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Abstract

Accurate numerical simulation of dynamical systems is essential in applications ranging from particle physics to geophysical
fluid flow to space hazard analysis. However, most traditional numerical methods do not account for the underlying geometric
structure of the physical system, leading to simulation results that may suggest nonphysical behavior. The field of geometric
numerical integration (GNI) is concerned with numerical methods that respect the fundamental physics of a problem by
preserving the geometric properties of the governing differential equations. Research over the past two decades has produced
GNI methods that are so accurate that they are now used for benchmarking purposes for long-time simulation of conservative
dynamical systems. However, their utility for large-scale engineering problems is still an open question. This paper presents
a review of structure-preserving numerical methods with focus on their engineering applications. The purpose of this paper
is to provide an overview of different classes of GNI methods for mechanical systems while providing a survey of practical
examples from numerical simulation of realistic engineering problems.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

As modern challenges in engineering and science grow in complexity and dimension, the need for sophisticated
numerical methods to support model-based design and analysis also grows. With increasing computational power,
numerical solutions to increasingly sophisticated problems can be computed over longer time intervals, with millions
of time integration steps. For such problems, the qualitative properties of the integrator are critical to the accuracy of
the numerical simulation and reliability of long range predictions. In engineering applications, numerical methods
for studying dynamical systems are usually designed to give rapid and robust numerical solutions with small overall
error. Traditional numerical schemes do not account explicitly for the qualitative features of the underlying physical
system, however, incurring error that may suggest nonphysical behavior.
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The field of geometric numerical integration (GNI) is concerned with numerical methods that respect the
fundamental physics of a problem by preserving the geometric properties of the governing differential equations.
Using ideas from geometric mechanics and differential geometry, the field of GNI has produced a variety of
numerical methods for simulating systems described by ordinary differential equations (ODEs), which respect the
qualitative features of the dynamical system. GNI methods appeal to physicists, mathematicians, and engineers for
many reasons. For physicists, the geometric structure of a dynamical system reveals essential, qualitative features
in the system’s evolution — features that should appear in an accurate simulation. For mathematicians, numerical
methods based on discrete variational principles may exhibit superior numerical stability and structure-preserving
capabilities. For engineers, these methods can advance model-based design and analysis by preserving fidelity to the
physical, continuous-time system, enabling, for example, more accurate predictions of the energy transfer between
subsystems.

Since the emergence of computational methods, fundamental properties such as accuracy, stability, convergence
and computational efficiency have been considered crucial for deciding the utility of a numerical algorithm. Recently,
various aspects of structure-preservation have emerged as an important addition to these fundamental properties. One
of the key ideas of the structure-preserving approach is to treat the numerical method as a discrete dynamical system
which approximates the flow of the governing continuous differential equation instead of focusing on numerical
approximation of a single trajectory. Such an approach allows a better understanding of the invariants and qualitative
properties of the numerical method. Mechanical systems, in particular, often exhibit physically meaningful invariants
such as momentum, energy, or vorticity; the behavior of these invariants in simulation provides an important
measure of accuracy. Most traditional numerical methods do not account for the underlying geometric structure
of the physical system, however, so these methods introduce numerical dissipation and fail to preserve invariants
of the system. A structure-preserving numerical method, on the other hand, can ensure that qualitative features,
such as invariants of motion or the structure of the configuration space, are reflected in the simulation and they can
provide accurate numerical simulation over exponentially long times.

GNI emerged as a major thread in the development of numerical methods in the 1990s. The field has grown
steadily due to the efforts of mathematicians concerned with accurately simulating the behavior of solutions to
differential equations, and thus with numerical methods that respect the underlying problem structure. These
methods have proven quite useful for conservative Lagrangian/Hamiltonian systems; their numerical stability and
accurate prediction of the (constant) system energy make them useful tools for studying complicated dynamical
systems. In fact, research over the past two decades has produced GNI methods for finite-dimensional, time-invariant
mechanical systems subject to conservative forcing that are so accurate for long-time simulation that they are
now used for benchmarking purposes. Even for short-term simulations, it has been frequently observed that the
structure-preserving approach enjoys smaller errors per time step compared to traditional methods, especially for
problems involving finite-time singularities. Since its advent, the structure-preserving approach has become the
new benchmark in the simulation of ODEs, while also making substantial progress in the numerical study of partial
differential equations (PDEs).

While structure-preserving numerical methods promise considerable benefit for a range of practical problems,
their use in engineering applications has been limited. The main goal of this paper is to encourage the broader use
of structure-preserving numerical methods in engineering applications by providing an overview of existing GNI
methods and their capabilities in an accessible way, while adding perspectives and application examples from the
literature. In order to be able to use structure-preserving methods in practice, it is necessary to understand their
theoretical bases, numerical properties, limitations and computational complexity. This paper summarizes all these
aspects as comprehensibly as possible without delving deep into the mathematical details. In the last two decades
the field of structure-preserving methods has grown considerably, with many points of view and intricate subtleties.
Since this work is intended to provide a gateway into the field for practitioners, we have attempted to address
the underlying principles and ideas in this survey, rather than describing specific algorithms and their numerical
implementation.

The remainder of the paper is organized as follows. In Section 2 we give an overview of the geometry and
qualitative features of continuous-time dynamical systems with special focus on Lagrangian/Hamiltonian mechanics
and mechanical systems evolving on non-Euclidean manifolds. The perspective taken here is to describe in broad
brush strokes the different types of qualitative features that can be preserved for mechanical systems found in
engineering problems. In Section 3 we provide a brief introduction to the formulation of a variety of structure-
preserving methods, including symplectic methods, variational integrators, energy—momentum integrators, and Lie
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group methods. In Section 4 we give a selection of applications from the literature, that may benefit from a structure-
preserving approach based on the requirements of a particular application. Finally, in Section 5 we conclude the
paper with a discussion on the perspective offered by the survey and future research directions for broader use of
structure-preserving methods.

2. Geometric structure underlying continuous systems

The geometric structure is a property of the governing differential equation which can be defined independently of
particular coordinate representations. The structure-preserving approach to numerical simulation views the numerical
method as a discrete dynamical system which inherits this geometric structure from the continuous system. Thus,
for a better understanding of structure-preserving numerical schemes, we look at the continuous dynamical systems,
governing differential equations and their qualitative properties. Although a lot of methods to be discussed in this
paper can be applied to a broader class of problems, this work pays special attention to Lagrangian/Hamiltonian
mechanical systems evolving on manifolds as they are among the most important class of engineering systems in
the context of GNI.

2.1. Basic concepts

The modern formulations of Lagrangian and Hamiltonian mechanics [1-3] utilize the coordinate-free language
of differential geometry [4,5] to provide a unifying framework for many disparate engineering systems. Apart
from elegance and precise mathematical formulation, use of differential geometry allows applications to mechanical
systems evolving on general manifolds. In this subsection we give a quick review of differential geometry concepts
used in the Lagrangian mechanics framework. We emphasize the fundamental concepts required for the variational
mechanics while suppressing the technical details.

The concept of a smooth manifold is central to the geometric treatment of classical mechanics as it generalizes
ideas developed on linear vector spaces to non-Euclidean spaces. Manifolds naturally arise as the configuration
spaces for a variety of engineering applications, especially for mechanical systems with restrictions on the allowed
motion due to physical constraints. For example, the unit sphere S? = {(x,y,z) € R3| x> + y> + z> = 1} is the
configuration space of a spherical pendulum. The sphere S? is a two-dimensional manifold embedded in R3.

Mathematically, manifolds are topological spaces that are locally equivalent to Euclidean spaces — such as R".
In simple words, for each point on the n-dimensional manifold, the points in the neighborhood can be labeled using
n local coordinates. The important distinction from the vector spaces is that these coordinates are only valid in a
small neighborhood of each point and not globally on manifolds. For most of the mechanical systems evolving on
manifolds, the configuration manifolds are equipped with differentiable structure allowing calculus on manifolds.

The Lagrangian and Hamiltonian mechanics formulations defined on vector spaces provide local mathematical
formulations of mechanics on manifolds using multiple coordinate maps. From the Lagrangian mechanics perspec-
tive, there are two basic requirements for studying the dynamics of mechanical systems. First, we need to identify
the set of all possible configurations of the system as the configuration manifold. The second requirement is to
develop a Lagrangian function which is a real-valued function defined on the state space. For mechanical systems
that are most commonly considered, the Lagrangian function is the difference between the kinetic energy of the
system and the potential energy of the system. This Lagrangian function is then used in the Hamilton’s principle to
obtain Euler-Lagrange equations. The Hamiltonian perspective on the other hand utilizes the phase space version
of Hamilton’s principle to derive the Hamilton’s equations.

Consider a mechanical system evolving on a configuration manifold Q. The tangent space to Q at the
configuration q € Q is the set of all tangent vectors based at q, denoted by T4 Q. The dual space of T4 Q, i.e. the
set of all linear maps from T4 Q to R, is called the cotangent space and is denoted by T;f Q. For the path () on the
manifold Q, the velocity ¢(z) at time ¢ is the tangent vector to Q, based at the point q(¢) € Q. The tangent bundle of
0, denoted by T Q, is the union of all of the tangent spaces to Q. The configuration and velocity (q(z), ¢(¢)) belong
to the tangent space to Q at q(#) and hence the state space is represented by the tangent bundle 7 Q. On the other
hand, the configuration and the momentum (q(#), p(¢)) belong to the cotangent space, and hence the phase space can
be identified with the collection of all the cotangent spaces to O, namely the cotangent bundle 7* Q. Subsequently,
the Lagrangian L : TQ — R is defined on the tangent bundle 7' Q whereas the Hamiltonian H : T*Q — R is
defined on the cotangent bundle 7*Q.
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It is important to recognize that this geometric formulation can be used to describe and analyze dynamical systems
globally without resorting to local coordinate maps that may lead to singularities. In fact this representation is both
efficient and advantageous for studying qualitative properties of complex dynamical systems but has not been widely
used by the engineering community.

2.2. Lagrangian mechanics

In the late seventeenth century, Newton’s laws of motion [6] provided a way to study the dynamics for free point
masses but this approach did not work that well for more complicated mechanical systems such as rigid bodies or
connected bodies. Lagrange [7,8] came up with an elegant way of computing the dynamics of general mechanical
systems; he derived a coordinate-invariant formulation of the equations of motion in terms of the Lagrangian. A
few decades later Hamilton [9,10] simplified the structure of these equations using the variational principle that
bears his name. We closely follow [11] to revisit the variational derivation of the Euler-Lagrange equations and
their qualitative properties from the Lagrangian point of view.

Consider a time-invariant Lagrangian mechanical system with a finite-dimensional, smooth configuration man-
ifold Q, state space T Q, and Lagrangian L : TQ — R. Hamilton’s principle [12] states that: The motion of the
system between two fixed points from #; to 77 is such that the action integral has a stationary value for the actual
path of the motion. For a conservative Lagrangian system, Hamilton’s principle characterizes the path q(¢) which
passes through q(#;) at t = t; and q(z) at # = ¢ as that which satisfies the following condition:

IL@O.40) sy 4 PO 4O) 3(1(;)} dt =0 0
aq(r) 9q(1)

Using integration by parts and setting the variations at the endpoints equal to zero gives the Euler—Lagrange

equations

IL(q(®). q(®) d (aL((I(t), fl(l))) _ 0

[f tf
3B(q) =34 f L(q(0), q(t)) dt = / [
t; 10

2
aq dt aq &

Mechanical systems governed by Eq. (2) exhibit important qualitative features. For autonomous Lagrangian systems
i.e. no explicit time-dependence in the Lagrangian, the energy is conserved along the solution trajectory. Second,
by Noether’s theorem [13], there exists an invariant of the motion corresponding to each symmetry that leaves the
Lagrangian invariant. Another interesting and useful property is that these Lagrangian mechanical systems conserve
a skew-symmetric, bilinear form known as the symplectic Lagrangian form along trajectories [1]. For mechanical
systems with explicit time-dependence in the Lagrangian, the governing equations and the qualitative features of
the nonautonomous system can be studied by utilizing the extended Lagrangian mechanics framework [11]. Unlike
standard Lagrangian mechanics, the extended framework accounts for time variations in addition to the configuration
variable variations.

The governing equations (2) and their properties discussed above can also be derived from the Hamiltonian point
of view by considering Hamilton’s principle in phase space. Depending on the problem, some properties can be
observed and understood from the Lagrangian perspective and others are easier from the Hamiltonian perspective.
For most engineering applications, the Lagrangian is hyperregular and it is possible to obtain the governing equations
in the Hamiltonian form from (2) via Legendre transformation. However, for some applications such as interaction
between point vortices [14], the Lagrangian is degenerate and no corresponding Hamiltonian formulation exists.

Apart from these two approaches, the Hamilton—Jacobi viewpoint is also very important for developing structure-
preserving numerical methods. This theory describes the motion of the system by a characteristic function S that is
the solution of a PDE, known as the Hamilton—Jacobi differential equation. This function § is intimately related to
construction of any symplectic transformations on the phase space and is also called the generating function. The
generating function S satisfying the Hamilton—Jacobi equation leads to the symplectic map of the exact flow for
Lagrangian/Hamiltonian systems. Although the governing PDE for obtaining the generating function S is generally
nonlinear and a closed form solution is not usually possible, the approximate solutions of this equation played
a pivotal role in the early development of symplectic algorithms. This viewpoint is also useful for discovering
invariants of the motion for mechanical systems without solving the problem completely.
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For an autonomous Lagrangian system with time-independent external forcing f;(q(¢), q(¢)), the Lagrange—
d’Alembert principle characterizes trajectories q(t) € Q as those satisfying

’f U
8 / L(q(®), q(n)) dr + / fL(q(1). q(0)) - 6q dr =0 3)
1 43

where the second term accounts for the virtual work done by the external forces when the path q(#) is varied by §q(z).
Using integration by parts and setting the variations at the endpoints equal to zero gives the forced Euler-Lagrange
equations

L), 41)  d <8L<q<r>, (1)
aq dt aq

Nonconservative external forcing f; violates the symplectic structure and the corresponding Lagrangian system does
not preserve the symplectic form. This external forcing will generally break the symmetries of the Lagrangian and
that will lead to the corresponding momentum as well as the system energy not being conserved. In the special
case that the forcing is orthogonal to the symmetry, the corresponding conserved quantity can be derived from the
forced Noether’s theorem [11]. Although these forced mechanical systems do not, in general, preserve the invariants
or the symplectic form, the variational approach reveals how the external forcing alters these properties over time.
This is particularly important for developing numerical methods that capture the evolution of energy or momentum
accurately.

) +£.(q(1). q(r)) =0 C))

2.3. Variational formulation of different problems

The variational methodology and the Lagrangian mechanics concepts discussed in Section 2.2 have been
successfully extended to a variety of mechanical systems. In this subsection, we summarize the qualitative
features and the geometric properties of various classes of mechanical problems that are important for engineering
applications. To keep this treatise as simple and direct as possible, we have skipped a lot of mathematical details
and focused mainly on the key ideas relevant to structure-preserving discretization. For a thorough exposition, the
interested reader may consult the standard textbooks [1,2,15] and the references cited herein.

Holonomic Constraints: The formulation can be extended to mechanical systems with holonomic constraints,
i.e. constraints on the configuration manifold, by the augmented approach using the Lagrange multiplier theo-
rem [15]. For a Lagrangian system with holonomic constraints ¢ : Q — R?, the augmented Lagrangian is
L(q(0), q(t), M1)) = L(q(t), (1)) — (A(t), p(q(r))) where the (-,-) is the natural pairing between R and its
dual space. The configuration q(f) € Q along with the Lagrange multipliers A(f) € (R?)* extremize the action
integral corresponding to the augmented Lagrangian L(q(t), ¢(t), A()) which leads to constrained Euler-Lagrange
equations [11].

Nonholonomic Constraints: The theory for mechanical systems with nonholonomic constraints [16], i.e. ¢ :
TQ — R, uses theory of Ehresmann connections [17] to describe the constraints. The basic idea is to consider
a collection of linear subspaces Dy C TqQ for each q(f) € Q which together describe the velocities attainable
by the system under the given constraints. The equations of motion for the mechanical system with nonholonomic
constraints are given by the Lagrange—d’ Alembert principle where we apply (1) with variations of the curve q(t)
satisfying 8q(z) € Dgy(t). The governing equations for the nonholonomic system feature a forcing term which
involves the curvature of the connection.

Nonsmooth Problems: The variational approaches discussed so far do not apply directly to nonsmooth problems,
such as collision and fragmentation models. This is due to the lack of smoothness of trajectories which prevents
the use of differential calculus on manifolds. Using concepts from nonsmooth analysis and extended mechanics
framework, the variational approach can be generalized to the nonsmooth setting [18]. Similar to the time-dependent
Lagrangian case, the key idea is to treat both configuration variables and time as functions of a fixed parameter
space which makes the relevant space of configurations a smooth manifold.

Uncertainty: For mechanical systems with uncertainties, a stochastic action can be defined based on the stochastic
flow of randomly perturbed Hamiltonian systems. The stochastic Hamiltonian systems [19] on manifolds extremize
a stochastic action defined on the space of manifold-valued semimartingales. Similar to the deterministic case, the
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stochastic flow is also symplectic [20] and, by the stochastic Noether’s theorem [21], preserves the symmetries as
well.

Infinite-dimensional Systems: It is important to note that all the governing equations and geometric properties
discussed so far are only applicable to mechanical systems evolving on finite-dimensional manifolds. For infinite-
dimensional problems, the governing PDEs can be derived through a variational approach by using the covariant
field theory [22] where the dynamics is described in terms of finite-dimensional space of fields at a given event in
spacetime. The covariant analogue of the symplecticity property is the multisymplectic form formula [23] and the
covariant version of Noether’s theorem leads to conservation laws for PDEs in the presence of symmetries.

Nonvariational Problems: An obvious limitation of the variational methodology is its limited applicability to
Lagrangian/Hamiltonian systems. Although all conservative [24] and a wide variety of nonconservative problems
can be modeled using the Lagrangian formalism, it still excludes a lot of interesting systems, for example the
problems found in fluid dynamics and thermodynamics. The inverse problem of the calculus of variations [25] deals
with the existence and formulation of variational principles for systems of differential equations. The method of
formal Lagrangians [26] can embed certain nonvariational systems into a larger system which admits a Lagrangian
formulation. This approach extends the applicability of Noether’s theorem [27] to a larger class of problems and is
particularly useful for the analysis of conservation laws of arbitrary nonvariational differential equations found in
fluid dynamics and plasma physics [28].

3. Structure-preserving methods

Traditional numerical integrators for studying dynamical systems usually take an initial condition and move
the dynamical system state in the direction specified by the governing differential equations. This approach to
numerical discretization ignores the qualitative properties of the continuous-time systems and hence may introduce
spurious nonphysical effects leading to incorrect results. On the other hand, GNI methods preserve the underlying
geometric structure and provide qualitatively correct numerical results. The philosophy behind this structure-
preserving approach is to identify geometric properties of the continuous-time system and then design numerical
methods which possess the same properties in the discrete domain. We focus on mechanical integrators — numerical
integration methods that preserve some of the invariants of the mechanical system, such as, energy, momentum,
or the symplectic form. Other properties that can be important to preserve are phase-space volume, continuous or
discrete symmetries, time-reversibility, Casimirs, the correct physical form of dissipation, etc.

In this section, we provide a brief introduction along with a summary of recent developments in numerical
integration of Lagrangian/Hamiltonian mechanical systems. Since our focus is on Lagrangian/Hamiltonian systems,
we first look at numerical methods which preserve the symplecticity of the flow. In fact, most of the early
developments in the field of GNI methods were related to development of numerical integrators that preserved the
symplectic nature of the flow. We then look at the two most important classes of mechanical integrators: variational
integrators and energy—momentum integrators. We also discuss Lie group methods for mechanical systems evolving
on manifolds (see Fig. 1).

3.1. Symplectic methods

As mentioned in Section 2.2, the symplectic property has geometric implications regarding the way in which the
Lagrangian flow acts on a set of initial conditions. In simple words, symplecticity describes how all motions starting
close to the actual motion are constrained in relation to each other. Based on this observation, Vogelaere [29] first
developed numerical integrators that preserved this symplectic property of Hamilton’s equations in 1950s. Although
the symplectic methods for Lagrangian/Hamiltonian problems have a long history with different approaches, modern
efforts can be traced to the generating function based methods of Feng et al. [24] and Ruth [30]. The key idea is to
obtain the truncated series expressions for the generating function § from the Hamilton—Jacobi equation and then use
these approximate solutions to construct symplectic approximations of the exact flow map. Later, Lasagni [31], Sanz-
Serna [32], and Suris [33] showed that certain Runge—Kutta methods preserve symplecticity and they constructed
symplectic Runge—Kutta methods from different perspectives. Reich [34] showed that the symplectic Runge—Kutta
methods conserve the momentum for Hamiltonian problems with linear symmetries.
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Fig. 1. The taxonomy of structure-preserving methods based on the qualitative features they preserve for a mechanical system.

These methods preserve the symplectic nature of Hamiltonian systems, conserve the momenta and reproduce
the dynamic behavior accurately for a long time. The excellent long-time behavior of the symplectic methods can
be explained by backward error analysis where instead of asking ““ What is the numerical error for our problem?”,
the focus is on “Which nearby problem is solved exactly by our method?”. Through backward error analysis of
Hamiltonian ODEs, Reich [35] showed that symplectic methods solve a nearby Hamiltonian problem exactly. Thus,
despite not conserving the energy of the system exactly, computed trajectories from symplectic methods always
remain close to the solution and the energy error remains bounded for an exponentially long time.

Ge and Marsden [36] showed that a fixed time step numerical integrator cannot preserve the symplectic form,
momentum, and energy simultaneously for non-integrable systems. Consequently, the structure-preserving fixed time
step mechanical integrators can be divided into two categories: (i) energy—momentum and (ii) symplectic-momentum
Integrators.

3.2. Variational integrators

In comparison to symplectic methods based on the generating functions, variational integrators constitute
a more recent approach toward the structure-preserving discretizations of Lagrangian/Hamiltonian mechanical
systems. These methods utilize concepts from discrete mechanics, a discrete analogue to continuous-time La-
grangian/Hamiltonian mechanics. Due to their variational nature, these methods can be easily extended to non-
conservative mechanical systems by discretizing the Lagrange—d’ Alembert principle. The basic idea is to construct
a discrete-time approximation of the action integral called the discrete action. Stationary points of this discrete
action give discrete-time trajectories of the mechanical system.

Depending on the application, various authors have proposed different versions of discrete mechanics. In fact,
discrete-time versions of variational principles are of mathematical interest in their own right. Based on the concept
of a difference space, Maeda [37] presented a discrete version of Hamilton’s principle and derived discrete Euler—
Lagrange equations. Using the same discretization, Maeda [38] later extended Noether’s theorem to the discrete
setting. Veselov [39,40] pursued these ideas further in the context of integrable systems and showed that these
discrete-time systems preserve a symplectic form. Building on these results, Moser and Veselov [41] presented
discrete versions of several classical integrable systems including the free rigid body system.

Based on these concepts, Marsden and West [42] developed a theory of discrete mechanics, from both Lagrangian
and Hamiltonian perspectives, and derived variational integrators by considering the discrete analogue of variational
principles. Although the derivation of variational integrators from discrete variational principles was first given
in [43], we closely follow [42] to give a brief review of the construction of variational integrators from the
Lagrangian perspective. The idea behind variational integrators is simple: rather than discretize the governing
equations (2) or (4), one discretizes the underlying variational principle (1) or (3) (see Fig. 2).

Consider a discrete Lagrangian system with configuration manifold Q and discrete state space Q x Q. For a
fixed time step h = %, the discrete trajectory { qi }_, is defined by the configuration of the system at the
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Fig. 2. A cartoon illustrating the continuous time variational mechanics (left) versus the discrete time variational mechanics (right).

sequence of times { tx = t; +kh | k = 0,..., N} . We introduce the discrete Lagrangian function L;(q, qx+1),
an approximation of the action integral along the curve from qi to qi+;, which approximates the integral of the
Lagrangian in the following sense

Tkt1
La(qk, Qi+1) = / L(q(2), q(1)) dt &)
Ik
The discrete analogue of Hamilton’s principle seeks curves { qx }_, that satisfy
N-1 N-1
9La(qe, Qic+1) 9La(qe, Qic+1)
) Z Li(qr, Qr+1) = Z [M <Oqx + IRd 0 Qi) '5(]k+1:| =0 (6)
k=0 k=0 0 01

which gives the discrete Euler—Lagrange equations

DrLa(Qi—1,qi) + D1La(Qi, Qey1) =0 k=1,...,N—1 N

where D; denotes differentiation with respect to the ith argument of the discrete Lagrangian L,. Given (qx—1, qx),
the above equations can be solved to obtain (q, qx+1). Thus, the discrete Euler—Lagrange equations can be seen
as a numerical integrator of (2) and these equations can be implemented as a variational integrator for autonomous
Lagrangian systems. Using the discrete Legendre transform, we can re-write the discrete Euler—Lagrange equations
in the Hamiltonian form as follows

— D1 Ly(qk, Qr+1) = Pk ®)
Pit+1 = Do La(qk, Qe1) &)

where the discrete momentum p; converges to its continuous counterpart as the fixed time step & approaches zero.
Given (qg, px), the above Egs. (8)—-(9) can be solved to obtain (qx+1, Px+1)-

Since the governing discrete equations are derived from the discrete Lagrangian function, the accuracy of
trajectories depends on the order of approximation of the discrete Lagrangian. Marsden and West [42] showed that a
discrete Lagrangian of order r +1 leads to a variational integrator of order r. Regardless of the choice of the discrete
Lagrangian, the fixed time step variational integrators are symplectic [44] and momentum-preserving [42,45].
The discrete Lagrangian system preserves a discrete symplectic form [43] and when the discrete system has a
symmetry, there is a corresponding conserved quantity at the discrete level. While these fixed time step algorithms
do not exactly preserve energy, backward error analysis [35,46] shows that these methods, up to exponentially
small errors, exactly integrate a nearby Hamiltonian system. To be more precise, for a small enough fixed time
step, the discrete energy computed from the numerical integration will remain close to its initial value for an
exponentially long time [44,47]. In practice, the energy error remains bounded without exhibiting drift. As the fixed
time step i decreases, the amplitude of energy error oscillations decrease and the discrete energy approaches the
continuous system energy. Because of their excellent long-time stability, these variational integrators — also known
as symplectic-momentum integrators — are ideal for long-time simulation of conservative dynamical systems.

Marsden and West [42] showed that the discrete Lagrangian function L,(qg, qx+1) 1S a generating function
for the discrete Lagrangian system. Thus, the discrete equations (8)—(9) can be seen as a symplectic method
with the corresponding discrete Lagrangian as the approximation to the continuous generating function. This way
both symplectic methods and variational integrators belong to the same class of structure-preserving methods but
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their construction is very different. In contrast to symplectic methods, the variational approach extends easily to
nonconservative systems and has more theoretical appeal: the symplectic property as well as the conserved discrete
quantities can be derived directly from the variational nature of the algorithm as opposed to the trial and error
method. In fact, the variational approach has been useful in explaining the excellent numerical performance of
widely used integrators such as Newmark methods [48].

To introduce external forcing, we define two discrete forces fj : Q0 x Q — T*Q which approximate the
continuous-time force integral that appears in (3) over one time step in the following sense

41
£5(qe, Q1) - 8Qur1 + £ (Qr, Qir1) - Sqi & / fL(q(®), q()) - 6q dt (10)
Tk
The discrete Lagrange—d’ Alembert principle seeks curves { qx }I_, that satisfy
N-1 N-1
8 La(@, Qi) + Y17, Ger1) - 8Gus1 + £ (e, qer) - 89kl =0 (1)
k=0 k=0

which yields the following variational integrator for forced Lagrangian systems:

— D1 La(qx, qe+1) — £, (Qi, Qie+1) = P (12)
Pi+1 = DaLa(a, Q+1) + £ (Qi, Qes1) (13)

For forced Lagrangian mechanical systems, variational integrators (12)—(13) have been shown to exhibit better
energy behavior than traditional numerical integrators [42,48] for weakly dissipative systems. Since the external
forcing f;(q(?), q(z)) modifies the symplectic structure at every time step, unlike in the conservative case, there
are no theoretical results about long-time stable behavior. Despite the lack of theoretical guarantees, the numerical
results for a variety of dissipative and forced mechanical systems have demonstrated that variational integrators
track the change in energy more accurately compared to traditional methods. Similar to the continuous case, if the
discrete forcing is orthogonal to the symmetry of the discrete Lagrangian then the corresponding momentum is
conserved based on the discrete forced Noether’s theorem [42].

The variational approach to derive mechanical integrators has been successfully extended to a broad class of
problems such as:

e Energy-preserving, adaptive time step variational integrators: The strong negative result of Ge and
Marsden [36] — that integrators with a fixed time step cannot simultaneously preserve energy, the symplectic
structure, and conserved quantities for non-integrable systems — led Kane et al. [49] to develop energy-
preserving variational integrators with adaptive time stepping for conservative systems. Marsden and West [42]
derived the same integrators through a variational approach for a more general case of time-dependent
Lagrangian systems. Instead of obtaining the adaptive time step by imposing an additional equation, as in [49],
they treated time as a discrete dynamic variable [50] and derived governing discrete equations in the extended
Lagrangian mechanics framework. These adaptive time step variational integrators are energy and momentum
conserving while also preserving the extended symplectic form. These energy-preserving integrators require
solving coupled, nonlinear, ill-conditioned system of equations at every time step and existence of solutions
for these discrete trajectories is still an open problem. Shibberu [51] has discussed the well-posedness of these
adaptive algorithms and suggested ways to regularize [52] the system of coupled nonlinear discrete equations.
Recently, Sharma et al. [53] derived energy-preserving, adaptive time step variational integrators for forced
Lagrangian systems and showed that these adaptive algorithms, for forced Lagrangian systems, capture change
in energy more accurately than fixed time step variational integrators.

e Variational integrators for constrained mechanical systems: Marsden and West extended the variational
integrator framework to account for holonomic constraints [42] and these methods have been utilized in
applications ranging from molecular dynamics to planetary motion. Their extension to mechanical systems with
nonholonomic constraints remained a challenge for some time though. Equations of motion for a nonholonomic
system are derived from the Lagrange—d’ Alembert principle which means that the nonholonomic flow does not
preserve the symplectic flow [54]. Cortes and Martinez [55] obtained nonholonomic integrators by discretizing
the Lagrange—d’Alembert principle and they also extended adaptive time step variational integrators to
nonholonomic systems using the extended Lagrangian mechanics framework from [42]. Kobilarov et al. [56]
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developed nonholonomic integrators for mechanical systems with symmetries and applied it to robotic car and
snakeboard examples to demonstrate the advantages compared to standard methods.

e Stochastic variational integrators: Based on the foundational work in the field of stochastic geometric
mechanics by Bismut [20], Milstein et al. [57,58] developed mean-squared symplectic integrators for stochastic
Hamiltonian systems and showed that these integrators capture the correct energy behavior even in presence of
dissipation. Bou-Rabee and Owhadi [21] discretized the variational principle for stochastic mechanical systems
on manifolds to derive stochastic variational integrators. Similar to their deterministic counterparts, these
algorithms are symplectic and satisfy the discrete analogue of Noether’s theorem in presence of symmetries.
Bou-Rabee and Owhadi [59] also derived constrained, stochastic, variational, partitioned Runge—Kutta methods
for stochastic mechanical systems with holonomic constraints. Holm and Tyranwoski [60] utilized the Galerkin
type of discretization to derive a more general class of stochastic variational integrators.

e Variational integrators for impact problems: Building on the nonsmooth variational mechanics principles,
Fetecau et al. [61] developed variational collision integrators. In addition to the discrete trajectory points, this
methodology introduces a collision point and the corresponding collision time, which are solved variationally.
These algorithms retain the symplectic structure as well as the excellent energy behavior for nonsmooth cases.
One of the drawbacks of this approach is that solving for each individual collision becomes cumbersome in
situations involving many bodies undergoing collision sequences. For such complex multibody collisions,
Johnson et al. [62] developed discontinuous variational integrators by incorporating incremental energy
minimization in the discrete mechanics framework.

e Hamiltonian variational integrators: As mentioned in Section 2.2, Lagrangian and Hamiltonian dynamics
are not equivalent when the system is not hyperregular. For such cases, Lall and West [63] developed discrete
Hamiltonian mechanics from the Hamiltonian side, without recourse to the Lagrangian formulation. In contrast
to the Lagrangian approach to derive variational integrators, Leok et al. [64] developed Hamiltonian variational
integrators from the Hamiltonian point of view by discretizing the Hamiltonian. These Hamiltonian variational
integrators are particularly useful for mechanical systems with degenerate Hamiltonian, such as interacting
point vortices. In fact, Schmitt and Leok [65] investigated numerical properties of the Hamiltonian variational
integrators and showed that, even for the same approximation method, the Lagrangian and Hamiltonian
approach may lead to different symplectic-momentum integrators.

e Multisymplectic variational integrators: Marsden et al. [23] developed the geometric foundations for
variational integrators for variational PDEs. Using ideas from multisymplectic geometry [66], they developed
numerical methods that are multisymplectic and preserve discrete momentum maps corresponding to sym-
metries. Lew et al. [67] developed asynchronous variational integrators for solid mechanics problems. These
asynchronous algorithms are based on the spacetime form of the discretized Hamilton’s principle and allow
the selection of independent time steps in each spatial element. Recently Kraus and Maj [28] extended the
variational integrator framework to nonvariational PDEs by utilizing the method of formal Lagrangian.

3.3. Energy—momentum integrators

Conventional numerical methods for ODEs when applied to Lagrangian/Hamiltonian systems conserve the
total energy and momenta only up to the order of truncation error. These invariants of motion capture important
qualitative features of the long-term dynamics. Aside from their physical significance, from a computational point
of view conserved quantities often lead to enhanced numerical stability. For example, algorithmic conservation of
energy leads to unconditional stability for nonlinear structural dynamics [68]. In fact, the majority of development
on this topic was due to the discovery that numerical methods with unconditional stability for linear dynamics
may lose this stability in the non-linear regime [69]. Energy—momentum integrators, in contrast to variational
integrators (symplectic-momentum integrators), are designed to preserve the momentum and total energy of the
system simultaneously.

Labudde and Greenspan [70-72] developed discrete mechanics based on difference equations and developed
energy—momentum conserving algorithms for particle mechanics problems. Simo et al. [73,74] developed a more
general methodology to construct energy—momentum integrators for a wide class of mechanical systems. We closely
follow [74] to explain the key idea behind these methods.
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Fig. 3. A cartoon illustrating the use of energy—momentum method where conservation of energy is achieved by an implicit
momentum-preserving projection onto the surface of constant energy H.

Consider a finite-dimensional mechanical system with configuration manifold Q and canonical phase space T*Q.
For the simple case of a separable Hamiltonian/Lagrangian system with constant mass matrix M, Kinetic energy
K(p) = %pTM ~!p, and potential energy V(q), the governing equations of motion are given by

a=M"p p=-VV(Q (14)

It is well-known that the system energy (i.e. the Hamiltonian H = K + V) and momentum J(q, p) (corresponding
to symmetries) are conserved along the solution trajectory. Given (qx, px), the energy—momentum approach designs
an approximation (q1, Pr+1) such that the system energy H;i1 = H; and momentum Jiy; = J; are conserved.
The strategy in the formulation of energy—momentum integrators is to first consider the class of exact momentum
conserving schemes and then enforce the additional constraint of exact energy conservation. For the mechanical
system described above, the family of exact momentum conserving algorithms, with fixed time step &, given by

Qi1 = G + et M [ape + (1 — a)pis1] (15)
Pi+1 = Pr — hiaVV (aqes1 + (1 — )qr) (16)

exactly conserve the momentum J corresponding to the symmetry for arbitrary real-valued functions «; and «, and
scalar parameter @ € [0, 1]. For exact energy conservation, we enforce the law of conservation of energy on the
momentum conserving algorithm (15)—(16) (see Fig. 3).

As discussed in [74], this constraint can be implemented via a number of different ways. The projection methods,
fix the collocation parameter to o = % and obtain k; and «; such that the energy constraint is satisfied. From a
geometric point of view, the resulting energy—momentum integrator can be seen as an implicit projection of the mid-
point rule from the level set of conserved momentum onto the constant energy surface. The collocation methods, on
the other hand, fix the real valued constants k; = x, = 1 and solve the energy constraint equation for the collocation
parameter « € [0, 1].

It is important to note that the energy—momentum approach requires solving an implicit equation and the stability
of these methods depends on the solvability of the energy equation. Assuming the energy equation is solvable,
the resulting algorithms are exactly energy and momentum preserving. In addition to the favorable conservation
properties, these algorithms are unconditionally stable in the nonlinear regime. Simo and Gonzalez [75] showed
that the unresolved high frequencies are controlled by exact energy conservation whereas the symplectic-momentum
approach can lead to instability in such cases. These numerical properties make the energy—momentum integrators
ideal for numerical simulation of highly oscillatory mechanical systems. Since the early development of energy—
momentum integrators was based on the idea of modifying the midpoint rule, all of the energy—momentum
conserving algorithms were symmetric. Hairer et al. [44] showed that the good long-time behavior of energy—
momentum integrators was due to their reversibility and not the conserving properties. They also numerically
demonstrated that the non-symmetric energy—momentum integrators do not exhibit good long-time behavior.
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Betsch and Steinmann [76,77] presented a unifying approach to derive energy—momentum integrators by
discretizing the weighted residual of Hamilton’s equations using continuous Galerkin methods. Unlike the finite
difference approach taken by Simo and colleagues, they employed the finite element method for the temporal
discretization process and devised quadrature rules that lead to energy—momentum integrators. Betsch and Stein-
mann [78] also extended this Galerkin-based approach to mechanical systems with holonomic constraints by
introducing the mixed Galerkin method based on mixed finite elements in time. Later, Gro8 et al. [79] modified
the continuous Galerkin method and derived higher order energy—momentum integrators for multi-dimensional
mechanical systems.

For dynamic problems involving high frequency content such as constrained, flexible, multi-body problems,
the high frequency oscillations can lead to convergence issues for the energy—-momentum integrators due to
their lack of high frequency numerical dissipation. Armero and Petocz [80] introduced numerical dissipation in
the energy—momentum integrators to derive modified energy—momentum integrators. These “energy decaying”
schemes eliminate the energy associated with vibratory motions at high frequency while still preserving the
momentum. Instead of satisfying a discrete energy conservation law, the energy decaying schemes are based on
the energy decay inequality given by Hughes [81]. Kuhl and Crisfield [82] proposed an alternate strategy based on
controllable numerical dissipation to derive generalized energy—momentum integrators. This generalization of the
energy conserving/decaying algorithms allows larger time steps, due to numerical damping characteristics and these
algorithms are easier to extend to adaptive time-stepping.

3.4. Discrete gradient methods

The construction of energy—momentum integrators is related to the concept of discrete gradients. The discrete
gradient method is a general technique for deriving integral-preserving integrators. Gonzalez [83] introduced discrete
Hamiltonian systems as formal abstractions of conserving algorithms based on the idea of discrete directional
derivatives. Using this discrete derivative idea, McLachlan et al. [84] developed the discrete gradient methods for
the more general case of dynamical systems with a Lyapunov function.

The discrete gradient methods are applicable to systems with differential equation y = A(y)VH(y) where A(y)
is a skew-symmetric matrix. For Lagrangian/ Hamiltonian mechanical systems, the vector y = (q, p) belongs to the
phase space with the constant symplectic matrix J as the skew-symmetric matrix A(y) and the Hamiltonian of the
system as the energy function H(y). The discrete gradient methods are of the form

Yert = Y+ hAQK1, YOV H st i) (17)
where A(9, y) is a skew-symmetric matrix for all §, y, and VH($, y) is the discrete gradient satisfying
VHG. D' G-»=H@—-H(y)  VH(y,y)=VH(®) (18)

These numerical methods are symmetric and are both energy- and momentum-preserving. It has been shown that the
projection method approach to derive energy—momentum integrators is a special case of discrete gradient methods.
In fact, the symmetric nature of discrete gradient methods played an important role in explaining the good long-time
behavior of energy—momentum integrators. For Hamiltonian systems with holonomic constraints, Gonzalez [85]
applied the discrete gradient approach to the governing differential-algebraic equations to derive energy—momentum
integrators for constrained mechanical systems. Recently, Celledoni [86] applied the discrete gradient approach to
numerical integration of nonholonomic systems. The resulting algorithms exhibit exact energy preservation while
ensuring the nonholonomic constraints are satisfied. For PDEs, McLachlan and Quispel [87] showed that discrete
gradient methods preserve energy conservation laws and conserve the energy exactly when the symplectic structure
is constant. Celledoni et al. [88] applied these methods to PDEs with constant dissipative structure and the numerical
results demonstrated that the algorithms capture the correct monotonic decrease in energy.

3.5. Lie group methods
In many engineering applications, the governing differential equations evolve on a non-Euclidean manifold and

there are two main numerical approaches for such problems, embedded and intrinsic methods. In the first of these
approaches, as the name suggests, one embeds the manifold in R” and applies a traditional numerical integration
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Fig. 4. A cartoon illustrating the use of a Lie group method (left) versus a conventional method (right) in the case M = G. (The Lie
algebra g is the tangent space to G at the identity e € G).

scheme. The drawback of this approach is that, except in special cases, traditional numerical methods are unlikely
to provide solutions that remain exactly on the correct manifold. The alternative approach uses intrinsic operations
on the group to make sure the computed trajectories are guaranteed to lie on the manifold.

From a mathematical point of view, a Lie group G is a group which is also a differentiable manifold, and for
which the group operation G x G — G and inverse operation are smooth maps. The tangent space g = 7;G at the
identity of a Lie group G is closed under commutation of its elements making it an algebra, the Lie algebra g of
the Lie group G. For a differential equation on Lie group G, the continuous trajectory remains on the Lie group
for any initial condition on G and the flow map of the system can be seen as group operation. For example, the
attitude dynamics of a rigid body can be described as differential equations on the special orthogonal group SO(3),
the group of proper orthogonal linear transformations.

Consider a dynamical system whose configuration evolves on a differentiable manifold M subject to the action
of some Lie group G. Given an initial condition yy € M, rather than ask “What is the state y at time ¢#?”, the Lie
group approach asks an equivalent question [89]: “What is the group action that takes the system from y, to y(z)?”.
Posing the question in terms of the group action helps one relate it to the underlying Lie algebra, which is a linear
space. Thus, Lie group methods include an intrinsic and consistent strategy for the parametrization of the nonlinear
manifold M in their algorithmic structure. In simple words: Instead of solving the original ODE on M, Lie group
methods solve the corresponding problem in the Lie algebra, ensuring that the solution remains on the manifold
M (see Fig. 4).

For dynamical systems evolving on non-Euclidean manifolds, the governing differential equations are intimately
connected to Lie groups. Although the mathematical properties of differential equations on manifolds were well
understood already by early twentieth century, it is only in last few decades that numerical methods utilizing these
aspects have been developed. Crouch and Grossman [90] wrote an influential paper on numerical integrators for
ODEs on manifolds where they computed the numerical solution by computing flows of vector fields in the Lie
algebra. Munthe-Kaas [91] constructed generalized Runge—Kutta methods on general Lie groups, now known as the
Runge—Kutta—Munthe—Kaas (RKMK) methods, and then derived RKMK methods of arbitrarily high order [92] on
homogeneous manifolds. The essential aspects of Lie group methods can be reviewed in [93] and a recent survey
paper by Celledoni et al. [94] covers the more recent developments and potential applications.

Although the Lie group methods are applicable to any dynamical system evolving on a manifold, for this
particular review, we focus on Lie group methods in the context of mechanical systems. The energy—momentum or
variational integrators developed for mechanical systems evolving on vector spaces in general will not retain their
conservation properties when applied to systems with nonlinear configuration space of a non-Euclidean manifold.
For engineering applications, there are two important classes of conserving schemes for mechanical systems evolving
on non-Euclidean manifolds: variational (symplectic-momentum) integrators and energy—momentum integrators.
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Simo et al. [74] extended the exact energy—momentum methods to classical rigid body dynamics for which the
configuration manifold is the rotation group SO(3). They exploited knowledge of the Lie group’s role in rigid body
motion, using the exponential map from the Lie algebra to the Lie group in order to numerically integrate the
dynamic equations. Lewis and Simo [95] developed energy—momentum and symplectic integrators for the general
case of Hamiltonian systems evolving on Lie groups i.e. nonlinear configuration spaces with a group structure.

Bobenko and Suris [96] extended the discrete mechanics ideas in [41] to the Lie group setting. Variational
integrators for the reduced dynamics of a mechanical system with a Lie group symmetry were first derived by
Marsden et al. [97]. By incorporating ideas from Lie group methods in the variational integrator framework,
Leok [64] developed the general theory of Lie group variational integrators. Lee et al. [98—100] adapted the Lie
group variational integrators to rigid body dynamics applications. As the name “Lie group variational integrator”
suggests, these methods essentially combine the structure-preserving features of Lie group methods and variational
integrators. The resulting integrators are thus symplectic and momentum-preserving and they preserve the structure
of the configuration space. Lie group variational integrators have recently been extended to the infinite-dimensional
setting of beam and plate dynamics by Demoures et al. [101-103].

Lie group methods discussed so far, in addition to preserving the nonlinear configuration space structure and
momentum, conserve either the energy or the symplectic form. These Lie group methods cannot preserve all three
elements — energy, momentum and symplectic form — simultaneously. For the special case of a rigid body system,
Lewis and Simo [95] presented a strategy for deriving algorithms that preserve energy, momentum and symplectic
form while also making sure the computed trajectory lies on the correct manifold. Based on the strong negative result
for fixed step algorithms by Ge and Marsden [36], we know that this approach does not work for the more general
case of non-integrable systems. Recently, Sharma et al. [104,105] developed the extended Lagrangian mechanics
framework on SO(3) and SE(3), and derived energy-preserving, adaptive time step Lie group variational integrators
for rigid body dynamics.

4. Science and engineering applications

The numerical methods covered in Section 3 have been successfully applied to a wide range of problems in
engineering (see Fig. 5). In this section, we give examples from the literature where these structure-preserving
methods have been utilized in physics, mechanics and dynamics.

4.1. Celestial mechanics and dynamical astronomy

Celestial mechanics and dynamical astronomy apply the principles of classical mechanics to solve problems con-
cerning the motion of objects in space. These problems involve determining long-term trajectories of bodies such as
stars, planets, and asteroids as well as computing spacecraft trajectories, from launch through atmospheric re-entry,
including the orbital maneuvers. Similarly, interplanetary trajectory and planetary protection applications also require
accurate long-time numerical simulations. Symplectic methods due to their symplectic and momentum-preserving
nature along with long-time stability are ideal for numerical simulation of such problems.

Based on the symplectic method proposed by Ruth [30], various symplectic algorithms for canonical integration
of Hamiltonian systems were proposed by Feng and Qin [106], Channell and Scovel [107], and Forest and
Routh [108]. Wisdom and Holman [109], building on the previous work by Wisdom [110,111], developed symplectic
algorithms for N-body problems with a large central mass such as planetary systems or satellite dynamics.
Yoshida [112] applied symplectic methods to study the motion of minor bodies in the solar system and the
long-term evolution of outer planets. These methods came to the attention of the celestial mechanics [113] and
dynamical astronomy [114] community in the early 1990s and have now become the benchmark in the study of
orbit propagation [115], close encounters [116], asteroid [117,118] dynamics, cometary orbits [119,120], long-term
formation flight dynamics [121] and N-body dynamics [109,122].

Since the development of discrete mechanics and variational integrators, a variety of symplectic algorithms,
derived from the variational point of view, have been applied to celestial mechanics, spacecraft dynamics and orbital
propagation problems. Farr and Bertschinger [123] developed adaptive variational integrators for N-body problems
with superior symplecticity and momentum preservation. Lee et al. applied Lie group variational integrators
to study the complex dynamics of a tethered spacecraft system [124] and spacecraft with imbalanced reaction
wheels [125]. Hall and Leok [126] applied spectral variational integrators to solar system simulation and obtained
closed, extremely stable and precession free orbits, even for large time steps. Recently, Palacios and Gurfil [127]
developed variational integrators for satellite relative orbit propagation including atmospheric drag.
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4.2. Elastodynamics

Formulation of dynamic problems in nonlinear solid mechanics is built on energy and momentum conservation
laws and these fundamental properties of the continuum dynamics play a key role in many engineering applications.
Customary temporal and spatial finite difference/finite element discretizations of the continuum dynamics do not
always inherit the conservation properties. The construction of robust spacetime discretizations of these problems
has been a long-standing goal in the field of computational mechanics.

For nonlinear elastodynamics problems, especially stiff systems possessing high-frequency contents, energy—
momentum schemes are known to possess enhanced numerical stability properties in the nonlinear regime [69]. In
most of the applications, the semidiscrete equations resulting from a finite element discretization are viewed as a
finite-dimensional Hamiltonian system with symmetry and are solved in time using energy—momentum integrators.
In the context of nonlinear elastodynamics, Simo and Tarnow [73] first developed numerical methods for Saint
Venant-Kirchhoff model and later, Simo and Gonazalez [128,129] extended these methods to the more general case
of hyperelastic materials. Based on this pioneering work, a variety of energy—momentum algorithms have been
designed for structural elements such as beams [130], plates [131] and shells [132].

Unlike the energy—momentum integrator applications, variational integrators use the spacetime approach for
elastodynamics problems. Lew et al. [67] developed asynchronous variational integrators (AVI) for nonlinear
elastodynamics that permit independent time steps in each spatial element. Based on this work, Lietz et al. [101]
developed AVIs for geometrically exact beam and plate dynamics. Lew [133] used AVIs to study rotor blade
dynamics and contained detonation of a highly-explosive material. Kale and Lew [134] developed scalable parallel
AVT algorithms and applied them to study the interaction dynamics involved in atomic force microscopy.

4.3. Multibody dynamics

Multibody dynamics applications often involve a system consisting of rigid bodies and elastic bodies undergoing
large displacements and rotations and the numerical simulation of these systems require advanced modeling
strategies. Space discretization for these problems usually results in stiff, nonlinear, differential-algebraic equations
and energy—momentum schemes are well-suited for such nonlinear systems due to their algorithmic conservation
and numerical stability properties. A variety of energy preserving/decaying schemes were presented in the late 1990s
by a number of authors for multibody systems.

Ordern and Goicolea [135] utilized discrete gradient ideas to develop energy—momentum integrators for
constrained dynamics of flexible multibody systems. Betsch and Lyndecker [136] developed energy—momentum
integrators in the discrete null space setting for multibody dynamics and later Leyendecker et al. [137] applied these
methods to flexible multibody dynamics. Based on the work by Betsch and Steinmann [138], Betsch and Uhlar [139]
developed a rotationless formulation for energy—momentum conserving integration of multibody systems. Uhlar and
Betsch [140] extended this method to nonconservative systems and applied it to a double wishbone suspension of
a car.

Although the multibody dynamics field has mainly used energy—momentum integrators for computational studies,
recently some researchers have also used variational integrators and Lie group methods in the context of multibody
dynamics. Leyendecker et al. [141] adapted the discrete null space method to the discrete mechanics framework
and applied the variational discrete null space method to a kinematic chain of rigid bodies and flexible multibody
systems. Leyendecker and Ober-Blobaum [142] applied multirate variational integrators to study constrained systems
with dynamics on strongly varying time scales. For systems with large displacements and rotations, various Lie
group methods for complex flexible multibody dynamics have been developed by Bruls et al. [143,144], Park and
Chung [145], and Terze et al. [146].

4.4. Fluid dynamics

Computational methods for fluid dynamics problems typically discretize the governing equations through finite
volume, finite element or finite difference methods and are rarely designed with structure preservation in mind,
leading to spurious numerical artifacts such as energy and circulation drift. In sharp contrast to these traditional
methods, structure-preserving methods based on the geometric nature of Euler fluids (adiabatic and inviscid)
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Fig. 5. GNI applications from literature .

have recently become popular in the context of numerical methods for fluid dynamics. Perot et al. [147] studied
conservation properties of unstructured staggered mesh schemes and constructed numerical methods that conserve
kinetic energy, vorticity, and momentum in 2D. Elcott et al. [148] proposed numerically stable integrators for fluids
that satisfy the discrete version of Kelvin’s circulation theorem.

Based on the pioneering work by Arnold [149], Euler fluids have been extensively studied in the literature from
the geometric—differential standpoint. Cotter et al. [150] provided multisymplectic formulation of fluid dynamics
using the inverse map approach. In the variational description of fluid dynamics [151], the configuration space is
defined as the volume-preserving diffeomorphisms, and Kelvin’s circulation theorem is seen as a consequence of
Noether’s theorem associated with the particle relabeling symmetry. This variational formulation provides a powerful
framework to construct structure-preserving methods for fluid dynamics.

Mullen et al. [152] constructed time-reversible integrators that preserve energy for inviscid fluids (or capture the
correct energy decay for viscous fluids) and are particularly useful for fluid animation by maintaining the liveliness
of fluid motion without recourse to corrective devices. Pavlov et al. [153] derived fluid mechanics equations from
Hamilton’s principle and derived Lie group variational integrators for incompressible Euler fluids by constructing
a finite-dimensional approximation to the volume-preserving diffeomorphism group for the discretization. The
resulting scheme exhibits energy conservation over long simulations, time reversibility, and circulation preservation.
Using similar ideas, Gawlik et al. [154] derived variational discretizations of continuum theories arising in fluid
dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. Kraus and his colleagues [28] have
utilized the formal Lagrangian approach to develop variational integrators for a variety of MHD models. Similarly,
Desbrun et al. [155] developed structure-preserving space—time discretization schemes for rotating and/or stratified
flows which are relevant for modeling large-scale atmospheric or oceanic flows. Recently, Bauer et al. [156] have
developed a framework for geometric variational discretization of compressible fluids in the context of rotating
shallow water equations.

4.5. Optimal control

The optimal control of a mechanical system is an important engineering problem in application areas such as
space mission design, robotics and biomechanics. The numerical solution to the optimal control problem involves the
discretization of the infinite-dimensional optimization problem and one has to repeatedly solve a sequence of nearby
systems approximately. Using the discrete mechanics framework on the dynamic level in the optimal control problem
leads to structure-preserving time-stepping equations and these equations act as equality constraints on the final
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finite-dimensional nonlinear optimization problem. Besides the structure-preserving aspect, both optimal control
and variational mechanics have their roots in calculus of variations. Junge et al. [157] exploited this connection
and developed the Discrete Mechanics and Optimal Control (DMOC) method, in which both the dynamics and
optimization are discretized variationally.

Building on this work, Ober-Blobaum et al. [158] showed that the DMOC approach is equivalent to time
discretization of Hamilton’s equations using a symplectic method and utlilized the structure-preserving nature
of discretization to provide proof of convergence. Leyendecker et al. [159] formulated the dynamics subject
to holonomic constraints and controls by applying a constrained version of Lagrange—d’Alembert principle for
the optimal control of constrained systems. Kobilarov and Sukhatme [160] applied the DMOC framework to
nonholonomic mechanical systems using nonholonomic variational integrators and later Kobilarov et al. [56] also
extended the framework to mechanical systems with symmetries. Betsch and Becker [161] presented an optimal
control version of Noether’s theorem for mechanical systems with rotational symmetries and developed momentum-
preserving optimal control schemes based on both symplectic-momentum and energy—momentum integrators. Manns
and Mombaur [162] showed that the DMOC method offers competitive performance for complex models with large
degrees of freedom by taking advantage of the parallel computer architecture.

Although the DMOC method is relatively new, since its introduction it has been utilized in a variety of problems
from diverse fields. In spaceflight mechanics, the DMOC method has been applied to problems like low thrust orbital
transfer [163], attitude maneuvers of spacecraft [164] and formation flying satellites [157]. For robotics applications,
the DMOC method has been applied successfully to simultaneous path planning and trajectory optimization [165],
periodic gait optimization [166,167] and robot planning [168] problems. Manchester et al. [169,170] have developed
trajectory optimization algorithms using the DMOC framework and applied them in handling the contact constraints
found in robot planning problems. Apart from these, the DMOC method has also been used for problems like hybrid
systems control [171], vibration suppression control of a film [167], and image analysis [172].

5. Discussion

This paper presents a review of structure-preserving numerical methods along with a survey of engineering
applications. Based on the review, we find that prior research efforts in the field of geometric numerical integration
have demonstrated the advantage of structure-preserving integration methods largely through comparison with
traditional integrators (e.g., the non-structure-preserving Runge—Kutta method) for “toy” problems. While this
approach is useful to demonstrate the advantages of structure-preservation, it does not provide a fair assessment for
practitioners.

We believe more work is needed on the applications of structure-preserving methods with a focus on large-scale
systems from specific engineering applications. Furthermore, it is of interest to know how these methods compare
with traditional methods in terms of the computational cost. Recently, Johnson and Murphey [173] utilized the tree-
based structure to develop scalable variational integrators. Using ideas from the recursive Newton—Euler algorithm
and articulated body algorithm, Lee et al. [174] developed a linear-time variational integrator for multibody systems,
and Fan et al. [175] developed linear-time higher order variational integrators. A key topic related to this is the issue
of solvability of geometric methods as most of these methods for nonlinear systems are implicit and require the
solution of a system of nonlinear equations at every iteration. The connection between time step selection and
solvability of implicit methods has not received enough attention in the context of structure-preserving methods.
Kobilarov [176] studied the solvability of geometric integrators and developed bounds on the fixed time step which
guarantee convergence of the root-finding problem of the system of nonlinear equations. Future work along these
directions will play a key role in broader use of structure-preserving methods for engineering applications.

From the reviewed literature, we also find that the majority of research published in the field of geometric
numerical integration compares the results of proposed/developed structure-preserving methods with traditional
methods that are not designed to respect the underlying geometric structure. In the growing literature on structure-
preserving methods, apart from few exceptions [75,177,178], there is very little work focusing on comparison
between different classes of structure-preserving methods. For example, both variational (symplectic-momentum)
and energy—-momentum integrators respect the qualitative features of mechanical systems. On one hand, energy
conservation guarantees, a priori, that the numerical solution is restricted to a codimension 1 submanifold of the
configuration manifold whereas variational integrators through symplectic structure preservation, ensure a more
global and multi-dimensional behavior. From an engineering perspective, this points to a very important question:
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For a given mechanical system, should one use variational (symplectic-momentum) or energy—momentum methods
to numerically simulate it? In order to answer this question, a detailed comparison of the numerical performance of
both methods for benchmark problems from various types of mechanical systems is required. We believe research
work in this direction will help practitioners understand which class of structure-preserving numerical methods is
best suited to a given mechanical system.

Finally, most of the mechanical systems in engineering applications are subject to non-conservative external
forcing. It is of interest to understand which class of methods performs better for nonconservative systems where
the external forcing drives the dynamics such as highly oscillatory systems found in biolocomotion or aeroelasticity
applications. Also of interest is the extent to which the long-time stability advantages of structure preservation for
conservative dynamical systems can carry over to mechanical systems with external forcing.

Most of the research so far has been done for PDEs with variational structure [23,47]. Going further the research
challenge is to consider nonvariational PDEs [28] and develop/extend structure-preserving algorithms for a wider
class of PDEs.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgment

The authors would like to thank the anonymous reviewer for the valuable comments and suggestions to improve
the paper.

Funding

This material is based upon work supported by the National Science Foundation, United States of America under
Grant No. 1826152.

References

[1] J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry: a Basic Exposition of Classical Mechanical Systems, Vol. 17,
Springer Science & Business Media, 2013.

[2] D.D. Holm, T. Schmah, C. Stoica, Geometric Mechanics and Symmetry: from Finite to Infinite Dimensions, Vol. 12, Oxford University
Press, 2009.

[3] T. Lee, M. Leok, N.H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds, Springer, 2017.

[4] B.F. Doolin, C.F. Martin, Introduction to Differential Geometry for Engineers, Courier Corporation, 2013.

[5] W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Vol. 120, Academic press, 1986.

[6] I. Newton, Philosophiae Naturalis Principia Mathematica, Vol. 1, G. Brookman, 1833.

[7]1 J.L. Lagrange, Application de la méthode exposée dans le mémoire précédent a la solution des problemes de dynamique différents,
in: (Euvres de Lagrange (1867-1892), Vol. 1, 1762, pp. 151-316.

[8] J.L. Lagrange, Mécanique Analytique, Vol. 1, Mallet-Bachelier, 1853.

[9] S.W.R. Hamilton, On a General Method in Dynamics, Richard Taylor, 1834.

[10] W.R. Hamilton, VII. Second essay on a general method in dynamics, Philos. Trans. R. Soc. Lond. 125 (1835) 95-144.

[11] J.E. Marsden, S. Pekarsky, S. Shkoller, M. West, Variational methods, multisymplectic geometry and continuum mechanics, J. Geom.
Phys. 38 (3—4) (2001) 253-284.

[12] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1980, p. 672.

[13] E. Noether, Invariante variations probleme, Nachr. Ges. Wiss, Gottingen Math.-Phys. KI. (1918) 235-257.

[14] P.K. Newton, The N-Vortex Problem: Analytical Techniques, Vol. 145, Springer Science & Business Media, 2013.

[15] R. Abraham, J.E. Marsden, Foundations of Mechanics, Vol. 36, Benjamin/Cummings Publishing Company Reading, Massachusetts,
1978.

[16] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, R.M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Ration. Mech.
Anal. 136 (1) (1996) 21-99.

[17] J.E. Marsden, R. Montgomery, T.S. Ratiu, Reduction, Symmetry, and Phases in Mechanics, Vol. 436, American Mathematical Soc.,
1990.

[18] R.C. Fetecau, J.E. Marsden, M. Ortiz, M. West, Nonsmooth Lagrangian mechanics and variational collision integrators, SIAM J.
Appl. Dyn. Syst. 2 (3) (2003) 381-416.

[19] J.-A. Lazaro-Cami, J.-P. Ortega, Stochastic hamiltonian dynamical systems, 2007, preprint arXiv:math/0702787.

[20] J.-M. Bismut, Mécanique aléatoire, in: Ecole d’Eté de ProbabilitéS de Saint-Flour X-1980, Springer, 1982, pp. 1-100.


http://refhub.elsevier.com/S0045-7825(20)30251-6/sb1
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb1
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb1
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb3
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb4
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb5
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb6
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb7
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb7
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb7
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb8
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb9
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb10
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb11
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb11
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb11
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb12
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb13
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb14
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb15
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb15
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb15
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb16
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb16
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb16
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb17
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb17
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb17
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb18
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb18
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb18
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://arxiv.org/abs/math/0702787
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb20

[21]
[22]

[23]

[24]
[25]

[26]
[27]
[28]
[29]

[30]
[31]
[32]
[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]
[43]

[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]

[55]
[56]

[57]
[58]
[59]

[60]
[61]

[62]

[63]

H. Sharma, M. Patil and C. Woolsey / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113067 19

N. Bou-Rabee, H. Owhadi, Stochastic variational integrators, IMA J. Numer. Anal. 29 (2) (2009) 421-443.

M. Gotay, J. Isenberg, J. Marsden, R. Montgomery, Momentum maps and classical fields, part I, covariant field theory, 2004, preprint
arXiv:physics/9801019.

J.E. Marsden, G.W. Patrick, S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys.
199 (2) (1998) 351-395.

K. Feng, M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer, 2010.

R.W. Atherton, G.M. Homsy, On the existence and formulation of variational principles for nonlinear differential equations, Stud.
Appl. Math. 54 (1975) 31-60.

N.H. Ibragimov, Integrating factors, adjoint equations and Lagrangians, J. Math. Anal. Appl. 318 (2) (2006) 742-757.

N.H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl. 333 (1) (2007) 311-328.

M. Kraus, O. Maj, Variational integrators for nonvariational partial differential equations, Physica D 310 (2015) 37-71.

R. De Vogelaere, Methods of Integration Which Preserve the Contact Transformation Property of the Hamilton Equations, Technical
Report, University of Notre Dame. Dept. of Mathematics, 1956.

R.D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci. 30 (CERN-LEP-TH-83-14) (1983) 2669-2671.

F. Lasagni, Canonical Runge—Kutta methods, Z. Angew. Math. Phys. 39 (6) (1988) 952-953.

J. Sanz-Serna, RUnge-Kutta schemes for Hamiltonian systems, BIT Numer. Math. 28 (4) (1988) 877-883.

Y.B. Suris, On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems, in: Numerical
Solution of Ordinary Differential Equations, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, 1988,
pp. 148-160.

S. Reich, Momentum conserving symplectic integrators, Physica D 76 (4) (1994) 375-383.

S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal. 36 (5) (1999) 1549-1570.

Z. Ge, J.E. Marsden, Lie—Poisson integrators and Lie—Poisson Hamilton—Jacobi theory, Phys. Lett. A 133 (1988) 134-139.

S. Maeda, Lagrangian formulation of discrete systems and concept of difference space, Math. Japon. 27 (1982) 345-356.

S. Maeda, Extension of discrete noether theorem, Math. Japon. 26 (1) (1981) 85-90.

A.P. Veselov, Integrable discrete-time systems and difference operators, Funct. Anal. Appl. 22 (2) (1988) 83-93.

A.P. Veselov, Integrable Lagrangian correspondences and the factorization of matrix polynomials, Funct. Anal. Appl. 25 (2) (1991)
112-122.

J. Moser, A.P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math.
Phys. 139 (2) (1991) 217-243.

J.E. Marsden, M. West, Discrete mechanics and variational integrators, Acta Numer. 10 (2001) 357-514.

J.M. Wendlandt, J.E. Marsden, Mechanical integrators derived from a discrete variational principle, Physica D 106 (3-4) (1997)
223-246.

E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential
Equations, Vol. 31, Springer Science & Business Media, 2006.

AlJ. Lew, J.E. Marsden, M. Ortiz, M. West, Variational time integrators, Internat. J. Numer. Methods Engrg. 60 (1) (2004) 153-212.
E. Hairer, C. Lubich, The life-span of backward error analysis for numerical integrators, Numer. Math. 76 (4) (1997) 441-462.

B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Vol. 14, Cambridge university press, 2004.

C. Kane, J.E. Marsden, M. Ortiz, M. West, Variational integrators and the Newmark algorithm for conservative and dissipative
mechanical systems, Internat. J. Numer. Methods Engrg. 49 (10) (2000) 1295-1325.

C. Kane, J.E. Marsden, M. Ortiz, Symplectic-energy-momentum preserving variational integrators, J. Math. Phys. 40 (7) (1999)
3353-3371.

T.-D. Lee, Can time be a discrete dynamical variable? Phys. Lett. B 122 (3—4) (1983) 217-220.

Y. Shibberu, Is symplectic-energy-momentum integration well-posed? 2006, arXiv:math-ph/0608016.

Y. Shibberu, How to regularize a symplectic-energy-momentum integrator, 2005, arXiv:math/0507483 [math.NA].

H. Sharma, M. Patil, C. Woolsey, Energy-preserving variational integrators for forced Lagrangian systems, Commun. Nonlinear Sci.
Numer. Simul. 64 (2018) 159-177.

AM. Bloch, J. Baillieul, P.E. Crouch, J.E. Marsden, D. Zenkov, P.S. Krishnaprasad, R.M. Murray, Nonholonomic Mechanics and
Control, Vol. 24, Springer, 2003.

J. Cortés, Energy conserving nonholonomic integrators, 2002, preprint arXiv:math/0209314.

M. Kobilarov, J.E. Marsden, G.S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries, Discrete Contin.
Dyn. Syst. Ser. S 3 (1) (2010) 61-84.

G.N. Milstein, Y.M. Repin, M.V. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure, SIAM J.
Numer. Anal. 40 (4) (2002) 1583-1604.

G.N. Milstein, Y.M. Repin, M.V. Tretyakov, Symplectic integration of Hamiltonian systems with additive noise, SIAM J. Numer.
Anal. 39 (6) (2002) 2066-2088.

N. Bou-Rabee, H. Owhadi, Stochastic variational partitioned Runge—Kutta integrators for constrained systems, 2007, arXiv preprint a
rXiv:0709.2222.

D.D. Holm, T.M. Tyranowski, Stochastic discrete Hamiltonian variational integrators, BIT Numer. Math. 58 (4) (2018) 1009-1048.
R.C. Fetecau, J.E. Marsden, M. West, Variational multisymplectic formulations of nonsmooth continuum mechanics, in: Perspectives
and Problems in Nolinear Science, Springer, 2003, pp. 229-261.

G. Johnson, S. Leyendecker, M. Ortiz, Discontinuous variational time integrators for complex multibody collisions, Internat. J. Numer.
Methods Engrg. 100 (12) (2014) 871-913.

S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A: Math. General 39 (19) (2006) 5509.


http://refhub.elsevier.com/S0045-7825(20)30251-6/sb21
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb23
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb23
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb23
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb24
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb25
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb25
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb25
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb26
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb27
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb28
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb29
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb29
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb29
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb30
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb31
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb32
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb33
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb33
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb33
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb33
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb33
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb34
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb35
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb36
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb37
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb38
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb39
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb40
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb40
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb40
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb41
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb41
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb41
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb42
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb43
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb43
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb43
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb44
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb44
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb44
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb45
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb46
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb47
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb48
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb48
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb48
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb49
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb49
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb49
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb50
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math-ph/0608016
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://arxiv.org/abs/math/0507483
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb53
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb53
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb53
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb54
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb54
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb54
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://arxiv.org/abs/math/0209314
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb56
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb56
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb56
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb57
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb57
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb57
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb58
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb58
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb58
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://arxiv.org/abs/0709.2222
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb60
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb61
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb61
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb61
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb62
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb62
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb62
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb63

20

[64]
[65]
[66]

[67]
[68]

[69]

[70]
[71]

[72]
[73]
[74]
[75]
[76]
(771
[78]
(791
[80]
[81]
[82]

[83]
[84]

[85]
[86]

[87]
[88]

[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]

(971
[98]

[99]

[100]

H. Sharma, M. Patil and C. Woolsey / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113067

M. Leok, J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal. 31 (4) (2010) 1497-1532.

J.M. Schmitt, M. Leok, Properties of Hamiltonian variational integrators, IMA J. Numer. Anal. 38 (1) (2017) 377-398.

M.J. Gotay, J. Isenberg, J.E. Marsden, R. Montgomery, Momentum maps and classical relativistic fields. Part I: Covariant field theory,
1998, preprint arXiv:physics/9801019.

AlJ. Lew, J.E. Marsden, M. Ortiz, M. West, Asynchronous variational integrators, Arch. Ration. Mech. Anal. 167 (2) (2003) 85-146.
T. Belytschko, D. Schoeberle, On the unconditional stability of an implicit algorithm for nonlinear structural dynamics, J. Appl. Mech.
42 (4) (1975) 865-869.

O. Gonzalez, J.C. Simo, On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with
symmetry, Comput. Methods Appl. Mech. Engrg. 134 (3—4) (1996) 197-222.

R.A. LaBudde, D. Greenspan, Discrete mechanics—a general treatment, J. Comput. Phys. 15 (2) (1974) 134-167.

R.A. LaBudde, D. Greenspan, Energy and momentum conserving methods of arbitrary order for the numerical integration of equations
of motion, Numer. Math. 25 (4) (1975) 323-346.

R.A. LaBudde, D. Greenspan, Energy and momentum conserving methods of arbitrary order for the numerical integration of equations
of motion, Numer. Math. 26 (1) (1976) 1-16.

J.C. Simo, N. Tarnow, The discrete energy-momentum method. conserving algorithms for nonlinear elastodynamics, Z. Angew. Math.
Phys. 43 (5) (1992) 757-792.

J.C. Simo, N. Tarnow, K.K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics,
Comput. Methods Appl. Mech. Engrg. 100 (1) (1992) 63-116.

J.C. Simo, O. Gonzalez, Assessment of energy-momentum and symplectic schemes for stiff dynamical systems, in: American Society
of Mechanical Engineers, ASME Winter Annual Meeting, New Orleans, Louisiana, 1993.

P. Betsch, P. Steinmann, Conservation properties of a time FE method. Part I: time-stepping schemes for N-body problems, Internat.
J. Numer. Methods Engrg. 49 (5) (2000) 599-638.

P. Betsch, P. Steinmann, Conservation properties of a time FE method—part II: Time-stepping schemes for non-linear elastodynamics,
Internat. J. Numer. Methods Engrg. 50 (8) (2001) 1931-1955.

P. Betsch, P. Steinmann, Conservation properties of a time FE method—Part III: mechanical systems with holonomic constraints,
Internat. J. Numer. Methods Engrg. 53 (10) (2002) 2271-2304.

M. GroB3, P. Betsch, P. Steinmann, Conservation properties of a time FE method. Part IV: Higher order energy and momentum
conserving schemes, Internat. J. Numer. Methods Engrg. 63 (13) (2005) 1849-1897.

F. Armero, E. Pet6cz, A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis, Comput.
Methods Appl. Mech. Engrg. 179 (1-2) (1999) 151-178.

T.J. Hughes, Analysis of transient algorithms with particular reference to stability behavior, in: Comput Methods for Transient Anal,
in: Comput Methods in Mech., vol. 1, North-Holland, Amsterdam, Neth, 1983, pp. 67-155.

D. Kuhl, E. Ramm, Generalized energy—momentum method for non-linear adaptive shell dynamics, Comput. Methods Appl. Mech.
Engrg. 178 (3—4) (1999) 343-366.

O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. 6 (5) (1996) 449.

R.I. McLachlan, G. Quispel, N. Robidoux, Geometric integration using discrete gradients, Phil. Trans. R. Soc. A 357 (1754) (1999)
1021-1045.

O. Gonzalez, Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration,
Physica D 132 (1-2) (1999) 165-174.

E. Celledoni, M.F. Puiggali, E.H. Hgiseth, D.M. de Diego, Energy-preserving integrators applied to nonholonomic systems, J. Nonlinear
Sci. (2016) 1-40.

R.I. McLachlan, G. Quispel, Discrete gradient methods have an energy conservation law, 2013, arXiv preprint arXiv:1302.4513.

E. Celledoni, V. Grimm, R.I. McLachlan, D. McLaren, D. O’Neale, B. Owren, G. Quispel, Preserving energy resp. dissipation in
numerical PDEs using the ”Average Vector Field” method, J. Comput. Phys. 231 (20) (2012) 6770-6789.

A. Iserles, G. Quispel, Why geometric numerical integration?, 2015, arXiv preprint arXiv:1602.07755.

PE. Crouch, R. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci. 3 (1) (1993) 1-33.
H.Z. Munthe-Kaas, Runge—Kutta methods on Lie groups, BIT Numer. Math. 38 (1) (1998) 92-111.

H.Z. Munthe-Kaas, High order Runge—Kutta methods on manifolds, Appl. Numer. Math. 29 (1) (1999) 115-127.

A. Iserles, H.Z. Munthe-Kaas, S.P. Ngrsett, A. Zanna, Lie-group methods, Acta Numer. 9 (2000) 215-365.

E. Celledoni, H. Marthinsen, B. Owren, An introduction to Lie group integrators—basics, new developments and applications, J.
Comput. Phys. 257 (2014) 1040-1061.

D. Lewis, J.C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on lie groups, J. Nonlinear Sci. 4 (1) (1994)
253-299.

A.lL Bobenko, Y.B. Suris, Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top, Comm. Math.
Phys. 204 (1) (1999) 147-188.

J.E. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity 12 (6) (1999) 1647.

T. Lee, N.H. McClamroch, M. Leok, A lie group variational integrator for the attitude dynamics of a rigid body with applications to
the 3D pendulum, in: Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on, IEEE, 2005, pp. 962-967.
T. Lee, M. Leok, N.H. McClamroch, Lie group variational integrators for the full body problem, Comput. Methods Appl. Mech.
Engrg. 196 (29) (2007) 2907-2924.

T. Lee, M. Leok, N.H. McClamroch, Lagrangian mechanics and variational integrators on two-spheres, Internat. J. Numer. Methods
Engrg. 79 (9) (2009) 1147-1174.


http://refhub.elsevier.com/S0045-7825(20)30251-6/sb64
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb65
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://arxiv.org/abs/physics/9801019
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb67
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb68
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb68
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb68
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb69
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb69
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb69
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb70
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb71
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb71
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb71
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb72
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb72
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb72
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb73
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb73
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb73
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb74
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb74
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb74
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb76
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb76
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb76
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb77
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb77
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb77
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb78
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb78
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb78
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb79
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb79
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb79
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb80
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb80
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb80
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb81
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb81
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb81
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb82
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb82
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb82
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb83
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb84
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb84
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb84
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb85
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb85
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb85
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb86
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb86
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb86
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://arxiv.org/abs/1302.4513
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb88
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb88
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb88
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://arxiv.org/abs/1602.07755
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb90
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb91
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb92
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb93
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb94
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb94
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb94
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb95
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb95
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb95
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb96
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb96
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb96
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb97
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb98
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb98
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb98
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb99
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb99
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb99
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb100
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb100
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb100

[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]

[111]
[112]

[113]
[114]

[115]
[116]

[117]
[118]
[119]
[120]
[121]
[122]

[123]
[124]

[125]

[126]
[127]

[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]

[136]

[137]

H. Sharma, M. Patil and C. Woolsey / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113067 21

F. Demoures, Lie Group and Lie Algebra Variational Integrators for Flexible Beam and Plate in R3 (Ph.D.thesis), Ecole Polytechnique
Fédéralge de Lausanne, 2012.

F. Demoures, F. Gay-Balmaz, M. Kobilarov, T.S. Ratiu, Multisymplectic Lie group variational integrator for a geometrically exact
beam in R3, Commun. Nonlinear Sci. Numer. Simul. 19 (10) (2014) 3492-3512.

F. Demoures, F. Gay-Balmaz, S. Leyendecker, S. Ober-Blobaum, T.S. Ratiu, Y. Weinand, Discrete variational Lie group formulation
of geometrically exact beam dynamics, Numer. Math. 130 (1) (2015) 73-123.

H. Sharma, T. Lee, Energy-preserving, adaptive time-step Lie group variational integrators for the attitude dynamics of a rigid body,
in: 2019 American Control Conference, ACC, IEEE, 2019, pp. 5487-5492.

H. Sharma, M. Patil, C. Woolsey, Energy-preserving, adaptive time-step Lie group variational integrators for rigid body motion in
SE(3), in: 2019 58th IEEE Conference on Decision and Control, CDC, IEEE, 2019, pp. 8079-8084.

K. Feng, M.-z. Qin, The symplectic methods for the computation of Hamiltonian equations, in: Numerical Methods for Partial
Differential Equations, Springer, 1987, pp. 1-37.

P.J. Channell, C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (2) (1990) 231.

E. Forest, R.D. Ruth, Fourth-order symplectic integration, Physica D 43 (1) (1990) 105-117.

J. Wisdom, M. Holman, Symplectic maps for the N-body problem, Astron. J. 102 (1991) 1528-1538.

J. Wisdom, The origin of the Kirkwood gaps-a mapping for asteroidal motion near the 3/1 commensurability, Astron. J. 87 (1982)
577-593.

J. Wisdom, Chaotic behavior and the origin of the 3/1 Kirkwood gap, Icarus 56 (1) (1983) 51-74.

H. Yoshida, Recent progress in the theory and application of symplectic integrators, in: Qualitative and Quantitative Behaviour of
Planetary Systems, Springer, 1993, pp. 27-43.

B. Gladman, M. Duncan, J. Candy, Symplectic integrators for long-term integrations in celestial mechanics, Celestial Mech. Dynam.
Astronom. 52 (3) (1991) 221-240.

H. Kinoshita, H. Yoshida, H. Nakai, Symplectic integrators and their application to dynamical astronomy, Celestial Mech. Dynam.
Astronom. 50 (1) (1990) 59-71.

E. Imre, P. Palmer, High-precision, symplectic numerical, relative orbit propagation, J. Guid. Control Dyn. 30 (4) (2007) 965-973.
J.E. Chambers, A hybrid symplectic integrator that permits close encounters between massive bodies, Mon. Not. R. Astron. Soc. 304
(4) (1999) 793-799.

F. Varadi, C. De la Barre, W. Kaula, M. Ghil, Singularly weighted symplectic forms and applications to asteroid motion, Celestial
Mech. Dynam. Astronom. 62 (1) (1995) 23-41.

L. Liu, J.-h. Ji, X.-h. Liao, A numerical study of the orbits of near earth asteroids with symplectic algorithm, Chin. J. Astron.
Astrophys. 23 (1) (1999) 108-119.

H.E. Levison, M.J. Duncan, The long-term dynamical behavior of short-period comets, Icarus 108 (1) (1994) 18-36.

V. Emel’yanenko, An explicit symplectic integrator for cometary orbits, Celestial Mech. Dynam. Astronom. 84 (4) (2002) 331-341.
Y. Tsuda, D.J. Scheeres, Computation and applications of an orbital dynamics symplectic state transition matrix, J. Guid. Control
Dyn. 32 (4) (2009) 1111-1123.

J. Wisdom, M. Holman, J. Touma, Symplectic correctors, in: Integration Algorithms and Classical Mechanics, Vol. 10, AMS,
Providence, 1996, pp. 217-244.

W.M. Farr, E. Bertschinger, Variational integrators for the gravitational N-body problem, Astrophys. J. 663 (2) (2007) 1420.

T. Lee, M. Leok, N.H. McClamroch, High-fidelity numerical simulation of complex dynamics of tethered spacecraft, Acta Astronaut.
99 (2014) 215-230.

T. Lee, F. Leve, Lagrangian mechanics and Lie group variational integrators for spacecraft with imbalanced reaction wheels, in: 2014
American Control Conference, IEEE, 2014, pp. 3122-3127.

J. Hall, M. Leok, Spectral variational integrators, Numer. Math. 130 (4) (2015) 681-740.

L. Palacios, P. Gurfil, Variational and symplectic integrators for satellite relative orbit propagation including drag, Celestial Mech.
Dynam. Astronom. 130 (4) (2018) 31.

J. Simo, O. Gonzalez, Recent results on the numerical integration of infinite-dimensional hamiltonian systems, in: Recent Developments
in Finite Element Analysis, CIMNE, Barcelona, Spain, 1994, pp. 255-271.

0. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods Appl.
Mech. Engrg. 190 (13-14) (2000) 1763-1783.

S. Leyendecker, P. Betsch, P. Steinmann, Objective energy—momentum conserving integration for the constrained dynamics of
geometrically exact beams, Comput. Methods Appl. Mech. Engrg. 195 (19-22) (2006) 2313-2333.

M.M.I. Baig, K.-J. Bathe, On direct time integration in large deformation dynamic analysis, in: Third MIT Conference on
Computational Fluid and Solid Mechanics, Boston, MA, June, 2005, pp. 14-17.

C. Sansour, P. Wriggers, J. Sansour, Nonlinear dynamics of shells: theory, finite element formulation, and integration schemes,
Nonlinear Dynam. 13 (3) (1997) 279-305.

A.J. Lew, Variational time integrators in computational solid mechanics (Ph.D. thesis), California Institute of Technology, 2003.
K.G. Kale, AJ. Lew, Parallel asynchronous variational integrators, Internat. J. Numer. Methods Engrg. 70 (3) (2007) 291-321.
J.C.G. Orden, J.M. Goicolea, Conserving properties in constrained dynamics of flexible multibody systems, Multibody Syst. Dyn. 4
(2-3) (2000) 225-244.

P. Betsch, S. Leyendecker, The discrete null space method for the energy consistent integration of constrained mechanical systems.
Part II: Multibody dynamics, Internat. J. Numer. Methods Engrg. 67 (4) (2006) 499-552.

S. Leyendecker, P. Betsch, P. Steinmann, The discrete null space method for the energy-consistent integration of constrained mechanical
systems. Part III: Flexible multibody dynamics, Multibody Syst. Dyn. 19 (1-2) (2008) 45-72.


http://refhub.elsevier.com/S0045-7825(20)30251-6/sb101
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb101
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb101
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb102
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb102
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb102
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb103
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb103
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb103
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb104
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb104
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb104
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb105
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb105
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb105
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb106
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb106
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb106
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb107
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb108
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb109
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb110
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb110
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb110
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb111
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb112
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb112
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb112
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb113
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb113
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb113
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb114
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb114
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb114
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb115
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb116
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb116
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb116
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb117
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb117
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb117
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb118
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb118
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb118
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb119
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb120
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb121
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb121
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb121
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb122
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb122
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb122
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb123
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb124
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb124
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb124
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb125
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb125
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb125
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb126
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb127
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb127
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb127
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb128
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb128
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb128
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb129
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb129
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb129
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb130
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb130
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb130
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb132
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb132
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb132
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb133
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb134
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb135
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb135
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb135
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb136
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb136
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb136
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb137
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb137
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb137

22

[138]

[139]
[140]

[141]
[142]
[143]
[144]
[145]
[146]

[147]
[148]

[149]
[150]

[151]
[152]

[153]
[154]
[155]
[156]

[157]
[158]

[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]

[167]

[168]
[169]

[170]

H. Sharma, M. Patil and C. Woolsey / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113067

P. Betsch, P. Steinmann, Constrained integration of rigid body dynamics, Comput. Methods Appl. Mech. Engrg. 191 (3-5) (2001)
467-488.

P. Betsch, S. Uhlar, Energy-momentum conserving integration of multibody dynamics, Multibody Syst. Dyn. 17 (4) (2007) 243-289.
S. Uhlar, P. Betsch, On the derivation of energy consistent time stepping schemes for friction afflicted multibody systems, Comput.
Struct. 88 (11-12) (2010) 737-754.

S. Leyendecker, J.E. Marsden, M. Ortiz, Variational integrators for constrained dynamical systems, ZAMM-J. Appl. Math. Mech. 88
(9) (2008) 677-708.

S. Leyendecker, S. Ober-Blobaum, A variational approach to multirate integration for constrained systems, in: Multibody Dynamics,
Springer, 2013, pp. 97-121.

O. Briils, A. Cardona, On the use of Lie group time integrators in multibody dynamics, J. Comput. Nonlinear Dynam. 5 (3) (2010)
031002.

O. Briils, A. Cardona, M. Arnold, Lie group generalized-« time integration of constrained flexible multibody systems, Mech. Mach.
Theory 48 (2012) 121-137.

J. Park, W.-K. Chung, Geometric integration on euclidean group with application to articulated multibody systems, IEEE Trans. Robot.
21 (5) (2005) 850-863.

Z. Terze, A. Miiller, D. Zlatar, Lie-group integration method for constrained multibody systems in state space, MultiBody Syst. Dyn.
34 (3) (2015) 275-305.

B. Perot, Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys. 159 (1) (2000) 58-89.

S. Elcott, Y. Tong, E. Kanso, P. Schroder, M. Desbrun, Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph. 26 (1)
(2007) 4.

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a I’hydrodynamique des fluides
parfaits, Ann. Inst. Fourier 16 (1) (1966) 319-361.

C.J. Cotter, D.D. Holm, PE. Hydon, Multisymplectic formulation of fluid dynamics using the inverse map, Proc. R. Soc. A 463
(2086) (2007) 2671-2687.

J.E. Marsden, D.G. Ebin, A.E. Fischer, Diffeomorphism groups, hydrodynamics and relativity, Canadian Mathematical Congress, 1972.
P. Mullen, K. Crane, D. Pavlov, Y. Tong, M. Desbrun, Energy-preserving integrators for fluid animation, ACM Trans. Graph. 28 (3)
(2009) 38.

D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J.E. Marsden, M. Desbrun, Structure-preserving discretization of incompressible fluids,
Physica D 240 (6) (2011) 443-458.

E.S. Gawlik, P. Mullen, D. Pavlov, J.E. Marsden, M. Desbrun, Geometric, variational discretization of continuum theories, Physica
D 240 (21) (2011) 1724-1760.

M. Desbrun, E.S. Gawlik, F. Gay-Balmaz, V. Zeitlin, Variational discretization for rotating stratified fluids, Discrete Contin. Dyn.
Syst. 34 (2) (2013) 477-509.

W. Bauer, F. Gay-Balmaz, Towards a geometric variational discretization of compressible fluids: the rotating shallow water equations,
2017, arXiv preprint arXiv:1711.10617.

O. Junge, J.E. Marsden, S. Ober-Blobaum, Discrete mechanics and optimal control, IFAC Proc. Vol. 38 (1) (2005) 538-543.

S. Ober-Blobaum, O. Junge, J.E. Marsden, Discrete mechanics and optimal control: an analysis, ESAIM Control Optim. Calc. Var.
17 (2) (2011) 322-352.

S. Leyendecker, S. Ober-Blobaum, J.E. Marsden, M. Ortiz, Discrete mechanics and optimal control for constrained systems, Optim.
Control Appl. Methods 31 (6) (2010) 505-528.

M. Kobilarov, G. Sukhatme, Optimal control using nonholonomic integrators, in: Proceedings 2007 IEEE International Conference
on Robotics and Automation, IEEE, 2007, pp. 1832-1837.

P. Betsch, C. Becker, Conservation of generalized momentum maps in mechanical optimal control problems with symmetry, Internat.
J. Numer. Methods Engrg. 111 (2) (2017) 144-175.

P. Manns, K. Mombaur, Towards discrete mechanics and optimal control for complex models, IFAC-PapersOnLine 50 (1) (2017)
4812-4818.

O. Junge, J.E. Marsden, S. Ober-Blobaum, Optimal reconfiguration of formation flying spacecraft—a decentralized approach, in:
Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, 2006, pp. 5210-5215.

T. Lee, N.H. McClamroch, M. Leok, Attitude maneuvers of a rigid spacecraft in a circular orbit, in: 2006 American Control Conference,
IEEE, 2006, pp. 1742-1747.

Z. Shareef, A. Trdchtler, Simultaneous path planning and trajectory optimization for robotic manipulators using discrete mechanics
and optimal control, Robotica 34 (6) (2016) 1322-1334.

D. Pekarek, A.D. Ames, J.E. Marsden, Discrete mechanics and optimal control applied to the compass gait biped, in: 2007 46th
IEEE Conference on Decision and Control, IEEE, 2007, pp. 5376-5382.

T. Kai, K. Yamaki, Development of discrete mechanics for 2-dimensional distributed parameter mechanical systems and its application
to vibration suppression control of a film, in: Proc. International Symposium of Nonlinear Theory and its Application 2016, 2016,
pp. 638-641.

Z. Shareef, A. Trichtler, Optimal trajectory planning for robotic manipulators using discrete mechanics and optimal control, in: 2014
IEEE Conference on Control Applications, CCA, IEEE, 2014, pp. 240-245.

Z. Manchester, S. Kuindersma, Variational contact-implicit trajectory optimization, in: International Symposium on Robotics Research
ISRR, Puerto Varas, Chile, 2017.

Z. Manchester, N. Doshi, R.J. Wood, S. Kuindersma, Contact-implicit trajectory optimization using variational integrators, Int. J.
Robot. Res. (2019) 0278364919849235.


http://refhub.elsevier.com/S0045-7825(20)30251-6/sb138
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb138
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb138
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb139
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb140
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb140
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb140
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb141
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb141
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb141
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb142
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb142
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb142
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb143
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb143
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb143
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb144
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb144
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb144
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb145
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb145
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb145
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb146
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb146
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb146
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb147
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb148
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb148
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb148
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb149
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb149
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb149
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb150
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb150
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb150
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb152
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb152
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb152
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb153
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb153
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb153
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb154
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb154
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb154
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb155
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb155
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb155
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://arxiv.org/abs/1711.10617
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb157
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb158
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb158
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb158
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb159
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb159
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb159
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb160
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb160
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb160
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb161
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb161
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb161
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb162
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb162
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb162
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb163
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb163
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb163
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb164
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb164
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb164
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb165
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb165
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb165
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb166
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb166
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb166
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb168
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb168
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb168
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb170
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb170
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb170

[171]
[172]
[173]
[174]
[175]

[176]
[177]

[178]

H. Sharma, M. Patil and C. Woolsey / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113067 23

D. Kern, M. GroB, Variational integrators and optimal control for a hybrid pendulum-on-cart-system, PAMM 18 (1) (2018) e201800088.
R.I. McLachlan, S. Marsland, Discrete mechanics and optimal control for image registration, Anziam J. 48 (2006) 1-16.

E.R. Johnson, T.D. Murphey, Scalable variational integrators for constrained mechanical systems in generalized coordinates, IEEE
Trans. Robot. 25 (6) (2009) 1249-1261.

J. Lee, C.K. Liu, F.C. Park, S.S. Srinivasa, A linear-time variational integrator for multibody systems, 2016, arXiv preprint arXiv:16
09.02898.

T. Fan, J. Schultz, T.D. Murphey, Efficient computation of higher-order variational integrators in robotic simulation and trajectory
optimization, 2019, arXiv preprint arXiv:1904.12756.

M. Kobilarov, Solvability of geometric integrators for multi-body systems, in: Multibody Dynamics, Springer, 2014, pp. 145-174.
S. Leyendecker, P. Betsch, P. Steinmann, Energy-conserving integration of constrained Hamiltonian systems—a comparison of
approaches, Comput. Mech. 33 (3) (2004) 174-185.

P. Betsch, C. Hesch, N. Sénger, S. Uhlar, Variational integrators and energy-momentum schemes for flexible multibody dynamics, J.
Comput. Nonlinear Dynam. 5 (3) (2010) 031001/1-031001/11.


http://refhub.elsevier.com/S0045-7825(20)30251-6/sb171
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb172
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb173
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb173
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb173
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1609.02898
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://arxiv.org/abs/1904.12756
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb176
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb177
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb177
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb177
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb178
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb178
http://refhub.elsevier.com/S0045-7825(20)30251-6/sb178

	A review of structure-preserving numerical methods for engineering applications
	Introduction
	Geometric structure underlying continuous systems
	Basic concepts
	Lagrangian mechanics
	Variational formulation of different problems

	Structure-preserving methods
	Symplectic methods
	Variational integrators
	Energy–momentum integrators
	Discrete gradient methods
	Lie group methods

	Science and engineering applications
	Celestial mechanics and dynamical astronomy
	Elastodynamics
	Multibody dynamics
	Fluid dynamics
	Optimal control

	Discussion
	Declaration of competing interest
	Acknowledgment
	References


