We formulated the dementia detection system as a classification task in which the model seeks to make a binary
decision on the dementia status, i.e., if the diagnosis score is greater than zero, then we adjudicate the person to have
cognitive impairment and be normal otherwise. Since there was limited data for subjects with either CIND or dementia,

a single class was used to represent both CIND and dementia in our model.

Given that CNN models, which include many hidden layers and millions of parameters, require a large number of
images to be trained, we adopted a transfer learning approach starting from a pre-trained CNN on the ImageNet dataset.
Transfer learning is widely used in medical image analysis and natural language processing applications [27,28]. As the
backbone network of our proposed method, we selected the lightweight MobileNet V2, which can be trained fast and is
very suitable for embedded devices [29,30]. We fine-tuned the MobileNet V2 model using the CDT images in the
training set. To that end, we detached the fully-connected layer and attached a global average pooling operation to
convert the feature map into a smaller size by taking the average value from the spatial dimension of the feature map.
Global average pooling avoids overfitting and provides a more robust model against spatial translations [31]. A softmax
layer was attached to the deep learning model to predict the probability distribution of each class. A block diagram of
the modified CNN can be found in Figure 1. In the training procedure, all the layers of the MobileNet V2 trained on the
ImageNet [32] were frozen, except the softmax layer. Since the MobileNet V2 is based on a three-channel CNN, we
used command CDT images of size (128, 128, 3) to train the modified deep learning model, adjusting the input size of
MobileNet V2 as needed. The participants tend to make more mistakes in the command clock drawing task compared
to the copying task (cf. Section 4), hence, the command clock images can reveal more types of image defects associated

with cognitive impairments.

Once the training process of the deep learning model was completed, the scores corresponding to test command and



copy images were generated by feeding them into the model. Finally, image scores, the age, and the education level of
every participant were used to train a logistic regression model to make predictions; a schematic of the approach is
shown in Figure 2. The entire model was implemented using the Python deep-learning Keras library with a Tensorflow

backend.

2.5. Validation and performance metrics

The hyperparameters of the model were selected on a validation set using random search. Learning rate,
number of epochs, batch size, and regularization parameter of regression A were set to 3.107*, 400, 32, and
1, respectively. A binary cross-entropy loss was selected for training the CNN model. After augmenting the
CIND/dementia class 20 times more than normal images (400 and 20 images generated from data
augmentation, respectively), the CNN model was trained in a balanced fashion where a subset of the data
without augmentation was held out for the testing process. Data were randomly split into 5 folds using
stratified k-fold cross validation. Specifically, a model was trained on the 4 folds and tested on the 5th — test
— fold. The process was repeated five times, each time with a different fold retained for testing, and the average
and standard deviation (std) of all performance metrics on the test set over these five runs was obtained.

Performance metrics included the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC), the
weighted F1 score, sensitivity, and specificity [33]. The ROC plots the True Positive Rate (TPR, given by the ratio of
true positive cases over true positives and false negatives, a.k.a. recall or sensitivity) against the False Positive Rate
(FPR, given by the ratio of false positives over false positives and true negatives, which is equal to 1 minus the
specificity). The F1 score is the harmonic mean of precision and recall. Precision (or positive predictive value) is defined
as the ratio of true positives over true and false positives. The F1 score is calculated by

precision X recall
F1=2

precision + recall’

and the closer it is to 1 the stronger the classification model. In this work, we reported the weighted F1 score,

which is computed by weighting the F1-score of each class by the number of participants in that class.

3. Results

We trained and validated the proposed classifier, using 5-fold cross-validation to estimate out-of-sample
performance. The results are summarized in Table 2. We report ROC AUC, weighted F1 score (W-F1),
sensitivity, specificity, and accuracy (Acc), the latter mainly for comparison purposes with results reported
in the literature and surveyed in Section 1. We note however, that accuracy in binary classification with a highly

imbalanced dataset is not an appropriate metric, since predicting all subjects as being normal would lead to
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a high accuracy. AUC does not depend on the decision threshold (the constant compared to the likelihood to
make the classification decision) but the rest of the metrics do; we report the maximum W-F1 and maximum Acc
over the decision threshold. We also select the threshold that maximizes the geometric mean of sensitivity and
specificity and report the corresponding values in the last two columns of Table 2. The optimal threshold is

not necessarily the same for these three maximization procedures.

In the first row of Table 2, we report the performance of the classifier that uses just the command CDT (Cmnd
CDT) image of a subject. The second row reports the performance of our proposed ensemble model obtained by
using logistic regression with features the deep learning scores of command and copy CDT images, the education
level, and the subject’s age. The third row, corresponds to the full model, also obtained by logistic regression,
which uses command and copy CDT images, age, education, gender, ApoE, and race. The fourth row corresponds
to a model, obtained by logistic regression, using all these features, except ApoE. The fifth column reports the
performance of a logistic regression model using only age and the command CDT image. The sixth row reports
the performance of a logistic regression model based solely on age. The last three rows report the performance
of the models while considering only the subjects with age 60 and older. In all these models, education, gender,
ApoE, and race features, were encoded using one-hot encoding, i.e., creating a binary variable for each category.
Figure 3 plots the ROC curves for the two models with high average AUC (full and ensemble), and, for
comparison purposes, the corresponding curve for the age-based model.

Since age in the dataset has a large range, [28, 100], and dementia is likely to be concentrated on those
with older age, we performed an experiment excluding subjects less than 60 years old. Figure 4 reports the
coefficients of the features used by the logistic regression ensemble model with subjects 60 years and older.
The coefficients are comparable as the scores of the CDT images and age were normalized by subtracting
the mean and dividing by the standard deviation. It can be seen that age and the command CDT image are
contributing more to the decision than the copy CDT image. Although the education features have a negligible
impact on the AUC of the model, the predictive importance of the education labels reveals that the higher
the education level, the less likely a dementia diagnosis is. Moreover, based on Table 1, only 54% of
subjects in the CIND/dementia class received a post-secondary education compared to 81% in the normal

class. On the other hand, post-secondary education might have been less typical for the older generation.

4.Discussion
The proposed ensemble model can be employed to offer virtual cognitive impairment screening using only
CDT images drawn on pen and paper, education, and the age of the subject. The out-of-sample AUC and weighted

F1 scores we report indicate strong predictive power.



An important aspect of the method we used for training the deep learning models was transfer learning.
We started from a deep learning image classifier previously trained on a large number of generic images,
which, apparently, has the ability to identify useful features of presented images. Thus, with limited training using
our CDT images, the deep learning model adapted quickly to score CDT images and produced scores representing the
likelihood of the subject being cognitively impaired. Just using command CDT images yields a classifier of
moderate strength (cf. first row of Table 2, AUC of 81.3%, on average). Combining command and copy CDT
images with age and education using logistic regression yields a model with an AUC of 91.9%, on average, and
a weighted F1 score of 94.6%, on average.

The ensemble model performs slightly better than the full model in terms of specificity (cf. Table 2).
Furthermore, the full model is not amenable to online screening as ApoE genotyping requires laboratory
testing (typically, a blood sample). From Figure 3, it can also be seen that the ROC curves of the full model
and the ensemble model essentially coincide for low values of the FPR (below 15%), that is, within the range
one may want to operate. Interestingly, adding to the ensemble model gender, education, and race (i.e., full
model without ApoE), leads to the same performance, confirming the low discriminatory power of these
additional features, which was also suggested by their p-values listed in Table 1.

Table 2 also indicates that a model based just on age performs relatively well; average AUC of 89.3%
vs. 91.9% for the ensemble model, yielding a difference of 2.6%. This is consistent with related findings in
[15] where a model based on age, gender, and MMSE had an average F1-score 1.4% lower on their internal
validation dataset than the fusion model which also used a brain MRI. The ensemble model also outperforms
the age model by 4.9% while removing subjects younger than 60 years of age. It is useful to compare the
average TPR (sensitivity) of the ensemble model, the full model, and the age model for low values of the
average FPR (high specificity). This comparison is shown in Table 3. For instance, at 10% FPR, the TPR of
the ensemble model is 13.6% higher compared to the age model. Putting this difference in context, suppose we
were interested in screening for a nationwide clinical trial all 5 million or so individuals in the U.S. estimated
to be suffering from Alzheimer’s [1]. Setting FPR to 10%, about 3.66 million would qualify with the ensemble
model vs. 2.98 million with the age model, missing a non-trivial number of about 680,000 subjects with the
latter. A similar perspective is gained by considering how many individuals one should screen to assemble
a clinical trial with about 1600 subjects (similar in size to the EMERGE aducanumab trial by Biogen [34]).
Using an FPR of 5%, and assuming the CIND and dementia incidence rate is 4.7% as in our dataset, it
follows that one needs to screen 78,439 people with the age model compared to 64,110 with the ensemble
model, namely, 14,329 less. Clearly, these differences imply significant differences in cost.

In the present study, the clock drawing images were collected from the FHS using a digital pen. The size

of the images used for training was reduced to 128 x128 pixels. Furthermore, the data augmentation described in
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Section 2.2 empowers the deep learning features to become robust to various forms of image distortion that

could be introduced by drawing the images using pen and paper and capturing them using a cell phone.

A limitation of the study is that we do not have access to actual cell phone-captured images, which would
provide the ultimate test for the proposed screening approach. An additional limitation is that the FHS does
not conduct a comprehensive dementia review on participants who are relatively younger or who may not exhibit
severe signs of dementia; thus, it is possible that some subjects classified as cognitive normal are in the early
CIND stages. In other words, FHS prioritizes full dementia assessment on higher-risk participants. As a result,
our dataset likely contained a relatively higher number of participants with normal cognition.

In conclusion, our deep learning approach based on transfer learning allowed us to classify individuals
with dementia based on CDT images. These frameworks can be explored further to assist dementia screening
in limited resource settings. Future work entails testing the robustness of our modeling approach across
various cohorts comprising individuals from multiple races and ethnicity as well as on CDT images captured

via various devices.

Code Availability

We have made our code publicly available in https://github.com/noc-lab/CDT. Our long-term goal is to make

such tools available online.
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Figure 3: ROC curves for three models: the proposed ensemble model, the full model, and the model based only
on age. Weplot the average TPR and FPR over the five folds.
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Figure 4: Logistic regression coefficients (mean, median, and 95% confidence intervals), indicating the relative
predictive importance of the features in the Ensemble model with subjects 60 years and older. The features edu0,
edul, edu2, edu3 indicatethe education level of the subjects, corresponding to attending high school, graduating from
high school, attending college, and graduating from college, respectively.
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Table 1: Summary of the variables in the FHS dataset. Diagnosis scores 0, 0.5, 1-1.5, 2-2.5, and 3 are defined as normal
cognition, CIND, mild dementia, moderate dementia, and severe dementia, respectively. Education labels 0, 1, 2, and 3
correspond to attending high school, graduating from high school, attending college, and graduating from college,
respectively. Note that 52 education labels are missing among the normal group.

Variable Assessment p-value
Normal CIND/Dementia
(n=3263) (n=160)
Diagnosis -
0 3263 (100%) 0 (0%)
0.5 0 (0%) 96 (60%)
1-1.5 0 (0%) 38 (23.7%)
2-2.5 0 (0%) 24 (15%)
3 0 (0%) 2 (1.2%)
Age 61.8+13.2 82.1+7.3 <0.0001
Gender 0.95
Female 1773 (54.3%) 86 (53.75%)
Male 1490 (45.7%) 74 (46.25%)
Education <0.0001
0 45 (1.4%) 12 (7.5%)
1 574 (17.9%) 61 (38.1%)
2 761 (23.7%) 42 (26.2%)
3 1831 (57.0%) 45 (28.1%)
AopE 0.12
22 19 (0.6%) 1 (0.6%)
23 399 (12.2%) 19 (11.9%)
24 63 (1.9%) 6 (3.8%)
33 2011 (61.6%) 87 (54.4%)
34 593 (18.2%) 40 (25%)
44 45 (1.4%) 4(2.5%)
Race 0.24
Asian 86 (2.6%) 1 (0.6%)
Black 87 (2.7%) 1 (0.6%)
Hispanic 80 (2.5%) 2 (1.2%)
White 2957 (90.6%) 156 (97.5%)
other 53 (1.6%) 0 (0%)
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Table 2: Results on the test set (mean + std over the five runs). Acc stands for accuracy.

Methods AUC % W-F1 % Acc % Sensitivity % Specificity %
Cmnd CDT 81.3+£58 94304 955%03 73.8%6.7 77.4%5.8
Ensemble 91.9%+1.1 946+x04 95703 869=%1.2 84.5+4.0
Full 91.8+1.1 948+03 95703 86923 83.8 +3.8
FullApoE 91912 947+04 95703 856%25 85.7%+19
Age, Cmnd CDT 91912 946+0.7 958+x04 894%15 829 +3.6
Age 89312 94005 954+0.1 85054 779 £4.5
Cmnd CDT (age > 60) | 77.7+6.5 90.6+0.7 92.6+04 71.3+89 73.6 £4.1
Ensemble (age > 60) 86.6+20 913+06 92702 85.0%*3.6 76.1 £3.2
Age (age = 60) 81.7+2.0 90.1+0.7 92402 67.5+10.2 78.5 £8.7
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Table 3: Average True Positive Rate (TPR, or sensitivity) for average False Positive Rates (FPR) at 5%,

10%, and 20%.

Methods % TPR AT 5% FPR % TPR AT 10% FPR % TPR AT 20% FPR
Ensemble 53.1 73.1 91.2

Full 53.1 73.8 90.6

Age 434 59.5 81.9
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